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Abstract

On-demand ride and ride-sharing services have revolutionized the point-to-point transportation
market and they are rapidly gaining acceptance among customers worldwide. Alone, Uber and
Lyft are providing over 11 million rides per day [1, 2]. These services are provided using a client-
server infrastructure. The client is a smartphone-based application used for: i) registering riders
and drivers, ii) connecting drivers with riders, iii) car-sharing to share the expenses, minimize
traffic congestion and saving traveling time, iv) allowing customers to book their rides. The
server typically, run by multi-national companies such as Uber, Ola, Lyft, BlaBlaCar, manages
drivers and customers registrations, allocates ride-assignments, sets tariffs, guarantees payments,
ensures safety and security of riders, etc. However, the reliability of drivers have emerged as a
critical problem, and as a consequence, issues related to riders safety and security have started
surfacing. The lack of robust driver verification mechanisms has opened a room to an increasing
number of misconducts (i.e., drivers subcontracting ride-assignments to an unauthorized person,
registered drivers sharing their registration with other people whose eligibility to drive is not
justified, etc.) [3, 4, 5].

This paper proposes DriverAuth - a novel risk-based multi-modal biometric-based authenti-
cation solution, to make the on-demand ride and ride-sharing services safer and more secure for
riders. DriverAuth utilizes three biometric modalities, i.e., swipe, text-independent voice, and
face, in a multi-modal fashion to verify the identity of registered drivers. We evaluated Driver-
Auth on a dataset of 10, 320 samples collected from 86 users and achieved a True Acceptance
Rate (TAR) of 96.48% at False Acceptance Rate (FAR) of 0.02% using Ensemble Bagged Tree
(EBT) classifier. Furthermore, the architecture used to design DriverAuth enables easy integra-
tion with most of the existing on-demand ride and ride-sharing systems.

Keywords: Smartphone, Sensors, User Authentication, Physiological & Behavioral Biometrics,
Risk-based Approach

1. Introduction1

On-demand ride and ride-sharing services can deliver one-time rides to customers on a very2

short notice and are available 24 × 7 in all major cities worldwide. A customer can book a ride,3
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easily and quickly, through the dedicated smartphone-based ride-offering applications provided4

by different companies and downloadable at popular application stores, e.g., Play-store, App-5

store, etc. These services have facilitated quick business opportunities, allowing individuals to6

become partners (drivers) to offer rides to customers. However, the safety and security of the7

riders are always at risk, according to the news related to fake drivers and assaults by dishon-8

est drivers [6]. On-demand rides and ride-sharing services, being easy to access and lucrative,9

are attracting people also with unclean police records to become driver-partners, by using false10

identities [7]. Currently, ride-sharing companies rely on the government-issued documents, e.g.,11

passports, driver license, etc., to verify their drivers-partners identity and their eligibility to drive.12

However, this verification is generally performed only once at the time of their registration. Fur-13

ther, these documents are not difficult to forge [8] and not all countries use the same security14

standards to protect them. Most ride-sharing services support drivers’ rating services on social-15

media such as Facebook, LinkedIn, Twitter, and Google+. However, these ratings can be easily16

manipulated, thus, not always reliable [9, 10, 11].17

All these factors have contributed to an increasing number of incidents involving on-demand18

and shared rides in recent years [6, 12]. This trend has motivated ride-sharing companies to19

implement more rigorous checks on their drivers [13]. The checks that have been implemented,20

however, did not stop the abuses, e.g., dishonest drivers creating multiple accounts with forged21

documents [14]. These abuses are becoming also a liability concern [15], thus, the search for22

new, secure, and robust driver verification mechanisms becomes extremely important.23

In spite of background checks on the drivers at the time of registration, the system lacks a24

robust mechanism [16], to verify the driver’s identity each time she is offering a ride [5]. Some25

companies have introduced a real-time identity check that requires drivers to take a selfie before26

going online to drive [17] but not before each ride.27

These open issues motivate the design of a new risk-based verification mechanism that can28

verify a legitimate driver at the time of every new registration and ride-booking, and thus, mini-29

mize the associated risks of abuses. An important requirement that any new driver authentication30

scheme must satisfy is not to alter the existing work-flow to pose a usability burden to drivers.31

DriverAuth authenticates drivers by leveraging three biometric modalities, i.e., swipe, text-32

independent voice, and face, for verification purposes in a multi-modal fashion. Multi-modal33

systems are expected to be more reliable and accurate than unimodal systems, to verify a user.34

Furthermore, studies [18, 19, 20] have shown that multi-modal systems are more resilient to35

common attacks, e.g., presentation-, mimic-, replay-, random-attacks in comparison to unimodal36

systems.37

38

The main contributions of this paper are as below:39

• The proposal of DriverAuth- a multi-modal system that pro-actively verifies the drivers’40

identity every time drivers accept a new ride-booking. The proposed mechanism collects41

three biometric modalities, e.g., swipe gestures, text-independent voice and face, while42

they interact with the dedicated driver-application, to verify the drivers’ identity. Driver-43

Auth that can minimize the threat(s) posed by fake and malicious drivers. Hence, provi-44

sioning the safety and security of riders.45

• Collection and sharing of swipe and voice data of 86 participants, for future research.46

• Experimental evaluation of DriverAuth on the dataset of 86 users.47
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Paper Organization48

The rest of the paper is organized as follows: Section 2 covers the related work. Section 349

describes the problems in the existing driver registration process and the risk involved in this50

system along with the need of risk-based user verification method and the considered threat51

model. Section 4 presents DriverAuth design including the verification process at the time of52

new registration and ride-booking assignment. Section 5 discusses the methodology used to53

collect the dataset, to extract features, to concatenate and selection of the best features from the54

chosen modalities. Section 6 covers the details of the experiments, the classification method, and55

presents the performance evaluation and the obtained results. Finally, Section 7 concludes the56

paper outlining possible future work.57

2. Related Work58

Face recognition is one of the most widely accepted biometric modality mainly because it59

provides high recognition rates. Thus, Uber has introduced “Real-Time ID Check” - a face60

recognition system developed by Microsoft, to verify the identity of their registered drivers [17].61

