
Achieve Efficient Position-Heap-based Privacy-Preserving
Substring-of-Keyword Query over Cloud
Fan Yina,b, Rongxing Lub,∗, Yandong Zhengb, Jun Shaoc, Xue Yangd,e and Xiaohu Tanga

aThe Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, China 611756
bThe Canadian Institute for Cybersecurity, Faculty of Computer Science, University of New Brunswick, Fredericton, Canada E3B 5A3
cSchool of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, China 310018
dThe Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China 518055
eThe PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen, China 518055

ART ICLE INFO
Keywords:
Cloud computing
Outsourced encrypted data
Substring-of-keyword query
Position heap
Efficiency

ABSTRACT
The cloud computing technique, which was initially used to mitigate the explosive growth of data,
has been required to take both data privacy and users’ query functionality into consideration. Sym-
metric searchable encryption (SSE) is a popular solution to supporting efficient keyword queries over
encrypted data in the cloud. However, most of the existing SSE schemes focus on the exact key-
word query and cannot work well when the user only remembers the substring of a keyword, i.e.,
substring-of-keyword query. This paper aims to investigate this issue by proposing an efficient and
privacy-preserving substring-of-keyword query scheme over cloud. First, we employ the position
heap technique to design a novel tree-based index to match substrings with corresponding keywords.
Based on the tree-based index, we introduce our substring-of-keyword query scheme, which contains
two consecutive phases. The first phase queries the keywords that match a given substring, and the
second phase queries the files that match a keyword in which people are really interested. In addi-
tion, detailed security analysis and experimental results demonstrate the security and efficiency of our
proposed scheme.

1. Introduction
The rapid development of information techniques, e.g.,

internet of things, smart building, etc., has been promoting
the explosive growth of the data. According to IBMMarket-
ing Cloud study [8], more than 90% of data on the internet
has been created since 2016. In order to mitigate the local
storage and computing pressure, an increasing number of in-
dividuals and organizations tend to store and process their
data in the cloud. However, since the cloud server may not
be fully trustable, those data with some sensitive informa-
tion (e.g., electronic health records) have to be encrypted
before being outsourced to the cloud [33]. Although the
data encryption technique can preserve data privacy, it also
hides some critical information such that the cloud server
cannot well support some users’ query functionality over the
encrypted data, e.g., keyword query, which returns the col-
lection of files containing some specific queried keywords.
In order to address the challenge, the concept of symmet-
ric searchable encryption (SSE) [26] was introduced, which
enables the cloud server to search encrypted files in a very
efficient way.

Over the past years, in order to improve the keyword
query efficiency, a variant of secure keyword-based index
techniques have been designed to match the keywords with
corresponding files, such as inverted index [9, 6, 5], tree-

∗Corresponding author
yinfan519@gmail.com (Fan Yin); rlu1@unb.ca (Rongxing Lu);

yzheng8@unb.ca (Yandong Zheng); chn.junshao@gmail.com (Jun Shao);
yang.xue@sz.tsinghua.edu.cn (Xue Yang); xhutang@swjtu.edu.cn (
Xiaohu Tang)

ORCID(s): 0000-0001-5720-0941 (Rongxing Lu)

based index [13, 31, 25], etc. Since the current keyword-
based index techniques are built with exact keywords, the
existing SSE schemes can only support exact keyword query,
i.e., the queried keyword must be exactly the same keyword
stored in cloud.

However, in practice, it is quite common that a user only
remembers a fragment/substring of a keyword rather than the
exact keyword and expects to achieve a substring-of-keyword
query, i.e., the user first queries some candidate keywords
containing a substring to help him/her complete the queried
keyword and then queries files that match the queried key-
word. Considering the Google website example, it automat-
ically returns a list of candidate keywords after users enter a
fragment of the queried keyword to the search bar. This fea-
ture can help users efficiently enter the correct queried key-
word before a real search. Unfortunately, most SSE schemes
with the current keyword-based index techniques cannot be
directly used to support the substring-of-keyword query be-
cause their indexes do not contain the substring information.
Although some SSE schemes [7, 20, 22, 15] focus on the
substring query and can be used to implement substring-of-
keyword query, they cannot achieve high efficiency in terms
of the computational cost of query processing and the over-
head of storage at the same time.

To address the above challenge, in this paper, we con-
sider a fine-grained SSE scheme supporting substring-of-
keyword query, which consists of two consecutive phases.
The first phase, called the substring-to-keyword query, is to
query a list of candidate keywords containing a given spe-
cific substring, and then the user chooses the keyword that
he/she needs from candidate keywords. The second phase,

Fan Yin et al.: Preprint submitted to Elsevier Page 1 of 13

ar
X

iv
:2

10
3.

08
45

5v
1

 [
cs

.C
R

]
 1

5
M

ar
 2

02
1

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

called the keyword-to-file query, is to query files that match
the chosen keyword. Specifically, the main contributions of
this paper are three-fold:

• First, based on the position heap technique, we design
a storage-efficient index (i.e., modified position heap)
tomatch substringswith corresponding keywords. We
then use pseudo-random function and symmetric en-
cryption scheme to encrypt this index, which can not
only well support the substring-to-keyword query, but
also preserve the privacy of queried substring as well
as the plaintext of the keywords.

• Second, we proposed an efficient and privacy-preserving
substring-of-keyword query scheme, which consists
of a substring-to-keyword query and a keyword-to-file
query. This scheme is suitable for critical applications
in practice such as Google search.

• Finally, we analyze the security of our proposed scheme
and conduct extensive experiments to evaluate its per-
formance. The results show that our proposed scheme
can achieve efficient queries in terms of low computa-
tional cost and communication overhead.

The remainder of the paper is organized as follows. We
formalize the systemmodel, securitymodel, and design goals
in Section 2. Then, we introduce some preliminaries in-
cluding the position heap technique [10], symmetric encryp-
tion scheme, and the security notion of substring-to-keyword
query in Section 3. After that, we present our proposed
scheme in Section 4, followed by security analyses and per-
formance evaluation in Section 5 and Section 6, respectively.
Some related works are discussed in Section 7. Finally, we
draw our conclusions in Section 8.

2. Models and Design Goals
In this section, we formalize the system model, security

model, and identify our design goals.
2.1. System Model

In our system model, we consider two entities, namely a
cloud server and a data user, as shown in Figure 1.

��������	
�	
�������	

��������	�
��

��������
�����	�����	
�����
��
�������

����������	������	
���

��������

��������	
���	���������
��
�������

����������	��������

Figure 1: System model under consideration

• Data user: The data user has a collection of files =
{f1, f2, ..., fn} and each file fj ∈ consists of a set
of keywords from a dictionary = {!1, !2, ..., !d}.

Due to the limited storage space and computational ca-
pability, the data user intends to outsource the file col-
lection and its indices, i.e., I – index for substring-
to-keyword query, I – index for keyword-to-file query,
to the cloud server. Then, the data user launches a
substring-of-keyword querywith the cloud server. The
substring-of-keyword query consists of two consecu-
tive phases: a substring-to-keyword query and a keyword-
to-file query. To be more specific, the data user first
submits a substring-to-keyword query request Q! to
the cloud server and retrieves a set of keywords ′ ⊆
 containing the given substring. Then, the data user
chooses the queried keyword from ′ and uses a queried
keyword to submit a keyword-to-file query requestQfto retrieve a set of files ′ ⊆ containing the queried
keyword.

