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Abstract—Anomaly-based Intrusion Detection is a key research
topic in network security due to its ability to face unknown
attacks and new security threats. For this reason, many works
on the topic have been proposed in the last decade. Nonetheless,
an ultimate solution, able to provide a high detection rate with
an acceptable false alarm rate, has still to be identified.

In this paper we propose a novel intrusion detection system
that performs anomaly detection by studying the variation in the
entropy associated to the network traffic. To this aim, the traffic
is first aggregated by means of random data structures (namely
three-dimension reversible sketches) and then the entropy of dif-
ferent traffic descriptors is computed by using several definitions.

The experimental results obtained over the MAWILab dataset
validate the system and demonstrate the effectiveness of our
proposal for a proper set of entropy definitions.

Index Terms—Anomaly Detection, Information Theory, Shan-
non Entropy, Tsallis Entropy, Rényi Entropy, Kullback-Leibler
Divergence, Jensen-Shannon Divergence, MAWILab

I. INTRODUCTION

In recent years Internet has become the playground for
providing sensitive services to an ever growing amount of
end-users, most of them only partially aware of the risks
deriving from information sharing on the net. In spite of
the development of cryptographic primitives and their use in
secure protocols, a major role in this evolutionary process
will be played by Intrusion Detection Systems (IDSs), which
should be able to protect legitimate users against malicious
activities of any type.

In such a framework, while misuse-based IDSs represent
a well established reality, anomaly-based IDSs are still a
hot research topic, mainly for their ability in also detecting
unknown attacks. Indeed, although many anomaly detection
solutions have been proposed over the years, each approach
has its own limitations (often related to the false alarm rate)
and an ultimate solution has not been identified yet.

Among the different proposed approaches, a promising
choice seems to be represented by those methods that rely
on the estimation of the entropy associated to some traffic
descriptor. Nonetheless, such methods are still far for being
acceptable in real world scenarios, and several improvements
have to be studied.

For this reason in this paper we propose a novel anomaly
detection system that relies on the estimation of different kinds
of entropy, associated to the descriptors of traffic aggregates,
obtained through random data structures. It is worth noting that
the proposed system significantly extends the work presented

in [1], from which it inherits the general system architecture.
Nonetheless, it is based on a slightly modified detection
algorithm and thus offers different performance. In a nutshell,
we propose an IDS which at first, for both addressing scala-
bility issues and improving performance, aggregates network
traffic by means of a revised three-dimensional version of
the reversible sketches and then performs the actual anomaly
detection by computing, according to several different defi-
nitions, the entropy associated to the most significant traffic
descriptors.

In more detail, the main contributions of this paper are:

• three-dimensional reversible sketches: a modified version
of the reversible sketches is proposed, to allow the storage
of the histograms of the considered traffic feature

• definition of random histograms to overcome the limita-
tions of “standard” histograms (as discussed in Section
VI-B)

• use of sketches combined with entropy estimation: the use
of sketches for random aggregating the network traffic
permits on one side to achieve better performance with
respect to “standard” aggregation schemes and on the
other side to be robust against mimicry attacks that can
be carried out against entropy-based anomaly detection
systems (as discussed in Section IV)

• comparison of different kinds of entropy: an extensive
evaluation of the most commonly used entropy definitions
is carried out over real network traffic traces

• study of the impact of different traffic descriptors (namely
received bytes, flows, or packets) on the system perfor-
mance

To validate and to evaluate the effectiveness of the proposed
system, an extensive evaluation phase has been carried out over
the well-known MAWILab traffic traces.

The remainder of this paper is organized as follows: Sec-
tion II discusses the related works, while Section III provides
an overview of the theoretical background, focusing on the
description of the different entropy definitions used in this
work. Then, Section IV details the architecture of the proposed
system. The dataset used for testing and validating our pro-
posal is described in Section V and in Section VI we describe
the experimental results. Finally, in Section VII we conclude
the paper with some final remarks.
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II. RELATED WORK

Anomaly detection has been extensively studied over the
past decade. Many different approaches have been applied to
this problem in order to meet the ever-increasing demands.
To provide context to our approach, we discuss here some of
most notable works related to the application of entropy to the
anomaly detection field and to the usage of sketches in such
a framework.

The idea to use some entropy measurement in anomaly
detection is not new, but in most cases just the classical
Shannon entropy was taken into account. For instance, it has
been applied in [2] to detect fast Internet worms taking into
account the entropy contents (more precisely, the Kolmogorov
complexity) of traffic parameters, such as IP addresses, and
in [3] to detect anomalies in the network traffic running over
TCP. In both works an upper bound of Shannon entropy has
been estimated through the use of different state-of-the-art
compressors. Some more recent works include [4], [5], and [6],
where entropy-based anomaly detection methods have been
applied to specific domains like cloud computing, android
devices, and vehicular networks.

A different approach has been considered in [7], [8], [9],
where Shannon entropy was used to “summarize” the distri-
bution of specific traffic features to detect unusual traffic pat-
terns. Starting from the principles of thermodynamics, in [10]
entropy was used, together with energy and temperature, to
model the baseline operating conditions of the network and
reveal attacks.

