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Abstract. In the network traffic intrusion detection, deep learning based
schemes have attracted lots of achievements. However, in real-world sce-
narios, data is often insufficient (few-shot), which leads to various de-
viations between the models prediction and the ground truth. Conse-
quently, downstream tasks such as unknown attack detection based on
few-shot will be limited by insufficient data. In this paper, we propose a
novel unknown attack detection method based on Intra Categories Gen-
eration in Embedding Space, namely SFE-GACN, which might be the
solution of few-shot problem. Concretely, we first propose Session Fea-
ture Embedding (SFE) to summarize the context of basic granularity
of network traffic: sessions, bring the insufficient data to the pre-trained
embedding space. In this way, we achieve the goal of preliminary infor-
mation extension in the few-shot case. Second, we further propose the
Generative Adversarial Cooperative Network (GACN), which improves
the conventional Generative Adversarial Network by supervising the gen-
erated sample to avoid falling into similar categories, and thus enables
samples to generate intra categories. Our proposed SFE-GACN achieved
that it can accurately generate session samples in the case of few-shot,
and ensure the difference between categories during data augmentation.
The detection results show that compared to the state-of-the-art method,
the average TPR is 8.38% higher, and the average FPR is 12.77% lower.
In addition, we evaluated the graphics generation capabilities of GACN
on the graphics dataset, the result shows our proposed GACN can be
popularized for generating easy-confused multi-categories graphics.

Keywords: Session Feature Embedding · Generative Adversarial Co-
operative Network (GACN) · Few-Shot · Unknown Attack Detection ·
Intra Categories Generation.

1 Introduction

Network intrusion detection (ID) is a hotspot benefitting from the development
of machine learning. Most of studies generalize feature sets from network traffic
as the basis for further detection, represents session as tensor through training
classifiers based on labeled datasets, and then finds behavioral characteristics of
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suspicious attacks. Benefitting from efficient machine learning tools, the detec-
tion task is transformed into a learning task on the feature sets by utilizing the
classification model, such as deep networks with high computing power.

However, adequate data cannot be guaranteed in most practical scenarios,
conflicts emerge between data-hungry models and data-insufficient application
scenarios. Further, downstream tasks such as unknown attack detection under
few-shot prior information will be greatly influenced. These difficulties are en-
countered when seeking relevant research: ID is a topic restricted by application
scenarios. In the related fields such as graphic classification, there are extensive
researches on few-shot learning and unknown sample detection. However, session
samples are coupled which is described in Fig. 1. and this phenomenon does not
exist in the graphic samples, so we cannot directly use the research results of
graphic classification field. The specific difficulties of unknown attack detection
under few-shot are as follows:

– Difficulty in finding the trade-off between model depth and data
volume. Intrusion traffic with sufficient data can be accurately detected, but
this is not a common situation. For some subdivision tasks such as detection
under insufficient data, the deep model cannot be fully trained, while the
shallow model cannot fully fit feature sets. Concretely, the current state-of-
the-art methods such as [1] requires a lot of prior knowledge, which is not
satisfied in the scenario targeted by this article. So, we need to design a
framework for detection tasks that is more subdivided.

– Imperfection of data augmentation method. Due to the fragmentation
of application scenarios, model-based or metrics-based few-shot methods [2]
cannot be used directly. Therefore, data augmentation for insufficient data
is the solution to few-shot. Among them, Generative Adversarial Network
(GAN) [3] is one of the most widely used methods [4]. However, GAN cannot
guarantee the deviation between easily confused categories, that is, the GAN
can only guarantee the similarity between the generated sample and the
target category instead of guaranteeing the deviation between the generated
sample and the similar categories sample.