The system collects the face images of the person registering as driver-partner, extracts facial fea-62

tures, and store them in the database for future verification purposes. Only a subset of randomly-63

selected driver-partners are asked to verify themselves using “Real-Time ID Check”. Selected64

drivers are requested to take a selfie, then, this query image is compared with reference images65

to verify their identity. Subsequently, the system takes necessary action, i.e., allows/disallows66

drivers to offer rides, based on the obtained verification results from the face recognition algo-67

rithm. Uber claims 99% success rate of this mechanism, however, they have not yet published68

any details related to their systems’ robustness against presentation attacks and about liveness69

detection.70

Multi-modal biometric factors can remarkably improve identity verification accuracy of a71

system by combining the pieces of evidence extracted from single modalities [32]. Multi-modal72

systems are also more resilient against spoofing in comparison to unimodal ones [33]. Our73

system is the first multi-modal biometric authentication scheme to address driver’s authentication74

problem for ride-sharing services. Similar proposals exist but only for user authentication on75

smartphones. Table 1 summarizes the most relevant multi-modal user authentication solutions76

on smartphone.77

Proteus, proposed by Gofman et. al. [19], is a bi-modal biometric verification system based78

on face and voice features, for mobile devices. This scheme extracts principle components using79

Principal Component Analysis (PCA) and Mel Frequency Cepstral Coefficients (MFCC) from80

face and voice modality, respectively, to construct a bi-model system. The system was evaluated81

on a dataset of 54 users and it achieved an Equal Error Rate (EER) of 2.14% using latent Dirichlet82

allocation (LDA) fusion method. Another bi-modal approach [21] incorporates finite Gaussian83

Mixture Model (GMM) based on Expectation Maximization (EM) and applies score-level fusion84

to fuse face and voice modalities. They achieved an EER of 0.449% for face and 0.003% for85

voice modalities, in unimodal settings, and their bi-modal settings yielded an EER of 0.087%,86

on the dataset of 30 participants. These experiments clearly reflect the potential of multi-modal87

biometrics to enhance the verification accuracy on mobile devices.88

Swiping is a very common gesture required to interact with mobile devices’ touchscreen. It89

is a collection of touch-points generated while the user dragged her finger on the smartphone90

touchscreen [34, 35, 36]. Feng et al. [25] proposed Finger gesture Authentication System using91

Touchscreen (FAST). They applied Random Forest as classifier and achieved a FAR of 4.66% and92
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Table 1: Multi-modal (combination of face, voice, or touch) User Authentication Schemes

Reference Modalities
Used

Algorithms Used Dataset Size Performance

Gofman et
al. [19]

Face, Voice Latent Dirichlet allocation (LDA) fusion method 54 EER=2.14%

Soltane et
al. [21]

Face, Voice
Finite Gaussian Mixture Model (GMM) based on
Expectation Maximization (EM) using score-level

fusion
30 EER=0.087%

Wang et
al. [22]

Face, Voice Quantization Index Modulation (QIM) and
Gaussian Mixture Models (GMM) 295 EER=2.76 −

3.79%
Menzai et

al. [23]
Face, Voice Dempster-Shafer theorem using belief function 295 HTER=0.433 −

2.875%

Kim et al. [24] Face, Voice Generalized cross correlation (GCC) algorithm
and AdaBoost algorithm on Local binary pattern - Accuracy=95%

Menzai et
al. [25]

Face, voice Belief functions and Particle Swarm Optimization
(PSO) 295, 52 EER=0.5 to 0.9

Feng et al. [25] Finger gesture
Authentication
System (FAST)

Random Forest classifier 40 FAR=4.66%,
FRR=0.13%

Buriro et
al. [26]

Swipe, Pickup
movement, and

Voice

Bayesian classifier 26 HTER=7.57%

Aronowitz et
al. [27]

Fingertip-based
writing, Face

and Voice

Dynamic time warping (DTW) 32 EER=0.1% at
quiet place, and
0.5% in noisy
surroundings

Akhtar et
al. [28]

Face,
touch-stroke,

and the hands-
movements to
holding phone

Multilayer Perceptron (MLP) 95 EER=1%

Buriro et
al. [29]

Touch-tapping
and hands-

movements to
holding phone

Multilayer Perceptron (MLP) 97 TAR=85.77

Koreman et
al [20]

Voice, face and
signature

Gaussian mixture models (GMMs) 82 EER=2%

Buriro et
al. [30]

Touch-typing
and hands-

movements to
holding phone

Multilayer Perceptron (MLP) 95 TAR=96

Eastwood et
al. [31]

Face, iris, and
fingerprints

Belief (Bayesian) networks - -

False Reject Rate (FRR) of 0.13% for the continuous post-login user authentication on a dataset93

of 40 users. ITSME [26] - a multi-modal authentication mechanism utilizes three behavioral94

modalities (swipe, pickup movement, and voice) and by applying Bayesian classifier achieved95

7.57% Half Total Error Rate (HTER) on their collected dataset of 26 participants. Another96

proposal by Aronowitz et al. [27], combines user’s fingertip-based writing on multi-touch screens97

with face and voice features and uses dynamic time warping (DTW) engine for user verification.98

