
AuthCODE: A Privacy-preserving and Multi-device Continuous
Authentication Architecture based on Machine and Deep Learning
Pedro Miguel Sánchez Sáncheza,∗, Lorenzo Fernández Maimób, Alberto Huertas Celdránc and
Gregorio Martínez Péreza
aDepartment of Information and Communications Engineering, University of Murcia, Murcia 30100, Spain
bDepartment of Computer Engineering, University of Murcia, Murcia 30100, Spain
cCommunication Systems Group (CSG), Department of Informatics (IfI), University of Zurich UZH, 8050 Zürich, Switzerland

ART ICLE INFO
Keywords:
Continuous Authentication
Multi-device Behaviour
Smart Office
Machine Learning
Deep Learning

ABSTRACT
The authentication field is evolving towards mechanisms able to keep users continuously authenti-
cated without the necessity of remembering or possessing authentication credentials. While relevant
limitations of continuous authentication systems -high false positives rates (FPR) and difficulty to
detect behaviour changes- have been demonstrated in realistic single-device scenarios, the Internet
of Things and next generation of mobile networks (5G) are enabling novel multi-device scenarios,
such as Smart Offices, that can help to reduce or address the previous challenges. The paper at hand
presents an AI-based, privacy-preserving and multi-device continuous authentication architecture
called AuthCODE. AuthCODE seeks to improve single-device solutions limitations by considering
additional behavioural data coming from heterogeneous devices. AuthCODE proposes a novel set
of features that combine the interactions of users with different devices. The features relevance has
been demonstrated in a realistic Smart Office scenario with several users that interact with their mobile
devices and personal computers. In this context, a set of single- and multi-device datasets have been
generated and published to compare the performance of our multi-device solution against single-device
approaches. A pool of experiments with machine and deep learning classifiers measured the impact of
time in authentication accuracy and improved the results of single-device approaches by considering
multi-device behaviour profiles. Specifically, the multi-device approach using XGBoost with 1-minute
window of aggregated features, achieved a 69.33%, 59,65% and 89,35% improvement in the FPR
when compared to the single-device approach for computer, mobile applications and mobile sensors
respectively. Finally, temporal information classified by a Long-Short Term Memory Network, allowed
the identification of additional complex behaviour patterns.

1. Introduction
Continuous authentication systems pretend to improve

the limitations of traditional mechanisms, which authenti-
cate users from time to time according to credentials such as
passwords, codes, or tokens (Almalki et al., 2019). In this
context, continuous authentication mechanisms increase the
level of security, keeping users authenticated permanently,
and enhance the users’ quality of experience (QoE), being
non-intrusive and minimizing the usage of credentials dur-
ing the authentication processes (Gonzalez-Manzano et al.,
2019).

Existing continuous authentication mechanisms model
the user’s behaviour when he/she uses a particular device for
a given time. We understand by "behaviour" the set of actions
that a given user performs somewhat consciously with one
or more devices. As an example, for PC devices the user’s
behaviour could be determined by the mouse movements,
keystrokes, or applications opened and closed. Regarding
mobile devices, the behaviour might be related to screen in-
teractions, device movements, or patterns to use applications.
From a multi-device perspective, the user’s behaviour could
be characterized by the device used at each particular mo-

∗Corresponding author. Email address: pedromiguel.sanchez@um.es
(P.M.S. Sánchez)

ORCID(s): 0000-0002-6444-2102 (P.M.S. Sánchez);
0000-0003-2027-4239 (L.F. Maimó); 0000-0001-7125-1710 (A.H. Celdrán);
0000-0001-5532-6604 (G.M. Pérez)

ment of the day, the duration that each device is used, or
the type of application used in each device. As a result of
user monitoring, a behaviour profile is created and stored in
a dataset, being the precise selection of dimensions, data and
features critical to create accurate behaviour profiles. The
next step is to use this profile to train Machine Learning (ML)
or Deep Learning (DL) models, which can be classifiers or
anomaly detectors depending on the nature of the data and the
approached scenario. Finally, the continuous authentication
mechanism uses these models to evaluate the similarity be-
tween the current device usage profile and the learned user’s
profile, providing either a user’s identification or an anomaly
score which can be used to decide if the user is authenticated
or not.

Different solutions have implemented the previous steps
for single-device scenarios such as personal computers and
smartphones (Jorquera Valero et al., 2018). However, they
present some important limitations such as the high rate of
false positives, which happens when users change some as-
pect of their behaviour and the system does not recognize
them. The lack of privacy considerations and the impossibil-
ity of detecting some impersonation attacks are two additional
limitations of single-device solutions. In this context, the evo-
lution of information and communications technology such
as 5G networks (Huertas Celdrán et al., 2019) or the Internet
of Things (IoT) (Firouzi and Farahani, 2020) is influencing
the applicability of continuous authentication in multi-device

Sánchez et al.: Preprint submitted to Elsevier Page 1 of 14

ar
X

iv
:2

00
4.

07
87

7v
3 

 [
cs

.C
R

] 
 3

0 
N

ov
 2

02
0



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

scenarios to reduce the limitations of single-device scenarios
by including additional information coming from the user’s
activity on diverse devices used during a time window. On
the one hand, multi-device continuous authentication mecha-
nisms could consider data from different devices to decide if
the user changed his/her behaviour, which could reduce the
false positive rate. On the other hand, multi-device scenarios
such as Smart Offices (Qolomany et al., 2019) could also
get a benefit from non-invasive and robust multi-device con-
tinuous authentication, using them to control the access to
sensitive data managed by heterogeneous devices such as IoT
devices, tablets, smartphones, or computers. As an example,
if an attacker studies the common activities and routines of a
user protected by a single-device solution, this attacker can
learn his behavior and then mimic him to some extent, per-
forming malicious activities. However, having information
from several devices improves the robustness and flexibility
of the authentication system since it would be necessary to
have access to several devices and mimic the user’s behaviour
in each of them.

Despite the benefits of existing continuous authentication
solutions, their design, implementation and integration in
new multi-device scenarios are open and challenging issues.
In this sense, we emphasize the following challenges: 1)
what features and data are relevant to create collaborative
rich users’ behaviour profiles in multi-device scenarios; 2)
whether multi-device continuous authentication mechanisms
can improve the performance of single-device mechanisms
in terms of false positive and negatives; 3) how the number
or interactions and time affect the accuracy of continuous
authentication mechanisms; and 4) how behavioural data is
collected and processed in order to guarantee users’ privacy.

The main contributions of this paper are the following
ones:

• A multi-device continuous authentication architecture,
called AuthCODE, that guarantees the privacy of users’
sensitive data while improving the authentication per-
formance of single-device solutions. AuthCODE con-
siders a hybrid approach that combines the Mobile
Edge Computing (MEC) and Cloud Computing para-
digms. Privacy-preserving features are calculated in
the MEC and sent to the cloud, where ML/DL models
are trained and evaluated to keep the authentication
performance.

• A set of privacy-preserving and multi-device features
able to model precisely the users’ behaviour when they
interact, in a collaborative way, with heterogeneous
devices during different time windows. In this way, the
user’s activities can be accurately characterized, but if
the resultant dataset falls into the hands of an attacker,
it would be harmless as the user’s monitored activities
do not contain sensitive information such as passwords
or other typed text.

• Five datasets, available in (Sánchez Sánchez et al.,
2020), which contain single- and multi-device privacy-
preserving features modelling the users’ behaviour.

The datasets have been created by modelling a real-
istic Smart Office scenario where five users interact
with their computers and mobile devices. Regarding
computer interaction, the data aggregate information
about keys pressed, mouse actions, as well as appli-
cation and resource usage statistics. With regard to
mobile devices, the data consist of sensor values and
application usage statistics.

• A pool of experiments with ML and DL classifiers
performed over the previous five datasets that demon-
strated how the multi-device behaviour profile of Au-
thCODE improves the false positive rates (FPR) and
f1-score metrics of our single-device approach. Specif-
ically, the f1-score and FPR average reached for multi-
device profiles of 1-minute windows were 99.33% and
0.23%, respectively, while the same metrics for single-
device authentication were 97.39% and 0.72% in the
case of personal computers, 96.70% and 0.57% for mo-
bile app statistics, and 90.36% and 2.16% for mobile
sensors. Therefore, the improvement achieved in FPR
was 69.33%, 59,65% and 89,35% for computers, mobile
app statistics and mobile sensors respectively. Finally,
to take advantage of the complex patterns present in
multi-device profiles, a set of Long-Sort Term Mem-
ory (LSTM) neural network configurations obtained
an average f1-score of 89% and FPR of 2.02% for a
5-minute sliding window and +99% and 0.37%, respec-
tively, using +60-minute sliding window.

