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A B S T R A C T

The threat from ransomware continues to grow both in the number of affected victims as well as the
cost incurred by the people and organisations impacted in a successful attack. In the majority of
cases, once a victim has been attacked there remain only two courses of action open to them; either
pay the ransom or lose their data. One common behaviour shared between all crypto ransomware
strains is that at some point during their execution they will attempt to encrypt the users’ files. This
paper demonstrates a technique that can identify when these encrypted files are being generated and
is independent of the strain of the ransomware.

An enhanced mixed file ransomware data set of more than 130,000 files was developed based on
the govdocs1[17] corpus. This data set was enriched to contain examples of files that reflect the more
modern Microsoft file formats, as well as examples of high entropy file formats such as compressed
files and archives. The data set also contained eight different sets of files that were generated as
the result of different real-world high profile ransomware attacks such as WannaCry, Ryuk, Phobos,
Sodinokibi and NetWalker.

Previous research [39, 56] has highlighted the difficulty in differentiating between compressed and
encrypted files using Shannon entropy as both file types exhibit similar values. One of the experiments
described in this paper shows a unique characteristic for the Shannon entropy of encrypted file header
fragments. This characteristic was used to differentiate between encrypted files and other high entropy
files such as archives. This discovery was leveraged in the development of a file classification model
that used the differential area between the entropy curve of a file under analysis and one generated from
random data. When comparing the entropy plot values of a file under analysis against one generated
by a file containing purely random numbers, the greater the correlation of the plots is, the higher the
confidence that the file under analysis contains encrypted data. The experiments demonstrate a high
degree of confidence in the accuracy of the model achieving a success rate of more than 99.96% when
examining only the first 192 bytes of a file, using a mixed data set of more than 80,000 files. This
technique successfully addresses the problem of using file entropy to differentiate compressed and
archived files from files encrypted by ransomware in a timely manner.

1. Introduction
Ransomware is a malicious class of software that utilises en-
cryption as a method to implement an attack on system avail-
ability. The victim’s data remaining encrypted and held cap-
tive by the attacker until the ransom demand is met [6].

The occurrence of ransomware infection continues to
grow in scale, cost, complexity and impact since its initial
discovery nearly 30 years ago [54, 55]. Security practition-
ers are engaged in a continual arms race with ransomware
developers attempting to defend their digital infrastructure
against such attacks. During the recent changes in work-
ing practices due to COVID-19 where an increasing number
of employees are working from home, ransomware attacks
have increased, and attack vectors have changed. Currently
the most common attack vectors are Remote Desktop Proto-
col (RDP) and phishing emails [9], and average ransomware
payments have increased by over 60% in the second quarter
of 2020 to now be in excess of $170,000 per incident. Exam-
ples of recent high profiles attacks where it is believed that
the ransom has been paid are the Wastedlocker strain that
attacked Garmin [42], the Netwalker strain that attacked the
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University of Utah [37] and the Sodinokibi/Revil strain that
attacked the owner of the Jack Daniel’s distillery [48].

Ransomware infection detection tends to fall into one of
these approaches:

• Behavioural/Dynamic analysis. This is where the sus-
picious processes behaviour is monitored to see if it
follows the profile of known attacks. Many techniques
have been proposed using this approach for detection
and infection prevention. These can be classified into
four broad categories: file-based detection, system-
based behaviour detection, resource-based behaviour
detection, and connection-based behaviour detection
[1, 2, 13, 34]. Candidates for monitoring could be
CPU usage, disk access, system calls and attempted
external communications.

• Signature/Static analysis. This is where the executable
code is analysed prior to its execution in an attempt
to identify known sequences of bytes that indicate the
probability that the program is malicious.

Obfuscation techniques and polymorphism [1, 34] have
been used by ransomware for some time in an attempt to
avoid signature detection. With regards to the dynamic de-
tection approach, the behaviour of different ransomware stra-
ins varies significantly making them difficult to profile and
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this approach is often ineffective against unknown strains.
While some strains are self-contained - knowing which tasks
to perform and having the encryption keys included in the bi-
nary - others attempt to contact external command and con-
trol (C&C) servers for guidance on how to proceed. Some
strains also exfiltrate data or attempt lateral movement prior
to encryption. What is becoming increasingly obvious is that
as the arms race continues and new strains incorporate an
increasing amount of these diverse techniques into each it-
eration, thus the difficulty in ransomware infection detection
continues to be a problem.

Many ransomware detection methods have a low detec-
tion rate. They also suffer from having high false positive
rates, where they flag benign programs as malicious, and
false-negative rates, and thus fail to identify malicious pro-
grams. Also, as current detection techniques need to collect
significant amounts of information while monitoring, they
have the disadvantage that they can consume a large amount
of system resources [29].

One thing that is common amongst all crypto-ransomware
strains is that, at some point, they will attempt to encrypt the
users’ files and write these encrypted files to disk. It is this
common feature of ransomware execution that the experi-
ments in this paper investigate. Continella et al. [8] define
that filesystem access is a strategic point for monitoring typ-
ical ransomware activity.

