
Enhancing the Insertion of NOP Instructions to Obfuscate Malware via Deep
Reinforcement Learning

Daniel Giberta,∗, Matt Fredriksonb, Carles Mateuc, Jordi Planesc, Quan Lea

aUnversity College Dublin, CEADAR, Belfield Office Park, Dublin, Ireland
bCarnegie Mellon University, Forbes Avenue Pittsburgh, PA 15213, United States of America

cUniversity of Lleida, Jaume II, 69, Lleida, Spain

Abstract

Current state-of-the-art research for tackling the problem of malware detection and classification is centered on the design, im-
plementation and deployment of systems powered by machine learning because of its ability to generalize to never-before-seen
malware families and polymorphic mutations. However, it has been shown that machine learning models, in particular deep neural
networks, lack robustness against crafted inputs (adversarial examples). In this work, we have investigated the vulnerability of a
state-of-the-art shallow convolutional neural network malware classifier against the dead code insertion technique. We propose a
general framework powered by a Double Q-network to induce misclassification over malware families. The framework trains an
agent through a convolutional neural network to select the optimal positions in a code sequence to insert dead code instructions so
that the machine learning classifier mislabels the resulting executable. The experiments show that the proposed method significantly
drops the classification accuracy of the classifier to 56.53% while having an evasion rate of 100% for the samples belonging to the
Kelihos_ver3, Simda, and Kelihos_ver1 families. In addition, the average number of instructions needed to mislabel malware in
comparison to a random agent decreased by 33%.

Keywords: Malware Classification, Assembly Language Source Code, Obfuscation, Reinforcement Learning, Deep Q-Network

1. Introduction

Malware is on the rise. Global detections of newly-developed
malware keep increasing year after year. 1 According to AV-
TEST Institute, 2 there has been a dramatic spike of new ma-
licious programs and potentially unwanted applications (PUA)
year after year, doubling the number of total malware detected
from 2015 to 2020. This recent surge of malicious programs is
connected to the increasing dependency of people, things and
organizations on the Internet, which provides cybercriminals
with a vast range of targets to exploit, from traditional personal
computers and laptops to industrial systems, mobile phones and
Internet of Things (IoT) devices. In addition, the adoption of
remote working due to global events such as the current global
pandemic has propelled a new rise in cyberattacks, particularly
the increase of ransomware attacks 3.

To keep up with malware evolution and be able to miti-
gate the damage and impact of cyberattacks, it is necessary
to constantly improve the computer systems defences. One

∗I am corresponding author
Email address: daniel.gibert@ucd.ie (Daniel Gibert)
URL:

https://scholar.google.com/citations?user=lAAwRpMAAAAJ\&hl
(Daniel Gibert)

1https://www.statista.com/statistics/680953/
global-malware-volume/

2https://www.av-test.org/en/?r=1
3https://pages.checkpoint.com/cyber-attack-2021-trends.

html

essential security element is endpoint protection, i.e. the use
of security solutions to protect endpoints or end-user devices
from being exploited against zero-day exploits, attacks, data
leakages. Within the wide range of tools to secure an end-
point, anti-malware engines are the last layer of defence. More
specifically, anti-malware engines are responsible for prevent-
ing, detecting and removing malicious software. Traditionally,
anti-malware solutions relied on signature-based and heuristic-
based methods. However, due to the huge volumes of new
malware variants being deployed every day, traditional anti-
malware solutions that rely solely on signatures and heuristics
manually defined by domain experts cannot keep pace with the
rapidly evolving malware.

During the last decade, research on machine learning (ML)
solutions to tackle the problem of malware detection and clas-
sification increased because of the ability of machine learning
systems to generalize to unseen malware and polymorphic mu-
tations (Souri and Hosseini, 2018; Gibert et al., 2020b; Qiu
et al., 2020). Although machine learning models (Ahmadi et al.,
2015; Zhang et al., 2016) and in particular deep neural net-
works (Gibert et al., 2017; McLaughlin et al., 2017; Raff et al.,
2018; Krčál et al., 2018; Gibert et al., 2019; Vinayakumar et al.,
2019) have achieved significant success in the cybersecurity do-
main, they have been shown to be vulnerable to adversarial ex-
amples (Grosse et al., 2016; Demetrio et al., 2019; Anderson
et al., 2018) , i.e. modified examples with imperceptible pertur-
bations that cause misclassification at test time.

The attacks presented in the literature mainly focus on mi-

Preprint submitted to Journal Computers & Security November 19, 2021

ar
X

iv
:2

11
1.

09
62

6v
1

 [
cs

.C
R

]
 1

8
N

ov
 2

02
1

https://www.statista.com/statistics/680953/global-malware-volume/
https://www.statista.com/statistics/680953/global-malware-volume/
https://www.av-test.org/en/?r=1
https://pages.checkpoint.com/cyber-attack-2021-trends.html
https://pages.checkpoint.com/cyber-attack-2021-trends.html

nor modifications of the PE header, appending some bytes at
the end of sections, inside code caves, at the end of the PE file,
modifying the PE Headers, etcetera. However, these modifica-
tions are not usually generated by common obfuscation tech-
niques employed by malware authors in a real world scenario
but specifically designed to evade specific ML-based anti-malware
engines. On the contrary, malware authors employ a variety of
techniques to obfuscate the code and make it more difficult for
humans to understand. Common obfuscation techniques are the
dead code insertion technique, instruction replacement, code
transposition, packing, encryption, among others.