The remainder of the paper is organized in the following
way. Section 2 discusses the related work focused on con-
tinuous authentication for multi-device scenarios as well as
single-device such as personal computers and mobile devices.
A motivating use case is detailed in Section 3. The architec-
tural design of AuthCODE is explained in Section 4. The
implementation details of the proposed solution as well as
a realistic Smart Office scenario are explained in Section 5.
Section 6 measured the performance of AuthCODE in the
Smart Office environment. Finally, Section 7 shows the con-
clusions and future work.

2. Related Work
This section reviews the main continuous authentication

solutions found in the literature. A wide variety of continuous
authentication proposals focused on single- and multi-device
scenarios are identified and analysed, extracting common
ideas and potential improvements.
2.1. Continuous authentication in single-device

scenarios
In the literature, we can find the next two families of

single-device scenarios: mobile devices and personal com-
puters.

In the field of continuous authentication for mobile de-
vices, Jorquera Valero et al. (Jorquera Valero et al., 2018)
proposed a continuous and adaptive authentication system

Sánchez et al.: Preprint submitted to Elsevier Page 2 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

Table 1
Continuous authentication solutions comparison.

Proposal Device
Type Dimensions Algorithms Results /

Conclusions
(Jorquera Valero
et al., 2018)

Mobile Sensors and
Application Usage

Statistics

Isolation
Forest

Adaptability, low resource consumption, 92%
Recall and 77% Precision, and resilience to

adversarial attacks

(Bo et al., 2013) Mobile Sensors and
touchscreen events

One Class - SVM
SVM

72.36% Accuracy and 24.99% FAR

(Patel et al.,
2016)

Mobile Survey - Review about current state and challenges

(Li et al., 2018) Mobile Sensors qith
data augmentation

One-Class SVM 7.65% FAR, 9.01% FRR and 8.33% EER.

(Fridman et al.,
2016)

Mobile Text, location,
application usage
and websites

SVM 95% Accuracy and 5% EER

(Centeno et al.,
2017)

Mobile Sensors Autoencoder 97.8% Accuracy and 2.2% EER

(Ehatisham-ul
Haq et al., 2017)

Mobile Sensors Bayes Net and
Euclidean distance

87.34–90.78% Accuracy

(Deutschmann
and Lindholm,
2013)

Desktop Mouse, Keyboard
and Used applications

Bayes Net 18 seconds to detect an imposter using
15-50 keystrokes and 2.4 mins using

66 mouse interactions
(Fridman et al.,
2015)

Desktop Keyboard and
mouse events

linked to application.

Naive Bayes
and SVM

0.4% FAR and 1% FRR after 30 s
0.1% FAR and 0.2% FRR after 5 minutes

(Aljohani et al.,
2018)

Desktop Keyboard and mouse Artificial Immune
System (AIS)

97.05% average Accuracy (96.6% to 97.74%)

(Mondal and
Bours, 2017)

Desktop Keyboard and mouse Decision Tree,
N. Network, SVM

Many experiments and test performed.
0.04-1% EER

(Lu et al., 2020) Desktop Keyboard CNN, RNN 2.07% and 6.61% FAR, 3.26% and
5.31% FRR, and 2.67% and 5.97% EER

, for CNN and RNN, respectively
(Sánchez Sánchez
et al., 2019)

IoT Mouse and keyboard
(PC), Application
usage (Mobile)

Random Forest 97.43% precision, 96.20% recall, 96.76%
F1-Score (Mobile), 96.32 % precision, 90.00%

recall, 92.70% F1-Score (PC)
(Ashibani et al.,
2019)

Smart
Home

User, Device,
Network and

Environment context

Heuristic analysis
and pattern
matching

<100 ms authentication time and verified
improvement over using only credentials

(Nespoli et al.,
2019)

IoT Location, Person and
IoT Devices
Ontologies

Ontologies and
semantic rules

Execution time less than 4s and more
than 78% mean confidence level

AuthCode (Ours) IoT Modular architecture
(PC and mobile)

MLP, XGBoost,
RF and LSTM

Precision: 99.32%, Recall: 99.33%, F1-Score:
99.33% (more results in experiments section)

based on monitoring the application usage statistics and de-
vice sensors (gyroscope and accelerometer). The authors
used ML-based anomaly detection techniques, concretely Iso-
lation Forest, to identify anomalies in the users’ behavioural
data. Each user dataset is dynamically updated using his/her
current behaviour in order to achieve system temporal adapt-
ability. The solution obtained 92% recall and 77% precision
when authenticating different users. In (Bo et al., 2013),
Bo et al. identified users thanks to biometrics and typing
patterns. The proposed system considered rotation, vibra-
tion, and pressure of smartphone touchscreens and sensors.

One-class SVM were used over the user behaviour to clas-
sify his profile, achieving 72.36% accuracy and 24.99% FAR
(False Acceptance Rate). In (Patel et al., 2016), Patel et al.
performed a review about the definition of continuous au-
thentication and the proposals in the field. Authors focused
on dimensions and AI techniques that are applied commonly
in continuous authentication. They mentioned facial recogni-
tion, gestures, application usage and location, and concluded
that merging data from different dimensions results in better
accuracy and lower error rates. Li et al. (Li et al., 2018)
proposed the application of data augmentation techniques

Sánchez et al.: Preprint submitted to Elsevier Page 3 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

on behavioural information gathered from device sensors
(gyroscope and accelerometer) to improve the continuous
authentication results. Then, a one-class SVM model was
trained and used to evaluate the user, obtaining 7.65% FAR
(False Acceptance Rate), 9.01% FRR (False Rejection Rate)
and 8.33% EER (Equal Error Rate). Other of the main works
in this field is (Fridman et al., 2016), proposed by Fridman et
al. This solution uses the typing stylometry, device location,
application usage, and accessed websites. Authors achieved
0.4% FAR and 1% FRR after 30 seconds. Centeno et al. (Cen-
teno et al., 2017) applied Autoencoders in their continuous
authentication solution. This solution utilises sensor data to
extract device holding patterns. Authors obtain better perfor-
mance and resource consumption by using a cloud platform
to perform the authentication process, achieving 2.2% EER.
In (Ehatisham-ul Haq et al., 2017), authors utilised motion
sensors in their continuous authentication system. Using
these data, several device spatial positions were determined.
After performing diverse tests, authors found that Bayes Net
was the most appropriate algorithm for position recognition.
Then, Euclidean distance was used to evaluate a instance com-
pared to its recognised position, obtaining 87.43%-90.78%
accuracy (depending on the evaluated position).

In terms of continuous authentication focused on comput-
ers and desktop devices, Deutschmann et al. (Deutschmann
and Lindholm, 2013) selected keyboard, mouse and usage of
applications as representative sources to identify users. Then,
classification algorithms were used to sort and filter the gath-
ered information in different categories. The results showed
that intruders were detected in 2.4 minutes using the mouse,
in 18 seconds using the keyboard, and 1.5 seconds using ap-
plications. Lex Fridman et al. (Fridman et al., 2015) utilised
keyboard and mouse interactions to identify users. This work
proposes to link the keyboard interactions and the application
running on the foreground in order to obtain additional infor-
mation that enables the authentication process. The system
used Naive Bayes as classifier for mouse and keyboard events,
and SVM for user typing patterns. Using short user interac-
tion periods (30 secs), the system obtained a False Acceptance
Rate (FAR) of 0.4% and a False Rejection Rate (FRR) of 1%.
This metrics decreased to 0.1% and 0.2% respectively after a
5 minute evaluation. The system proposed by Aljohani et al.
in (Aljohani et al., 2018) used an Artificial Immune System
(AIS) to perform the continuous authentication task. They
used the AIS Negative Selection (NS) algorithm on keyboard
and mouse data. After a initialisation period, the system used
AIS NS to evaluate keyboard and mouse interaction sets. This
solution was evaluated in a group of 24 people, achieving
97.05% average accuracy (from 97.74% to 96.6% in all users).
Mondal and Bours (Mondal and Bours, 2017) used keystroke
and mouse movement dynamics to build a trust model. Then,
this trust model is utilised to perform user continuous authen-
tication. The behaviour of 53 different users was monitored
in uncontrolled conditions and then the system was tested
using the obtained information. Different Machine Learning
classification algorithms were utilised to build a trust model.
This trust model utilises a threshold over the dynamic user

authentication score. Last, Lu et al. (Lu et al., 2020) applied
Convolutional Neural Networks (CNN) and Recurrent Neu-
ral Networks (RNN) to keyboard interactions in computers,
achieving 2.07% and 6.61% FAR, 3.26% and 5.31% FRR, and
2.67% and 5.97% EER with CNN and RNN, respectively.
2.2. Continuous authentication in multi-device

scenarios
This section analyses continuous authentication research

works applied to multi-device scenarios. These solutions
are the closest to the scope of this work, but the number of
existing works is not very high due to the field novelty.