In [11] several information theoretic measures (including
Shannon entropy, conditional entropy and Kullback–Leibler
divergence) have been considered and their specific use has
been discussed defining a general formal framework for intru-
sion detection. The use of Tsallis entropy in intrusion detection
has been proposed in [12], where it is also shown that the
optimal value of the parameter q does not depend significantly
on datasets and traffic patterns, while in [13] different values
of q are considered, introducing the so-called Traffic Entropy
Spectrum that permits to capture additional information on
detected anomalies. Comparisons among Shannon, Tsallis
and Rényi entropies are performed in [14] to identify the
traffic features that are more relevant for detecting anomalies
(but taking into account KDDCup99 dataset, which is hardly
representative of nowadays traffic and attacks), as well as
in [15], where the authors showed that it is possible to
detect modern botnet-like malware based on the entropy of
anomalous patterns.

It is worth mentioning that some general weaknesses of
entropy-based approaches are highlighted in [16], [17], where
“optimal camouflage” strategies are described. In our case, the
combined effect of random aggregation and different kinds of
entropy adds robustness to the method.

Finally, regarding sketches, even if they cannot be con-
sidered as a detection method, they have been used as a
building block of several AD systems [18], [19], [20], [21],
[22]. Indeed, the use of sketches corresponds to a random
aggregation that “efficiently” reduces the dimension of the
data (wrt other deterministic aggregations, such as according

to input/output routers [23]); moreover, the use of reversible
sketches [24] permits to trace back the flows responsible for
the anomalies.

To the best of our knowledge, our proposal is original
from the point of view of both combining sketches and
entropy estimation and performing an extensive evaluation
and comparison of different definitions of entropy in such a
field. Moreover, also the three-dimensional reversible sketches
represent an original contribution of the present paper.

III. THEORETICAL BACKGROUND

In this section we recall some theoretical background,
focusing at first on different definitions and concepts related
to entropy measures, and then on the sketch data structures.

As far as entropy is concerned, taking into account the
nature of traffic data under test, we will focus on discrete
distributions with a finite number L of elements. Roughly
speaking, we will compare two empirical distribution using
some kind of entropy as a measure of their similarity. This
can be done in two different ways: comparing the entropies of
the two distributions or considering the relative entropy among
them.

A. Shannon entropy

The most basic concept in information theory is the entropy
of a random variable (RV) X (or its distribution), often called
Shannon entropy [25]. Roughly speaking, it is a measure of
the uncertainty (or variability) associated with the RV.

In more detail, let P =
{
p1, p2, . . . , pL

}
be the probability

distribution of the discrete RV X , i.e.

0 ≤ pl ≤ 1 and
L∑
l=1

pl = 1

Then its Shannon entropy is defined as follows:

H(X) = −
L∑
l=1

pl log2 pl = E
[
− log2 P (X)

]
(1)

where E denotes the expectation operator, and is measured
in bits (or shannon). Note that a change in the base of the
logarithm just corresponds to a multiplication by a constant
and a change in the unit of measure (nat for the natural
logarithm and hartley (or ban) for the base 10 logarithm).
In particular, when the natural algorithm is considered, (1)
coincides with the well-known Boltzman–Gibbs entropy in
statistical mechanics.

It is well-known that 0 ≤ H(X) ≤ log2 L, where the infi-
mum corresponds to the degenerate distribution (i.e., pl = δk−l
for some integer k with 1 ≤ k ≤ L) and the supremum is
attained in case of uniform distribution (i.e., pl = 1/L ∀l).

According to the definition (1), Shannon entropy can be
interpreted as the expectation of a particular function, known
in the literature as self–information, which weights each pl
according to its logarithm. In many cases it could be useful
to introduce a more general definition of entropy that pro-
vides additional information about the importance of specific
events, for example outliers or rare events. In other words, an
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additional parameter should be added in order to weight in
a suitable way different parts of the distribution. This issue
emerged in different frameworks, ranging from information
theory and cybernetics to statistical mechanics and quantum
physics; examples of such generalised entropies are the Tsallis
and Rényi entropies, that reduce to the traditional Shannon
entropy for a special value of their additional parameter,
described in the following.

B. Tsallis entropy

Tsallis entropy (also known as Havrda–Charvát–Tsallis en-
tropy, since it was originally proposed in [26] by Havrda
and Charvát, although with a different prefactor, and then
independently rediscovered by Tsallis [27]) is defined as

Sq(X) =
1−

∑L
l=1 p

q
l

q − 1
(2)

where q ∈ R is the nonextensivity parameter or entropic index
and for q → 1 the usual Boltzmann–Gibbs entropy is obtained.

It is easy to show that, as for Shannon entropy, Sq(X) = 0
in case of degenerate distribution and attains its maximum in
case of maximum disorder (i.e., uniform distribution)

Smax
q =

1− L1−q

q − 1

Moreover, when q−1 (and hence q) assumes large positive
values, Sq(X) is more sensitive to events that occur often
(corresponding to higher values of pl), while for large negative
q rare events contribute more.

Another interpretation of the parameter q is related to the
non-additivity of Tsallis entropy [28]: if two systems A and
B are independent (i.e., pA+B

lm = pAl · pBm), then

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B)

and the parameter 1 − q is a measure of the departure from
additivity. The previous result is consistent with the extensivity
of the Shannon entropy, which indeed is obtained when q → 1.

C. Rényi entropy

Another generalization of (1) is given by the Rényi entropy
of order α, where α ≥ 0 and α 6= 1:

Hα(X) =
1

1− α
log2

(
L∑
l=1

pαl

)
(3)

which is, in general, a non-increasing function in α, apart
from the case of uniform distribution, for which Hα(X) =
log2 L ∀α.