They achieved an EER of 0.1% at quiet place, and 0.5% in noisy surroundings, on their collected99

dataset of 32 users (20 males and 12 females).100

Akhtar et al. [28] leveraged face, touch-stroke, and the phone-movements (the phone’s micro-101

movements generated while the user types her secret), to propose a multi-modal user authenti-102

cation solution for smartphones. It is worth noting that authors collected touch-stroke, and the103

corresponding phone-movements data by themselves and relied on MoBio dataset [37], for face104

modality to generate a tri-modal chimerical dataset. The experiment was conducted on 95 sub-105

jects and yielded an overall EER between 1% to 4% for a trimodal system using Multilayer106
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Perceptron (MLP) and Random Forest (RF) as classifiers. Another similar effort [20] leverages107

voice, face and signature modalities, for user authentication on mobile devices. This approach108

yielded an EER of 2% using Gaussian mixture models (GMMs). The system utilized BANCA109

audio-visual database [38] and BIOMET on-line signature database [39] comprising of the data110

collected from 82 and 84 subjects, respectively. Authors also checked each modality in unimodal111

settings and achieved an EER of 28%, 5%, and 8%, for face, voice, and signature modalities, re-112

spectively. The fusion of three modalities enhanced the system accuracy and reduced the EER to113

just 2%.114

Liveness detection is generally deployed to detect spoofing attacks. According to Zhang et115

al. [40], mobile audio hardware can be used to exploit articulatory gesture of a user to detect116

liveness and their proposed “VoiceGesture” system achieves 99% detection accuracy at approx-117

imately 1% EER. Swipe gesture is the result of a user subconscious muscle memory involving118

a sweeping movement on the touchscreen developed over a period of time due to constant use119

of a smartphone. Swipe gestures are arguably considered hard to be imitated and the impostor’s120

attempts are easily detectable [41]. Also, swipes have no explicit visual indicators which make121

it furthermore resistant to mimicry attacks [42]. Lastly, it is comparatively easier to perform122

liveness detection on faces because some of the robust liveness detection methods are already123

available [43], to prevent face spoofing attacks [44].124

Our proposed scheme DriverAuth is different from existing state-of-the-art in several ways:125

firstly, DriverAuth is a client-server-based multiuser (multiclass) verification solution in con-126

trast to the existing multimodal systems [19, 28, 26]. More specifically, we model this as a127

multi-class classification problem (classifier training with multiple users) whereas, the existing128

approaches dealing with smartphone user authentication are one-class or binary class classifi-129

cation problems. Secondly, DriverAuth utilizes both physiological and behavioral biometric130

modalities, i.e., swipe, face, and text-independent voice, equipped with liveness detection as a131

result more resilience to spoofing.132

3. Problem Description133

On-demand ride and ride-sharing services have revolutionized the point-to-point transporta-134

tion market, in a short period of time. Technology-based companies, e.g., Uber, Ola, Lyft,135

Blablacar, Sidecar, etc., connect customers and drivers by means of dedicated smartphone-based136

applications. Customers interested to the services and individuals aspiring to become driver-137

partner, can download these dedicated applications free-of-cost, available at online-app-stores,138

e.g., Play-store, App-store, Microsoft-store, etc.139

In order to become a driver-partner, an individual needs to be older than 21 years old, should140

be in possession of the valid driving license, valid vehicle registration, clean driving record, and141

have no criminal history [45]. These background checks are performed by the service provider142

just once, prior to the registration. Once the individuals are accepted as driver-partners, they can143

accept rides’ requests, reserved by customers, using dedicated driver-application on their smart-144

phones and perform their duty. Surprisingly, the system providers do not verify their drivers’145

identity while they accept a new ride, requested by the customers [46]. Thus, system providers146

are neither able to monitor fake drivers [3] nor they are able to curb dishonest drivers with multi-147

ple identities [47]. Therefore, the safety and security of the customers are always at risk and this148

risk in increasing with the increasing number of abuses reported every year [6].149

The safety and security of a customer is a huge challenge in on-demand ride and ride-sharing150

systems, despite being convenient, fast, and economical. Considering the volume of rides (alone,151
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Uber and Lyft are providing over 11 million rides per day [1, 2]), even if only one rider in a152

million is victimized, this sum up to 11 victims per day. As driver-partners can join and leave the153

service at anytime without any obligation is difficult to deter abuses.154

3.1. Threat model155

We consider two different types of malicious users in our scenario: the first type of adversary156

can impersonate a driver-partner by imitating a legitimate driver. The second type of attacker157

colludes with a legitimate driver-partner and share with him/her the registration to provide rides158

on behalf of the legitimate driver.159

Both adversarial situations can be countered using DriverAuth. DriverAuth leverages swip-160

ing, voice and face combined together to verify the legitimate driver at run-time and would re-161

quire driver’s presence every time she accepts a new ride request. Additionally, the fusion of the162

three modalities increases the resilience to common attacks, i.e., presentation, mimic and replay163

attacks [18, 19, 20].164

3.2. Risk-based verification mechanism165

According to ISO 9000:2015 [48], risk is the “effect of uncertainty on objectives”. The166

objectives can be defined as the strategic, tactical, or operational requirements pertaining to an167

ecosystem. Whereas, the effect can cause both positive or negative deviations on the objectives.168

A risk-based verification mechanism aims at determining uncertainties to minimize their effects169

on the set objectives.170

At present, on-demand ride and ride-sharing services use the concept of simple verification171

mechanism [49], in which, users are verified at the time of entry only, and users are considered172

legitimate until they quit the system. However, with reference to the threat model, discussed in173

section 3.1, the drivers’ verification at the time of each new ride-assignment becomes imperative,174

to ensure customers safety and security. In that case, a simple verification concept does not suffice175

owing to their limitations to prevent potential risk hazards. Therefore, a risk-based verification176

mechanism could be the potential solution.177

Figure 1: Risk-based verification mechanism

The life cycle of a typical risk-based verification mechanism consists of users authorization at178

the time of entry and their verification at every critical operation. As illustrated in Figure 1, users179

can be authorized to use the system by registering to it, i.e., Entry, and once they unregistered180

themselves, i.e., Exit, they are unauthorized to use the system. At the time of registration, users181

are added to the database for a reliable 1 − to − 1 verification. Every time (T1...Tn) users carry182
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out a critical activity (e.g., accept a ride request) they are verified regardless of the fact that they183

are legitimate drivers. If an incident is reported, it is added to the incidents database tagged with184

the responsible user identity, for future reference.185

The concept used in Risk Profiling tools [50, 51] to assess risk at different stages of a crit-186

ical system can be applied here for proactive risk assessment [31] by analyzing the incidents187

database. This incidents database can be further utilized for Evidence Accumulation and Risk188