Sánchez et al. (Sánchez Sánchez et al., 2019) designed
a continuous authentication architecture oriented to smart
offices. Authors deployed their architecture as a proof of
concept on mobile phones and computer devices. Then, the
architecture was tested separately on the different devices
using Random Forest (RF). In mobile, it achieved 97.43%
average precision, 96.20% average recall and 96.76% average
f1-score. In computer, it achieved 96.32% average preci-
sion, 90.00% average recall and 92.70% average f1-score.
However, the authors did not perform any experiment com-
bining the users’ behaviour in different devices. Ashibani et
al. (Ashibani et al., 2019) proposed a continuous authentica-
tion framework designed for Smart Homes. The framework
employed contextual information to authenticate users. It
authenticates by considering the user’s context, the device
context, the network context, and the environmental context,
obtained from the smart home IoT devices. Nevertheless, un-
like our work, this proposal does not consider user behaviour
involving several devices. Another multi-device solution was
proposed by Nespoli et al. in (Nespoli et al., 2019). This
work was based on the application of semantic web tech-
niques such as ontologies and rules for authentication and
authorisation purposes in IoT. Specifically, IoT devices were
used to gather information about the environment status. This
information was used to perform the user’s modelling and
let him/her utilise certain services. Authors implemented the
architecture and evaluated the resource consumption, scala-
bility and authentication process confidence. Results reached
an authentication confidence average of 78%. However, as
authors claimed, the system performance is highly related to
the deployment context. Then, vast training is necessary to
accurately model the users’ behaviour.

In conclusion, the existing continuous authentication pro-
posals considering single- and multi-device scenarios do not
combine the behaviour of users with different devices to infer
additional behavioural patterns, as our work does. Table 1
provides a global overview of the key aspects considered by
each solution. As it can be appreciated, previous continuous
authentication solutions obtained good performance during
the authentication process. However, the ones achieving bet-
ter performance are only focused on single-device scenarios.
Therefore, our proposal goes beyond the state-of-the-art and
improves some of the limitation found in current solutions.

Sánchez et al.: Preprint submitted to Elsevier Page 4 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

3. Motivating example: Multi-device profiling
This section seeks to provide an illustrative example of

the deficiencies of single-device continuous authentication as
well as to motivate how multi-device systems could reduce
or even mitigate these deficiencies.

Let’s suppose a scenario based on a Smart Office where
two employees, Bob and Alice, utilize their computers and
smartphones to perform their daily tasks. Each device hosts
a continuous authentication application that monitors and
permanently authenticates the owner according to his/her
behaviour . This behaviour is determined by the usage of the
screen, sensors, and applications in the mobile device. Re-
garding PCs, other dimensions such as the keyboard, mouse,
resource usage and application monitoring can be considered.

In such Smart Office, Alice has been observing Bob when
he used his smartphone, and she learned how to replicate
his behaviour to impersonate Bob. This impersonation is
achieved by repeating characteristics of Bob’s activities, such
as the way he holds the device, the speed at which he interacts
with the screen and writes, or applications used and the appli-
cation change patterns. One day, while Bob is working on his
computer, Alice takes advantage of Bob’s distraction and gets
his smartphone to access and obtain sensitive information.
Since Alice replicated Bob’s behaviour, the single-device
continuous authentication application cannot detect that Al-
ice is using the device, instead of Bob. In this scenario, only
a multi-device continuous authentication system could detect
that Bob’s smartphone and computer are used exactly at the
same time, something that is not typical in Bob’s behaviour
while working.

Now, let’s suppose that Bob installed and started using
two new applications on his smartphone. It implies a smooth
change in his behaviour, affecting the authentication accuracy
of the single-device continuous authentication application.
After that, the authentication application sometimes fails and
does not detect Bob’s behaviour as the owner (which means
a high rate of false positives). This annoying situation can
be reduced or mitigated by having a multi-device continuous
authentication system that combines the behaviours of Bob
with their devices in different time windows.

Finally, a multi-device continuous authentication system
can also detect suspicious behaviours in one device compared
to others’ behaviour. As an example, multi-device could
identify that recreational apps are used in the smartphone
while the computer is being used for work. These situations
are not detectable when single-device behaviour profiles are
considered.

In conclusion, single-device continuous authentication
solutions are capable of recognizing the device owner based
on its behaviour. However, these solutions are sensitive to
false-positive rates when small behaviour changes happen
and can suffer impersonation attacks if the attacker knows
the device owner’s normal behaviour. These drawbacks can
be improved by a multi-device authentication system able to
combine information from several devices. This combination
would improve the authentication robustness and flexibility,
since an attacker would need to mimic the user in all the

Datasets

Model 
Training

Model 
Generation

Classification

Decision 
Module

Reaction 
Module

Policy Based

Data 
Processing 
Module

Monitoring 
Module

Feature 
Extraction

Client Apps

Communication API

Dataset 
Generation

ML/DL 
Models

Single-device feature vectors

Processed 
feature vectors

Offline

Control

Live

Data

Actions on 
devices

Rules to apply

Evaluation results

Mobile 
Edge 
Computing

Cloud 
Computing

User's 
behaviour

Figure 1: Design of the modules and components making up
the AuthCODE architecture.

devices to attack the system integrity.

4. AuthCODE architectural design
This section describes the design details of our AI-based,

privacy-preserving and multi-device continuous authentica-
tion architecture called AuthCODE. The architecture has been
designed following a modular approach to allow flexible and
dynamic modifications of its modules. In addition, Auth-
CODE combines the MEC, where users’ sensitive data is
managed and features are calculated to protect users’ privacy,
with the cloud computing, where computationally complex
data processing and AI-base techniques are executed. This is
a key characteristic, since sensitive data is maintained in the
users’ devices, and the performance of resource-constrained
devices is not affected because AI-based models are trained
and evaluated in the cloud. Figure 1 shows modules and
components making up the AuthCODE architecture.

TheAuthCODE architecture is composed of the following
four modules:

• Reaction. Provides users with a final authentication
score according to the outputs of the Decision module.
Furthermore, it exposes interfaces with heterogeneous
devices that enable global continuous authentication
mechanisms for multi-device scenarios.

• Decision. Hosts and executes AI-based techniques
able to train and evaluate different models that will au-
thenticate users based on their behaviour with multiple
devices.

• Data Processing. Filters, aggregates, and processes
individual features acquired by the Monitoring module

Sánchez et al.: Preprint submitted to Elsevier Page 5 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

to generate relevant combined feature vectors making
up the single- and multi-device behavioural datasets.

• Monitoring. Monitors the data generated by users inter-
acting with their heterogeneous devices and calculates
single-device vectors of features that do not contain
sensitive data. Once the feature vectors are calculated
they are sent to the Data Processing module for further
processing.

From bottom to up, Monitoring is the lowest module
of AuthCODE and it is composed of several applications
(Client Apps). Each client app runs on top of a device and
monitors the data generated due to the user’s actions. To
ensure the privacy of users’ sensitive data, each app processes
and aggregates sensitive data in different windows of time
established by the administrator, preventing the user’s actions
from being reconstructed or sensitive information from being
inferred. After the aggregation, the app generates single-
device vectors of features that do not contain sensitive data
and send them periodically to the Data Processing module,
which runs in the cloud computing, as explained in Section
5.