Also in this case, the contributions due to the different
events depend on the value of the exponent α. Indeed, as α
approaches zero, (3) weighs all possible events more and more
equally, regardless of their probabilities and in the limit for
α → 0, the Rényi entropy is just the logarithm of the size
of the support of X . On the contrary, as α → ∞, the Rényi
entropy is increasingly determined by the events with highest
probability.

In more detail, several special cases of the Rényi entropy
are well–known in the literature:

• H0 is the Hartley entropy of X:

H0(X) = log2 L

• the limiting value of Hα as α → 1 is the standard
Shannon entropy

H1(X) = H(X) = −
L∑
l=1

pl log2 pl

as for the Tsallis entropy (apart from the different multi-
plicative constant)

• H2 is the collision entropy, sometimes just called “Rényi
entropy”

H2(X) = − log2

L∑
l=1

p2l = − log2 P(X = Y )

where X and Y are iid RVs
• as α→∞, Hα converges to the min-entropy

H∞(X) = min
l
(− log pl) = − logmax

l
pl

and indeed H∞(X) is the smallest entropy measure in
the family of Rényi entropies

Finally, note that Tsallys and Rényi entropies depend from
the probability distribution through the same quantity and
hence the following relation holds

(1− q)Hq(X) = log2 (1 + (1− q)Sq(X))

and it can be shown that Hq(X) is an increasing function of
Sq(X). However, they have different properties; for instance,
unlike the Tsallis entropy, the Rényi entropy is extensive as
the traditional Shannon entropy.

D. Kullback–Leibler divergence

The Kullback–Leibler divergence (KL), also known as in-
formation divergence, information gain, or relative entropy,
is a “measure” of the difference between two probability
distributions P and Q [29].

In case of discrete probability distributions, the KL diver-
gence of Q from P is given by

DKL(P‖Q) =

L∑
l=1

pl log
pl
ql

(4)

and it is defined only if ql = 0 implies pl = 0 ∀l (absolute
continuity).

From an information theory point of view, DKL(P‖Q) is
the amount of information lost when Q is used to approximate
P ; in other words, it measures the expected number of extra
bits required to code samples from P using a code optimized
for Q rather than the code optimized for P . It can be easily
related to Shannon entropy; indeed, denoting by U the uniform
distribution over the L values assumed by X , we have

H(X) = log2 L−DKL(P‖U)

It is easy to show that

DKL(P‖Q) ≥ 0
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and equality holds iff P = Q almost everywhere, in accor-
dance with the intuitive idea of distance between distributions;
however, KL is not a metric in the space of probability
distributions since it is not symmetric1

DKL(P‖Q) 6= DKL(Q‖P )

and does not satisfy the triangle inequality.
It is worth mentioning that, as for Shannon entropy, the

family of Rényi divergences provide generalizations of the KL.
Indeed, the Rényi divergence of order α (or α-divergence) of
a distribution P from a distribution Q is defined to be

Dα(P‖Q) =
1

α− 1
log

(
L∑
l=1

pαl
qα−1l

)
when 0 < α < ∞ and α 6= 1. As expected, the limit α → 1
gives the KL.

E. Jensen–Shannon divergence

The Jensen–Shannon divergence (JS) is another popular
method of measuring the similarity between two probability
distributions [30] and can be interpreted as a symmetrized and
smoothed version of KL. It is defined by2

DJS = 1
2DKL (P‖M) + 1

2DKL (Q‖M) (5)

where M is the average of the two distributions, i.e.

M =
1

2
(P +Q)

It can be shown that, using the base 2 logarithm, the JS is
bounded by 1:

0 ≤ DJS(P‖Q) ≤ 1

F. Sketch

Sketches are a family of data structures that use the same
underlying hashing scheme for summarising data. They differ
in how they update hash buckets and use hashed data to derive
estimates [19].

Specifically, the sketch data structure is a two-dimensional
D × W array T [d][w], where each row d (d = 1, . . . , D)
is associated with a given hash function hd. These functions
give an output in the interval (1, . . . ,W ) and these outputs
are associated to the columns of the array. As an example, the
element T [d][w] is associated to the output value w of the d
hash function.

The input data are viewed as a stream that arrives sequen-
tially, item by item, according to the Turnstile Model [31].
Let I = σ1, σ2, . . . be the input stream, then each item
σk = (ik, ck) consists of a key, ik (e.g., IP addresses, L4
ports), and a weight, ck (e.g., number of bytes or packets in a
flow). When new data arrive, the sketch is updated as follows:

T [d][hd(ik)]← T [d][hd(ik)] + ck (6)

1Kullback and Leibler themselves actually defined the divergence as
DKL(P‖Q) +DKL(Q‖P ), which is symmetric

2Note that JS can be generalized for the comparison of more than two
distributions, but this goes beyond the goal of our theoretical background
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Figure 1: Sketch: Update Function

The update procedure is realised for all the different hash
functions as shown in Figure 1.

To be noted that, given the use of hash functions, it is
possible to have some collisions in the sketch table. In this
work we have taken advantage of this fact, indeed having
collisions allows us to randomly aggregate the traffic flows,
namely all the IP flows that collide in the same bucket will be
considered as an aggregate.

From the anomaly detection point of view, aggregation
performed by means of probabilistic data structures as sketches
has proven to lead to better performance with respect to
“classical” aggregation strategies (e.g., ingress/egress router)
[23].