Assessment (EA&RA) to evaluate the driver’s behavior in the past and present using special risks189

indicators [52]. However, we consider risk assessment as our future work.190

4. Our Solution: DriverAuth191

DriverAuth authenticates the drivers at the time of registration and at the time of new ride-192

assignments. Each service provider has their own dedicated system and application for their193

driver-partners, however, the core functionalities are the same. Thus, DriverAuth can easily be194

integrated into these systems and provide the required safety and security to customers.195

Figure 2: DriverAuth architecture [53]

DriverAuth uses the client-server architecture [53] as illustrated in Figure 2. The client196

application consists of a data acquisition module, accumulator/encryption engine, and a timing197

generator. Data acquisition module collects the swipe data, voice-print, and face-image in se-198

quential manner using blocking-call-mechanism, i.e., application allows to proceed only after it199

receives the required user’s input. The operational details of the data collection process for driver200

verification is described in Section 4.3. The data collected, i.e., touch-points data, 2 − seconds201

voice-prints, and a face image, are temporarily stored by accumulator and encryption engine202

module for encryption, packaging, and time-stamping. With no delay, data is transferred to the203

server.204

The server side consists of a) a decryption engine, b) a decomposer, c) signal preprocessing,205

d) features extraction module, e) feature fusion module, f) feature selection module, g) template206
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creation module, and h) database module. Decryption engine decrypts the user-data as received207

from the client application, which is further decomposed into individual modalities. As the208

proposed scheme uses the multi-modal mechanism, features are fused and selected on merit basis209

entailing the selection of only productive features for user authentication. The drivers template is210

created based on the selected features subset and is then stored in the central database as training211

templates with a proper label. Later, a similar procedure is applied to the testing data to generate212

the testing template. In order to verify the identity of the claimant, the testing template is matched213

against the existing labeled training templates, present in the database.214

4.1. DriverAuth Design215

On-demand ride and ride-sharing systems have three primary stakeholders: a) centralized216

smartphone-based administration , b) customers and c) drivers, as illustrated in Figure 3.217

DriverAuth verifies the person both at the time of registration and at new ride-assignments.218

A security layer is stitched to the driver application to collect the biometric modalities, e.g.,219

voice, swipe gesture, and face. Simultaneously, the captured data (query input) is transferred to220

the server for driver’s identity verification. Also, this query input can be looked up in the stored221

database for any incident flagged against it.222

Figure 3: On-demand ride and ride-sharing system stakeholders

4.2. Verification during driver-partners registration223

Verification process during driver-partners registration is illustrated in Figure 4.224

1. Individuals can apply to become driver by filling the application form using dedicated225

driver-application (see Figure 4) on their smartphone.226

2. During the registration process, DriverAuth collects the swipe gesture, text-independent227

voice and face samples of a person.228
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3. At the server (see Figure 4), query input is first compared with the stored driver-partner229

templates in the database. If this query input is positively verified, the registration is com-230

pleted. If there is a new registration, the new template is added to the database confirming231

the new registration.232

Thus, DriverAuth minimizes the threats posed by dishonest drivers by preventing multiple233

or forged account creation.234

Figure 4: Overview of driver-partners registration process

4.3. Verification during new ride assignment235

Drivers verification process during new ride booking is illustrated in Figure 5.236

1. The customers can book the ride by setting up their location using the dedicated on-demand237

ride and ride-sharing application on their smartphones. Subsequently, they can locate the238

available cabs (along with driver’s picture and vehicle details) near to their location to239

reserve the ride by selecting one of the cab [54].240

2. On receiving a booking request from a customer, system provider forwards the request to241

the respective driver.242

3. The driver upon receiving the alert can continue to accept the new ride-assignment by243

swiping on the touchscreen.244

4. After the swipe input is detected, the application requires a short voice-print (2 − seconds245

of voice recording) from the driver. This voice-print can be totally text-independent that246

provides flexibility to the drivers to use any language of their choice.247

5. After the successful voice detection, the application turns on the camera and prompts for248

the driver’s selfie to conclude the ride-assignment acceptance process.249
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Figure 5: Overview of new ride assignment process

6. Subsequently, DriverAuth client application transfers the encrypted driver’s biometric250

modalities, i.e., swipe gesture, voice, and face, to the server. In the meantime, the driver251

verification is performed on the server.252

7. Based on the driver verification results, the system provider can approve the ride-assignment253

to the respective driver and simultaneously, intimate the customer.254

8. In any case if driver abuses or assaults the rider, then the rider can report the incident,255

immediately. The reported incident can be tagged with the driver’s identity which will256

automatically be added to the incidents database.257

DriverAuth minimizes the potential risks towards the safety and security of riders by veri-258

fying the drivers’ identity pro-actively, at the time of every new ride assignment.259

4.4. Liveness detection and preventing spoofing attacks260

Liveness detection helps to distinguish between living and non-living, during the authenti-261

cation process and, thus, prevents spoofing attacks at the data acquisition module [55]. Driver-262

Auth data acquisition module acquires data from three modalities, i.e., voice, swipe, and face,263

as described in Section 4.3. For voice liveness detection, data acquisition module incorporates264

phoneme sound localization mechanism taking advantage of the users unique vocal system and265

high quality stereo recording of smartphones [56]. Studies have shown that swipe gesture is266

inherently difficult to spoof [42] but in future we will incorporate technique for swipe liveness267

detection too. Similarly, face modality liveness indicators like eye blinking, mouth movements,268

face posture and motion analysis etc., are exploited for multi-spectral and reflectance analy-269

sis [57].270

Thus, DriverAuth prevents the spoofing or presentation attacks at the sensor level by utiliz-271

ing available mechanisms to detect liveness for each modality.272

10



5. Methodology273

DriverAuth exploits three biometric modalities, i.e., swipe gestures, voice, and face, and274

collects their corresponding data, while the users interact with a driver-application on their smart-275

phones. Both physical and behavioral biometric modalities can be easily collected using smart-276

phone’s built-in hardware sensors, such as, camera, microphone, and touchscreen. We mod-277

eled this remote-user-verification as a multi-class classification problem because the scenario278

demands simultaneous classifier training and testing for multiple drivers, however, each query279

input needs to be assigned only to one class.280

5.1. Datasets281

We evaluated DriverAuth on a collected dataset of 86 recruited users. We developed a cus-282

tomized Android application to collect the swipe gestures and voice data. We outsourced the283

data collection activity to Ubertesters1 - a crowd-sourcing platform to collect these two modali-284

ties in an unsupervised environment (in the wild) and they recruited more than 150 experienced285

professional testers worldwide for our experiment. However, some participants were rejected for286

several reasons: firstly, their smartphones were not found compatible with our experiment be-287

cause they did not have the required sensors, secondly, they could not complete the experiment288

as instructed, and lastly, their data was noisy. For face data, we relied on MoBio database [37].289