TheData Processingmodule periodically receives single-
device feature vectors from each app. The Feature extraction
component filters, aggregates and processes single-device
feature vectors to calculate processed relevant features (which
could belong to one or more devices depending on the sce-
nario) that model the user’s behaviour. The aggregation pro-
cess of this module is also performed periodically and con-
sidering different time windows, which are established by the
administrator as well. Finally, the Data Processing module
generates datasets modelling the user’s behaviour with dif-
ferent devices. These datasets can contain single-device or
multi-device features, depending on the scenario needs.

The Decision module has two main tasks:
• Off-line training. The datasets generated by the previ-

ous module are used to train a set of models by using
different ML and DL algorithms. The scenario require-
ment will decide if it is needed one model per device,
one multi-device model, or both. The training process
is performed by theModel Generation component only
once and during the system bootstrapping.

• Real-time evaluations. Periodically and once the mod-
els have been trained, the Classification component
evaluates the real-time features vectors against the mod-
els to provide an authentication score per model.

To conclude, the Reaction module aggregates the differ-
ent authentication scores and calculates a global one as well
as provides interfaces with the devices enabling a global and
non-invasive multi-device continuous authentication. For
that, the Policy-based component considers rules that estab-
lish the user’ authentication level, This level decides proper
security actions such as unlock a particular device without
requiring additional credentials, lock the device, or ask for
authentication credentials. Strict rules can be applied over

devices managing sensitive data or performing critical tasks,
while more permissive rules can be applied over devices with
secondary roles. Finally, the Communication API sends the
previous security reactions to the different devices as well as
configures the time windows sent to the Monitoring module
to aggregate sensitive data and calculate features.

5. AuthCODE deployment & Datasets
This section shows the implementation details of the Au-

thCODE architecture as well as the generation of our five
datasets in a realistic multi-device scenario such as a Smart
Office. In our Smart Office, five users interacted with their
smartphones, tablets, laptops and desktop computers for 60
days. Below we provide the implementation details of the
modules making up our architecture.
5.1. Mobile Edge Computing

The Monitoring module and its Client Apps have been
deployed close to the end users, in the MEC. They are hosted
by Smart Office devices or by third-parties, in case of resource
constrained devices. This decision ensures the performance
and privacy-preserving capabilities of AuthCODE.
5.1.1. Personal computer devices

We have implemented a client app for Windows, the most
used desktop OS, and another app for Linux distributions
based on Debian. The apps monitor the folowing dimensions:
1) mouse movements/events, 2) keyboard events and 3) appli-
cations/resources usage statistics. Table 2 shows the selected
dimensions and the data acquired from each dimension. We
used Python, specifically, the pyinstaller tool to generate both
Windows and Linux executable, the pynput library to monitor
the mouse and keyboard events, and psutil and pywin32 (only
in Windows) to monitor the resources consumption and ap-
plications usage (Team; Fundation). Finally, a time window
is used to aggregate data and calculate features, which are
sent to the Data Processing module using a REST API. In our
implementation, the time window is set to 60 seconds. The
feature selection process is explained and justified in Section
6.
5.1.2. Mobile devices

We have also deployed a client app for smartphones and
tablets running from Android 5.0 OS (API 21). We chose
Android since it is the most used operating system on mo-
bile devices. In this case, the monitored dimensions are
1) the application usage statistics, and 2) the device sen-
sors. Table 3 shows the data extracted from the previous
dimensions. We have used Android.app.usage class (De-
velopers) to gather the application usage statistics and the
Android.hardware.SensorEventListener interface to obtain
the gyroscope and acceleromenter sensors data. To main-
tain a low resource consumption, we implemented a short-
time service, which is triggered cyclically through the An-
droid.app.AlarmManager. As in the personal computers case,
the previous data is aggregated in time windows, and fea-
tures are calculated and send to the Data Processing module

Sánchez et al.: Preprint submitted to Elsevier Page 6 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

Table 2
Privacy-preserving features obtained from personal computers.

Dimension Features
Time

(1 feature) - Vector timestamp.

Keyboard
(24 002 features)

- Keystroke & word counter.
- Erasing keys percentage.
- Pressed keys histogram
- Average & standard deviation of
time that keys are pressed/released.
- Average & standard deviation of
consecutive keystroke intervals .
- Number of written words & length
histogram.
- Digraphs typed (two consecutive
keys) & mean time to type the
digraph.

Mouse
(45 features)

- Clicking speed average & standard
deviation per mouse button and left
double clicking.
- Average mouse speed per direction.
- Movement length histogram.

Application
and

resource
usage

(17 features)

- ID of the last and penultimate
application used.
- Active application counter average.
- Counter of application changes.
- CPU/RAM usage average and
standard deviation.
- Bytes transmitted & received
through the network
interfaces.

through an REST API. In our implementation, the time win-
dow is set to 60 seconds. The feature selection process is
explained in Section 6.
5.2. Cloud computing platform

Due to storage and processing requirements, a private
cloud platform hosts the Data Processing, Decision, and Re-
action modules of AuthCODE. The Data Processing module
exposes a REST API to receive single-device feature vectors
from the Client apps. Periodically, AuthCODE follows the
next steps to create our five datasets: 1) it processes and ag-
gregates single-device feature vectors from the same user to
generate multi-device feature vectors for every user using the
user ID as label, 2) translates the features domains to make
them suitable for ML/DL classifiers. Table 4 shows some of
the most relevant multi-device features obtained after aggre-
gating each device vector timestamps in a given time window.
Figure 2 illustrates the four different activity combinations
that arise when two devices are involved: none of the devices
is active, only one of them is active, or both devices are active
simultaneously. These features are tested and validated in
Section 6. After following the previous steps AuthCODE
generated the following five datasets (Sánchez Sánchez et al.,
2020):

• Dataset 1. Single-device behaviour profile obtained
from the personal computer, comprising aggregated

Table 3
Privacy-preserving features obtained from mobile devices.

Dimension Features
Time

(1 feature) - Vector timestamp.

Application
usage

statistics
(13 features)

- Foreground application counters
(number of different and total apps)
for the last minute and day.
- Most common app ID and number of
usages in the last minute and day.
- ID of the currently active app
- ID of the last active app prior the
current one.
- ID of the application most frequently
utilised prior to the current application.
- Bytes transmitted & received through
the network interfaces.

Sensors
(Gyroscope

and
Accelerometer)
(40 features)

- Average, maximum, minimum, varian-
ce and peak-to-peak (max-min) of
X, Y, Z coordinates.
- Magnitude =

√

X2 + Y 2 +Z2

PC 
Activity

0

Mobile 
Activity

Window Size

PC 
Activity 

PC 
Inactivity 

Both Devices 
Activity

Both 
Devices 
InactivityMobile 

Activity 
Mobile 

Inactivity 

Figure 2: Explanatory diagram on the derived features from
both user devices.

data about keyboard and mouse activity, as well as
application usage statistics (see Table 2).

• Dataset 2. Single-device behaviour profile obtained
from the mobile device, with application usage statis-
tics (see Table 3).

• Dataset 3. Single-device behaviour profile with fea-
tures computed from the sensors of the mobile device
(see Table 3).

• Dataset 4. Multi-device behaviour profile combining
the most relevant features of the mobile device and
personal computer.

• Dataset 5. Multi-device behaviour profile generated
from the active/inactive intervals of both devices (see
Table 4).

Once the datasets are generated, the Decision module
uses ML and DL algorithms to classify the users. Thus we
had to implement a selected set of ML/DL models both for
single- and multi-device profiles. To this end we used three
well-known Python libraries: Scikit-learn, Keras and Pan-
das. Scikit-learn provides a wide variety of ML algorithms
for both classification and anonaly detection. The Keras
framework is widely used to implement and train DL models.

Sánchez et al.: Preprint submitted to Elsevier Page 7 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

Table 4
Privacy-preserving multi-device features.

Features (32 in total)
Hour when the time window starts.

Weekday when the time window starts.
Total number of vectors from PC.

Total number of vectors from mobile devices.
Number of changes pc-mobile.
Number of changes mobile-pc.

Number of minutes with activity of both devices.
Mean, stdev, max, min of the
PC Activity periods duration .

Mean, stdev, max, min of the
Mobile Activity periods duration .

Mean, stdev, max, min of the
Both Devices Activity periods duration .