This paper demonstrates a technique that could be used
to rapidly identify the creation of these encrypted files. The
proposed technique tests only the first few bytes of the file
being written and performs analysis on this file sample to de-
termine if the file being written is encrypted or not. Similar
to other research [2, 8, 20, 23, 29, 46, 56], initially this anal-
ysis will focus on the Shannon entropy [49], but unlike pre-
vious research it will only be performed on the file’s header.
The paper describes a differential area analysis technique
which compares the entropy values of the file under anal-
ysis against the entropy values of reference file that contains
random data. It is envisaged that this technique could be ex-
panded to include other types of tests along with Shannon
entropy. The described technique could in theory, be used to
alert the user of suspicious behaviour, prevent the files from
being written or trigger some further live forensic investiga-
tion [10]. While this technique would not prevent any data
exfiltration prior to the start of encryption, it may well be
useful in preventing the actual encryption of the user’s data,
and thus mitigating a significant portion of the attack.

1.1. Paper Contribution
The use of file entropy as a reliable method for encrypted
file identification has been previously investigated by sev-
eral researchers [2, 8, 20, 29, 46, 56]. When evaluating the
proposed detection methods in the reviewed research, it ap-
pears that only a limited subset of file types was used and no
examples were found where compressed files formed part
of the test data set. The proposed techniques also tended to
focus on the overall entropy of the file with only Jung and
Won [23] examining the entropy of PDF file fragments.

It is a relatively straightforward task, though resource-
intensive, to use a file’s overall entropy value to differentiate
an encrypted file with the majority of the most commonly
used file types. However, using the files entropy value to
differentiation between compressed files and encrypted files
becomes problematic as the overall entropy values are nor-
mally similar for these file types. This paper thus focuses
on this specific problem of entropy similarity and proposes a
technique that will allow the rapid identification of encrypted
files. This ability to be able to reliably detect encrypted file
creation can then be used as an input for a ransomware de-
tection technique. The main contribution of this paper is to
define a classification model that can be used to reliably clas-
sify encrypted data files, even amongst a data set that con-
tains files with a high overall entropy.

1.2. Paper Structure
The remainder of the paper is structured as follows. Section
2 contains a review of related work. Section 3 describes the
design philosophy followed in Section 4 with a description
of the experiment implementation. A critical analysis of the
experimental results and comparison to similar work in the
field is provided in Section 5. The paper closes in Section 6
with a discussion of the findings and suggestions for further
research.

2. Related Work
Previous uses of entropy have focused on processing the file
as a whole. With this approach, a particular file (or file type)
can be characterised by a bit value representing its informa-
tion content. For example, text files containing written En-
glish have been identified as having a file entropy in the range
of 3.25 to 4.5 bits. Compressed files, such as ZIP archives,
have a higher entropy level, typically just over six bits [20].
In some cases in malware detection, the entropy of the entire
file being written has been used as an indicator for the pres-
ence of malicious activity. Products such as DropIT [46],
ShieldFS [8] and Unveil [25] check the entropy of the whole
file being created, and combined with other variables such as
the file’s magic number and file extension, decide on whether
to allow the file to be created. However, the use of file ex-
tensions as an indicator is open to abuse as an adversary
can easily change the extension of a file or its magic num-
ber at any time, preventing the operating system from iden-
tifying the file and allowing the attacker to circumvent the
detection [33]. A major issue when using entropy for file
type classification is raised by Zhao et al. [56] where they
state that when considering entropy as a gauge, most com-
pressed and encrypted data share similar characteristics and
they confirm that more work is required to investigate the
application of entropy to these file types.

2.1. File fragment analysis
A similar, but related field of research, is in file fragment
classification. This involves research into determining the
type of a target file by only analysing a portion or a frag-
ment of the file. This is particularly useful in the fields of
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digital forensics. Some methods used are entropy, n-gram
analysis, statistical analysis, machine learning and support
vector machines [7]. McDaniel and Heydari [33] describe
a method of using byte frequency analysis of a file’s header
and footer to build a fingerprint that can be used to identify
files of a similar type. During their testing, they identified
that it was a viable approach but that it needs to be combined
with other methods to improve accuracy. They also postu-
late that file header/trailer analysis (FHT) could be used for
ransomware executable detection as only a small sample is
required. They found that for successful identification, a fin-
gerprint size of only 53 bytes was required. The algorithm
could possibly be of use in cryptanalysis and also to auto-
matically differentiate between real data and encrypted sam-
ples [33].

With regards to file fragment classification, it has been
noted that the structure of some file types, for example, GIF
or PPT, results in some areas of the file having lower en-
tropy than other areas within the same file. For example, a
file type which has a header containing file metadata in text
format with compressed data in the body would differ from
a binary file of purely random values. The lower entropy at
the start of the file would distinguish it from a file of consis-
tently high entropy. To account for these structured file for-
mats, and to make them distinguishable from other files with
similar overall entropy values, a sliding window approach to
measurement has been evaluated [20].