As all three modalities are mutually independent of each other, we augmented them to form a290

single dataset [58]. Thus, we created a chimerical dataset by associating these three modalities,291

i.e., swipe gesture, voice, and face to perform the analysis.292

5.1.1. Swipe & Voice Data Collection293

The prototype application was developed for Android OS (OS version 4.4.x and above).294

It uses built-in hardware, i.e., touchscreen and microphone, to acquire touch points data during295

swipe action and recording of user’s voice. We collected in total 10, 320 samples. The experiment296

was conducted in 4 sessions over the span of 3 days. Each user trained the application for 90297

times in 3 sessions (30 times per session) within 15 minutes each. In fourth session, each user298

tested the application for 30 times. A total 120 observations were collected per user with 7, 740299

(86 × 90) training samples and 2, 580 (86 × 30) testing samples.300

As our developed application uses client-server architecture, the data generated as result of301

user’s actions, i.e., swipe and voice command, is encrypted and zipped on the client device, i.e.,302

smartphone, and is automatically transferred to the server, for further processing. On-demand303

ride and ride-sharing companies are operating worldwide.304

Our prototype collects 2 − seconds text-independent voice-print (e.g., “I accept the ride to305

Y”), allowing drivers to interact in the language depending on the country where they operate306

or the company for which they work. Therefore, we do not limit voice modality to any specific307

language or the particular word-sets.308

Table 2 presents the demographics data of users participated in this experiment. Among 86309

participants, 56 were males, 29 were females with 77 right-handed and 9 left-handed. Majority310

of participants were in Asia (28) and Europe (52) while performing the experiment, with 60 were311

between 20 to 30, 17 were between 30 to 40, and 3 were above 40.312

1https://ubertesters.com
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Table 2: User demographics

# Parameter Description
1 No. of Users 86
2 Gender 56 males, 29 females, 1 undisclosed
3 Handedness 77 Right, 09 Left
4 Age Groups [20 to 30] - 60, [30 to 40] - 17, 40 plus - 3
5 Participants Location Asia - 28, Europe - 52, North America - 5, South America - 1

5.1.2. MOBIO Dataset313

This public dataset consists of face samples collected from 152 subjects in 2 phases using314

a NOKIA N93i mobile phone under realistic and uncontrolled environment over a period of 18315

months from six sites across Europe [37]. In the first phase, 21 videos per participant were col-316

lected, whereas 11 videos per participant were acquired in the second phase. The data acquisition317

were spread over 6 different sessions per phase for each participant. The database has 1 : 2 fe-318

male to male ratio, approximately. However, we picked only 86 subjects out of 150 to match the319

same number of users as to our dataset.320

5.2. Feature Extraction321

In this section, we explain the extraction of features for all the three selected modalities using322

statistical methods. Univariate statistical properties, i.e., mean, standard deviation, kurtosis or323

skewness has several benefits, they reduce the dimensionality of raw data, improve the signal-to-324

noise ratio, and they can be processed efficiently [59].325

• Swipe Modality:326

A sequence of touch-events is generated every time user swipe on smartphone touchscreen327

using their finger. These touch-events are collected and encoded as an input sequence of328

finite length (n). Where, each sequence contains several attributes like time-stamp of the329

touch event (tn), x-and y-coordinate of the touch point (xn, yn), pressure calculating how330

hard the finger was pressed on the screen (pn), and size of touch area (sn). We processed331

the collected sequences and extracted 33 features as listed in Table 3. The final feature332

vector is the concatenation of all the 33 features.333

Table 3: List of swipe features

No. Swipe Features
1-4 Duration 1 Average event size 2 Event size down 3 Pressure down 4
5-8 Start X 5 Start Y 6 End X 7 End Y 8
9-12 Velocity X Min 9 Velocity X Max 10 Velocity X Average 11 Velocity X STD 12
13-16 Velocity X VAR 13 Velocity Y Min 14 Velocity Y Max 15 Velocity Y Average 16
17-20 Velocity Y STD 17 Velocity Y VAR 18 Acceleration X MIN 19 Acceleration X Max 20
21-24 Acceleration X AVG 21 Acceleration X STD 22 Acceleration X VAR 23 Acceleration Y MIN 24
25-28 Acceleration Y Max 25 Acceleration Y AVG 26 Acceleration Y STD 27 Acceleration Y VAR 28
29-32 Pressure Min 29 Pressure Max 30 Pressure AVG 31 Pressure STD 32
33 Pressure VAR 33 - - -

• Voice Modality:334

The voice signal contains 2 channels sampled at 44100 Hz with 16 bits per sample. The335
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Figure 6: Voice signal filtering result

signal is first filtered using a bandpass filter. It can be observed in Figure 6 that by applying336

bandpass filter there is a significant improvement in signal-to-noise ratio.337

Then, we computed MFCC [60] from these filtered voice signals. MFCCs are analogous to338

filters (vocal tract) in the source-filter model of speech. Relatively, the frequency response339

of vocal tract is smoother than the source of voiced speech. Thus, the vocal tract can be340

estimated by the spectral envelope of a speech segment. This technique is often used in341

voice recognition because it tracks the invariant feature of human speech among different342

persons.343

Figure 7 illustrates the MFCCs computation process. After improving the signal-to-noise344

ratio, Fourier transform of a window of the voice signal is performed, then scaling of345

frequency axis to the non-linear Mel scale (using triangular overlapping windows) is done.346