Mean, stdev, max, min of the
PC Inactivity periods duration .

Mean, stdev, max, min of the
Mobile Inactivity periods duration .

Mean, stdev, max, min of the
Both Devices Inactivity periods duration .

And finally, the Pandas library was employed to manipulate
and process data. Finally, the Reaction module deploys the
Policy-based component with management rules, which are
implemented in Python. Moreover, the Communication API
component implements a REST API to send the user’s au-
thentication result and the actions to be performed to the
Smart Office devices.

6. Experiments
We measured the AuthCODE performance in terms of

authentication accuracy and resource consumption. To ac-
complish this objective, the interactions of five individuals
with their computers and mobile devices were collected for
60 days by means of the client apps detailed in Section 5.
6.1. Comparing single- and multi-device

authentication.
This experiment analysed and compared the classification

accuracy of AuthCODE considering single- and multiple-
device behaviour profiles. Additionally, it justified the list of
features selected for both single- and multi-device profiles
(see Table 2, 3 and 4). To analyse the previous aspects we
considered Dataset 1-4 of Section 5.

Given the huge number of features of some of the datasets
(+24 000 features in Dataset 1) it was necessary a preliminary
stage of feature selection. Our first step was to preprocess
the three datasets discarding all the constant features and en-
coding each categorical one by using one-hot representation.
Next, we chose RF and XGBoost (Chen and Guestrin, 2016)
to perform an initial classification process of each single-
device dataset for additional feature selection purposes. Both
algorithms provide an estimation of the discriminative power
of each feature. Additionally, they were chosen due to their
ability to manage high number of features and their good per-
formance dealing with imbalanced classes (some users have

Table 5
Classification algorithms and hyperparameters tested.

Algorithm Hyperparameters
Naive
Bayes No hyperparameter tunning required

k-NN k ∈ [3, 20]
SVM C ∈ [0.01, 100], gamma ∈ [0.001, 10]

kernel ∈ {′rbf ′,′ linear′,′ sigmoid′,′ poly′}

XGBoost
lr ∈ [0.01, 0.30], max_deptℎ ∈ [3, 15]
min_cℎild_weigℎt ∈ [1, 7], gamma ∈ [0, 0.5]
colsample_bytree ∈ [0.3, 0.7]

MLP layers ∈ [1, 5], neurons_layer ∈ [50, 1000]
Random
Forest Number_of_trees ∈ [50, 1000]

more activity than others). Each dataset was partitioned in
10-minute segments and 10% segments were randomly cho-
sen to create the test set. The previous and next segments for
each selected segment were discarded to prevent data leakage
in the training set due to correlation issues. Both algorithms
were trained using each of the first three datasets, and the
estimated discriminative of each feature was used to select a
subset of features that comprised 95% of the total importance.
Finally, Dataset 4 was created by combining these three re-
sulting datasets to include multi-device information. The
four final datasets were then used to train a set of candidate
ML algorithms besides RF and XGBoost: Naive Bayes, k
Nearest Neighbours (k-NN), Support Vector Machine (SVM)
and Multi-Layer Perceptron (MLP). Each training was car-
ried out using a validation set randomly selected similarly as
the test set. The corresponding validation set of each dataset
was used to perform proper optimization of hyperparameters
for each ML algorithm. The list of hyperparameters per ML
algorithm is detailed in Table 5. The performance metrics
used to evaluate the models were the following (FPR: False
Positive Rate, FRR: False Rejection Rate) :

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)

F1 − Score =
2 × precision × recall
precision + recall

(3)

FPR = FP
FP + TN

(4)

6.1.1. Single-device classification on personal
computer data

The preliminary preprocessing of Dataset 1 reduced its
number of features from +24 000 to 12 160. Additionally,
the timestamp was replaced by just the time of day. With this

Sánchez et al.: Preprint submitted to Elsevier Page 8 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

User

V
al
ue

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
Precision Recall F1Score FPR

Average

Figure 3: Classification performance achieved by MLP on
Dataset 1 (PC data).

transformed dataset, XGBoost reached a slightly better perfor-
mance than RF. Therefore, we used the features importance
provided by XGBoost to selected the 150 most relevant ones,
training with them every candidate classification model. This
decision drastically reduced the dimensionality (from 12 160
to 150 features) for future testing without loss of classification
performance.

As it can be seen in Table 6, MLP with one single hidden
layer of 500 neurons obtained the best average classification
performance, reaching a f1-score of 97.39%. Furthermore,
Figure 3 shows the results of identifying each of the five
users from their personal computer usage. Additionally, MLP
reached for every single user a precision, recall, and f1-score
higher than 95%, 90% and 95%, respectively. Regarding FPR,
its values were smaller than 3% for every user.
6.1.2. Single-device classification on mobile device

data
We evaluated the classification performance of the RF

and XGBoost models on application statistics data (Dataset
2) and sensor data (Dataset 3) separately. RF achieved better
classification performance than XGBoost on both datasets.
Based on the discriminating importance of each feature pro-
vided by RF, the 50 most important features of Dataset 2 and
the 40 most important features of Dataset 3 were selected,
reducing the number of features from 818 to 50, and from 88
to 40, respectively.

Once selected the most discriminating features, Table 6
shows that RF, with Number_of_trees: 500, obtained the best
performance with Dataset 2, and XGBoost, with lr: 0.25,
max_deph: 10, min_child_weight: 3, gamma: 0.5 and col-
sample_bytree: 0.5, was the best model for Dataset 3. Ad-
ditionally, Figure 4 shows the classification results for each
user by considering the previous models for each dataset.
6.1.3. Multi-device classification

We used Dataset 4 to evaluate whether the combination
of the most discriminating features of personal computers
(150) and mobile devices (50 for apps statistics and 40 for
sensors) could improve the authentication results obtained
in the previous two experiments. With that goal in mind,
the previous features were grouped in time windows of one
minute. In this way, we created feature vectors representing

Table 6
Comparison of classification algorithms for single- and multiple-
device behaviour profiles.

Model Naive
Bayes

K-NN SVM XG
Boost

MLP RF

Dataset 1: Personal computer
Avg.
Precis. 0.6977 0.9280 0.9593 0.9708 0.9752 0.9710

Avg.
Recall 0.6425 0.9187 0.9532 0.9525 0.9727 0.9279

Avg.
F1-Scr. 0.6054 0.9221 0.9561 0.9610 0.9739 0.9459

Avg.
FPR 0.0951 0.0125 0.0092 0.0096 0.0072 0.0085

Dataset 2: Applications usage statistics
Avg.
Precis. 0.8281 0.9473 0.9318 0.9466 0.9505 0.9775

Avg.
Recall 0.8005 0.9368 0.9057 0.9390 0.9487 0.9534

Avg.
F1-Scr. 0.7286 0.9418 0.9174 0.9421 0.9504 0.9670

Avg.
FPR 0.0523 0.0082 0.0112 0.0118 0.0085 0.0057

Dataset 3: Sensors
Avg.
Precis. 0.2915 0.7701 0.8682 0.9242 0.8439 0.9113

Avg.
Recall 0.2751 0.7327 0.8171 0.8871 0.6502 0.8547

Avg.
F1-Scr. 0.2360 0.7483 0.8385 0.9036 0.7328 0.8783

Avg.
FPR 0.1933 0.0618 0.0355 0.0216 0.0882 0.0271

Dataset 4: Muti-device
Avg.
Precis. 0.7425 0.9342 0.9606 0.9932 0.9712 0.9799

Avg.
Recall 0.7577 0.9362 0.9671 0.9933 0.9476 0.9694

Avg.
F1-Scr. 0.6862 0.9351 0.9637 0.9933 0.9591 0.9743

Avg.
FPR 0.0544 0.0115 0.0062 0.0023 0.0064 0.0045

the activities of each user interacting with the two devices
in the same minute. Figure 5 depicts a scheme of the mor-
phology of the vector generated. If any of the devices (PC
or mobile) has no activity in that minute, their features are
established to 0. Only vectors with activity are generated.

The relatively low number of features (240) and the bet-
ter class balance due to the combination of the other three
datasets, made the multi-device Dataset 4 suitable to be used
without changes to train the set of ML algorithms, including
their hyperparameter optimization. Table 6 shows the best
classification results for each algorithm on Dataset 4. The
winner was XGBoost, with the following hyperparameters:
lr: 0.25, max_depth: 10, min_child_weight: 5, gamma: 0.1
and colsample_bytree: 0.7.