However, sketch data structures have a major drawback:
they are not reversible. That is, a sketch cannot efficiently
report the set of all keys that correspond to a given bucket of
the sketch.

To overcome such a limitation, [32] proposes a novel
algorithm for efficiently reversing sketches, focusing primarily
on the k-ary sketch. The basic idea is to hash “intelligently”
by modifying the input keys and/or hashing functions so as to
make possible to recover the keys with certain properties like
big changes without sacrificing the detection accuracy.

In more detail the update procedure for the k-ary sketch
is modified by introducing modular hashing and IP mangling
techniques.

The modular hashing works partitioning the n-bit long hash
key x into q words of equal length n/q, that are hashed
separately using different hash functions, hdi (i = (1, . . . , q)).
Let us consider that the output of each function is m-bit long.
Finally, these outputs are concatenated to form the final hash
value (as depicted in Figure 2).

δd(x) = hd1(x)|hd2(x)| . . . |hdq(x) (7)

Since the final hash value consists of q×m bits, it can assume
W = 2q×m different values.

Note that the use of the modular hashing can cause a
highly skewed distribution of the hash outputs. Consider, as an
example, our case in which IP addresses are used as hash keys.
In network traffic streams there are strong spatial localities in
the IP addresses since many IP addresses share the same prefix.
This means that the first octets (equal in most addresses) will
be mapped into the some hash values increasing the collision
probability of such addresses.

To effectively resolve this problem, the IP mangling tech-
nique has to be applied before computing the hash functions.
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Figure 2: Modular Hashing

By using such technique the system randomizes, in a reversible
way, the input data so as to remove the correlation or spatial
locality.

The other key point introduced in [32] is the algorithm for
reversing the sketch, named reverse hashing, which exploits
the properties of modular hashing and IP mangling. For the
sake of brevity, we skip the discussion of this algorithm,
referring the reader to [32] for all the details.

IV. SYSTEM ARCHITECTURE

In this section we describe the architecture of the proposed
system (depicted in Figure 3), detailing the functionalities of
each system block.

A. System Input

First of all the input data are processed by a module called,
in Figure 3, System Input, which is responsible of parsing the
input data so as to extract the proper traffic features. In more
detail, this module is responsible of reading the network traffic
(e.g., NetFlow traces [33], pcap [34]) and of parsing it (e.g.,
by using the Flow-Tools [35], in case of NetFlow data), so as
to produce plain ASCII files containing the input data. In our
implementation, such data are formatted according to the most
general data streaming model, that is the Turnstile Model (see
Section III).

As already mentioned, according to this model, the input
data are viewed as a stream that arrives sequentially, item by
item. Let I = σ1, σ2, . . . be the input stream, then each item
σk = (ik, ck) consists of a key, ik, and a weight, ck.

In the Turnstile model, the arrival of a new data item causes
the update of an underlying function U [ik] = U [ik]+ck, which
represents the sum of the weights of a given key over the time.

This model is very general and can be used in different
scenarios. As an example, in the context of network anomaly
detection, the key can be defined using one or more fields of
the packet header (IP addresses, L4 ports), or entities (like
network prefixes or AS number) to achieve a higher level of
aggregation, while the underlying function can then be the
total number of bytes or packets in a flow, or flows per OD
pair.

In our system, yet maintaining the idea of the underlying
function U and of the total sum, such functions are in
fact realised in the subsequent module, responsible for the
construction of the sketches, as described in the following
subsection.

From the practical perspective, in our implementation we
have in input pcap data, measuring the traffic gone through
a given router, collected over fifteen minutes time-bins. Thus,
this module will output a distinct file for each considered time-
bin (let us assume we have N distinct time-bins), each file
containing a list of keys observed in that time-bin (e.g., the
list of destination IP addresses) and the associated weights
(e.g., the number of bytes received by that IP address).

Note that the modularity of the system allows great flexibil-
ity. Indeed, the system administrator can easily choose which
traffic descriptor has to be used to better allows her to detect
the different attacks.

B. Sketch Computation

After the data have been correctly formatted, they are passed
as inputs to the module responsible for the construction of the
reversible sketch tables.

Hence, referring to Figure 3, the block “Hashing H1” is
responsible for the construction of the reversible sketches (as
already stated, each file, corresponding to a distinct time-bin,
is used to build a distinct sketch).

As far as the hash functions are concerned, we have used
4-universal hashes3 [36], obtained as:

h(x) =

3∑
i=0

ai · xi mod p mod W (8)

where the coefficients ai are randomly chosen in the set [0, p−
1] and p is an arbitrary prime number (we have considered the
Mersenne numbers).

Note that, given that in our system we need to compute the
entropy associated to a given traffic aggregate, maintaining a
simple counter in each bucket of the sketch is not enough.
Hence, instead of having a “standard” two-dimensional array,
as described so far, in our system we have implemented a novel
3D data structures T [d][w][l], in which the third dimension is
used to store histograms.

In more detail, a second hashing scheme, H2 in the figure,
independent of the first one and still realised with 4-universal
hash functions, is used to map each input weight ck to a given
histogram bin. We considered L bins for each traffic descriptor
and selected the bin associated to each key ik as the hash of
the corresponding weight ck, realising a random histogram
(the impact of using random histograms will be discussed in
Section VI-B).