It can be seen from these difficulties that unknown attack detection under
few-shot is a comprehensive problem. So, we designed a full stack method to
solve these problems comprehensively. We first propose SFE to summarize the
context of session features, then propose GACN to implement intra categories
generation, and finally improve the unknown attack detection method for the
detection task. Our proposed method has the following advantages:

– Insufficient samples will be augmented by prior knowledge. We
propose a method for embedding session features to decouple the sessions to
make them independent from the session context, bringing prior contextual
information to the target sample. Further, through the pre-trained embed-
ded model, few-shot traffic information will be augmented through prior
knowledge, which can initially settle the few-shot problem.
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Fig. 1. Different coupling phenomena between graphics date set and session feature
set

– Generated samples will not be confused. We propose GACN to solve
the problem of confusing generated samples. Compared with only GAN [5],
the adversarial generated samples will be constrained by the cooperation
model, to guarantee deviation between generated samples and similar cate-
gories samples.

– More customized unknown attack detection method. Based on the
proposals of SFE and GACN, we obtain the accurately augmented traf-
fic data. Furthermore, we improve the existing unknown traffic detection
method RTC [1], to make it more suitable for unknown attack detection
scenarios under few-shot.

Therefore, this paper comprehensively considers two factors and proposes
a solution to solve them simultaneously. The method we proposed can mine
unknown attacks that occur in the type of traffic to be detected in a scenario
with fewer prior samples.

Specifically, in Section 3, we will introduce the SFE-GACN in detail: Section
3.1 for SFE; Section 3.2 for GACN; in Section 3.3 for improved RTC. In Section
4, we will evaluate our method in detail, in Section 4.1 we will evaluate the
effectiveness of SFE, in Section 4.2 we will evaluate the effectiveness of GACN,
in Section 4.3 we will carry out unknown attack detection experiments under
insufficient data, and give the comparison results with the current state-of-the-
art methods.

2 Related Work

Few researches on intrusion detection have considered both few-shot and un-
known attack detection concurrently, and therefore we will discuss the related
literature separately.

Few-Shot Learning. Considering the scenarios for IDSs, when prior knowl-
edge or target data is insuffi-cient, large-scale machine learning tools such as deep
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neural networks will not be adequately trained. Xian et al. [6] used three con-
ditional GANs to generate embedding features step by step. In their proposed
method, the feature of target domain is taken as the object of claim, but the
boundary problem of easily confused feature domain is not discussed. Yong et
al. [7] combined GAN and VAE, constrained the input of gen-erator to VAE,
and improved generation accuracy. But its task is to generate single category
samples, so it cannot to migrate to multi categories intrusion detection. Schon-
feld et al. [8] used two VAEs of the same structure, one to encode the image
and the other to decode the class embedding. The method mainly aims at the
generalization problem of the model. While generating multi class samples, the
generalization constraints added by the model will be gradually blurred with
the introduction of Gaussian noise, which will let generated samples falling into
similar categories. Annadani et al. [9] proved that introducing semantics into
embed-ding space is beneficial to Few-Shot learning, but it is not suitable for
multi-categories and easily-confused intrusion traffic samples. Kodirov et al. [10]
used a semantic self-encoder to realize zero shot learning, which solved the prob-
lem of domain shift of training set and test set to a certain extent. To some
extent, this method provides us with the idea of human intervention in the se-
mantic embedding space (supervised learning by fitting ground truth). However,
because it still takes the initial sample as the fitting direction of convergence, it
is unable to add ”clear boundary” as the constraint condition, and further, it is
still unable to generate accurate ”within boundary samples” in the semantic em-
bedding space, that is, intra-categories samples. The work of [11] proposed two
methods, Deep-RIS and Deep-RULE, to solve the problem in different few-shot
situations. IDSs can provide a certain level of protection to computer networks.
The unsupervised learning introduced by this method can obtain more accurate
semantic knowledge in the embedded space, but on the other hand, the distribu-
tion of easily confused categories in the embedded space presents entanglement
(verified in Section 4.1), so the unsupervised learning based on similarity will
introduce more bias to the model.