• Cloud server: The cloud server is considered to be
powerful in storage space and computational capabil-
ity. The cloud server is assumed to efficiently store file
collection and its indices {I , I} in local. In addi-tion, the cloud server will process two types of query
requests: substring-to-keyword query request Q! and
keyword-to-file query requestQf . For the former, the
cloud server conducts search operation in the index
I and responds a set of keywords ′ ⊆ ; For the
latter, the cloud server conducts search operation in
the index I and responds a set of files ′ ⊆ .

2.2. Security Model
In our security model, the data user are considered as

trusted, while the cloud server is assumed as honest-but-
curious, which means that the cloud server will i) honestly
execute the query processing, return the query results with-
out tampering it, and ii) curiously infer as much sensitive in-
formation as possible from the available data. The sensitive
information could include the files , the indices {I , I},the substring-to-keyword query requestQ!, and the keyword-to-file query request Qf .Note that, since we focus on the efficiency and confiden-
tiality of the proposed scheme, other active attacks on data
integrity and source authentication are beyond the scope of
this paper and will be discussed in our future work.
2.3. Design goals

In this work, our design goal is to achieve an efficient and
privacy-preserving substring-of-keyword query scheme. In
particular, the following three requirements should be achieved.

• Privacy preservation. In the proposed scheme, all the
data obtained by the cloud server, i.e., { , I , I , Q!,
Qf}, should be privacy-preserving during the outsourc-ing, query, and update phases. Formally, the proposed
scheme needs to satisfy security definition 1.

• Efficiency. In order to achieve the above privacy re-
quirement, additional computational cost and storage
overhead will inevitably be incurred. Therefore, in
this work, we also aim to reduce the computational

Fan Yin et al.: Preprint submitted to Elsevier Page 2 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

cost and communication overhead to be linear with the
length of the queried substring.

• Dynamics. Update operations should be efficiently and
securely supported after the initial outsourcing.

3. Preliminary
In this section, we recall some preliminaries including

the position heap [10], the symmetric encryption scheme,
and the security notion of substring-to-keyword query, which
will be served as the basis of our proposed scheme.
3.1. The (Original) Position Heap Technique

�

�

�

�

�

�

�

�

	

Figure 2: An example of building position heap P (t) for string
t = bbabbbaaba. The solid edges in P (t) reflect the insertion
path for suffix t[1 ∶ 10].

Intuitively speaking, the (original) position heap P (t) is
a trie built from all the suffixes of t and can be used to achieve
efficient substring search for t. To construct the position
heap P (t) from a string t = c1c2...cm, a set of suffixes t[i ∶
m] = ci...cm (i ∈ [m, ..., 1]) are chosen and inserted to the
P (t), which is initialized as a root node. To do this, for each
suffix t[i ∶ m] (i ∈ [m, ..., 1]), its longest prefix t[i ∶ j] (i ≤
j ≤ m) that is already represented by a path in P (t) is found
and a new leaf child is added to the last node of this path. The
new leaf child is labeled with i and its edge is labeled with
t[j + 1] (see Figure 2). Compared to other data structures
to achieve substring search, such as suffix tree [7] and suffix
array [20], the position heap [10] can achieve high efficiency
in both storage and query time.

In the following, we formally describe the PHBuild and
PHSearch algorithms of the position heap. Note that, we
consider each node in the position heap stores two attributes:
edge and pos, where the former stores the label of the node’s
edge and the latter stores the label of the node.

Algorithm 1 Build a position heap P (t) for the string t =
c1c2...cm
1: initialize position heap P (t) as a root node R, where
R.edge = Null and R.pos = Null;

2: for each i in [m,m − 1, ..., 1] do
3: N = R;
4: for each j in [i, i + 1, ..., m] do
5: find the childN ′ ofN , whereN ′.edge = cj ;
6: if N ′ does exist then
7: N = N ′

8: else
9: j = j − 1;
10: break;
11: insert a new child nodeN ′ to theN ;
12: N ′.edge = cj+1, N ′.pos = i;
13: return P (t);

Algorithm 2 Search substring s in a position heap P (t),
where s = s1s2...sl and t = c1c2...cm
1: initial empty sets L1 and L2;
2: letN be the root node of the P (t);
3: for each i in [1, 2, ..., l] do
4: find the childN ′ ofN , whereN ′.edge = si;
5: if N ′ does exist then
6: if i = l then
7: L2.add(N ′.pos);
8: for each descendant X ofN ′ do
9: L2.add(X.pos);
10: else
11: L1.add(N ′.pos);
12: N = N ′;
13: else
14: break;
15: for each i in L1 do
16: if cici+1...ci+l−1 is not equal to s1s2...sl then
17: L1.remove(i);
18: return L1 ∪ L2;

3.1.1. PHBuild Algorithm
Given a string t = c1c2...cm, the PHBuild (i.e., Algo-

rithm 1) first initializes position heap P (t) as a root node.
Then, it visits the t from the right to left and inserts each
suffix t[i ∶ m] (i ∈ [m, .., 1]) to the position heap P (t). In
particular, for each suffix t[i ∶ m], the algorithm first finds
its longest prefix t[i ∶ j] (i ≤ j ≤ m) that is already repre-
sented by a path in P (t) (lines 4-10). Assume the last node
of this path is N . Then the algorithm appends a new leaf
child N ′ to the N , where N ′.edge = cj+1 and N ′.pos = i
(lines 11-12). Figure 2 depicts an example to build such a
position heap for a string t = bbabbbaaba. During the in-
sertion for suffix t[1 ∶ 10], this algorithm finds its longest
prefix t[1 ∶ 2] represented by the solid path and appends a
new leaf child N ′ to the last node of the solid path, where
N ′.edge = a andN ′.pos = 1.

Fan Yin et al.: Preprint submitted to Elsevier Page 3 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

3.1.2. PHSearch Algorithm
Given a substring s and a position heapP (t), the PHSearch

(i.e., Algorithm 2) is supposed to find all the positions in t
that is occurrences of s. The time complexity of this algo-
rithm is O(|s|2 + ds), where |s| is the length of the queried
substring and ds is the number of matching positions. The
details are as follows:

• The algorithm first finds the longest prefix s′ of s that
can be represented by a path in P (t) and denote this
path as search path. Then the algorithm lets L1 be
the set of pos stored in the intermediate nodes along
the search path and L2 be the set of pos stored in the
descendants of the last node of the search path (lines
3-14). In particular, if s′ ≠ s, the pos stored in the last
node of the search path is included in L1. Otherwise,it is included in L2.

• After completing the previous step, elements in L2must be the matching positions, and elements in L1may or may not be the matching positions. There-
fore, the algorithm reviews each position i ∈ L1 in
the string t to filter out unmatching positions and re-
move them from the L1. Finally, this algorithm re-
turns L1 ∪ L2 (lines 15-17).