In the next step, Discrete Cosine Transform (DCT) is performed on the log of the power347

spectrum of each Mel band. The MFCCs are the amplitudes of the resulting spectrum,348

which is a 2 − D vector of size 13 × variable length (the length of vector depends on the349

voice signal duration).350

We computed 4 statistical features, namely mean, standard deviation, kurtosis, and skew-351

ness, from a 2-D MFCC vector. Thus, the total 8 statistical features each of size 1× 13 are352

generated from each left and the right voice channel. Finally, these 8 vectors of size 1× 13353

are concatenated to form a single 1 − D feature vector of dimension 1 × 104.354

• Face Modality:355
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Figure 7: Voice features: MFCC computation process

On the server, the region of interest (ROI) is extracted automatically, by cropping the orig-356

inal images, as illustrated in Figure 8. Then, each image is converted into 8-bit grayscale357

format. We used the Binarized Statistical Image Features (BSIF) filter to obtain statistical358

features [61].359

Figure 8: Face features: BSIF computation process

Given an image patch X of size l × l pixels and a filter W of size n × n pixels, where n is
less than l. The filter response si can be obtained as shown in Equation 1.

si = X[l, l] ∗W[n, n] (1)

We extracted 256 features per image using filter of size 3 × 3 with 8 bits word-length.360
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BSIF filter applies learning, instead of manual tuning, to compute statistically meaningful361

representation of an image.362

5.3. Features Concatenation363

Data fusion in a biometric system is a process of integrating multiple modalities to produce364

more accurate, consistent, and comprehensive information of users. Biometric researchers often365

consider that the early data fusion increases the accuracy of the system [62, 19]. However,366

sensor-level fusion does not yield the best results owing to the presence of noise during data367

acquisition. Thus, feature-level fusion is a better choice to improve the accuracy of the system,368

because feature representation reflects more relevant information on users. Lastly, this setting369

is preferred as it combines independent modalities [63]. Therefore, we applied feature level370

concatenation to generate the final features vector.371

5.4. Feature Subset Selection372

Feature selection plays an important role in fine-tuning of the chosen classifiers. It helps in373

reducing the dimension of data as well as prevent the over-fitting by identifying productive fea-374

tures out of the full feature-set. This process not only maximizes the accuracy of a classifier but375

also contributes to improving classifier’s decision-making time. Feature selection methods can376

be categorized as Filter, Wrapper, Embedded, and hybrid methods, based on their relationship377

with the construction of a model [64]. We considered Information Gain Ranking Filter[65], Sim-378

ple Correlation Ranking Filter [65], CFS Subset Evaluator with greedy forward search [65], and379

ReliefF [64] to obtain most productive feature subset, for our analysis. However, relief-based380

algorithms (RBAs) provided the best accuracy result.381

RBAs belong to the individual evaluation f ilter method. The advantages of RBAs are: 1)382

they are able to detect conditional dependencies between features, 2) they provide a unified view383

on the features estimation in classification, and 3) they are relatively faster (with an asymptotic384

time complexity of order O (instances2 × f eatures)) to other feature selection methods [64, 66].385

RBAs compute ranks and weights of features to derive feature statistics using the concept of
nearest neighbors as shown in Equation 2.

[RANKED,WEIGHT ] = relie f (X,Y,K) (2)

Where, X (m × n) is a given 2-d dataset, Y (m × 1) is the response vector, and K is a number386

of nearest neighbors. RANKED are indices of columns in X ordered by attribute importance,387

meaning RANKED[1] is the index of the most important feature. WEIGHT are features weights388

ranging from −1 to + 1 with large positive weights assigned to most important attributes.389

We performed feature selection in three settings and evaluated DriverAuth in unimodal,390

bimodal, and trimodal settings. Then, we tested and validated our system on both full feature set391

and selected feature set to achieve an optimal design. In the following sections, we explain our392

feature selection strategy for our experiments.393

• Unimodal: We obtained in total 33, 104, and 256 features from processed swipe, voice,394

and face modalities, respectively, to design the unimodal systems. We evaluated the sys-395

tem firstly on the full feature set. To evaluate the system on the selected feature set, we396

estimated the importance of features of each modalities using ReliefF algorithm2. Then,397

2https://in.mathworks.com/help/stats/relieff.html
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Figure 9: Unimodal System: Plot between features vs. weights

we picked top 30% or 20 features of the total (whichever is less) as per their weights. The398

features vs. weight for the three modalities are shown in Figure 9.399

The number of features required for the best classification model creation was computed,400

empirically. In case of swipe, the total number of features available are 33, we, firstly,401

trained our classification model by picking all the features with positive rank, i.e., above402

zero as shown in Figure 9a and observed that the same TAR is achieved with top 11 fea-403

tures, i.e. 33% of total available features as demarcated by a red line in Figure 9a. Whereas,404

in case of voice and face, the classification model is trained by picking top 33% of total405

available features, i.e., 34 and 85 features, respectively. But, we observed that with only406

top 20 features the same TAR is achieved as demarcated by a red line in Figure 9b and407

Figure 9c.408
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Figure 10: Bimodal System: Plot between features vs. weights

• Bimodal: We concatenated swipe and voice, swipe and face, and voice and face creating409

feature set of dimension 137, 289, and 360, respectively, to design a bimodal system. In410

this case, for each combination, the two feature sets are firstly fused and then ranked using411

ReliefF algorithm. Finally, the system is evaluated on full and selected feature set. The412

dimension of selected features for swipe + voice, swipe + face, and voice + face are 31, 40,413

and 51, as demarcated by a red line in Figure 10a, Figure 10b and Figure 10c, respectively.414
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• Trimodal: We concatenated the feature sets of each modality together to create a single415

feature set of dimension 393 for evaluation of DriverAuth in trimodal settings. Figure 11416

represents features ranking obtained by applying the ReliefF algorithm on the fused feature417

set. Finally, the system is evaluated on both full and selected feature set of dimension 51.418