Unknown attack detection. [12] proposed a probabilistic approach and
implements a prototype system ZePro for zero-day attack path identification.
However, this method is based on a large number of attack information, and the
problem of intrusion detection of encrypted traffic only has a small amount of
flow information. Duessel et al. [13] presented a new data representation dia-
gram that allows us to integrate syntactic and sequential features of payloads
in a unified feature space, provided a great solution for context-aware intrusions
detection. However, this method does not consider the migration of existing
methods of low shot learning to achieve higher accuracy. Zhang et al. [14,15]
took the first step toward formally modeling network diversity as a security
metric by designing and evaluating a series of diversity metrics. However, al-
though this method expands the diversity, it ignores the establishment of single
category feature learning, that is to say, the method can not deal with easily
confused intrusion samples. The work of [16] designed heuristic algorithms to
estimate the network attack surface while reducing the effort spent on calculat-
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ing attack surface for individual resources. However, this method also needs a
lot of network attack information, which is not in accordance with the require-
ments of encrypted traffic intrusion detection task. Zhang et al. [1] proposed
a new scheme of Robust statistical Traffic Classification (RTC) by combining
supervised and unsupervised machine learning techniques to meet the challenge
of unknown network traffic classification. However, if this meth-od is directly
applied in attack detection, it will cause a large false positive rate. The reason
is as follows. First, the shallow model used by RTC is not sufficient to fit the
session feature set. Second, in RTC, the method of judging clusters during clus-
tering is too simple to be extended. So, in this paper, we will improve the RTC
to make it more suitable for unknown attack detection. We designed a category
classification method for a single cluster, using a deep model instead of a shallow
model, and finally reducing the false positive rate.

3 SFE-GACN: The Framework of Unknown Attack
Detection

3.1 Session Features Embedding

In natural language processing, words in a sentence are mapped to several vectors
with independent features through word embedding [19], which is no longer
dependent on sentences. We take it as reference, and customize Session Feature
Embedding method in order to reduce coupling between samples. The specific
process is shown in Algorithm 1.

Algorithm 1 presents the proposed method of Session Features Embedding,
given a feature set F to obtain its embedded feature set E. First, binary trans-
formation [20] is used to convert session features to binary representation. Since
different features in the sample have inconsistent data type and data scale, set
a maximum bit set bitmax = {v1, . . . , vM} based on the maximum number of
the binary code of each feature. Convert different features to integer type, and
finally map them to a sequence of 0 and 1, In order to keep the uniform coding
length, fill the maximum bits with 0. After that, the session features are mapped
int 0−1 sequences of different lengths. We synthesize these small sequences into
large 0 − 1 sequences and average the weight of each feature. This process is
completed by column embedding, which will be elaborated on next paragraph.

In order to get the embedding space of the sample set itself, we regard the

column vector of each feature in sample set F =

f11 · · · f1M
...

. . .
...

ft1 · · · ftM

 as a sentence

set.{fi1, . . . , fiM} is all features of one sample, that is, there are altogether M
sentences S = {s1, . . . , sM},si = {f1i, . . . , fti}, and each word in si is represented
by binary representation. For si, we traverse each word and use its contextual
information to predict it, so we can get the embedding vector of each word.

Specifically, we build two trainable matrices Θ(l) =
(
W

(1)
viN

,W
(2)
Nvi

)
where the
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Algorithm 1 Session Features Embedding

Require: Session features F , embedding dimension N , window of embedding c
1: for i = 1 to M do
2: vi ← Binary(max{f1i, . . . , fti})
3: W

(1)
i ← Random Initialization(WviN )

4: W
(2)
i ← Random Initialization(WNvi)

5: L ← Binary((f1i, . . . , fti)
T , bitmax)

6: Xk ← ∅
7: yk ← ∅
8: for j = c to t do

9: Xk ← Xk
⋃(∑c−1

p=j−c Lp +
∑j+c
p=c+1 Lp

)
10: yk ← Lc
11: end for
12: Model← Sigmoid

(
Linear

(
xW

(1)
i

)
W

(2)
i

)
13: youtput ← Model(Xk)