Take an example with Figure 2. Given a substring s = bb,
the PHSearch algorithm finds its longest prefix bb corre-
sponding to the solid path. In this way, L1 and L2 are equalto {9} and {5, 1, 4}. Then, this algorithm reviews the string
t and makes sure i = 9 ∈ L1 is not an occurrence of s.
Therefore, the position 9 is removed from the L1, and L1 isan empty set now. Finally, this algorithm returns all the pos
in L1 ∪ L2 = {5, 1, 4}.
3.2. Symmetric Key Encryption Scheme

A symmetric key encryption scheme (SKE) is a set of
three polynomial-time algorithms (Gen, Enc,Dec) such that
Gen takes a security parameter � and returns a secret keyK;
Enc takes a key K and a messageM , then returns a cipher-
text C; Dec takes a key K and a ciphertext C , then returns
M if K was the key under which C was produced. In this
work, we consider a SKE is indistinguishable under chosen
plaintext attack (IND-CPA) [17], which guarantees the ci-
phertext does not leak any information about the plaintext
even an adversary can query an encryption oracle. We note
that common private-key encryption schemes such as AES
in counter mode satisfy this definition.
3.3. Security Definition of Substring-to-Keyword

Query
In this subsection, we follow the security definition in

[9] to formalize the simulated-based security definition of
substring-to-keyword query scheme by using the following
two experiments: Real,(�) and Ideal, (�). In the for-
mer, the adversary , who represents the cloud server, ex-
ecutes the proposed scheme with a challenger that repre-
sents the data user. In the latter, also executes the pro-
posed scheme with a simulator who simulates the out-

put of the challenger through the leakage of the proposed
scheme. The leakage is parameterized by a leakage func-
tion collection = (O,Q,U), which describes the infor-mation leaked to the adversary in the outsourcing phase,
query phase, and update phase respectively. If any polyno-
mial adversary cannot distinguish the output information
between the challenger and the simulator , then we can
say there is no other information leaked to the adversary,
i.e., the cloud server, except the information that can be in-
ferred from the . More formally,

• Real,(1�) → b ∈ {0, 1}: Given a keyword dictio-
nary chosen by the adversary , the challenger
outputs encrypted index I by following the outsourc-
ing phase of the proposed scheme. Then, can adap-
tively send a polynomial number of query requests (or
update requests) to the , which outputs correspond-
ing encrypted query requests (or encrypted update re-
quests). Eventually, returns a bit b as the output of
this experiment.

• Ideal, (1�) → b ∈ {0, 1}: Given the leakage func-
tionO, the simulator outputs simulated encrypted in-
dex I . Then, for each query request (or update re-
quest), the adversary sends its leakage function Q(or U) to the simulator , which generates the cor-
responding simulated encrypted query request (or en-
crypted update request). Eventually, returns a bit b
as the output of this experiment.

Definition 1. A substring-to-keyword query scheme is -
secure against adaptive attacks if for any probabilistic poly-
nomial time adversary , there exists an efficient simulator
 such that

|Pr[Real,(�)→ 1] − Pr[Ideal, ,(�)→ 1]| ≤ negl(�).

4. Our Proposed Scheme
In this section, we will present our substring-of-keyword

query scheme. Before delving into the details, we first in-
troduce a modified position heap for keyword dictionaries,
which is a basic building block of our proposed scheme.
4.1. Modified Position Heap for Keyword

Dictionaries
In order to process substring-to-keyword query efficiently,

we first design a modified position heap to index all the key-
words in a dictionary, which mainly consists of two algo-
rithms: i) MPHBuild Algorithm; ii) MPHSearch Algorithm.
4.1.1. MPHBuild Algorithm

Given a dictionary = {!1, !2, ..., !d}, the MPHBuildalgorithmfirst transforms the dictionary = {!1, !2, ..., !d}to a string t = !1||#||!2||#...#||!d , where || denotes theconcatenation operation and # denotes a separate character
that does not appear in any ! ∈ . In the rest of this paper,
we call this string t dictionary string. Then, this algorithm

Fan Yin et al.: Preprint submitted to Elsevier Page 4 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

���������	
���� ��������	
��������
�� �����	����	
�������	�� �����	��������	����	
������

Figure 3: An example of building a modified position heap for a dictionary . (a) = {!1, !2, !3} is a dictionary, where
!1 = bbab, !2 = bba, and !3 = aba. (b) To get dictionary string t , concatenate all the keywords in with character #. (c)
Build an original position heap for t . (d) For each node N , replace its N.pos with the corresponding keyword, called N.keyword.
At the same time, remove useless paths from the P (t).

follows PHBuild algorithm (i.e., Algorithm 1) to build an
original position heap for this dictionary string t and fur-
ther modifies it to modified position heap P (t) as follows:i) For each node N , replace its N.pos with the correspond-
ing keyword in t , calledN.keyword. ii) At the same time,
remove useless paths, whose edges starting with #. Figure 3
depicts an example of building the modified position heap
P (t) for a dictionary = {!1, !2, !3}.
4.1.2. MPHSearch Algorithm

Given a substring s and a modified position heap P (t),the MPHSearch algorithm follows the PHSearch algorithm
(i.e., Algorithm 2) to return all the keywords in that in-
clude s. There are two differences between PHSearch and
MPHSearch: i) PHSearch returns a set of positions, but
MPHSearch returns a set of keywords because all theN.pos
stored inP (t) is replaced by the correspondingN.keyword.ii) PHSearch reviews each position i ∈ L1 in the string t to
filter out unmatching positions, but MPHSearch directly re-
turns all the keywords in L1. The reason is that the cloud
server, who performs MPHSearch algorithm, is not allowed
to access to the dictionary string t to filter out unmatch-
ing keywords in L1. Therefore, the cloud server returns all
the keywords in L1 and leave the filter operation to the data
user. Fortunately, the computational cost of the filter opera-
tion, i.e.,O(|s|2), is acceptable because the length of queried
substring (i.e., |s|) is relatively small in practice.
4.2. Description of Our Proposed Scheme

In this subsection, wewill describe our proposed privacy-
preserving substring-of-keyword query scheme, whichmainly
consists of five phases: i) System Initialization; ii) Data Out-
sourcing; iii) Substring-of-keyword Query; iv) Update (In-
sertion); and v) Update (Deletion).
4.2.1. System Initialization

Given a security parameter �, the data user first initial-
izes a secure pseudo-random function (PRF)Hk1 ∶ {0, 1}

∗⟶
{0, 1} , where k1 is a �-bit random key. Then, the data user
initializes an IND-CPA secure SKE � = (Gen, Enc,Dec)
and generates a secret key k2 = �.Gen(1�).

����

����

Figure 4: An example of secure index I , which is generated
from the modified position heap P (t) in Figure 3(d).

4.2.2. Data Outsourcing
Assume the data user has a file collection = {f1, f2, ...,

fn}, where each fj ∈ includes a set of keywords j ⊆
 . The data user generates secure indices {I , I} and a
set of encrypted files in the following steps:

Step 1: In order to support efficient substring-to-keyword
query, the data user uses the MPHBuild algorithm, described
in Section 4.1, to build a modified position heap P (t) forthe dictionary .

Step 2: For privacy, the data user encrypts P (t) to a
secure index I as follows (shown in Figure 4):

• For each nodeN in the modified position heap (except
the root), the data user uses �.Enck2 to encrypt its
N.keyword.

• For each node N in the modified position heap (ex-
cept the root), the data user concatenates each edge
label, i.e.,N.edge, along the path from the root to this
node, and calculates the PRF output of the concatena-
tion throughHk1 .

Considering the example in Figure 4, the I is encrypted
from Figure 3(d). For each node, its keywords are encrypted
through �.Enck2 , and its edge label are transformed to a
PRF output throughHk1 .