Formally, for each new data, the update procedure of the
sketch is described by

T [d][h1d(ik)][h
2
d(ck)]← T [d][h1d(ik)][h

2
d(ck)] + 1 (9)

Note that in our implementation, both the hashing schemes
H1 and H2 are given by D distinct hash functions, which

3A class of hash functions H : (1, . . . , N) → (1, . . . ,W ) is a k-
universal hash if for any distinct x1, . . . xk ∈ (1, . . . , N) and any possible
v1, . . . vk ∈ (1, . . . ,W ):

P (h(xi) = vi;∀i ∈ (1, . . . , k)) =
1

Wk
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Figure 3: System Architecture

give output in the interval [1;W ] and [1;L], respectively. This
results in sketches that are ∈ ND×W×L, where D, W , and L
can be varied.

At this point, given that we had N distinct time-bins, we
have obtained N distinct sketches TnD×W×L, where n ∈ [1, N ]
is the sequence number of the time-bin.

It is important to highlight that, apart from the effective-
ness of performing a random aggregation, with respect to
“classical” aggregation techniques – as already discussed –
the use of sketches also has two additional advantages. First
of all, it allows to maintain low and constant the system
complexity when the amount of traffic changes. Indeed the
sketch dimensions do not depend on the quantity of processed
traffic. Second, as described in [16], [17], entropy does not
always allow us to discriminate two (also very different)
histograms (as an example, think of two histograms that
are scrambled versions of the same histogram). Hence, an
attacker could realise a “mimicry” attack, in which after having
estimated the traffic distribution, it creates an attack such that
the associated histogram, yet very different from the reference
one, leads to the same (or very similar) entropy value (as
discussed in [17]). In our case, given that the hashing scheme
used to construct the sketch introduces some randomness (and
it is in general unknown), such an attack is unfeasible.

C. Anomaly Detection

Once the sketches have been constructed they are passed in
input to the block that is responsible for the actual anomaly
detection phase. As depicted in Figure 3, two distinct sketches
are considered in such a block: the reference sketch T ref ,
which is the last observed non anomalous sketch, and the
current sketch Tn.

At this point the system performs one of the following
actions:

• compute and compare the entropy: for each bucket of
the current sketch Tn[d][w][·] the system computes the
entropy (by using one of the entropy definitions provided
in Section III) associated to the stored histogram and
computes the difference between such a value and the
entropy associated to the same bucket in the reference
sketch

• compute the “distance” between the sketches: for each
bucket of the current sketch Tn[d][w][·] the system com-
putes the “distance” (by using one of the divergence
definitions provided in Section III) between the stored
histogram and the correspondent histogram of the refer-
ence sketch

Thus such a value (either the entropy difference or the
distance) is compared with a threshold to decide if there is
an anomaly or not.

The output of this phase is a binary matrix (A ∈ ND×W ),
for each time-bin, that contains a “1” if the corresponding
sketch bucket is considered anomalous at that time-bin , “0”
otherwise.

Note that, given the nature of the sketches, each traffic flow
is part of several random aggregates (namely D aggregates),
corresponding to the D different hash functions. This means
that, in practice, any flow will be checked D times to verify
if it presents any anomaly (this is done because an anomalous
flow could be masked in a given traffic aggregate, while being
detectable in another one).

Due to this fact, a voting algorithm is applied to the matrix
A. The algorithm simply verifies if at least H rows of A
contain at least a bucket set to “1” (H is a tunable parameter,
set to dD/2e in the experimental section). If so, the system
reveals an anomaly, otherwise the matrix A is discarded.
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D. Identification

In case the voting procedure outputs the presence of an
anomaly in a given time-bin, the system applies the reversible
sketch algorithm to the sketch table in that time-bin for
identifying IP addresses responsible for the anomalies.

Hence the output is represented by a list of anomalies and
responsible flows.

V. DATASET: MAWI TRAFFIC TRACES

Our system has been extensively tested and evaluated using
the traffic traces of the MAWI (Measurement and Analysis
on the WIDE Internet) dataset [37], which consists of packet
traces from the MAWI archive (sample-points B and F),
publicly available at [38]. Each trace in this database is a pcap
file containing the traffic captured over 15 minutes in a specific
day, since 2001 to now, on a trans-Pacific link between Japan
and the USA.

As in almost all existing databases, the key problem in
testing the IDS performance is represented by a precise
knowledge of the anomalies existing in the captured traffic.
Such information are essential for evaluating new approaches.
Although also for the MAWI archive, an exact description of
the attacks is not available, the data set presents two important
features that made it suitable for the performance evaluation
procedure. First of all the traffic mixture is representative of
the current mixtures of network services and applications,
being collected in a real operating network, and then, in the
framework of the successive project MAWILab [37], every
traffic flow is classified by means of labels, which indicate
the probability (according to well-known anomaly detection
algorithms) that an anomaly is present.

In more detail, the traces classification has been obtained
combining the output of four anomaly detectors [39]. As a
result, the traffic is split into four categories:
• anomalous: traffic that is anomalous with high probability
• suspicious: traffic that is probably anomalous, but not

clearly identified by the MAWI classification methods
• notice: non anomalous traffic, but that has been reported

by at least one of the four anomaly detectors
• benign: normal traffic.