14: Θ
(l)
i ← Θ

(l)
i + η∇

(∑
yk log youtput +

∑
(1− yk) log

(
1− youtput

))
15: Ei ← LW (1)

i

16: end for
17: E ← (E1, . . . , Em)
Ensure: E

output dimension of the first layer is N , and the output dimension of the second
layer is set to vi. Then we use Stochastic Gradient Descent (SGD) to update
the weight of Θ(l) through back propagation. In order to obtain the embedding

vector, we use the first matrix W
(1)
viN

to transform the binary encoded sentence
of t× vi into a vector of t×N(N < vi). The algorithm is implemented for each
si ∈ S, and then the resulting set of embedding vectors is vertically merged
to obtain the total embedding matrix Et×

∑
bitmax

, each row contains the total
vector of all the features of the samples after embedding. The process is shown
in Fig. 2.

3.2 Generative Adversarial-Cooperative Network

We hope to conduct data augmentation for each category of samples in E sepa-
rately rather than uniformly with the GACN, the specific method is presented by
Algorithm 2. We firstly generate each kind of sample effectively while maintain-
ing the deviation between the generated samples and the other label samples,
which are called side samples. The core of GACN is to use Dcoo (Discriminator
Cooperative) to supervise the training direction of G (Generator) when G and
Dadv (Discriminator Adversarial) are engaged in adversarial training. While G
gradually fits the generated sample space Elabel=A, it can avoid moving forward
to the sample space of other labels Elabel 6=A by adjusting its gradient descent
degree.

At the beginning of GACN, we manually specific some parameters and initial-
ize three deep neural network models: Dadv is to monitor whether the generated
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Fig. 2. Process of Session Features Embedding

samples fit the target category label = A, Dcoo is used to monitor whether
the generated sample is close to the side category label 6= A, and G is used to
generate the samples, respectively. First, we train k rounds in Dadv and Dcoo

normally, then we train G. During this process, GACN can constantly distin-
guish if the samples generated by G will incline to the side category. If they do,
G is rolled back until the samples generated by G no longer have side category
characteristics at all. Specifically, during process of using Dcoo to predict the
generated samples, if the output value of the last sigmoid function approaches
0.5 and does not converge significantly anymore (which means that G has fallen
into the sample space of the side category), is able to roll back G to the pre-
vious state, and negate the gradient descent direction that causes generating
samples of label 6= A. Then the new weight of G is calculated by SGD, through
repeated negation and renewal, the direction of gradient descent will be affected
by Dadv and Dcoo at the same time, to ensure the samples generated by G is no
longer judged as label 6= A by Dcoo. In order to compensate for the multi-model
training gap caused by rollback, Dcoo will be retrained after rollback so that
the three models can work against/cooperate with each other to promote the
positive iteration of G.

As shown in Fig. 3, where are three networks in the GACN: G, Dadv, and
Dcoo. G and Dadv are adversarial, while G and Dcoo are cooperative. In the
process of adversarial training between G and Dadv, real samples are gradually
generated similarly, meanwhile under the supervision of Dcoo, the generated sam-
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Fig. 3. The relationship among three models of GACN

ples are always kept distinct from Elabel 6=A. The term of V (Dadv, G) represents
the difference between the generated samples and the real samples. In the train-
ing process of GACN, the generated samples gradually approach the real sample
space while maintaining a distinction from Elabel 6=A. Furthermore, as shown in
Fig. 4, when we only use GAN, the samples generated by G for Elabel=A will
partially enter the sample space of Elabel 6=A. GACN will try to avoid this situ-
ation; Dcoo will supervise the samples generated by G and separate them from
Elabel 6=A.