Step 3: In order to support efficient keyword-to-file query,
the data user utilizes the inverted index proposed in [5] to im-

Fan Yin et al.: Preprint submitted to Elsevier Page 5 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

�

�

��������	
�������
� � ��

�
�

� ��
�

�

� ,�
�

�

	�| � �

��������

��. ���
�

�

�
�

,�.���
�

�

�
�

,�. ���
�

�

�
�

�

�
�

�
�

�
�

����

����

�

�

�

���

�.
��

�

�

�

�

�

�

�

�

���

�.
��

�

�

�

�

�

�

�

�

��||#�

�.
��

�

�

�

�

�

�

�

�

��||��

�.
��

�

�

�

�

�

�

�

�

��||�||#�

�.
��

�

�

�

�

�

�

�

�

��||��

�.
��

�

�

�

�

�

�

�

�

��||#�

�.
��

�

�

�

�

�

�

�

�

��||��

�.
��

�

�

�

�

�

�

�

�

��||�||��

�.
��

�

�

�

�

�

�

�

�

��||�||��

�.
��

�

�

�

�

�

Figure 5: An example of substring-to-keyword query, where the secure index I is for dictionary string t = bbab#bba#aba and
the given substring is s = ab.

plement the index I . This inverted index is implemented by
a hash table, and each < key, value > pair in it is the form
of < !, id >, where ! is a keyword and id is a file identifier.

Step 4: Finally, the data user encrypts each file fj ∈
 through �.Enck2 and sends these encrypted files to the
cloud server with secure indices {I , I}.
4.2.3. Substring-of-keyword Query

Given a substring s = s1s2...sl, the data user launches
a substring-of-keyword query with the cloud server. The
substring-of-keyword query consists of two consecutive phases:
a substring-to-keyword query and a keyword-to-file query,
which are described in the following steps:

Step 1: First, the data user generates a substring-to-keyword
query request Q! and submit it to the cloud server. To be
more specific, the Q! = {Q1, Q2, ..., Ql} consists of l PRFoutputs, where

Qi = Hk1 (s1||...||si), 1 ≤ i ≤ l (1)
Step 2: After receiving the query request Q!, the cloudserver follows the MPHSearch algorithm, described in Sec-

tion 4.1, to search encrypted keywords in secure index Iand returns elements in L1 ∪ L2 to the data user. Figure 5
depicts an example of substring-to-keyword query, where
the given substring is s = ab. In this example, the data
user generates Q! = {Hk1 (a),Hk1 (a||b)} and sends it to
the cloud server. After receiving the Q!, the cloud server
performs MPHSearch to get L1 = {�.Enck2 (!3)}, L2 =
{�.Enck2 (!3),�.Enck2 (!1)} and returnL1∪L2 to the datauser. Note that, since �.Enc is a randomized encryption,
these encrypted keywords in L1 ∪ L2 are indistinguishablefor the cloud server.

Step 3: After receiving the encrypted keywords, the data
user first decrypts them and filters out the unmatching key-
words. Then, the data user chooses a queried keyword from
the matching keywords and submits a keyword-to-file query
to the cloud server. Since our paper just focuses on the de-
sign of substring-to-keyword query, we directly utilize the
scheme proposed in [5] to implement our keyword-to-file

query. According to the scheme in [5], the data user can sub-
mit efficient and privacy-preserving single keyword queries
to the cloud server based on the index I .
4.2.4. Update (Insertion)

In the proposed scheme, there are two types of insertion
operations: insert keywords to the index I and insert files
to the index I . Since Cash et al. [5] has proposed a privacy-preserving insertion algorithm to deal with the insertion for
the index I , we just need to consider the insertion for the
index I .

Given a keyword! = c1c2...cz, the data user is supposedto insert it to the index I . Intuitively, assume the dictionary
is W = {!1, !2, ..., !d} and its corresponding dictionary
string is t = !1||#||!2||#...#||!d . The insertion operationwill update the index I to a new version, called I ′ , where
its corresponding t ′ = !||#||t . The details are described
as follows:

Step 1: The data user chooses z randomvalues r1, r2, ..., rzto generate an update (insertion) requestU! = {�.Enck2 (!),
U (c1c2...cz), U (c2...cz), ..., U (cz)} and submit it to the cloud
server. Specifically, each U (ci...cz) (1 ≤ i ≤ z) in U! con-
sists of (z − i + 3) PRF outputs, i.e., {Ui, Ui+1, ..., Uz+2},where

Uj =

⎧

⎪

⎨

⎪

⎩

Hk1 (ci||...||cj), if i ≤ j ≤ z
Hk1 (ci||...||cj||#), if j = z + 1
Hk1 (ri), if j = z + 2

(2)

Figure 6 depicts an example of the insertion operation for
the inserted keyword ! = ba. In this example, the U! =
{�.Enck2 (!), U (ba), U (a)}, whereU (ba) = {Hk1 (b),Hk1 (b||a),
Hk1 (b||a||#),Hk1 (r1)} andU (a) = {Hk1 (a),Hk1 (a||#),Hk1 (r2)}.

Step 2: After receiving the update (insertion) request
U!, for each U (ci...cz) (1 ≤ i ≤ z) in it, the cloud server
first finds its longest prefix UiUi+1...Uℎ(1 ≤ ℎ < z + 2)
that is already represented by a path in I and denotes this
path as insertion path. Then the cloud server appends a new
leaf child N ′ to the last node of the insertion path, where
N ′.edge = Uℎ+1 and N ′.keyword = �.Enck2 (!). Note

Fan Yin et al.: Preprint submitted to Elsevier Page 6 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

�

�

����

����

�

�

�

���

�.�	

�

�

��

�

�

�

�

�

���

�.�	

�

�

��

�

�

�

�

�

��||#�

�.�	

�

�

��

�

�

�

�

�

��||��

�.�	

�

�

��

�

�

�

�

�

��||�||#�

�.�	

�

�

��

�

�

�

�

�

��||��

�.�	

�

�

��

�

�

�

�

�

��||#�

�.�	

�

�

��

�

�

�

�

�

��||��

�.�	

�

�

��

�

�

�

�

�

��||�||��

�.�	

�

�

��

�

�

�

�

�

��||�||��

�.�	

�

�

��

�

�

���������	
������		� � ��

�
�

� ��.	
�
�

�

� ,� �� ,� �

��
�

�

� ,�
�

�

�||� ,�
�

�

��||�||#�,�
�

�

��
�

�

��
�

�

� ,�
�

�

��||#�,�
�

�

��
�

�

�

�

�

��

�

�

�.�	

�

�

���

�

�

�

��||�||#�

�.�	

�

�

���

�
�

Figure 6: An example of inserting keyword ! = ba to I , which is the secure index for dictionary string t = bbab#bba#aba.

that, in practice, the ℎ can not equal to z+2 because Uz+2 =
Hk1 (ri) is a random number. As shown in Figure 6, the solid
edges reflect the insertion paths for the U (ba) and U (a).
4.2.5. Update (Deletion)

In the proposed scheme, there are two types of deletion
operations: delete substrings from the index I and delete
keywords from the index I . Since Cash et al. [5] has pro-
posed a privacy-preserving deletion algorithm for the index
I , we just need to consider the deletion for the index I .

We implement this deletion operation by maintaining a
revocation list Ir

, which is also an encrypted modified po-
sition heap, in the cloud server. Specifically, in the data out-
sourcing phase, the data user build a modified position heap
Ir

for an empty dictionary r = {} and sends the Irto the cloud server with {I , I}. Then, to delete a key-
word from the cloud server, the data user just follows the
update (insertion) method in 4.2.4 to insert the keyword to
the Ir

. During a substring-to-keyword query, after receive-
ing a substring-to-keyword query request, the cloud server
performs search operations over I and Ir

separately, and
returns two result sets to the data user. Finally, the data user
decrypts the two result sets and calculates the difference be-
tween them to obtain the correct keywords.