The anomalies (anomalous and suspicious flows) are listed in
an xml file for each trace, identifying them by means of traffic
features as source and destination IP addresses, source port,
destination port and transport protocol. Furthermore, some
information about the kind of anomaly are also given:
• attack: anomalies representing a well known attack
• special: anomalies involving well known ports
• unknown: unknown kinds of anomalies.
The most widely used performance indicators are the ROC

curve, which plots the detection probability PD against the
false alarm probability PFA, and the associated AuC (Area
under the Curve), when varying the detection threshold. Taking
into account the MAWI labels, we consider as “false positives”
the flows that are not labeled as “anomalous” or “suspicious”
in the MAWI archive, but that are anomalous according to
the tested IDS, so the false alarm probability PFA is the ratio

between the number of “false positive flows” and the number
of flows that are neither “anomalous” nor “suspicious”

On the other hand, the false negative rate PFN (note that
the detection probability PD can be obtained simply as PD =
1 − PFN ) is the ratio between the number of false negatives
and the number of “anomalous” flows. But, in this case PFN
depends on the actual interpretation of the MAWILab labels,
and can be defined in several ways.

In more detail, as discussed in [40], the number of false
negatives can be calculated as (the labels are used in the
following figures to identifies the corresponding definitions of
PD):
• “all”: the number of unrevealed flows labeled as “anoma-

lous”
• “fn 2 detector”: the number of unrevealed flows labeled

as “anomalous” and detected at least by two of the four
detectors used in MAWI classification

• “fn 3 detector”: the number of unrevealed flows labeled
as “anomalous” and detected at least by three of the four
detectors used in MAWI classification

• “fn 4 detector”: the number of unrevealed flows labeled
as “anomalous” and detected by all the four detectors
used in MAWI classification

• “fn attack”: the number of unrevealed flows labeled as
“anomalous” belonging to the “attack” category (known
attacks)

• “fn attack special”: the number of unrevealed flows la-
beled as “anomalous” belonging to the “attack” category
or the “special” category (attacks involving well-known
ports)

• “fn unknown”: the number of unrevealed flows labeled
as “anomalous” belonging to the “unknown” category
(unknown anomalous activities)

• “fn unknown 4 detector”: the number of unrevealed flows
labeled as “anomalous” belonging to the “unknown”
category and detected by all the four detectors used in
MAWI classification.

VI. PERFORMANCE EVALUATION

In this section we describe the experimental results obtained
testing our system over the MAWILab dataset. It is important
to highlight that, since we have focused on volume anomalies,
we have taken into consideration, as traffic descriptors, the
number of flows with the same destination IP address (hence
referring to the Turnstile model presented in Section IV, for
each item the key is given by the destination IP address and
the weight is given by the number of associated flows) and
the quantity of traffic received by each IP address expressed
either in bytes or in packets (again referring to the Turnstile
model, for each item the key is still given by the destination IP
address, while the weight is given by the number of associated
bytes or packets, respectively).

In the first three subsections, we present some preliminary
analysis results aimed at : i) understanding if taking into
consideration different traffic descriptors and different defi-
nitions of the entropy takes to different system performance,
ii) comparing random hisogram to “standard” ones, and iii)
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correctly dimensioning the system. Then, the subsequent three
subsections detail the results achieved in terms of ROC curve
and AuC, when taking into consideration bytes, flows, and
packets.

A. Preliminary Analysis: Entropy Analysis
Before actually discussing the system performance, we have

carried out several experimental tests to evaluate the differ-
ences when applying our method to different traffic descriptors
and using different definitions of entropy (namely Shannon –
H , Rényi with parameter α – Hα, and Tsallis with parameter
q – Sq).

Figure 4 represents the scatter plot of H computed over
the same traffic aggregates, when taking into consideration
flows and bytes (Figure 4a), packets and bytes (Figure 4b), and
packets and flows (Figure 4c). In more detail, we consider one
row of the sketch and each point represents one bucket for the
chosen time-bin and its coordinates are given by the values of
the entropy associated to the histogram of the first descriptor (x
axis) and second one (y axis). In this preliminary comparison
about the information associated to different features, we
have used the Shannon entropy, being the most “classical”
definition.

The basic idea is that two variables that present, in the
scatter plot, a linear pattern should take to the same system
performance. It is important to highlight that very different
performance can be offered also by strongly correlated vari-
ables provided that they do not have a linear scatter plot.

As it can be clearly seen from the figures, the scatter plots
show that the couples of variables do not have a clear linear
relationship. This result indicates, as will be confirmed in the
next subsections, that the three different traffic descriptors can
lead to completely different results.

The subsequent Figure 5 presents the scatter plot computed
between the different definition of entropy (H and H3 in
Figure 5a, H and S3 in Figure 5b, and H3 and S3 in Figure
5c), so as to evaluate if, as expected from the theory, using
different definitions of entropy actually makes sense in the
anomaly detection field. Note that, for sake of brevity and
given that in these graphs we do not want to evaluate the
impact of the parameters α and q, we have arbitrarily set them
to a value equal to 3. Also in these graphs, the lack of linearity
in the plots is an indication that the use of the three different
families of entropy should take to different performances.

Moreover, from the scatter plots, we can infer an additional
information: a monotonic curve indicates that the order of the
buckets (if ranked according to the associated entropy) does
not change between the two used definitions. Hence, from the
practical point of view, this means that the ranking of the
buckets remains the same when using Tsallis and Renyi (as
expected from the theory), while it changes if using Shannon
and Renyi or Tsallis. This gives us a further indication about
the fact that different entropy definitions will take to different
system performance.