3.3 Two-step Unknown Attack Detection

When there are a small size of labeled samples and a large size of unknown
samples that include unknown attack, we first use GACN to augment the known
information by fusing the known samples and the unknown samples, carrying
out preliminary detection by clustering, then using the deep neural network to
reduce the false positive rate of final detection. Algorithm 3 presents the proposed
method of Two-step Unknown Attack Mining.

We use two steps method to mine the samples whose label never showed in
E from U . For the first step, augment E to E(G) by GACN, integrate E(G) into
unlabeled set U to generate the total set U (t), and use KMeans to partition the
U (t) into q clusters {C1, . . . , Cq}. For each cluster, when the unlabeled samples
are larger than a certain proportion δ, all unlabeled samples are initially de-
termined as unknown attack samples and expressed with H(1). There are a lot
of false positive samples in H(1), so we solve it in the second step. Regard all
samples in H(1) as unknown samples of a single class, after mixing a q-class set
E(G) and 1-class set H(1) to generate a training set K(X), we train a q+ 1-class
deep network F to classify K(X). We still use H(1) in the training set as the
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Fig. 4. The process of generating samples for only GAN and GACN respectively

verification set, the purpose is to use F to eliminate the FP samples in H(1) and
get a cleaner unknown attack sample set H(2). The process is shown in Fig. 5.
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Algorithm 2 Generative Adversarial Cooperative Network

Require: feature set E, target label A, weights of Dadv: θ
(D)
adv , weights of Dcoo: θ

(D)
coo ,

weights of G: θ(G), training epoch of Dadv: k, rollback check cycle: cyr, backup
cycle: cyb, rollback coefficient: cr

1: for number of training iterations do
2: for epoch = 1 to k do
3: Randomly generate noise Z1

4: Xreal ← sample (Elabel=A)

5: X
(1)
side ← sample (Elabel6=A)

6: img
(1)
fake ← G (Z1)

7: Train Dadv on batch, Xreal’s label is set to 1, img
(1)
fake’s label is set to 0

8: Train Dcoo on batch, Xside’s label is set to 1, img
(1)
fake’s label is set to 0

9: end for
10: Randomly generate noise Z2

11: Record output of Dcoo (G (Z2))
12: if epoch reaches the end of cyb cycle then
13: θ

(G)
back ← θ(G) //backup θ(G) as standby model

14: end if
15: if Dcoo

(
G
(
z
(1)
2

))
does not drop in er epochs then

16: θ(G) ← θ
(G)
back + cr

(
θ(G) − θ(G)

back

)
// Rollback θ(G)

17: Randomly generate noise Z3

18: batab ← epoch mod cyb // Calculate the number of negated training epochs

19: X
(2)
side ← sample (Elabel6=A) //Simultaneous acquisition of fake and side sam-

ples with batab capacity
20: img

(1)
fake ← G (Z3)

21: Train Dcoo on batch, X
(2)
side’s label is set to 1, img

(2)
fake’s label is set to 0

22: end if
23: Randomly generate noise Z4

24: θ(G) ← θ(G) + ∇θ(G)
1
r

∑r
i=1 [log (1−Dadv (G (Z4)))] // update the θ(G) by

descending its stochastic gradient
25: end for
Ensure: θ

(D)
adv , θ(G)

Algorithm 3 Two-step Unknown Attack Mining

Require: E, Unknown label sessions feature set U , intra cluster decision rate δ, known
label list Label, length of Label: K

1: for i in Label do
2: E

(G)
label=i ← GACN (Elabel=i)

3: U (t) ← CONCAT
(
U,E(G)

)
4: end for
5: Firststep

6: H(1) ← ∅ // First detection container

7: obtain clusters C = {C1, . . . , Cq} with KMeans
(
U (t)