The results of the previous three subsections demon-
strated how single-device classification results can be im-
proved by combining single-device features to create multi-
device profiles. Table 6 compares the results of each one
of the experiments of this section, demonstrating that the
best results were obtained with multi-device classification
and XGBoost with the following hyperparameters: lr: 0.25,
max_depth: 10, min_child_weight: 5, gamma: 0.1 and col-
sample_bytree: 0.7.

Analysing the previous results, two main conclusions
are obtained. On the one hand, AuthCODE classifies and

Sánchez et al.: Preprint submitted to Elsevier Page 9 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

V
al
ue

User

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Precision Recall F1Score FPR

Average

(a) Classification performance achieved by RF on Dataset 2 (Appli-
cation usage statistics).

V
al
ue

User

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Precision Recall F1Score FPR

Average

(b) Classification performance achieved by XGBoost on Dataset 3
(Sensors data).

Figure 4: Users’ behaviour classification in mobile devices.

Combined usage vector for one minute

Time mark 
(minute) Selected PC features

Selected mobile app 
statistics features

Selected mobile sensor 
features

Figure 5: Structure of multi-device features vector making up
Dataset 4.

authenticates users in single-device scenarios such as PC
and mobile devices with 97.39%, 96.70% and 90.36% aver-
age f1-score and 0.72%, 0.57% and 2.16% average FPR for
computer, mobile application statistics and mobile sensors,
respectively. On the other hand, the proposed multi-device
behaviour profile dataset improves the authentication results
of single-device datasets, obtaining 99.33% average f1-score
and 0.23% average FPR. It is interesting to note that the FPR
with multi-device achieved a 69.33%, 59,65% and 89,35%
improvement for computer, mobile applications and mobile
sensors respectively.
6.2. Measuring the time impact in multi-device

authentication.
In the previous section, the user identification improve-

ment obtained by using multi-device behaviour profiles col-
lected in 1-minute time windows was evaluated. In this ex-
periment we analysed the impact of using a sequence of such
1-minute snapshot vectors, seen as the evolution of a user’s
activity over the time. The temporal information carried in
the sequence can be represented in different ways. We studied
two approaches: authentication by means of derived temporal
activity features and by means of time series of vectors.
6.2.1. Derived features classification

In this experiment we evaluated whether it was possible
to identify users according to the time they spent interacting
with their devices. For this purpose, we labelled each 1-
minute vector from Datasets 1-3 with its associated device
(computer or mobile). Subsequently, the resulting vectors
were sorted by their timestamps and grouped in a variety of
time windows (1 hour, 3 hours, 6 hours, 12 hours and 24

Table 7
Derived usage features classification results using RF (Dataset
5).

Time
window 1 h 3 h 6 h 12 h 24 h

Average
Precision 0.7298 0.7893 0.8005 0.8224 0.9310

Average
Recall 0.7291 0.7883 0.8005 0.8175 0.9253

Average
F1-Score 0.7259 0.7884 0.7980 0.8193 0.9245

Average
FPR 0.0621 0.0498 0.0480 0.0491 0.0215

hours). For each time windows size, a dataset was created
with features about the usage periods of the devices present
in the window and the device changes made by the user (see
Table 4). Figure 5 illustrates a window containing a group of
vectors belonging to two devices. It can be noticed how the
user switches between the two devices and the periods where
there is activity on just one device, both devices or even no
activity at all.

Our set of ML algorithms were trained with this dataset,
including a hyperparameter optimization procedure. RF was
the model that achieved the best performance (number of
trees = 200). Table 7 lists the results for each selected time
windows. The classification results improve as window size
increases, ranging from 72.59% f1-score and 6.21% FPR
with 1-hour window to 92.45% f1-score and 2.15% FPR with
24-hour window. These results make sense, since the larger
the window, the more interactions contains, providing more
information to differentiate clearly each user’s behaviour.

Although the performance achieved did not improve the
results obtained in Section 6.1, this experiment demonstrated
the potential of using derived features to identify different
users based on their device usage routines.
6.2.2. Time window processing using LSTM

In this experiment we leveraged the ability of DL, and
more specifically Long-Short Term Memory Neural Net-

Sánchez et al.: Preprint submitted to Elsevier Page 10 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

works (LSTM), to learn complex patterns in sequences of
vectors obtained from the activity data from the users’ de-
vices. LSTM is effective at capturing long-term temporal
dependencies; therefore, our aim was to evaluate whether it
was able to use the temporal information to improve the level
of authentication reached in the experiments of Section6.1.
In those experiments we created Dataset 4 by aggregating
1-minute time windows of multi-device activity data in vec-
tors of 240 features, obtaining an average f1-score of 99.33%
and FPR of 0.23% with XGBoost. The same Dataset 4 was
subsequently processed to be used as input of a selection of
LSTM architectures in a variety of configurations. The steps
we carried out were the following:

• Dataset 4 includes 60 days of monitoring data but a
some of the first and last days do not contain data from
all users. Therefore, we selected a continuous period
of 40 days in which the five users had activity data.

• The feature vectors were sorted by the minute in which
they were generated. To make explicit the lack of
activity in the sequence, every minute without activity
had -1 in the rest of the vector features.

• We used the numpy to work with array views and gen-
erate a dataset of sequences of a given size. The numpy
function stride_tricks.as_strided is particularly useful,
allowing us to obtain a sliding window view of our
dataset. With this function we obtained 10 separate
views of the dataset for a range of sliding window sizes
(2, 5, 10, 20, 30, 60, 90, 120, 240 and 360 minutes).

Our main architecture was composed of an optional 1D-
convolutional layer (Conv1D), as suggested by some works in
the literature (Eapen et al., 2019; Zhong et al., 2019), followed
by a number of LSTM layers (from 1 to 4) with different num-
ber of nodes (from 16 to 256) and a 5-node fully connected
softmax output layer. All these configuration values together
with the use of batch normalization and the dropout ratio in
each layer, were hyperparameters to be optimized. Every
dataset view was split into training/validation/test subsets.
Each view was used as input during the hyperparameter op-
timization procedure. The validation and test datasets were
composed of the sequences belonging to 7 days each: days 26
to 33 and 34 to 40 respectively. The model configuration that
achieved the higher performance was a 2-layer LSTMwith 64
and 32 nodes, without Conv1D layer, no batch normalization
and 20% dropout. Figure 6 shows an scheme of this network.

Table 8 lists the average precision, recall and f1-score
when classifying behaviour data using different time window
sizes. The table shows how as the time window size was
increased, in general, the classification results were better.
The lowest average f1-score and FPR (2 minute window)
were 82.38% and 3.81% respectively, and they improved with
window size until they reached 99% and 0.37% when the
time window is 60 minutes. For greater windows the metrics
stabilised in similar values, even when the window is six
times larger (360 minutes).

LSTM 
Layer 1

Input 
Data

0

240

S
el

ec
te

d 
fe

at
ur

es
S

el
ec

te
d 

fe
at

ur
es

S
el

ec
te

d 
fe

at
ur

es
S

el
ec

te
d 

fe
at

ur
es

Time
window

64
 L

S
T

M
 L

ay
er

32
 L

S
T

M
 L

ay
er

LSTM 
Layer 2

Output 
Layer

S
of

tm
ax

Figure 6: LSTM network architecture.

From these results some conclusions can be drawn. As it
can be noticed in Table 7 and Table 8, LSTM-based classi-
fication using Dataset 4 view as a dataset of sufficient large
vector sequences, improved the results obtained when us-
ing Dataset 5 and RF. Also in Table 8, we can observe how
performance improves as the time window increases. After
the 60 minute window, the results stabilised around 99% for
f1-score and 0.30% for FPR. So, it can be a good trade of
between window size and performance. These results can be
applied as a complement to the one-minute multi-device vec-
tor classification, giving an additional temporal information
to the authentication process.
6.3. Resource Consumption

This experiment measured the resource consumption of
client apps, running on smartphones and computers, as well
as the ML/DL models of AuthCODE running on our server.
For each testing device (see Table 9), relevant resources such
as battery, memory, storage and processing, were monitored
to check the impact of AuthCODE. Resources whose con-
sumption is dynamic such as battery, memory, or CPU were
monitored during 10 days, averaging the measurements of
that period to calculate final results. Resources whose con-
sumption is static, such as storage, were measured once the
AuthCODE components were deployed.
6.3.1. Client Apps Consumption

Battery, memory, storage and processing are the most
critical resources of constrained resource devices such as
laptops and smartphones. This experiment aimed to measure
the impact of our client apps in the hosting devices resources.