Li et al. [30] used a similar approach where the file types
were determined by only analysing either the first 20 or the
first 200 bytes of a file using n-gram analysis. They reported
that their tests successfully identified files and found that
their technique performed as well, if not better, than analysing
the whole file, with superior computational performance [30].
However, no compressed or encrypted files were used as part
of their test data. The work performed in this paper differs
from Li’s work in that instead of using n-gram analysis, we
will be using the standard Shannon entropy of the file header
as the indicator of encryption, as well as having a large va-
riety of encrypted and compressed files in the data set. It
was considered to use an improved Shannon entropy based
on 2 KB blocks to allow differentiation between compressed
and encrypted files [22], but this was rejected due to the
small sample window being used. Jung and Won [23] did
perform analysis of entropy on file fragments including file
header and trailer and while their findings were promising,
they had limited their investigation to the PDF document for-
mat.

2.2. Randomness, Encryption and Ransomware
One of the aims of encryption is to transform useful data into
a ciphertext having the property of appearing completely
random with no obvious pattern or relationship to the orig-
inal data [5]. The more random the ciphertext appears, the
better the encryption.

Statistical tests can be employed to determine the ran-
domness of a file, with higher randomness suggesting that
the contents may be encrypted. Creation of encrypted files

could be the consequence of the action of a ransomware at-
tack so detecting the presence or creation of these files could
be used as part of a ransomware detection technique. One
drawback with this approach is that the content of some le-
gitimate files such as archive and image files can also appear
to be very random.

Generally, the problem of detecting ransomware can be
reduced to the problem of detecting random data being writ-
ten to the file system. Random (or encrypted) data should
comprise of an approximately equal number of each byte,
unpredictably distributed across the data.

Therefore, it is possible to apply widely-used tests for
randomness across these byte distributions to identify the
presence of random data. This may then indicate the pres-
ence of encryption, and possibly a ransomware attack [40].
Statistical techniques [40] that can be used to identify the
randomness of a data stream are shown below:

• Chi-Square A test that measures how a model com-
pares to an actual distribution. When considering a
test for randomness for Chi-square we would expect
an equal frequency of byte values for the expected dis-
tribution

• Arithmetic Mean This is the sum of all the individ-
ual bytes in the sample divided by the total number of
bytes in that sample. As all the possible byte values
range between zero and 255 then the closer this calcu-
lated value is to 127.5 then in theory the more random
the data under investigation is.

• Monte CarloThis technique is based on the repeated
random sampling of the data under investigation and
then performing a time averaging statistical analysis
on these samples in order to make a decision on the
data.

• Serial Byte Correlation Coefficient [41] A lightweight
statistical test that looks at the relationship between
consecutive numbers.

• Shannon Entropy[49] In information theory, entropy
is a measure of a given input’s level of uncertainty and
is considered to be an indication of the amount of in-
formation contained within each byte.

3. Design
The work in this paper could be considered a special case of
file fragment analysis where only one fragment is analysed
and is limited to the first part of the file. Instead of creat-
ing specialised classifications for each file type as proposed
by Roussev and Garfinkel [44], or using a generated finger-
print [33], the experiments described in this paper will use
the Shannon [49] entropy calculation of the file fragment.

Based on the calculated value, the technique will judge if
the file is encrypted, where a compressed file will be classed
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as an unencrypted file. This approach is supported by, amon-
gst others, Alekseev and Platonov [2] who confirm that test-
ing for entropy is a good indicator for identifying encrypted
files.

The aim of the experiments described in this paper is not
to accurately identify the specific file type [14, 20, 29, 28,
30, 33] rather it is to identify if the file is encrypted or not.

3.1. Data Set
To facilitate the repeatability of the experiments performed
in this paper, it was necessary that a well respected, realistic
and easily accessible standard data set be used for the ex-
periments [15]. This approach is confirmed by [16, 44] who
stress that test data must be representative of data likely to
be encountered in real-world situations. It is a known issue
within the research community [1, 18, 32, 41] that there is
often a lack of readily available, researchable ransomware
data sets.

Garfinkel et al. [15] created a publicly available gov-
docs1 corpus containing one million files collected using
random searches of the .gov domain. These files are stored
in 1,000 directories, each containing 1,000 files, and also
10 randomly assigned streams for development and testing
purposes. This corpus can be obtained from [17]. Many re-
cent digital forensics studies [7, 14, 18, 26, 36, 39, 40, 41]
also obtained their test data from Garfinkel et al.’s [15] gov-
docs1 data set, supporting the claim that this data set is a
well-known and respected source of test data.

An advantage of this data set is that it does not contain
files that change frequently, such as ransomware or virus
samples or files that have been encrypted using these sam-
ples. The inclusion of these files would cause the data set to
quickly become outdated. Even though the govdocs1 data
set is well known and respected, there remain some concerns
regarding its use, not least the fact that it is now more than
10 years old. While the govdocs1 corpus is a broad well-
known mixed file data set containing more than 55 different
file types, the number of some specific file types are not sig-
nificant. For example, there are only a total of 40 files in the
newer Microsoft DOCX and XLSX formats.