)
8: for j = 1 to q do
9: n

(t)
j ← number of total samples in Cj

10: n
(l)
j ← number of labeled samples in Cj

11: C
(u)
j ← samples unlabeled in Cj

12: if n
(l)
j ≤ δn

(t)
j then

13: H(1) ←
(
H(1)⋃C(u)

j

)
14: end if
15: end for
16: Secondstep

17: H(2) ← ∅ // Second detection container
18: K(X) ← ∅ // Training set
19: K(y) ← ∅ // Label of K(X)

20: for i in Label do
21: K(X) ← K(X)⋃E(G)

label=i

22: K(y) ← K(y)⋃ i
23: end for
24: K(X) ← K(X)⋃H(1)

25: K(y) ← K(y)⋃unknown // Set the label of all samples in H(1) to unknown

26: Training a neural network F as multi-class classifier by
(
K(X),K(y)

)
for (K + 1)

categories classification
27: for h

(1)
i in H(1) do

28: if h
(1)
i is predicted as unknown then

29: H(2) ← H(2)⋃h(1)
i

30: end if
31: end for
Ensure: Sample set detected as unknown attack: H(2)
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Fig. 5. The process of using E to mine unknown attacks in U

4 Evaluation

By using the matrix of pre training to get the embedded features under few-shot,
SFE can represent the uncoupled features of samples to improve the detection
accuracy. Based on SFE, GACN can get the augmented samples within the cat-
egory. After that, the improved two-step method cooperates with the former two
to complete the unknown attack detection under few-shot. This section verifies
the effectiveness of SFE and GACN, and combines the multi-layer method to
evaluate the detection indicators.

4.1 Effectiveness of SFE

We get CICIDS-2017 [17] as the evaluation data set, Friday’s network traffic data

in the dataset is obtained to train the embedding model W
(1)
1 then evaluate the

effectiveness of SFE with other date traffic data. In this section. We only evaluate
the classification performance of SFE to few-shot traffic, and the evaluation of
unknown attack detection will be conducted in Section 4.3.

In order to use the prior embedding matrix W
(1)
1 to process the unknown

few-shot samples, and then get their positions in the embedded space, we reduce

the sample size of traffic on other dates, and use W
(1)
1 to embed the traffic

of few-shot samples to obtain the corresponding embedding features. Finally, a
single-layer perceptron is used to train multiple classifiers, and the validation loss
convergence of the classifiers is counted to evaluate the effectiveness of SFE.The
normal traffic of all dates is reduced by 20 times, the attack traffic is reduced by
10 times, and the convergence is counted. The experimental results are shown in
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Algorithm 4 Point Walk

Require: all embedding features E(W ) and the size N (E) of them, statistical steps ws,

label set
{
l
(E)
1 , . . . , l

(E)
ce

}
1: E

(w)
start ← randomly select a point from E(w)

2: for i = 1 to ce do
3: Ji ← ∅ // cycle end statistics container

4: J
(in)
i ← ∅ // intra cycle statistics container

5: end for
6: for j = 1 to N (E) do
7: if j = 1 then E

(w)
step ← E

(w)
start

8: else
9: E

(w)
step ← the nearest neighbor point of E

(w)
step

10: lstep ← label of E
(w)
step

11: J
(in)
i ← J

(in)
i

⋃
lstep

12: end if
13: if j mod ws = 0 then
14: count all labels in J

(in)
i , put them in corresponding {Ji, . . . , Jce}

15: J
(in)
i ← ∅

16: end if
17: end for
Ensure: {Ji, . . . , Jce}

Fig. 6. The lines of different colors in Fig. 6 represent the traffic data of different
days, each of which contains part of the attack traffic.

As shown in Fig. 6, the convergence rate of the conventional feature set is
faster, but the final convergence rate is higher while the embedded feature con-
verges to a lower value. Therefore, in the case of few-shot samples, using the
pre-training embedded matrix can more accurately describe the sample charac-
teristics.