• Battery. In average, the client app consumed 167
mAh (≈4%) and 201 mAh (≈6%) of the Xiaomi and
Huawei battery devices, respectively. In terms of lap-
tops, ≈4.75 mAh (<1%) and ≈6.54 mAh (<1%) of the
HP and Acer batteries respectively were consumed.

• Memory. In both laptops (HP and Acer), the client
app consumed ≈25 MB. In contrast, for both mobile
devices (Xiaomi andHuawei), the client app used≈104
MB.

Sánchez et al.: Preprint submitted to Elsevier Page 11 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

Table 8
Temporal windows classification results using LSTM network (Dataset 6).

Time Window (minutes) 2 5 10 20 30 60 90 120 180 360
Average Precision 0.9070 0.9532 0.9738 0.9794 0.9883 0.9971 0.9948 0.9984 0.9989 0.9988
Average Recall 0.7584 0.8380 0.8453 0.9390 0.9538 0.9840 0.9777 0.9890 0.9932 0.9907

Average F1-Score 0.8238 0.8898 0.9029 0.9579 0.9698 0.9902 0.9856 0.9934 0.9959 0.9945
Average FPR 0.0381 0.0202 0.0199 0.0086 0.0065 0.0037 0.0038 0.0034 0.0028 0.0026

Table 9
Device specification of resource consumption tests.

Device Processor Mem.
(GB)

Battery
(mAh)

Laptop:
HP 15-bs00x

Intel i7-7500U
4 Cores @ 2.7 GHz 8 2850

Laptop:
Acer Nitro
5 AN51

Intel i7-7700HQ
4 Cores @ 2.8 GHz 8 3270

Smartphone:
Xiaomi

Pocophone

Snapdragon 845
8 Cores @ 2.8 GHz 6 4000

Smartphone:
Huawei
P10 Lite

Kirin 658
8 Cores @ 1.7 GHz 4 3000

Cloud
Server

Intel Xeon E5-2697v4
18 Cores @ 2.3 GHz 64 -

• Storage. The client app executable file occupied 6.50
MB in the personal computers, and 15MB in the smart-
phones (regardless the device model). The amount of
raw data needed to compute a single-device feature
vector is temporarily stored in the devices, having a
size of ≈50 KB. Once the single-device feature vector
is sent to the server, this storage is released.

• Processing. In both laptops (HP and Acer), the average
daily CPU usage ranged between 2% and 5%. In both
smartphones (Xiaomi and Huawei), daily CPU usage
remained under 1%.

Based on the previous results, it can be concluded that
neither computer client nor mobile client apps have a signifi-
cant impact on the device resource consumption. Therefore,
our client apps are suitable even for resource constrained
devices.
6.3.2. ML/DL Model Consumption

This experiment measured the resource and time con-
sumption of the AuthCODE modules deployed in our server
to train and evaluate our ML and DL models.

• Time. The average time needed to process each feature
vector and evaluate it varied from 1.5 to 2 seconds. The
measured process included the filtering and selection
of features, the grouping of vectors in a 60-minute
window, and the vector evaluation using XGBoost and
the 60-minute LSTM network.

• Memory. Once trained the models, they were loaded in
memory and utilised to evaluate live users’ vectors in
real time. The memory usage of XGBoost and LSTM
was 4.75 MB and 49.50 MB.

• Storage. The Python scripts implementing Data Pro-
cessing, Decision and Reactionmodules of AuthCODE
had a size of ≈6 KB. The generated models had a size
of 2.05 MB for the XGBoost classifier (.pickle format)
and 1.1MB for the LSTMmodels (.h5 format). In total,
3.15 MB of the server storage were used.

• Processing. When the Data Processing module re-
ceived features to evaluate the model and authenticate
users, AuthCODE utilised ≈3% in average.

In conclusion, we have proven that the AuthCODE mod-
ules makes efficient use of the processing, memory, storage,
and battery resources of heterogeneous devices such as mo-
bile devices, computers, and servers. In addition we have
shown that the time required to evaluate and authenticate a
given user remains in about 2 seconds, which is acceptable
for our continuous authentication scenario prototype. Finally,
it is important to keep in mind that the resource consumption
optimization task is not the main objective of this work.

7. Conclusions and Future Work
This paper presents AuthCODE, a multi-device contin-

uous authentication architecture, deployed in the MEC and
cloud infrastructures, that utilises ML and DL techniques
to authenticate users according to their behaviour. Auth-
CODE proposes a list of privacy-preserving and multi-device
features that combine the user’s interactions with different
devices. The relevance of the previous features as well as
the improvement of multi-device profiles compared to single-
ones have been validated in a Smart Office scenario, where
we generated and published five behavioural datasets. Sev-
eral experiments over the previous datasets demonstrated that
multi-device profiles improved the authentication accuracy
and FPR of solutions based on single-device profiles, reach-
ing an f1-score of 99.33% and a FPR of 0.23% with XGBoost.
Threrefore, our multi-device approach improves by 69.33%,
59,65% and 89,35% the FPR obtained by computer, mobile
applications and mobile sensors separately.

Additionally, the inclusion of temporal information in the
form of vector sequences provides a further improvement in
the authentication performance of the single-vector models,
allowing the identification of complex behaviour patterns as-
sociated to each user. With this approach, an LSTM achieved

Sánchez et al.: Preprint submitted to Elsevier Page 12 of 14



AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

an f1-score of 99.02% and a FPR of 0.37% with a 60-minute
sequence of vectors. To conclude, several experiments also
demonstrated the suitability of the proposed solution in terms
of resource consumption at the mobile edge and cloud com-
puting paradigms.

However, some limitations of the current proposal should
be also commented. First, as user’s behaviour is evaluated ev-
ery minute, there is a short period of time in which an attacker
could make use of the device without being detected. Be-
sides, as ML/DL classification algorithms have been applied,
user identification performance depends on how different
each user’s behaviour is from other users, and there can be
model scalability problems if the number of users increases
too much. Then, anomaly detection algorithms will be tested
in the future. Finally, processing and evaluation is carried out
in a centralized server, which can lead to scalability, availabil-
ity or security issues. These limitations motivate to continue
researching in multi-device continuous authentication solu-
tions.

As future work, we plan to evaluate the authentication ac-
curacy of AuthCODE with more users and new experiments
aiming to detect common behaviours by using new ML/DL
algorithms and filtering actions per type of application. Fur-
thermore, we will extend the use case implementation by
considering IoT devices, other operating systems, and new
dimensions such as writing patterns or network traffic statis-
tics. It will allow us to generate and release novel datasets,
useful for researchers and scientist to keep improving the
multi-device continuous authentication challenge.

Declaration of Competing Interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

CRediT authorship contribution statement
PedroMiguel Sánchez Sánchez. Methodology, Writing

- original draft, Data curation, Software. Lorenzo Fernán-
dez Maimó. Methodology, Writing - Review & Editing.
Formal analysis. Alberto Huertas Celdrán. Methodology,
Conceptualization, Writing - Review & Editing. Gregorio
Martínez Pérez: Supervision, Project administration, Fund-
ing acquisition.

Acknowledgment
This work has been partially supported by Armasuisse

S+T with project CYD-C-2020003, by the University of
Zürich UZH, and by the European Union Horizon 2020 Re-
search and Innovation Program under grant agreement No.
830927, namely the H2020Concordia Project. Special thanks
to all those voluntaries who installed the client applications:
Oscar Fernández, Pedro A. Sánchez, Francisco J. Sánchez,
Pantaleone Nespoli, Mattia Zago, Sergio López, Eduardo
López, Manuel Gil, José M. Jorquera, Javier Pastor and Gre-
gorio Martínez.

References
Aljohani, O., Aljohani, N., Bours, P., Alsolami, F., 2018. Continuous authen-

tication on pcs using artificial immune system, in: 2018 1st International
Conference on Computer Applications & Information Security (ICCAIS),
IEEE. pp. 1–6.