Correctness. The correctness of our proposed is quite
straightforward. The only issue is the collision among the
edges’ PRF outputs in I . Since the domain size of PRF
Hk1 is 2 , assuming that the number of nodes in I is m,
the probability of collision is O(

[

m
2

]

∕2) = O(m2∕2). So
we need to choose = � + 2log(m) such that O(m2∕2) =
O(1∕2�) is negligible over the security parameter �.

5. Security Analysis
In this paper, the proposed substring-of-keyword query

scheme consists of two query schemes: a substring-to-keyword
query scheme and a keyword-to-file query scheme. Since
the security analysis in [5] has shown that the keyword-to-
file query scheme is secure, we mainly focus on the security

analysis of the substring-to-keyword query scheme in this
section.
5.1. Leakage Function Collection

The leakage function collection consists of three leak-
age functions: O, Q, and U . Before defining them, we
first give some definitions for the leakage of this scheme.
Definition 2. (Access Pattern) Given the index I , which
contains a set of encrypted nodes {n1, n2, ..., nm}, and a query
request Q!, the path pattern reveals the set of identifiers of
nodes in I that are returned to the data user.

Definition 3. (Query Path Pattern) Given the index I ,
which contains a set of encrypted nodes {n1, n2, ..., nm}, and
a query requestQ!, the query path pattern reveals the set of
identifiers of nodes in I that are reached by the Q!, i.e.,
nodes in the search path.

Definition 4. (Insertion Path Pattern) Given the index I ,
which contains a set of encrypted nodes {n1, n2, ..., nm}, and
an update (insertion) request U!, the insertion path pattern
reveals the set of identifiers of nodes in I that are reached
by the U!, i.e., nodes in the insertion path.

Definition 5. (Deletion Path Pattern) The deletion method
is implemented by a revocation list, which means the update
(deletion) request is exactly the same as the update (inser-
tion) request. Therefore, given the revocation list Ir

, which
contains a set of encrypted nodes {n1, n2, ..., nm}, and an up-
date (deletion) request U!, the deletion path pattern reveals
the set of identifiers of nodes in Ir

that are reached by the
U!.

Now we define the leakage functions to capture the in-
formation leakage in different phases.
5.1.1. Outsourcing Phase

Given the index I , which contains a set of encrypted
nodes {n1, n2, ..., nm}. The leakage O consists of the fol-
lowing information:

• m: the size of the dictionary string t .
Fan Yin et al.: Preprint submitted to Elsevier Page 7 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

• � = {(id1, Cid1), ..., (idm, Cidm)}: the structure of in-dex I , where idi(1 ≤ i ≤ m) denotes the identifiers
of encrypted node ni and Cidi (1 ≤ i ≤ m) denotes all
the identifiers of idi’s children.

5.1.2. Query Phase
Given the index I and a substring-to-keyword query

requestQ!, the leakageQ consists of two parts: Access Pattern
and Query Patℎ Pattern.
5.1.3. Update Phase

Given the index I , revocation list Ir
, and an update

request U!, if update operation is insertion / deletion, the
leakageU is Insertion Patℎ Pattern /Deletion Patℎ Pattern.
5.2. Security Proof

We now prove the security of the substring-to-keyword
query scheme based on the leakage function collection =
{O,Q,U}. Intuitively, we first define a simulator based
on the leakage function collection and then analyze the
indistinguishability between the output of the in the ideal
world and the challenger (i.e., the data user) in the real
world. Finally, we conclude that the proposed substring-to-
keyword query scheme does not reveal any information be-
yond the leakage function collection to the server. The
details are as follows.
Theorem 1. If the H is a secure pseudo-random function
(PRF) and� is an IND-CPA secure symmetric key encryp-
tion scheme (SKE), then our proposed scheme is-adaptively-
secure.

Proof. Based on the leakage function collection , we can
build a simulator as follows:

• Data Outsourcing: given the leakage function O =
{m, � }, the simulator is supposed to generate a sim-
ulated I (i.e., an encrypted modified position heap).
Specifically, the simulator first generates m empty
nodes and identifies each node a unique identifier from
{id1, ..., idm}. Then the simulator constructs these
nodes to a tree (i.e., I) based on � , which means
the I has the same tree structure as I . Next, for
each node in the I , the simulator chooses a ran-
dom number H from the domain of H as the PRF
output of its edge and a random number�.Enc from
the domain of�.Enc as its encrypted keyword. Since
the output of H and �.Enc are pseudo-random, the
adversary cannot distinguish between the I in the
ideal world and the I in the real world.

• Substring-to-keyword Query: given the leakage func-
tion Q for a substring-to-keyword query requestQ!,the simulator is supposed to generate a simulated
encrypted substring-to-keyword query requestQ!. Notethat, in this phase, the simulator not only has Q
but also O and I from the data outsourcing phase.
Therefore, the simulator can follow the query patℎ pattern

Table 1
Comparison between ours and existing schemes

Scheme Index Space Query Time Dynamism
[7] O(m) O(|s| + ds) static
[20] O(m) O(|s| + ds) static
[15] O(m) O(|s| ⋅ dkg) dynamic
[23] O(m) O(m) static
[22] O(|Σ| ⋅ m) O(|s| + ds) static

Our solution O(m) O(|s| + ds) dynamic

m is the size of dataset, |s| is the size of queried substring
s, ds is the number of matching positions for s, dkg is the
average number of matching positions for a k-gram of s,
and |Σ| is the number of distinct characters in dataset.

in Q to find the search path in I and output all the
H stored in the search path as the Q!. Since the out-put of H is pseudo-random, the adversary cannot
distinguish between the elements in Q! and Q!. At
the same time, after receiving theQ!, the adversary
can use it to find matching encrypted keywords in I .
Since these matching encrypted keywords in I is en-
crypted through �.Enc, the adversary cannot dis-
tinguish them from the matching encrypted keywords
in I , which means the adversary cannot distin-
guish between Q! in the ideal world and Q! in the
real world.

• Update: given the leakage function U for an update
(insertion / deletion) request U!, the simulator is
supposed to generate a simulated encrypted update re-
quest U!. Note that, in this phase, the simulator not
only has U but also O and I / Ir

from the data
outsourcing phase. Therefore, the simulator can fol-
low the insertion patℎ pattern / deletion patℎ pattern
in U to find the insertion paths in I / Ir

and out-
put all the H stored in these insertion paths as the
U!. Since the output ofH is pseudo-random, the ad-
versary cannot distinguish between U! in the ideal
world and U! in the real world.

In summary, as the adversary cannot distinguish be-
tween the outputs from the simulator and the challenger
, we can conclude that our proposed substring-to-keyword
query scheme is -adaptively-secure.