A similar conclusion can be drawn observing Figure 6 and
Figure 7, where we show the scatter plot between H2 and H4,
and S2 and S4, to evaluate if different values of parameters α
and q are worth being studied.

Statistics Byte Flow Packet
min 46 1 1
Max 131524478 3941 161619
50th Percentile 122 1 1
75th Percentile 382 2 4
95th Percentile 2178 4 15
99th Percentile 52474 18 18

Table I: Features Statistics

B. Preliminary Analysis: Random Histogram

In this second analysis, some experimental tests have been
carried out to evaluate the usage of the hashing scheme H2

to realise the random histograms stored in each bucket of the
sketch. Indeed, a more straightforward choice would be to
realise “standard” histogram, simply dividing the samples of
interest in L distinct equal bins (in this analysis we use L = 64
for sake of clarity, the impact of L will be discussed in the
next subsection). Nonetheless, simply realising the histograms
in such a way we would obtain too dense histograms (in
Figure 8 we show as an example the histogram computed over
the Byte feature contained in one of the MAWILab traces,
using Shannon entropy). This is due to the distribution of the
considered traffic features, whose main statistics are shown in
Table I.

Moreover, only statistics related to the training set (i.e., in
our case the time-bin used to build the reference sketch) may
be available in advance, so even a non-uniform quantization
does not solve the problem.

Instead, using the hashing scheme H2 we obtain random
histograms, which are much more “sparse” and hence more
significant for our purpose (in Figure 9 we show the random
histogram computed over the same values used in Figure 8
and the same number L of bins).

C. Preliminary Analysis: System Dimensioning

This third analysis has been carried out to correctly di-
mension the main structures used in the systems (namely the
sketch). As far as the number of rows (D) and columns (W )
are concerned, based on previous works (e.g., [40]), they have
been set to D = 16 and W = 512.

Instead, regarding the number of histogram bins (L), we
have carried out some experimental tests. Figure 10 shows
the ROC curves achieved when varying L in the range
{32, 64, 96, 128} (for sake of simplicity we only report the
results achieved when using Shannon Entropy and byte as
traffic feature, but comparable results have been achieved with
other “configurations” ).

As it clearly appears, the best results are obtained when
L = 96.

D. Experimental Results: Byte

In this subsection we show the actual performance, in terms
of detection probability PD and false alarm probability PFA,
of our system, when taking in consideration the bytes.

First of all, in Figure 11 we present the performance
with Shannon entropy when varying the interpretation of the
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Figure 4: Scatter Plot: different descriptors
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Figure 5: Scatter Plot: different definitions of entropy
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Figure 6: Scatter Plot: H2 vs. H4

MAWILab labels, as discussed in Section V. The plots clearly
show that the system performance are strongly influenced by
the different interpretation of the labels, going from unac-
ceptable (e.g., “fn attack”) to very good (e.g., “fn unknown
4 detector”). This variability, that is already known in the
literature [40], can be justified by the very little number
of flows belonging to some categories (e.g., “fn attack”)
compared with the total number of anomalies. In any case,
the lack of effectiveness in detecting known attacks is not a
major concern for the applicability of the anomaly detection
systems. Indeed, anomaly-based IDSs are typically used in
conjunction with misuse-based systems, which are effective in
revealing known attacks, but are unable to find the unknown
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Figure 7: Scatter Plot: S2 vs. S4

ones (for which the signatures are not present yet!). The latter
are instead well detected by the proposed algorithms.

Given that, in the following we will only focus on the
performance for the “fn unknown 4 detector” case.

Figures 12, 13, and 14 respectively present the ROC curves
when using “standard” entropy definitions, Hα, and Sq . We
can notice that among Shannon entropy, Kullback-Leibler
divergence, and Jensen-Shannon divergence, only Shannon
entropy takes to good results, while both KL and JS lead to
unacceptable results, being all the ROC curves in Figure 12
close (if not even below) the diagonal. Instead, using Hα the
system offer good performance, as demonstrated in Figure 13,
but the performance strongly improve when using Sq . Indeed
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Figure 8: “Standard” Histogram (Byte, 64 bins)

Figure 9: Random Histogram (Byte, 64 bins)

from Figure 14, we can see that the system achieves very
good performance, especially when q = 6 (additional results,
not shown for sake of brevity, indicate that the performance
do not significantly improve further increasing the value of
q). This result is justified by the fact that Tsallis entropy
better characterises highly probable events when q is positive
and “big” (see Section III for the theoretical discussion), and
a volume anomaly can be considered as a highly probable
event if we consider the histogram representing the number of
received flows. It is worth noting that, because of this aspect,
we have not taken into consideration q < 0.

All the results are summarised in Table II, where, for
sake of completeness, we report the values of the AuC,
for all the discussed methods and for all of the different
MAWILab labels. From the table we can easily conclude that
the best performance (over the “fn unknown 4” label), for each
considered “family” of entropy definition, are obtained by H ,
H2, and S6, which are further compared, in terms of ROC
curve, in Figure 15.

In conclusion, for the byte case, we can see that the system
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Figure 10: ROC Curve: Varying L
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Figure 11: ROC Curve: H with different interpretations of the
MAWILab labels (Byte)

is able to achieve very good results (PD > 90% with PFA <
10%)

E. Experimental Results: Flow

Similarly to what done in the previous subsection (and
taking into account the obtained results), we present the system
performance in the case “fn unknown 4 detector”, when taking
into consideration the number of flows as traffic descriptor.