A class of files known as archives are also poorly repre-
sented. Archive files are normally compressed and are often
used to collect multiple files together into a single file for eas-
ier portability or to use less storage space. Archive files of-
ten store directory structures, error detection, and sometimes
use built-in encryption. There are multiple types of archives
currently in use, with varying properties and characteristics,
however, the only type present in the original data set is gzip.

To address the identified shortcomings of the govdocs1 mixed
file data set, the following enhancements were performed
prior to its use in this research:

• All existing DOC and XLS files present in the gov-
docs1 corpus are converted to have a corresponding
instance in the new Microsoft document format DOCX
and XLSX.

• Several sets of various archive types were created. Each
set containing 1,000 examples of the specific archive
type and used the govdocs1 corpus as their source files.
They were created using different compression pro-
grams such as tar, 7zip, WinRAR, WinZip, as well
as archives using different compression options such
as high compression, header compression and encryp-
tion. In most cases the tool’s default configuration val-
ues were used. For WinZip this was the DEFLATE
algorithm with one pass. 7zip used the LempelZiv-
Markov chain algorithm(LZMA2) with a dictionary
size of 16MB and a standard Branch Converter Fil-
ter(BCJ). For high compression the LZMA2 algorithm
was also used but with a dictionary size of 64MB and
a newer version of the standard Branch Converter Fil-
ter(BCJ2), producing the tools maximum available com-
pression.

• The govdocs1 files were encrypted by different ran-
somware samples to produce data sets from each of the
selected ransomware strains. Once the ransomware
had completed executing, the files affected were gath-
ered into a data set for that ransomware sample. The
ransomware strains used during this experiment were:
BadRabbit, Netwalker, NotPetya, Phobos, Ryuk, Sodi-
nokibi, WannaCry and WastedLocker.

• A synthetic data set of 1,000 files was created of files
with lengths varying between 512 and 2,048 bytes that
contained pseudo-random data generated using the
Python ’os.urandom’ function. When generating ran-
dom numbers, pseudo-random number generators use
mathematical algorithms, whereas true random num-
ber generators use unpredictable physical means, for
example, atmospheric noise [19]. The purpose of this
is to provide a baseline data set that contained pseudo-
random data which could be used as a comparison for
the encrypted and compressed data files.

3.2. Entropy
File entropy refers to a specific measure of randomness. One
such measure is called Shannon Entropy [49] and is used
to express information content. This value is essentially a
measure of the predictability of any specific byte in the file,
based on preceding bytes [43]. It is basically a measure of
the randomness of the data in a file - measured in a scale
of zero to eight (eight bits in a byte). Typical text files that
contain only alphanumeric characters and no formatting will
have a low value, whereas encrypted or compressed files will
have a high measure [52].

Another way to consider entropy is that it is a measure
of the predictability or randomness of data. A file with a
highly predictable structure or a bit pattern that repeats fre-
quently has low entropy. Such files would be considered to
have low information content (or low information density).
Files in which the next byte value is relatively independent
of the previous byte value would be considered to have high
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Fig. 1. Experiment Overview.

entropy. Such files would be thought to have high informa-
tion content [20, 47].

The maximum possible entropy per byte is eight bits of
entropy per byte signifying that it is completely random. The
generally accepted formula for entropy (𝐻) [49], is given as:

𝐻(X) = −
𝑛∑
𝑖=1

𝑃 (𝑥𝑖) 𝑙𝑜𝑔2 𝑃 (𝑥𝑖) (1)

where 𝐻 is the entropy (measured in bits), 𝑛 is the number
of bytes in the sample and 𝑃 (𝑥𝑖) is the probability of byte i
appearing in the stream of bytes. The negative sign ensures
that the result is always positive or zero.

3.3. Experimental design
The experiments described in this paper can be broken down
into two distinct areas. Initially, to discover the overall en-
tropy profiles for different file types, the method analyses
only the first sequence of bytes of the files under investiga-
tion. Once these entropy values have been determined, the
second experiment aims to correctly identify encrypted files
in a data set.

3.3.1. Entropy profile
The header of each file found in the test data set is processed
in turn. Each selected file is analysed 32 times, starting with
the first eight bytes of the file header, the first 16, the first
24, and so on, up to the first 256 bytes in eight-byte incre-
ments. For each analysis, the entropy of the sampled bytes
was calculated and recorded. The averages of the entropy
calculations are then grouped by byte length and file type.
A graphical representation of this experiment is shown in
Figure 1.

A basic outline of the experimental steps performed is
illustrated in Algorithm 1.

3.3.2. File classification
In the second experiment, each file is analysed to determine
how closely its entropy values match a file that contained
purely random numbers. A classification decision is then
made based on the similarity of these two.