6. Validation419

We utilized Classification Learner [67] to generate a classification model. Classification420

Learner can perform automated training to search for the best classification model type, e.g.,421

support vector machines, nearest neighbors, ensemble classification, etc. We used 5-fold cross-422

validation to assess the predictive performance. Cross-validation protects against over-fitting by423

partitioning the data set into folds and estimate accuracy on each fold. Thus, this method gives424

the good estimation of the predictive accuracy of the final model trained with full data.425

However, security-sensitive infrastructures, e.g., banks, prefer to design classification models426

with fewer number of training samples (typically up to 10). Thus, we evaluated our trimodal sys-427

tem with most productive feature-set achieved by applying the ReliefF algorithm for a different428

number of training samples, i.e., 10, 20, 30, and 40, to determine its effectiveness. To achieve it,429

we split the dataset into two parts, i.e., training- and testing- datasets and evaluated the model in430

two different scenarios. In the first scenario, we utilized a designated number of training samples431

(n) to train the classifier and used 120 − n samples to test the model. Here, we presented the432

result in terms of TAR, which can be further studied in Figure 12. In the second scenario, i.e.,433

the zero-effort attack scenario (where an impostor could only make random tries to access the434
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system without knowing the actual user), we excluded legitimate samples, i.e., 120 samples, of435

each user and used the remaining samples, i.e., 10200 (85 × 120) to attack the model, for all the436

remaining 85 users. Here, we presented the results in terms of FAR, which can be further studied437

in Figure 13.438

6.1. Classification Methods439

In a biometric system, the role of a classifier is to recognize the similarities, or detect the440

anomalies between the query input and stored templates to authenticate a user. We selected441

Support Vector Machines, Nearest Neighbor, and Ensemble classifiers to evaluate DriverAuth,442

using multi-class classification model. These classifiers are well suited for the multi-class envi-443

ronment and have shown to be very effective for similar biometric modalities, i.e., swipe, voice,444

and face, in recent studies [26, 25, 61, 63].445

Table 4: Classifiers comparison.

Classifier Type Algorithm Prediction Speed Memory Usage

Quadratic SVM Finds the best hyperplane that separates data
points of one class from those of the other class Slow Large

Ensemble Bagged
Trees Random forest Bag, with Decision Tree learners Medium High

Weighted KNN Medium distinctions between classes, using a
distance weight. Medium Medium

Table 4 lists our chosen classifiers and compares them in term of their prediction speed and446

memory usage (for more details on the classifier benchmarking refer to [68]).447

6.2. Performance Evaluation448

We use the following metric to report our results:449

• True Acceptance Rate (TAR): It is a ratio of correctly accepted owner’s attempts to all the450

attempts made [69]. Higher TAR indicates that the system performs better in recognizing451

a legitimate user.452

• False Rejection Rate (FRR): It is a ratio of incorrectly rejected attempts of a legitimate453

user to all the attempts made [69]. It is calculated as FRR = 1 - TAR.454

• False Acceptance Rate (FAR): It is a ratio of incorrectly accepted impostor attempts to455

all the attempts made [69]. Lower FAR means the system is robust to impostor attempts.456

• True Rejection Rate (TRR): The ratio of correctly rejected attempts of impostors [26] to457

all the attempts made. It is calculated as TRR = 1 - FAR.458

• Receiver- or Relative-Operating Characteristic (ROC): ROC plot is a visual charac-459

terization of trade-off between FAR and TAR [70]. In simple words, it is a plot between460

true alarms vs. false alarm. The curve is generated by plotting the FAR versus the TAR for461

varying thresholds to assess classifier’s performance [26].462

As the parameters are interlinked together, and to avoid redundancy, we report our results in463

terms of TAR and FAR, and ROC only.464
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6.3. Results465

Table 5 and 6 show the performance of classifiers with full and selected features, respectively.466

The results are presented for each modality, independently, as well as for binary and ternary467

feature-level fusion. The performance is measured in terms of TAR averaged for all the 86 users468

with 120 observations per users using 5-fold cross-validation method.469

Table 5: Performance of classifiers with full features for unimodal, bimodal and trimodal configuration based on 5-fold
cross-validation.

Unimodal Bimodal Trimodal
Modalities Swipe Voice Face Voice +

Face
Swipe +

Voice
Swipe +

Face
Swipe +

Voice +

Face
Total number of features 33 104 256 380 137 289 393

Classifier TAR(%)
Quadratic SVM 87.0 90.9 91.2 98.2 95.1 97.5 99.0

Ensemble Bagged Tree 84.7 88.2 85.0 95.2 94.3 96.6 98.2
Weighted KNN 70.2 85.4 88.7 94.7 90.4 94.1 96.7

Table 6: Performance of classifiers with selected features for unimodal, bimodal and trimodal configuration based on
5-fold cross-validation.

Unimodal Bimodal Trimodal
Modalities Swipe Voice Face Voice +

Face
Swipe +

Voice
Swipe +

Face
Swipe +

Voice +

Face
Number of selected features 11 20 20 40 31 31 51

Classifier TAR(%)
Quadratic SVM 79.99 89.60 90.61 97.63 93.53 98.04 99.04

Ensemble Bagged Tree 77.66 86.00 86.72 95.04 91.89 97.08 98.02
Weighted KNN 68.83 86.51 90.71 96.36 90.68 96.93 98.26
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Figure 12: True acceptance rate (TAR) with selected features for trimodal configuration with 10, 20, 30, and 40 training
samples.
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Figure 13: False acceptance rate (FAR) with selected features for trimodal configuration with 10, 20, 30, and 40 training
samples.