Figure 16 presents the ROC curves obtained when using
“standard” entropy definitions. Such plots clearly indicate that
the best performance are obtained when using H , while the
use of both KL and JS takes to unacceptable performance,
being the ROC curve very close to the diagonal.

Instead, Figure 17 presents the ROC curves obtained when
using Hα and varying the value of α between 2 and 4.
By observing the graphs, it is clear that α does not have a
strong impact on the system performance, and that H2 behaves
slightly better than the other cases.

Similarly, Figure 18 presents the ROC curves obtained
when using Sq and varying the q parameter. In this case the
parameter has been varied between 2 and 6, with the best
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Method AuC
– all fn 2 fn 3 fn 4 attack attack sp. unknown unknown 4
H 0.749288 0.751888 0.758025 0.835591 0.4803 0.557955 0.819242 0.90413
KL 0.522163 0.522252 0.521702 0.522083 0.551005 0.510057 0.526626 0.531105
JS 0.521666 0.521904 0.521302 0.526757 0.548744 0.494368 0.531675 0.543652
H2 0.674507 0.676392 0.68072 0.738476 0.482242 0.541467 0.723197 0.790217
H3 0.634436 0.635968 0.639801 0.697944 0.459855 0.498696 0.684096 0.745809
H4 0.594717 0.595974 0.599049 0.641632 0.451493 0.496209 0.630735 0.679397
S2 0.716298 0.718115 0.722697 0.794849 0.518546 0.549366 0.777345 0.855448
S3 0.706611 0.708557 0.713177 0.809879 0.502209 0.466369 0.794499 0.878781
S4 0.701317 0.702265 0.704969 0.781248 0.547067 0.509702 0.77139 0.840795
S5 0.742962 0.743929 0.747218 0.844888 0.57774 0.50111 0.831412 0.91621
S6 0.744033 0.74574 0.750237 0.848218 0.539046 0.49014 0.83692 0.922063

Table II: AuC Values (Byte)
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performance offered when q = 6. This fact is justified, as
previously discussed, by the fact that Tsallis entropy better
characterises highly probable events when q is positive and
“big”.

To allow an easier comparison among the different methods,
in Table III we report, for each of the considered system
settings, the value of the AuC. From the table it appears
that the best performance, for considered “family” of entropy
definition, are obtained by H , H2, and S6, which are further
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Figure 14: ROC Curve: Sq (Byte)
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compared in terms of ROC curve, in Figure 19.
It is important to highlight that the system, with its best

settings (i.e., S6), is able to achieve very good results with
more of 85% of detection in correspondence of PFA around
15%.

F. Experimental Results: Packet

Similarly to what done in the previous subsections, we
present the system performance when taking into consideration
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the packets as traffic descriptor.
Figure 20 presents the ROC curves obtained when using

“standard” entropy definitions, and, as in he previous cases, the
only acceptable performance are offered by Shannon entropy.

Then, Figures 21 and 22 present the ROC curves obtained
when using Hα (varying the value of α between 2 and 4)
and Sq (the value of q between 2 and 6). By observing the
graphs, it is clear that neither α nor q have a strong impact on
the system performance, and that H2 and S5 behaves slightly

Method AuC
H 0.842355
KL 0.542945
JS 0.522932
H2 0.848728
H3 0.817902
H4 0.814845
S2 0.848961
S3 0.845637
S4 0.862569
S5 0.870584
S6 0.882147

Table III: AuC Values (Flow)
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Figure 18: ROC Curve: Sq (Flow)
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Figure 19: ROC Curve: best cases (Flow)

better than the other cases in each respective “entropy family”.
As for the other cases, in Table IV we report all of the

values of the AuC. From the table we can easily see that the
best performance are offered by Shannon, H2, and S5, which
are further compared in Figure 23

It is important to notice that, also in this case, the system
is able to offer very good performance with more of 90% of
detection in correspondence of PFA around 5% (S5 case).

Method AuC
H 0.918374
KL 0.543908
JS 0.464775
H2 0.897934
H3 0.88578
H4 0.893729
S2 0.929691
S3 0.923326
S4 0.931093
S5 0.931339
S6 0.927684

Table IV: AuC Values (Packet)
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VII. CONCLUSIONS

In this paper we have presented a novel anomaly detection
system that leverages on the estimation of the different kinds
of entropy, associated to the descriptors of traffic aggregates,
obtained through random data structures. In more detail, the
system at first relies on a modified version of the reversible
sketches (extended to the three-dimensional case) to randomly
aggregate the traffic, so as to simultaneously address scalabil-
ity issues and improve the detection performance.

Then it computes the entropy associated to one of the
different traffic descriptors by using different measures of
entropy (namely Shannon, Kullback-Leibler, Jensen-Shannon,
Rényi, and Tsallis).

The extensive evaluation phase, carried over the MAWILab
traffic traces, has demonstrated that the use of entropy defini-
tions different from the “standard” Shannon entropy takes to
improve the system performance. In more detail, the experi-
mental results suggest that Tsallis entropy (with a relatively
high value of q, i.e., q = 5, q = 6) offers the best performance.
Indeed, in those cases, the system is able to achieve very good
results with more than 90% of detection in correspondence
of a false alarm probability around 5%. Finally, it is worth
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Figure 22: ROC Curve: Sq (Packet)
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noticing that the offered performance are almost independent
of the chosen traffic descriptor.
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