When applied to file fragments, the resulting calculated
Shannon entropy value for small sample sizes is typically rel-

Algorithm 1: Header Entropy Test Procedure
function EntropyPlot (𝑓𝑖𝑙𝑒𝑠);
Input : List of files (𝑓𝑖𝑙𝑒𝑠) to analyse
Output: list of arrays contain x,y plot coordinates
plot_coord = ();
foreach file_type of files do

foreach f of file_type do
buff = open(f);
for 𝑙𝑒𝑛 = 8;len<=256;len=len+8 do

fragment=buff[len] ;
// entropy of fragment

file_plot[len] = 𝑙𝑜𝑔2(255 × 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡);
close(f);

for 𝑙𝑒𝑛 = 8;len<=256;len=len+8 do
plot_coord(file_type)[len] = average(
file_plot[len]);

file_plot=[];
return plot_coord;

Fig. 2. Entropy value plot for a file containing purely random
data.

atively low and increases as the sample size increases. This
is illustrated in Figure 2 which shows a plot of the Shannon
entropy values for different sample sizes taken from a file
that contains random numbers. The byte length of the file
fragment analysed is shown in bytes along the x-axis. This
plot represents an ideal curve for random data, but it may
be closely approximated to encrypted data. As previously
stated, encrypted data share similar Shannon entropy ranges
to random data.

One method that can be used to quantify the closeness
to random samples would be to compare it to a plot gener-
ated by a reference file that contains purely random numbers.
While there are several possible techniques available to anal-
yse the variations, such as the Chi-square [38] method, the
technique selected for these experiments determines the dif-
ferential area between the sampled target file and a reference
sample of random data. This approach is selected over just
calculating the difference between the value at each point, as
the area calculation takes into account how close the whole
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Fig. 3. Plot differences.

Fig. 4. Trapezoidal area of the derived plot.

curve matches over the complete interval and not just at a
specific sampling interval.

The values on the y-axis are given in bits and the values
on the x-axis are given in bytes, resulting in the area unit
being Bit-Bytes. This calculated Bit-Byte area value is then
used to determine if the file represented by the entropy target
file contains encrypted data or not. The lower the area value,
the closer the sampled target file matches the randomised
data source, the more likely it is that the file contains random
or encrypted data. A graphical representation of this analysis
is shown in Figure 3.

This area calculation can be achieved in reality by gen-
erating a new third plot. The values of which are derived by
subtracting the plot under analysis values from the random
data plot values. The area between the x-axis and this new
third plot can then be calculated. A graphical representation
of this calculation is shown in Figure 4.

The newly created plot is not a precise curve, rather it
is a series of straight lines joining each sample point. Due
to this property and using an equal step size, the optimum
method for calculating the area under the plot is to use the

Composite Trapezoidal Rule [4] given as:

𝐼𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =
ℎ
2

[
𝑓 (𝑎) + 2

∑
𝑓 (𝑥 + ℎ𝑖) + 𝑓 (𝑏)

]
(2)

where 𝑎 is the start point, 𝑏 is the endpoint and ℎ is the step
value between the plot points.

The closer the plot under analysis is to the reference plot,
the lower the calculated area value will be and the higher
the confidence is that the file contains random or encrypted
data. A basic outline of the experimental steps performed is
illustrated in Algorithm 2.

Algorithm 2: File Classification
function FileClassification (𝑓𝑖𝑙𝑒𝑠);
Input : List of files (𝑓𝑖𝑙𝑒𝑠) to analyse
Output: list of pass/fail statistics for each header

length an file type
// Shannon values for random data plot

rand_plot = [x y] ;
stats = ();
foreach threshold=start;threshold < max;
threshold++ do

foreach file_type of files do
foreach f of file_type do

buff = open(f);
for len=8;len<=256;len=len+8 do

fragment= buf[len];
// entropy of fragment

e = 𝑙𝑜𝑔2(255 × 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡);
// subtract from random plot

plot[len] = rand_plot[len] - e;
close(f);
area = area(plot);
if area<=threshold then

stats(file_type)(threshold)(pass)
+=1 ;

else
stats(file_type)(threshold)(fail)
+=1;

return stats;

When classifying the file types there are four possible
outcomes. Possible classifications are shown in Table 1. The
proposed model uses these classification values to determine
the overall accuracy of the model [50]. The formula to com-
pute the Accuracy(𝐴𝐶𝐶) is given as:

ACC = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3)

3.3.3. File classification example
To illustrate the proposed method in more detail, the fol-
lowing example will be used. In this example, we will be
analysing entropy plots for header lengths of 40 bytes and
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Table 1. Possible classification outcomes
Classification Description
True Positive (TP) Correctly classified encrypted file
True Negative (TN) Correctly classified non-encrypted file
False Positive (FP) Classified normal file as an encrypted file
False Negative (FN) Failed to classified encrypted file

Table 2. Calculation of the derived plot entropy values
Header length 8 16 24 32 40
Random plot (y) 2.976 3.941 4.496 4.878 5.171
Sample plot (y) 3.000 3.807 3.336 3.430 3.903
Derived plot (y) -0.024 0.134 1.160 1.448 1.268

Table 3. Calculated area for each trapezoid
Header length 16 24 32 40
Trapezoid Area 0.44 5.176 10.432 10.864

assuming that the variable threshold is 20 Bit-Bytes. If the
calculated area is below the threshold value, it is assessed to
be an encrypted file. As a sample for analysis, entropy values
are taken from a file generated using the 7Zip program, new
plot points for a derived graph are calculated by subtracting
the values for the graph under analysis from the points that
describe a file that contains purely random data. The values
and the results from this analysis is shown in Table 2.