Figure 12 and 13 show the results of the trimodal system for 10, 20, 30, and 40 training470

samples with selected feature-set, in term of TAR and FAR, respectively.471

Managing ROC curves for a multi-class classification problem is much more complex in472

comparison to 2-class classification [70]. Typically, in a multi-class classification model with473

n-classes, the resultant confusion matrix having dimension n by n possesses n correct classifica-474

tions (the major diagonal entries) and n2 =-n possible errors (the off-diagonal entries). According475

to Fawcett [70], a class reference formulation is an efficient method to handle n-classes by pro-476

ducing n-different ROC graphs. Specifically, if C is the set of all classes, ROC graph i reports477

the classifier performance per class ci by plotting positive results (Pi), i.e., TAR, as shown in478

Equation 3 and negative results (Ni), i.e., FAR, as shown in Equation 4.479

Pi = ci (3)

Ni =
⋃
j , i

c j ∈ C (4)

This method is reasonably flexible as an optimal threshold ti can be set, at which T AR is480

maximum and FAR is minimum. Thus, improving the overall performance of the classification481

model.482

Figure 14 illustrates average ROC curves of EBT classifier for (a) 10, (b) 20, (c) 30, and (d)483

40 training samples. In the two-dimensional graphs as shown in Figure 14, TAR is plotted on the484

Y-axis and FAR is plotted on the X-axis, depicting relative trade-offs between the true positives485

and false positives. Coordinate (0, 0) represent the strategy of never issuing a positive classifi-486

cation; such a classifier commits no false positive errors but also determines no true positives.487

However, the opposite strategy, of unconditionally issuing positive classifications, is represented488

by coordinate (1, 1). Whereas, coordinate (0, 1) represent the perfect classification strategy of489
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Figure 14: Average ROC curves of EBT classifier for different training samples.
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maximizing TAR and minimizing FAR. Readers can observe in Figure 14 with the increase in490

the number of training samples classifier performance also tends to improve, accordingly.491

6.4. Discussion on Results492

Cross-validation method is used to evaluate how well the model is trained and how it per-493

forms when it is tested on the test dataset. K-fold cross-validation is popular because it is com-494

putationally cheap as compared to other cross-validation variants. In K-fold cross-validation, the495

dataset is divided into K equal folds and the model is trained on the dataset of K − 1 folds, and496

the remaining fold is used to test the system. The process is repeated K times. Cross-validation497

is preferred when the dataset size is small and it ensures the testing of all the samples. As we498

had 120 samples for each user, we started the evaluation with 5-fold cross-validation. SVM499

performed well in this scenario resulting in 99.04% TAR.500

Training/Testing split is another method to evaluate the performance of the classifier. The501

dataset is generally split into two parts, i.e., training and testing sets. The model is trained on the502

training set (generally, 66% of the whole data) and the remaining test dataset is used to test the503

model.504

Although, Cross-validation method looks justified, because of the low number of observa-505

tions, however, it seems a bit unrealistic in the real world [71]. In real-world scenarios, e.g.,506

banking applications, generally, the systems require a few attempts to train the classifier and is507

evaluated everytime the user wants to access their services. Thus, it is worthy to test the classifier508

with a few numbers of training samples and check for the performance. We tested the pre-trained509

classifier (trained on 10, 20, 30, and 40 training sample each) and report our obtained results.510

In case train/test split scenario, EBT classifier performed better than the SVM and KNN511

classifiers owing to its ability to reduce the variances and affinity against over-fitting with fewer512

training samples. It can be noticed that with an increase in the number of training samples, the513

performance (TAR and FAR) of each classifier improves. For instance, the TAR of EBT classifier514

improved by +4.75%, +0.57% and +1.29%, whereas FAR became better by −0.06%, −0.01%515

and −0.01%, with 20, 30 and 40 training samples in comparison to performance with 10 training516

samples. The same trend can be observed for the other 2 classifiers, i.e., SVM and KNN, in517

Figure 12 and 13.518

7. Conclusions and Future Work519

DriverAuth is highly accurate drivers’ verification system designed for on-demand ride and520

ride-sharing services in which customers and the driver-partners are connected to the service521

provider (server) by the dedicated smartphone applications (clients). Based on the news related to522

violent altercations, or assaults by malicious drivers and fake drivers offering rides [3, 5, 47, 15].523

It is evident that the safety and security of customers are obviously at risk. Therefore, the risk-524

based verification mechanism can equip service providers to verify the subject at the time of525

critical decisions (e.g., accepting new registration from a person to join as a driver or assigning526

new ride assignments to the driver-partners) and trusting the subject with the lives of customers.527

We presented a risk-based multi-modal biometric-based driver authentication scheme that528

uses swipe gesture, voice, and face modalities to profile the driver’s identity. We evaluated,529

DriverAuth, on a dataset of 86 users with 120 observations per user and achieved a TAR of530

99.0%, 98.2%, and 96.7% for a trimodal system using SVM, EBT, and KNN classifiers, respec-531

tively, on the full feature set.532
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Feature selection plays a critical role in optimizing the classification model in terms of re-533

duction of feature set dimension and improvement in decision-making time of computationally534

exhaustive classifiers. We achieved a TAR of 99.04%, 98.02%, and 98.26% using SVM, EBT,535

and KNN classifiers, respectively, on a selected feature set of dimension 51, which is one-fourth536

of full feature set, approximately.537

In future, we will include the risk-assessment module in DriverAuth to detect and analyze538

driver-partners’ peculiar behaviors or anomalies (e.g., non-professionalism, alcohol-abuse, tired-539

ness, drowsiness, etc.) based on incidents database and driving pattern recordings. We will540

extend the experimental validation of our proposed scheme on other available datasets, e.g.,541

NIST dataset [72] using advanced machine learning classifiers, e.g., deep learners, in our future542

work. We will also evaluate and report our scheme’s usability and robustness in different attack543

scenarios.544
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[38] F. Porée, J. Mariéthoz, S. Bengio, and F. Bimbot, “The banca database and experimental protocol for speaker641

verification,” tech. rep., IDIAP, 2002.642

[39] S. Garcia-Salicetti, C. Beumier, G. Chollet, B. Dorizzi, J. L. Les Jardins, J. Lunter, Y. Ni, and D. Petrovska-643
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