6. Performance Evaluation
In this section, we evaluate the performance of our pro-

posed scheme from both theoretical and experimental per-
spectives.
6.1. Theoretical Analysis

We perform a theoretical comparison of our proposed
substring-to-keyword scheme with existing schemes (cf. Ta-
ble 1) from three aspects: index space, query time, and dy-
namism. From Table 1, we can see that the schemes in [7]

Fan Yin et al.: Preprint submitted to Elsevier Page 8 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

and [20] have the same index space (i.e., O(m)) and query
time (i.e, O(|s| + ds)). However, in practice, [7] will con-
sume more index space than [20] due to its suffix tree index,
which just stores position data in leaf nodes and does not uti-
lize the space of inner nodes effectively. In fact, the number
of nodes in the suffix tree can be up to 2m, wherem is the size
of the dataset. In contrast, [20] utilizes Burrows-Wheeler
Transformation (BWT) to build a suffix array index to sup-
port substring query, which has better storage-efficiency than
the suffix tree at the cost of worse query-efficiency. Later,
based on the scheme in [20] , [22] uses Private Informa-
tion Retrieval (PIR) technique to protect the access pattern,
which causes high index space and query time. In addition
to suffix tree and suffix array, there are other auxiliary data
structures [15, 23] can be used to support substring query.
However, their query time is unacceptable in practice.

Compared with these existing schemes, our proposed
substring-to-keyword scheme can achieve high storage-efficiency
and query-efficiency at the same time. In specific, our scheme
can achieve O(m) complexity for index space and O(|s| +
ds) complexity for query time, which are the same as [7,
20] and better than [15, 23, 22]. In addition, our proposed
scheme can support dynamic datasets, which cannot be sup-
ported by [7, 20]. Further, due to the use of position heap
technique, which is storage-efficient than the suffix tree and
query-efficient than the suffix array, our proposed scheme
consumes less index space than [7] and less query time than
[20] in practice, which will be shown in the next subsection.
6.2. Experimental Analysis

In this subsection, we evaluate the computational cost
and storage overhead of the proposed substring-to-keyword
scheme in terms of three phases: local data outsourcing,
substring-to-keyword query, and update. Specifically, we
implemented the proposed scheme in C++ (our code is open
source [30]) and conducted experiments on a 64-bit machine
with an Intel Core i5-8400 CPU at 2.8GHZ and 2GB RAM,
running CentOS 6.6. We utilized the OpenSSL library for
the entailed cryptographic operations, where the H and �
are instantiated using HMAC-SHA-256 and AES-512-CBC
in the OpenSSL library, respectively. Note that, we imple-
mented the data user and the cloud server on the same ma-
chine, which means there is no network delay between them.
The underlying dataset (i.e., the dictionary) in our ex-
periment was extracted from 29,378 articles from Wikivoy-
age [28], and it contains 40,205 distinct keywords in total.
The length distribution of the keywords in can be found
in Figure 7.

In order to show the efficiency of our proposed substring-
to-keyword scheme, we compare it with the schemes in [7,
20]. Note that, in our experiment, we also use the schemes
in [7, 20] to support substring query on the dictionary string
t , which is transformed from the dictionary by themethod
in Figure 3(a-b).
6.2.1. Data Outsourcing

In this part, we consider the storage overhead and com-
putational cost of data outsourcing phase.

Figure 7: The length distribution of a total of 40,205 distinct
keywords in .

In general, given a dictionary string, our solution gener-
ates an encrypted position heap, [7] generates an encrypted
suffix tree, and [20] generates an encrypted suffix array as
the index. Figure 8 and Figure 9 (the y-axis is log scale) de-
pict the storage overhead and the runtime versus the size of
dictionary (i.e.,m) respectively, wherem varies from 5000 to
40000 keywords. The figures show that [7] consumes much
more storage overhead and computation cost than [20] and
our solution in data outsourcing phase.

Figure 8: The storage overhead of the data outsourcing versus
the size of dictionary m.

6.2.2. Substring-to-keyword Query
In this part, we randomly choose queried substrings from

the dictionary and calculate their average queried time.
Since the computational cost of substring-to-keyword query
is limited by two factors: the size of dictionary (i.e., m) and
the number of matching keywords (i.e., ds), we analyze themseparately in the following.

Figure 10 (the y-axis is log scale) depicts the computa-
tional cost of the substring-to-keyword query versus the size

Fan Yin et al.: Preprint submitted to Elsevier Page 9 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

Figure 9: The data outsourcing runtime versus the size of
dictionary m.

Figure 10: Substring-to-keyword query runtime versus the size
of dictionary m, where the number of matching keywords ds is
5.

of dictionary (i.e., m). This figure shows that the computa-
tional cost of our solution and [7] are not affected bymwhen
the number of matching keywords ds is fixed. However, thecomputational cost of [20] increases linear with m even if dsis fixed.

Figure 11 (the y-axis is log scale) plots the runtime of the
substring-to-keyword query versus the number of matching
keywords ds, in which m is fixed to 40000. From this figure,
we can see that the computational cost of three schemes are
not affected too much by ds. Meanwhile, our solution and
[7] are significantly quicker than [20]. For example, when
ds = 20, the computational cost of our solution and [7] are
both about 0.004 ms, which is just about 1∕60 compared to
[20].
6.2.3. Update

In this part, we consider the update (insertion / deletion)
phase. Since there is no secure update method in [7, 20],
we only test the update performance of our solution. Mean-

Figure 11: Substring-to-keyword query runtime versus the
number of matching keywords ds, where m = 40000.

while, because the deletion operation in our solution is the
same as the insertion operation, we just evaluate the compu-
tational cost of the insertion operation.

Figure 12: Insertion runtime versus the size of inserted key-
word, where the size of original dictionary m is 5000.

Figure 12 plots the computational cost of the insertion
versus the size of inserted keyword, in which the size of orig-
inal dictionary m is fixed to 5000. From this figure, we can
see that the computational cost of our solution increase lin-
early with the size of inserted keyword.

7. Related Work
A searchable encryption scheme can be realized with

optimal security via powerful cryptographic tools, such as
Fully Homomorphic Encryption (FHE) [11, 12] and Obliv-
ious Random Access Memory (ORAM) [24, 14]. However,
these tools are extraordinarily impractical. Another set of
works utilize property-preserving encryption (PPE) [1, 2, 3,
29] to achieve searchable encryption, which encrypts mes-
sages in a way that inevitably leaks certain properties of the

Fan Yin et al.: Preprint submitted to Elsevier Page 10 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

underlyingmessage. For balancing the leakage and efficiency,
many studies focus on Searchable Symmetric Encryption (SSE).
Song et al. [26] first used the symmetric encryption to facili-
tate keyword query over the encrypted data. Then, Curtmola
et al. [9] gave a formal definition of SSE, and proposed an
efficient SSE scheme. However, their scheme cannot sup-
port update(insertion/deletion) operation. Later, Kamara et
al. [16] proposed the first dynamic SSE scheme, which uses
a deletion array and a homomorphic encrypted pointer tech-
nique to securely update files. Unfortunately, due to the use
of fully homomorphic encryption, the update efficiency is
very low. In a more recent paper [5], Cash et al. described a
simple dynamic inverted index based on [9], which utilizes
the data unlinkability of hash table to achieve secure inser-
tion. Meanwhile, to prevent the file-injection attacks [32],
many works [4, 18, 34, 35] focused on the forward security,
which ensures that newly updated keywords cannot be re-
lated to previous queried results.