The sum of the areas of each trapezoid of the new plot
is then determined using equation 2 where, a=8, b=40 and
h=8. For clarity, the individual trapezoidal areas are shown
in Table 3.

The calculated area in this example gives a final value of
26.91 Bit-Bytes. This value is then compared to the thresh-
old value and a classification decision is made. In this case,
the value is greater than the threshold, so this file is cor-
rectly classified as a non-encrypted file, also known as True-
Negative (TN) classification. If the area had been below the
threshold of 20 Bit-Bytes, it would have been incorrectly
classified as an encrypted file and would have been a False-
Positive (FP) classification.

4. Implementation
A subset of files taken from the first 100 archives of the com-
plete govdocs1 [15] archives were initially selected as the
input for these experiments together with the additional data
sets for XLSX/DOCX, compressed files and ransomware en-
crypted files mentioned in Section 3.1. When generating
the data sets relating to specific ransomware samples, a set
of govdocs1 files were placed on a completely isolated tar-
get machine and the ransomware sample executed, paying
particular attention to the ethical consequences of running
such programs. Once the ransomware program execution
had completed, the files placed on the machine were ex-
amined to determine if they had been updated by the ran-

Table 4. Excluded file entropy values for the first 40 bytes.
File
Type

Sample
Size

Entropy File
Type

Sample
Size

Entropy

csv 1,032 3.849 ppt 5,642 2.267
data 2 2.374 sgml 9 3.765
dbase3 171 2.256 sql 7 3.493
doc 8,025 2.266 text 188 3.176
f 130 3.704 tmp 4 2.940
fits 39 2.246 troff 21 3.964
gif 2,026 3.551 ttf 1 2.146
hlp 7 2.805 txt 15,008 3.496
java 36 3.993 unk 434 2.864
jpg 7,167 3.793 wp 42 3.142
png 317 3.753 xls 4,300 2.280
pps 67 2.267

somware’s execution. If they had been changed, they were
then added to the data set for that ransomware sample. Dif-
ferent ransomware strains can target different file types, which
can result in different data set sizes for different ransomware
strains.

Programs written in Python were created to perform the
experiment steps outlined in algorithms 1 and 2. The en-
tropy calculation algorithm used was adapted from the code
developed for the ’findaes’ [27] and ’interrogate’ [31]
programs, and are based on the work by Trenholme [51].
Some additional validation of the results was also performed
by running the same calculations via the website [3].

Many of the file types present in the original data set
had a low value calculated for the entropy of their headers.
Low entropy files would be trivial to correctly classify using
the proposed technique and could bias the experimental re-
sults. For this reason, file types in the original data set with a
header entropy below 4.0 were excluded from the final anal-
ysis. Details of excluded file types with low header entropy
are given in Table 4. The ransomware samples used are all
examples of recent high impact strains and are defined in Ta-
ble 5. VirusTotal [53] was used to confirm that they were
valid ransomware programs.

Programs used to build data sets containing compressed
files were WinZip Version 25, WinRar Version 3.42 and 7Zip
Version 9.2. The resulting test data set contained a total of
84,308 files. 8,685 or 10% of the data set were were ran-
somware encrypted files and the remainder were regular or
compressed archive files.

5. Results and Discussion
Individual entropy values were calculated for each file in the
data set. The average entropy was then calculated for each
of the file types for header lengths from eight to 256 bytes
and the resulting plots for some of these are shown in Fig-
ure 5. An example of the data recorded for each file type
when examining the first 40 bytes is shown in Table 6.

It can be seen from the entropy graph that as the sam-
ple size used for the calculation increases, the entropy val-
ues for the compressed files become similar to the entropy
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Table 5. Investigated ransomware samples
Name SHA256 Hash Value
BadRabbit 630325cac09ac3fab908f903e3b00d0dadd5fdaa0875ed8496fcbb97a558d0da
NotPetya 027cc450ef5f8c5f653329641ec1fed91f694e0d229928963b30f6b0d7d3a745
Phobos a91491f45b851a07f91ba5a200967921bf796d38677786de51a4a8fe5ddeafd2
Netwalker 57cf4470348e3b5da0fa3152be84a81a5e2ce5d794976387be290f528fa419fd
Ryuk d083ecc1195602c45d9cb75a08c395ad7d2b0bf73d7e70e2fc76101c780cc38f
Sodinokibi 96dde0a25cc6ca81a6d3d5025a36827b598d94f0fca6ab0363bfc893706f2e87
Wannacry 32f24601153be0885f11d62e0a8a2f0280a2034fc981d8184180c5d3b1b9e8cf
Wastedlocker 905ea119ad8d3e54cd228c458a1b5681abc1f35df782977a23812ec4efa0288a