We will continue to discuss how samples are distributed in the embedded
space to evaluate the effect of SFE on sample coupling. The sample distribution
in the embedded space is obtained by Point Walk, which is represented by Algo-
rithm 4. Point Walk starts from a random point and all samples are connected
in series according to the nearest point. In this process, we count the number
of different categories step-by-step in the window, and get the set of statistics
{Ji, . . . , Jce}. For visualization, we take steps as the X-axis, and different sam-
ples in J as the Y -axis.

Using all the data from the IDS2018 [17] dataset with richer categories, we
retrain the embedded model and obtain the corresponding embedded dataset.
Point Walk is used for the new embedded dataset to get the corresponding
{Ji, . . . , Jce} and the coordinate map is drawn, the results are as shown in Fig. 7.

In Fig. 7, the Y-axis represents the category statistics within the sliding win-
dow as the point walks in the embedded space, and the different colors represent
the attack samples of different categories. Fig. 7 shows that the sample categories
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Fig. 6. Convergence of loss with embedded and conventional features in the case of
few-shot samples, Friday’s feature set is used to train W

(1)
1

experienced during Point Walk are always regular, and the Euclidean distances
between samples in the same category are close. This is similar to the rule of
word embedding [19]: the distance between “apple” and “pear” is much smaller
than that between “apple” and “Barack Obama”, which indicates that SFE suc-
cessfully trains the embedded space of the samples so that the samples no longer
rely solely on their traffic environment, and reduces the coupling between the
samples.

4.2 Effectiveness of GACN

In order to evaluate the effectiveness of GACN in preventing G from inclining to
side categories, we obtained a fashion-MNIST [18] data set that was more easily
confused with different categories samples. We augment Elabel=A with Elabel 6=A

as Xside, and at the same time, train an evaluator to determine if the generated
samples in the iteration process are inclined to Xside. The results are shown
in Fig. 8, and the parameter settings of GACN and the models are shown in
Table 1. In order to more accurately evaluate the supervising ability of GACN,
the initial random noise is set to Xside + noise.

During the pre-training process of the evaluator, we set the label of Elabel=A

to 0 and the label of Xside to 1. Therefore, when the output of the last layer
of the evaluator (score) is less than 0.5, it is determined that the sample to be
evaluated does not incline to Xside, otherwise, it means that it will happen with
some results we did not expect: G is moving towards the sample space of Xside.

In Fig. 8, the X-axis represents the training epoch of the GACN and only
GAN; the upper bound represents the highest score given by the evaluator and
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Fig. 7. The result of Point Walk in conventional feature space and embedding space

the lower bound represents the lowest score. We find that with the increase of
the number of iterations, the score of GACN quickly converges to less than 0.5,
while the score of only GAN cannot converge for a long time, which means that
the samples generated will be classified into Xside by the evaluator, resulting in
the deviation of the generated samples.

In order to verify the distinction between different categories of samples gen-
erated by GACN at the session feature analyses topic, we use GACN for CICIDS-
2017 data sets, then we apply t-SNE [21] to reduce the dimensions of features
and visualize them. We resample E to get E(s), so that each category without
BENIGN is generated intra the class using GACN. For clarity of picture repre-
sentation, we visualize the experimental results of using generated and BENIGN
samples as shown in Fig. 9.

As can be seen from Fig. 9, the boundary between samples generated by only
GAN is fuzzy in confusion scope. With the increase of sample size, the classifier
may misjudge. However, GACN always avoids generated samples close to the
samples of other categories, so the boundary between the generated samples
of different categories is obvious, which will improve the performance of the
classifier.

Further, In order to evaluate the difference between GACN and only GAN in
the traffic detection indicated, we use CICIDS-2017 embedded feature set E as
experimental data. We first randomly sampled E for few-shot samples, and then
kept the same sampling rate for each category of sample. We use GACN, only-
GAN, and non-generate to change the sample size to augment data and obtaine
E(GACN), E(GAN), E(non) , respectively. We then trained the deep network as
multi-classifiers, and recorded the f1 score and time spending separately. The
experimental results are shown in Table 1. To reduce the error introduced by
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Fig. 8. Evaluate results of GACN and only GANl feature space

Fig. 9. Distribution of generated samples in embedding feature space

sampling, the experiment was repeated three times, and the average value of
the result indicators was taken. The experiment used Nvdia K80 GPU as the
training accelerator.