Nevertheless, these above works only can support the ex-
act keyword query. If the queried keyword does not match
a preset keyword, the query will fail. Fortunately, fuzzy
query can deal with this problem as it can tolerate minor
typos and formatting inconsistencies. Li et al. [21] first pro-
posed a fuzzy query scheme, which used an edit distance
with a wildcard-based technique to construct fuzzy keyword
sets. For instance, the set of CAT with 1 edit distance is
{CAT , ∗ CAT , ∗ AT , C ∗ AT , C ∗ T , CA ∗ T , CA ∗
, CAT ∗}. Then, Kuzu et al. [19] used LSH (Local Sensi-
tive Hash) and Bloom filter to construct a similarity query
scheme. Because an honest-but-curious server may only re-
turn a fraction of the results, Wang et al. [27] proposed a
verifiable fuzzy query scheme that not only supports fuzzy
query service, but also provides proof to verify whether the
server returns all the queried results. However, these fuzzy
query schemes only support single fuzzy keyword query and
address problems of minor typos and formatting inconsis-
tency, which can not be directly used to achieve substring-
of-keyword query.

In [7], Melissa et al. designed a SSE scheme based on the
suffix tree to support substring query. Although this scheme
can be used to implement the substring-of-keyword query
and allows for substring query in O(|s| + ds) time, its stor-
age cost O(m) has a big constant factor. The reason is that
suffix tree only stores position data in leaf nodes and does
not utilize the space of inner nodes effectively. This leads
the number of nodes in suffix tree can be up to 2m, where
m is the size of the dictionary. In order to reduce the stor-
age cost as much as possible, Leontiadis et al. [20] lever-
aged Burrows Wheeler Transform (BWT) to build an aux-
iliary data structure called suffix array, which can achieve
storage cost O(m) with a lower constant factor. However, its
query time is relatively large. Later, Mainardi et al. [22] op-
timizes the query algorithm in [20] to achieve O(|s|+ ds) atthe cost of higher index space, i.e.,O(|Σ|⋅m), where |Σ| is the
number of distinct characters in the dictionary. Although au-
thors in this article considered datasets with small |Σ| (e.g.,
DNA dataset), the |Σ| can be large in practice. In addition

to suffix tree and suffix array, there are other auxiliary data
structures can be used to support substring query. In 2018,
Florian et al. [15] designed an index consisting based on k-
grams. When a user needs to perform a substring query, the
cloud performs a conjunctive keyword query for all the k-
grams of the queried substring. However, its query time is
relatively large due to the computational cost of intersection
operations in the conjunctive keyword query. In the same
year, Tarik et al. [23] proposed a new substring query scheme
based on the idea of letter orthogonalization, which allows
testing of string membership by performing efficient inner
product. Again, the disadvantage of this scheme comes its
O(m) query time.

8. Conclusion
In this paper, we have proposed an efficient and privacy-

preserving substring-of-keyword query scheme over cloud.
Specifically, based on the position heap technique, we first
designed a tree-based index to support substring-to-keyword
query and then applied a PRF and a SKE to protect its pri-
vacy. After that, we proposed a novel substring-of-keyword
query scheme, which contains two consecutive phases: a
substring-to-keyword query that queries the keywordsmatch-
ing a given substring, and a keyword-to-file query that queries
the files matching a keyword that the user is really interested.
The proposed scheme is very suitable for many critical appli-
cations in practice such as Google search. Detailed security
analysis and performance evaluation show that our proposed
scheme is indeed privacy-preserving and efficient. In our fu-
ture work, we will take more security properties into consid-
eration, e.g., achieving forward and backward security.

9. Acknowledgment
Thiswork is supported in part byNSERCDiscoveryGrants

(no. Rgpin 04009), Natural Science Foundation of Zhejiang
Province (grant no. LZ18F020003), National Natural Sci-
ence Foundation of China (grant no. U1709217), and NSFC
Grant (61871331).

References
[1] Bellare, M., Boldyreva, A., O’Neill, A., 2007. Deterministic and effi-

ciently searchable encryption, in: Advances in Cryptology - CRYPTO
2007, 27th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2007, Proceedings, pp. 535–552.

[2] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A., 2009. Order-
preserving symmetric encryption, in: Advances in Cryptology - EU-
ROCRYPT 2009, 28th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Cologne, Ger-
many, April 26-30, 2009. Proceedings, pp. 224–241.

[3] Boldyreva, A., Chenette, N., O’Neill, A., 2011. Order-preserving
encryption revisited: Improved security analysis and alternative so-
lutions, in: Advances in Cryptology - CRYPTO 2011 - 31st An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, pp. 578–595.

[4] Bost, R., 2016. Forward secure searchable encryption, in: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, ACM. pp. 1143–1154.

Fan Yin et al.: Preprint submitted to Elsevier Page 11 of 13

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

[5] Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C.,
Steiner, M., 2014. Dynamic Searchable Encryption in Very-Large
Databases: Data Structures and Implementation, in: NDSS, Citeseer.
pp. 23–26.

[6] Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.,
2013. Highly-scalable searchable symmetric encryption with support
for boolean queries, in: Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2013. Proceedings, Part I, pp. 353–373.

[7] Chase, M., Shen, E., 2015. Substring-searchable symmetric encryp-
tion. Proceedings on Privacy Enhancing Technologies 2015, 263–
281.

[8] Cloud, I.M., 2010. key marketing trends for
2017 and ideas for exceeding customer expecta-
tions. URL: https://bizibl.com/marketing/download/

10-key-marketing-trends-2017-and-ideas-exceeding-customer-expectations.
[9] Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R., 2006. Search-

able symmetric encryption: improved definitions and efficient con-
structions, in: Proceedings of the 13th ACMConference on Computer
andCommunications Security, CCS 2006, Alexandria, VA,USA, Ioc-
tober 30 - November 3, 2006, pp. 79–88.

[10] Ehrenfeucht, A., McConnell, R.M., Osheim, N., Woo, S., 2011. Po-
sition heaps: A simple and dynamic text indexing data structure. J.
Discrete Algorithms 9, 100–121.

[11] Gentry, C., 2009. Fully homomorphic encryption using ideal lattices,
in: Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA,May 31 - June 2, 2009,
pp. 169–178.

[12] Gentry, C., 2010. Computing arbitrary functions of encrypted data.
Commun. ACM 53, 97–105.

[13] Goh, E.J., et al., 2003. Secure indexes. IACR Cryptology ePrint
Archive 2003, 216.

[14] Goldreich, O., Ostrovsky, R., 1996. Software protection and simula-
tion on oblivious rams. J. ACM 43, 431–473.

[15] Hahn, F., Loza, N., Kerschbaum, F., 2018. Practical and secure sub-
string search, in: Proceedings of the 2018 International Conference
on Management of Data, pp. 163–176.

[16] Kamara, S., Papamanthou, C., Roeder, T., 2012. Dynamic searchable
symmetric encryption, in: Proceedings of the 2012 ACM conference
on Computer and communications security, ACM. pp. 965–976.

[17] Katz, J., Lindell, Y., 2014. Introduction tomodern cryptography. CRC
press.

[18] Kim, K.S., Kim, M., Lee, D., Park, J.H., Kim, W.H., 2017. For-
ward secure dynamic searchable symmetric encryption with efficient
updates, in: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ACM. pp. 1449–1463.

[19] Kuzu, M., Islam, M.S., Kantarcioglu, M., 2012. Efficient similarity
search over encrypted data, in: 2012 IEEE 28th International Confer-
ence on Data Engineering, IEEE. pp. 1156–1167.

[20] Leontiadis, I., Li, M., 2018. Storage efficient substring searchable
symmetric encryption, in: Proceedings of the 6th International Work-
shop on Security in Cloud Computing, pp. 3–13.

[21] Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W., 2010. Fuzzy
keyword search over encrypted data in cloud computing, in: 2010
Proceedings IEEE INFOCOM, IEEE. pp. 1–5.