Table 6. File entropy values for the first 40 bytes of the file.
File type Sample Size Entropy 𝜎
Ryuk 969 5.175 0.0785
WastedLocker 979 5.170 0.0809
Sodinokibi 971 5.162 0.0808
BadRabbit 556 5.111 0.0736
Netwalker 3,110 5.176 0.0798
Phobos 889 5.170 0.0804
gzip 1,000 5.075 0.0891
NotPetya 457 5.052 0.0756
Wannacry 754 5.025 0.0799
PDF 25,282 4.708 0.1629
KML 32 4.645 0.0851
PS 1,212 4.616 0.1432
XML 932 4.605 0.2322
DWF 5 4.547 0.1713
EPS 70 4.433 0.1582
SWF 43 4.303 0.5957
winzip 1,000 4.232 0.1256
KMZ 28 4.221 0.4118
DOCX 8,038 4.190 0.0427
TEX 36 4.157 0.3286
XLSX 4,284 4.152 0.0437
PPTX 21 4.136 0.0470
RTF 130 4.096 0.0944
HTML 25,510 4.058 0.6840
7z Encrypted header 1,000 4.020 0.0895
7z 1,000 3.903 0.0742
RAR 1,000 3.847 0.1228
winrar zip 1,000 3.058 0.0118
ZIP 1,000 2.612 0.0271
High compression zip 1,000 2.612 0.0268
Encrypted zip 1,000 2.611 0.0266
TAR 1,000 0.654 0.0245

values of the encrypted files. However, we believe it is sig-
nificant that while the initial entropy of the encrypted files is
relatively high from the beginning, the files that have been
compressed have a much lower entropy value at the start of
the files. Other researchers have also noted [20, 30] that for
some file formats, the entropy of the file fragments changes
throughout the file. Some explanations for this could be re-
lated to the file’s magic number, compression techniques be-
ing used and in the use of Huffman tables and other metadata
at the start of these files contributing to these fragments hav-
ing a lower entropy than the remainder of the file. The only
exception to this pattern being files created with the gzip pro-

gram despite this method also using the LZ77 compression
algorithm and Huffman tables, similar to the other compres-
sion programs tested [12]. Due to this the dataset for gzip
files were not analysed during the classification stage.

The one anomaly to this pattern relates to the values recor-
ded for the Phobos strain of ransomware. The relatively low
average entropy values for files encrypted with this strain can
be explained by the fact that this ransomware sometimes cre-
ates files that have large blocks of zeros in the file’s header.
This has the effect of lowering the average entropy for that
file header and the general average for this file type. The
entropy calculation algorithm used in the classification was
modified to identify these large blocks of zeros and subse-
quently ignore them when calculating the file header entropy.
After implementing this modification the entropy plot for
this strain then closely followed the other ransomware sam-
ples by also exhibiting higher initial entropy values.

When examining smaller fragments of the file headers
it was observed that there was a measurable average entropy
difference between encrypted files having a value of five and
compressed files having a value of four.

Previous researchers have commented [39] on the diffi-
culty in discerning the differences in file types of high en-
tropy with little pattern, if any, within the data. Noting that
compression algorithms are often optimised for speed, they
suggest that it may be possible to further compress already
compressed data. As such, encrypted data may be more ran-
dom than compressed data and, thus, compressibility and
randomness may enable these file types to be distinguished
from one another. Using the above approach of reducing the
sample size used for the analysis of these files and restricting
it to the beginning of the file, may enhance the accuracy of
identification of the type file being analysed.

An example of the values recorded is given in Table 6
and illustrates the entropy values of the examined files when
analysing the first 40 bytes of the file’s header. Differentia-
tion between compressed and encrypted file types is achiev-
able for most ransomware encrypted files as they tend to have
an entropy value of at least unity greater than file archives
with the exception of the gzip format. The majority of other
common file types have significantly lower entropy than com-
pressed files, so these would also be easily distinguishable
using this technique.
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Fig. 6. Overall Classification Accuracy.

Table 7. Classification Accuracy Results (%)
Classification Criteria (Bit-Bytes)
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8 24 40 56 72
32 63.290 20.097 19.439 14.061 11.767
64 99.010 87.851 46.472 24.227 19.879
96 98.546 99.914 99.842 87.077 51.326
128 98.118 99.903 99.944 99.794 89.289
160 96.736 99.825 99.960 99.934 96.439
192 97.452 99.744 99.957 99.952 98.959
224 97.234 99.631 99.954 99.957 99.517
256 97.055 99.505 99.944 99.962 99.713