The experimental results show that in the case of few-shot samples, GACN
increased the f1 score while maintaining a small increase in time overhead.

4.3 Evaluation with Unknown Attack Detection

We propose a multi-layer solution to solve the problem of unknown attack de-
tection in few-shot samples. We extract 1/10 of each category attack by random
sample from IDS2018 as a prior labeled feature set, and use it to mine unknown
attacks in the remaining samples. The labeled and unlabeled scales of each cat-
egory are shown in Table 2. In order to reduce the calculation cost, attacks with
large data size are reduced to 1/10 of their original size.
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Table 1. Detection index in embedded space.

Indicators E(GACN) E(GAN) E(non)

f1 score 0.9909 0.9714 0.9106
time overhead 49.63s 40.26s 9.82s

We test and evaluate each class of attacks in the unlabeled dataset as un-
known attacks separately. When a category cu is regarded as an unknown attack,
we delete the data in the labeled data set, then detect the cu samples in the pend-
ing detection samples. At the same time, RTC is used as the benchmark. The
results are shown in Table 2.

The experiments result show that our method improves TPR at some ex-
tent(increased by 8.38%), as well as significantly reduced FPR(decreased by
12.77%), which shows that our proposed method performs well.

Table 2. The scale of various categories of attacks in IDS2018 dataset and their de-
tection TPR/FPR

Attack category Labeled Unlabeled TPR(Ours/RTC) FPR(Ours/RTC)

Hulk 4619 41572 0.9576/0.8760 0.0293/0.1576
HTTPTest 1398 12590 0.9302/0.8537 0.0249/0.1302
GoldenEye 4151 37357 0.9403/0.8617 0.0211/0.1503
Slowloris 1099 9891 0.9110/0.8276 0.0225/0.1698
FTP-BruteF 1933 17402 0.9211/0.8164 0.0204/0.1211
SSH-BruteF 1875 16883 0.9279/0.8593 0.0350/0.1979
HOIC 6860 61741 0.9308/0.8390 0.0110/0.1308
average N/A N/A 0.9313/0.8475 0.0234/0.1511

5 Conclusions and Future Work

In this paper, we propose SFE-GACN as an unknown attack detection method
under few-shot, which fills the gap in research in the target we aimed to investi-
gate. It is based on the existing session feature set classification method. There
are several advantages of SFE-GACN:

(1) It can decouple the sessions in the feature set by embedding, and bring
the prior information into the few-shot samples to complete the preliminary
augmentation of few-shot samples.

(2) When data augmentation is performed, samples in multiple categories are
generated as intra categories to prevent confusion between generated samples.

(3) It improves upon the conventional unknown attack detection methods,
making it more suitable for detection under few-shot, and can be docked with
SFE-GACN to complete the final detection task.
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SFE-GACN is used for the final detection task, which performance outper-
forms the current state-of-the-art method. However, there are also some points
that need to be improved and extended in the future.

(1) Optimal hyperparameter setting method in the model. In prac-
tical applications, a large number of hyperparameters need to be customized by
workers, including the time window and embedded dimensions in SFE, and the
rollback judgment epoch, rollback coefficient, and backup cycle in GACN. The
optimal selection method of these hyperparameters will be given in the future.

(2) Universal scalability. Even if we refine ID tasks to more targeted
scenarios such as unknown detection tasks under few-shot, there are still some
more detailed application scenarios to deal with. For example, multi classification
or binary classification, how inadequate is the data, etc. We will continue to
explore these specific scenarios in the future and expand the universal scalability
of SFE-GACN.
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