[22] Mainardi, N., Barenghi, A., Pelosi, G., 2019. Privacy preserving sub-
string search protocol with polylogarithmic communication cost, in:
Proceedings of the 35thAnnual Computer SecurityApplications Con-
ference, pp. 297–312.

[23] Moataz, T., Ray, I., Ray, I., Shikfa, A., Cuppens, F., Cuppens, N.,
2018. Substring search over encrypted data. Journal of Computer
Security 26, 1–30.

[24] Ostrovsky, R., 1990. Efficient computation on oblivious rams, in: Pro-
ceedings of the 22nd Annual ACM Symposium on Theory of Com-
puting, May 13-17, 1990, Baltimore, Maryland, USA, pp. 514–523.

[25] Shao, J., Lu, R., Guan, Y., Wei, G., 2019. Achieve efficient and ver-
ifiable conjunctive and fuzzy queries over encrypted data in cloud.
IEEE Transactions on Services Computing .

[26] Song, D.X., Wagner, D.A., Perrig, A., 2000. Practical techniques for
searches on encrypted data, in: 2000 IEEE Symposium on Security
and Privacy, Berkeley, California, USA, May 14-17, 2000, pp. 44–55.

[27] Wang, J., Ma, H., Tang, Q., Li, J., Zhu, H., Ma, S., Chen, X., 2013.
Efficient verifiable fuzzy keyword search over encrypted data in cloud
computing. Comput. Sci. Inf. Syst. 10, 667–684.

[28] wikivoyage, . https://www.wikivoyage.org/. Accessed Nov. 2019.
[29] Yang, W., Xu, Y., Nie, Y., Shen, Y., Huang, L., 2018. TRQED: se-

cure and fast tree-based private range queries over encrypted cloud,
in: Database Systems for Advanced Applications - 23rd International
Conference, DASFAA 2018, Gold Coast, QLD, Australia, May 21-
24, 2018, Proceedings, Part II, pp. 130–146.

[30] Yin, F., 2019. An implementation of our proposed scheme. URL:
https://github.com/YinFFF/Substring-keyword-SSE.

[31] Yin, F., Zheng, Y., Lu, R., Tang, X., 2019. Achieving efficient
and privacy-preserving multi-keyword conjunctive query over cloud.
IEEE Access 7, 165862–165872.

[32] Zhang, Y., Katz, J., Papamanthou, C., 2016. All your queries are
belong to us: The power of file-injection attacks on searchable en-
cryption, in: 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016, pp. 707–720.

[33] Zheng, Y., Lu, R., Li, B., Shao, J., Yang, H., Choo, K.R., 2019. Effi-
cient privacy-preserving data merging and skyline computation over
multi-source encrypted data. Inf. Sci. 498, 91–105.

[34] Zuo, C., Sun, S.F., Liu, J.K., Shao, J., Pieprzyk, J., 2018. Dynamic
searchable symmetric encryption schemes supporting range queries
with forward (and backward) security, in: European Symposium on
Research in Computer Security, Springer. pp. 228–246.

[35] Zuo, C., Sun, S.F., Liu, J.K., Shao, J., Pieprzyk, J., 2019. Dynamic
searchable symmetric encryption with forward and stronger backward
privacy, in: European Symposium on Research in Computer Security,
Springer. pp. 283–303.

Fan Yin received the B.S. degree in information
security from the Southwest Jiaotong University,
Chengdu, China, in 2012. He is currently working
toward the Ph.D. degree in information and com-
munication engineering, Southwest Jiaotong Uni-
versity, and also a visiting student at Faculty of
Computer Science, University of New Brunswick,
Canada. His research interests include search-
able encryption, privacy-preserving and security
for cloud security and network security.

Rongxing Lu is currently an associate professor at
the Faculty of Computer Science (FCS), University
of New Brunswick (UNB), Canada. He is a Fel-
low of IEEE. His research interests include applied
cryptography, privacy enhancing technologies, and
IoT-Big Data security and privacy. He has pub-
lished extensively in his areas of expertise, and was
the recipient of 9 best (student) paper awards from
some reputable journals and conferences. Cur-
rently, Dr. Lu serves as the Vice-Chair (Confer-
ences) of IEEEComSocCIS-TC (Communications
and Information Security Technical Committee).
Dr. Lu is the Winner of 2016-17 Excellence in
Teaching Award, FCS, UNB.

Fan Yin et al.: Preprint submitted to Elsevier Page 12 of 13

https://bizibl.com/marketing/download/10-key-marketing-trends-2017-and-ideas-exceeding-customer-expectations
https://bizibl.com/marketing/download/10-key-marketing-trends-2017-and-ideas-exceeding-customer-expectations
https://www.wikivoyage.org/
https://github.com/YinFFF/Substring-keyword-SSE

Achieve Efficient Position-Heap-based Privacy-Preserving Substring-of-Keyword Query over Cloud

Yandong Zheng received her M.S. degree from
the Department of Computer Science, Beihang
University, China, in 2017 and She is currently pur-
suing her Ph.D. degree in the Faculty of Computer
Science, University of New Brunswick, Canada.
Her research interest includes cloud computing se-
curity, big data privacy and applied privacy.

Jun Shao received the Ph.D. degree from the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China,
in 2008. He was a Postdoctoral Fellow with the
School of Information Sciences and Technology,
Pennsylvania State University, State College, PA,
USA, from 2008 to 2010. He is currently a Profes-
sor with the School of Computer Science and In-
formation Engineering, Zhejiang Gongshang Uni-
versity, Hangzhou, China. His current research in-
terests include network security and applied cryp-
tography.

Xue Yang received the Ph.D degree in Information
and Communication Engineering from Southwest
Jiaotong University, Chengdu, China, in 2019. She
was a visiting student at the Faculty of Computer
Science, University of New Brunswick, Canada,
from 2017 to 2018. She is currently a Postdoctoral
Fellow in the Tsinghua Shenzhen International
Graduate School, Tsinghua University, China. Her
research interests include big data security and pri-
vacy, applied cryptography and federated learning.

Xiaohu Tang received the B.S. degree in ap-
plied mathematics from Northwest Polytechnic
University, Xi’an, China, in 1992, the M.S. de-
gree in applied mathematics from Sichuan Uni-
versity, Chengdu, China, in 1995, and the Ph.D.
degree in electronic engineering from Southwest
Jiaotong University, Chengdu, in 2001. From 2003
to 2004, he was a Research Associate with the
Department of Electrical and Electronic Engineer-
ing, The Hong Kong University of Science and
Technology. From 2007 to 2008, he was a Vis-
iting Professor with the University of Ulm, Ger-
many. Since 2001, he has been with the School
of Information Science and Technology, Southwest
Jiaotong University, where he is currently a Pro-
fessor. His research interests include coding the-
ory, network security, distributed storage, and in-
formation processing for big data. Dr. Tang was
a recipient of the National excellent Doctoral Dis-
sertation Award in 2003 (China), the Humboldt
Research Fellowship in 2007 (Germany), and the
Outstanding Young Scientist Award by NSFC in
2013 (China). He served as an Associate Editor for
several journals, including the IEEE TRANSAC-
TIONS ON INFORMATION THEORY and IE-
ICE Transactions on Fundamentals, and served for
a number of technical program committees of con-
ferences.

Fan Yin et al.: Preprint submitted to Elsevier Page 13 of 13