5.1. Classification model validation
The outcome from the second experiment was also success-
ful in identifying encrypted files amongst other files of high
entropy and the results are presented in Figure 6 with the
most interesting portion being highlighted in Figure 7. It
can be seen that for header lengths between 128 and 256
bytes and, a classification value of between 32 and 56 Bit-
Bytes, high rates of success for ransomware encrypted files
classification were achieved. Table 7 shows that in some
cases a success classification rate of greater than 99.96% was
achieved with the highest accuracy being highlighted in grey.
Related calculated values for this high accuracy region are
also provided, with Precision being shown in Table 8, Re-
call in Table 9 and F1 in Table 10

Errors in classification occurred in circumstances where
normal files that had a high header entropy were classified

Table 8. Classification Precision Results (%)
Classification Criteria (Bit-Bytes)
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24 40 56 72
96 99.369 98.503 44.651 17.640
128 100 99.462 98.058 49.324
160 100 99.656 99.371 74.537
192 100 100 99.553 90.923
224 100 100 99.621 95.596
256 100 100 99.690 97.343

as ransomware encrypted (False Positive) and where files re-
sulting from ransomware encryption that had a low header
entropy were classified as normal files (False Negative). For
example, for a header length of 256 bytes and a classification
criteria of 56 Bit-Bytes there were 32 classification errors.
Details of which are show in Table 11.
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Fig. 7. Enlarged section of classification accuracy.

Table 9. Classification Recall Results (%)
Classification Criteria (Bit-Bytes)
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24 40 56 72
96 99.804 100 100 100
128 99.286 100 100 100
160 98.480 99.965 100 100
192 97.640 99.850 100 100
224 96.546 99.793 99.965 99.977
256 95.337 99.632 99.942 99.977

Table 10. Classification F1 Results (%)
Classification Criteria (Bit-Bytes)
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24 40 56 72
96 99.586 99.246 61.736 29.990
128 99.533 99.730 99.019 66.063
160 99.154 99.810 99.684 85.411
192 98.760 99.793 99.770 95.246
224 98.202 99.781 99.793 97.738
256 97.572 99.729 99.816 98.642

Table 11. Example of Classification Errors
Classification Errors File types
False Positives 27 PDF(1) PS(14) SWF(12)
False Negatives 5 BadRabbit(1) Phobos(2)

Sodinokibi(1)
WasterLocker(1)

Finally, a performance comparison test was conducted
to determine the difference in execution time between file
header and full file entropy calculations. A sample set of
200 PDF files with sizes varying from 2 KB to 16 MB was
used. A performance improvement of three orders of mag-
nitude was achieved by restricting the entropy calculation to
the file’s header as opposed to calculating the entropy of the
entire file.

6. Conclusion
The findings from these experiments support the hypothesis
that it is possible to classify the type of file being created by
only analysing the first few bytes of that file’s header. The
results from the first experiment demonstrated that, on av-
erage, there is a noticeable entropy difference at the begin-
ning of the file between most files and encrypted files gen-
erated by ransomware. The paper also introduces the con-
cept of Bit-Byte area and how it can be used as a criteria on
which to base file classification decisions. The second ex-
periment highlighting the high success rates achieved when
using these criteria. The model was tested against a mixed
data set developed by the researchers that, while based on
the govdocs1 corpus, also included additional files that more
reflect the types of files found on modern systems such as
archives. These additional files are included in the data set as
they have similar attributes, and were used to determine if the
model was able to identify the encrypted files. The results
from the experiments confirming that the model was suffi-
ciently robust enough to cope successfully with these more
difficult file classifications. In some cases achieving a clas-
sification accuracy of greater than 99.96%. While [11, 40]
claim that entropy is not a good measure of encryption, these
researchers have only considered the file’s entire entropy and
not a file fragment as we have done in these experiments.

The proposed technique is also ransomware agnostic as
no knowledge of the specific ransomware strain is required.
The technique is also resilient to the simple obfuscation tech-
niques [35] of altering magic numbers and file extensions.
Finally, as only a relatively small portion of the file is be-
ing analysed, successful classification is achieved in a fixed
amount of time regardless of file size. Consequently reduc-
ing the performance impact of such a check and achieving
Continella et al.’s goal of minimising the time to decision [8].
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As the specific type of file being created is not the focus
of the technique, rather only trying to determine the prob-
ability that the file is a result of a ransomware encryption
event or not, this technique could possibly be incorporated
into a ransomware detection system that intercepts the file
writing process. Then, based on the results of the analysis
a decision could be made on whether to allow the file write
operation or not. If it is determined that the file may be being
created by a ransomware process, further analysis of the pro-
cess creating the file could be performed, possibly using live
forensics to discover the encryption keys being used [10].

6.1. Further research
Some further areas of research could be to investigate why
files generated using the gzip program has a higher initial
entropy value than other compression programs using the
LZ77 algorithm and Huffman tables. Investigation into the
behaviour of the Phobos ransomware strain may prove ben-
eficial in discovering why it places large blocks of zeros at
the beginning of some of the files it creates.

While in these experiments, Shannon entropy was used,
it is thought that in the future other calculations maybe be
researched. These could include Hamming distance [21],
NIST statistical test suit [45], Higuchi fractal dimension [24],
n-grams [30], byte frequency analysis [44] or techniques based
on machine learning.
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