Almalki, S., Chatterjee, P., Roy, K., 2019. Continuous authentication using
mouse clickstream data analysis, in: International Conference on Security,
Privacy and Anonymity in Computation, Communication and Storage,
Springer. pp. 76–85.

Ashibani, Y., Kauling, D., Mahmoud, Q.H., 2019. Design and implementa-
tion of a contextual-based continuous authentication framework for smart
homes. Applied System Innovation 2, 4.

Bo, C., Zhang, L., Li, X.Y., Huang, Q., Wang, Y., 2013. Silentsense:
silent user identification via touch and movement behavioral biometrics,
in: Proceedings of the 19th annual international conference on Mobile
computing & networking, pp. 187–190.

Centeno, M.P., van Moorsel, A., Castruccio, S., 2017. Smartphone con-
tinuous authentication using deep learning autoencoders, in: 2017 15th
Annual Conference on Privacy, Security and Trust (PST), IEEE. pp.
147–1478.

Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system,
in: Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785–794.

Deutschmann, I., Lindholm, J., 2013. Behavioral biometrics for darpa’s
active authentication program, in: 2013 International Conference of the
BIOSIG Special Interest Group (BIOSIG), IEEE. pp. 1–8.

Developers, A., . Android library. URL: https://developer.android.com/.
accessed on: April 15, 2020.

Eapen, J., Bein, D., Verma, A., 2019. Novel deep learning model with cnn
and bi-directional lstm for improved stock market index prediction, in:
2019 IEEE 9th annual computing and communication workshop and
conference (CCWC), IEEE. pp. 0264–0270.

Firouzi, F., Farahani, B., 2020. Architecting IoT Cloud. Springer Interna-
tional Publishing. doi:10.1007/978-3-030-30367-9_4.

Fridman, L., Stolerman, A., Acharya, S., Brennan, P., Juola, P., Greenstadt,
R., Kam, M., Gomez, F., 2015. Multi-modal decision fusion for continu-
ous authentication. Computers and Electrical Engineering 41, 142–156.
doi:10.1016/j.compeleceng.2014.10.018.

Fridman, L., Weber, S., Greenstadt, R., Kam, M., 2016. Active authentica-
tion on mobile devices via stylometry, application usage, web browsing,
and gps location. IEEE Systems Journal 11, 513–521.

Fundation, P.S., . The python package index (pypi). URL: https://pypi.org/.
accessed on: April 15, 2020.

Gonzalez-Manzano, L., Fuentes, J.M.D., Ribagorda, A., 2019. Leveraging
user-related internet of things for continuous authentication: A survey.
ACM Computing Surveys (CSUR) 52. doi:10.1145/3314023.

Ehatisham-ul Haq, M., Azam, M.A., Loo, J., Shuang, K., Islam, S., Naeem,
U., Amin, Y., 2017. Authentication of smartphone users based on activity
recognition and mobile sensing. Sensors 17, 2043.

Huertas Celdrán, A., Gil Pérez, M., García Clemente, F.J., Martínez Pérez,
G., 2019. Towards the autonomous provision of self-protection capabil-
ities in 5g networks. Journal of Ambient Intelligence and Humanized
Computing 10, 4707–4720. doi:10.1007/s12652-018-0848-6.

Jorquera Valero, J.M., Sánchez Sánchez, P.M., Fernández Maimó, L., Huer-
tas Celdrán, A., Arjona Fernández, M., De Los Santos Vílchez, S.,
Martínez Pérez, G., 2018. Improving the security and qoe in mobile
devices through an intelligent and adaptive continuous authentication
system. Sensors 18, 3769.

Li, Y., Hu, H., Zhou, G., 2018. Using data augmentation in continuous
authentication on smartphones. IEEE Internet of Things Journal 6, 628–
640.

Lu, X., Zhang, S., Hui, P., Lio, P., 2020. Continuous authentication
by free-text keystroke based on cnn and rnn. Computers & Security
96, 101861. URL: http://www.sciencedirect.com/science/article/pii/
S0167404820301334, doi:https://doi.org/10.1016/j.cose.2020.101861.

Mondal, S., Bours, P., 2017. A study on continuous authentication using a
combination of keystroke and mouse biometrics. Neurocomputing 230,
1–22.

Sánchez et al.: Preprint submitted to Elsevier Page 13 of 14

https://developer.android.com/
http://dx.doi.org/10.1007/978-3-030-30367-9_4
http://dx.doi.org/10.1016/j.compeleceng.2014.10.018
https://pypi.org/
http://dx.doi.org/10.1145/3314023
http://dx.doi.org/10.1007/s12652-018-0848-6
http://www.sciencedirect.com/science/article/pii/S0167404820301334
http://www.sciencedirect.com/science/article/pii/S0167404820301334
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.101861


AuthCODE: A Privacy-preserving and Multi-device Continuous Authentication Architecture based on Machine and Deep Learning

Nespoli, P., Zago, M., Huertas Celdrán, A., Gil Pérez, M., Gómez Mármol,
F., Clemente, G., Félix, J., 2019. Palot: profiling and authenticating users
leveraging internet of things. Sensors 19, 2832.

Patel, V.M., Chellappa, R., Chandra, D., Barbello, B., 2016. Continuous
user authentication on mobile devices: Recent progress and remaining
challenges. IEEE Signal Processing Magazine 33, 49–61.

Qolomany, B., Al-Fuqaha, A., Gupta, A., Benhaddou, D., Alwajidi, S., Qadir,
J., Fong, A.C., 2019. Leveraging machine learning and big data for smart
buildings: A comprehensive survey. IEEE Access 7, 90316–90356.

Sánchez Sánchez, P.M., Huertas Celdrán, A., Fernández Maimó, L., Pérez,
G.M., Wang, G., 2019. Securing smart offices through an intelligent
and multi-device continuous authentication system, in: International
Conference on Smart City and Informatization, Springer. pp. 73–85.

Sánchez Sánchez, P.M., Fernández Maimó, L., Huertas Celdrán, A.,
Martínez Pérez, G., 2020. Authcode - dataset. URL: http://dx.doi.
org/10.21227/ttcs-ak23, doi:10.21227/ttcs-ak23.

Team, P.D., . Pyinstaller. pyinstaller bundles python applications. URL:
https://www.pyinstaller.org/. accessed on: April 15, 2020.

Zhong, L., Hu, L., Zhou, H., 2019. Deep learning based multi-temporal
crop classification. Remote sensing of environment 221, 430–443.

Pedro Miguel Sánchez Sánchez received the M.Sc.
degree in computer science from the University of
Murcia. He is currently pursuing his PhD in com-
puter science at University of Murcia. His research
interests are focused on continuous authentication,
networks, 5G, cybersecurity and the application of
machine learning and deep learning to the previous
fields.

Lorenzo Fernández Maimó received the M.Sc. and
Ph.D. degrees in computer science from the Univer-
sity of Murcia. He is currently an Associate Profes-
sor with the Department of Computer Engineering,
University of Murcia. His research interests primar-
ily focus on machine learning and deep learning
applied to cybersecurity, and computer vision.

Alberto Huertas Celdrán received the M.Sc. and
Ph.D. degrees in computer science from the Univer-
sity of Murcia, Spain. He is currently a postdoctoral
fellow associated with the Communication Systems
Group (CSG) at the University of Zurich UZH. His
scientific interests include medical cyber-physical
systems (MCPS), brain–computer interfaces (BCI),
cybersecurity, data privacy, continuous authentica-
tion, semantic technology, context-aware systems,
and computer networks.

Gregorio Martínez Pérez is Full Professor in the
Department of Information and Communications
Engineering of the University ofMurcia, Spain. His
scientific activity is mainly devoted to cybersecu-
rity and networking, also working on the design
and autonomic monitoring of real-time and criti-
cal applications and systems. He is working on
different national (14 in the last decade) and Euro-
pean IST research projects (11 in the last decade)
related to these topics, being Principal Investigator
in most of them. He has published 160+ papers in
national and international conference proceedings,
magazines and journals.

Sánchez et al.: Preprint submitted to Elsevier Page 14 of 14

http://dx.doi.org/10.21227/ttcs-ak23
http://dx.doi.org/10.21227/ttcs-ak23
http://dx.doi.org/10.21227/ttcs-ak23
https://www.pyinstaller.org/