The purpose of this work is to fill this gap. Accordingly, we
have analyzed the robustness of a state-of-the-art malware clas-
sifier trained on the assembly language instructions of Portable
Executables (Gibert et al., 2017; McLaughlin et al., 2017) against
the simplest of the obfuscation techniques, the dead code inser-
tion technique. Furthermore, the aforementioned technique has
been enhanced with deep reinforcement learning to increase its
evasion success rates. To this end, we present a framework
that uses Double Q-learning to induce misclassification over
malware families. Within this framework, an AI agent is set
up to confront the malware classifier and select a sequence of
functionality-preserving actions (dead code insertions) to mod-
ify the samples. For any given malware sample, the framework
can eventually determine the optimal sequence of actions to
make the ML-based classifier output an incorrect label. In this
study, we have used the Portable Executable files provided by
Microsoft for the Big Data Innovators Gathering challenge of
2015 for reproducibility purposes (Ronen et al., 2018).

The rest of the paper is organized as follows: Section 2 in-
troduces the state-of-the-art approaches for malware detection
and classification, and the adversarial attacks devised to bypass
detection. Section 3 describes the proposed framework in de-
tail. Section 4 presents the experimental setup and the results
obtained. Section 5 summarizes the concluding remarks ex-
tracted from this work and presents some future lines of re-
search.

2. Related Work

2.1. Machine Learning for Malware Detection and Classifica-
tion

Recently, machine learning (ML) has become an appeal-
ing signature-less approach for malware detection and classi-
fication because of its ability to handle huge volumes of data
and to generalize to never-before-seen malware (Gibert et al.,
2020b; Souri and Hosseini, 2018; Qiu et al., 2020). Research
has shifted from traditional approaches based on feature engi-
neering (Ahmadi et al., 2015; Zhang et al., 2016) to deep learn-
ing approaches (Krčál et al., 2018; Gibert et al., 2017; Raff
et al., 2018; Gibert et al., 2018, 2019; Vinayakumar et al., 2019;
Venkatraman et al., 2019; Gibert et al., 2020a) because it al-
lows to obviate and replace the time-consuming feature extrac-
tion process by an end-to-end system, which typically consists
of a neural network with multiple layers, that performs both

feature learning and classification altogether. With deep learn-
ing, one can start with raw data as features will be automati-
cally learned by the network through training on the labelled
data. For instance, Gibert et al. (2017) and McLaughlin et al.
(2017) presented a shallow convolutional neural network archi-
tecture to classify malware based on the assembly language in-
structions extracted from the assembly language source code
of malware from PE executables and Android APKs, respec-
tively. Similarly, Raff et al. (2018) and Krčál et al. (2018) de-
signed a shallow and deep convolutional neural networks, re-
spectively, to detect malware based on the bytes content. In-
stead of taking as input the byte sequence, which could consist
of a few million time steps, Gibert et al. (2018) presented a
method for classifying malware by compressing its binary con-
tent as a stream of entropy values (or structural entropy) using
convolutional neural networks. In other works (Gibert et al.,
2019; Vinayakumar et al., 2019), the executables are repre-
sented as a grayscale image by interpreting every byte as one
pixel in an image, with values ranging from 0 to 255 (0:black,
255:white). Recently, researchers (Venkatraman et al., 2019;
Gibert et al., 2020a) have started complementing traditional
features with features extracted through deep learning. The rea-
son behind this multimodal approach is that each executable in-
cludes multiple modalities of information. By only taking as
input the raw bytes or opcodes, a lot of information for classi-
fication is overlooked. As a result, multiple types of features
provide a better abstract representation of the executable char-
acteristics, leading to more accurate ML models.

2.2. Adversarial Attacks on ML-based Malware Detectors
Although machine learning has demonstrated impressive per-

formance in several application domains, ranging from com-
puter vision and natural language processing to cybersecurity,
ML models have been shown to be vulnerable to adversarial ex-
amples (Ren et al., 2020; Papernot et al., 2016), i.e. inputs to
the models that an attacker has carefully designed to cause the
model to make a mistake, and the domain of cyber security is no
exception (Grosse et al., 2016; Demetrio et al., 2019; Kolosnjaji
et al., 2018; Anderson et al., 2018). In addition, in the cyber se-
curity domain there really exist actual adversaries, the malware
developers, who are strongly motivated to craft their malicious
softwares to bypass detection systems in order to steal user in-
formation, spread across the network, or perform other hostile
activities. Next, some relevant adversarial attack approaches in
the literature are presented.

Grosse et al. (2016) proposed a gradient-based approach to
generate adversarial Android malware examples to evade their
own malware detector based on features extracted from (1) per-
missions and hardware components access requested, (2) API
calls made by the application, (3) intents used to communi-
cate with other applications and (4) application components,
service, content provider and broadcast receivers used by the
applications. They proposed a crafting process that iteratively
modifies the feature whose gradient is the largest until the ad-
versarial sample bypasses the detection model.

Suciu et al. (2019) explored the vulnerabilities of byte-based
malware detectors to adversarial malware binaries and presented

2

various strategies to bypass binary detectors by appending a
few bytes at the end of the PE headers and sections. Simi-
larly, Kolosnjaji et al. (2018) presented an approach to evade
malware detectors by appending a set of carefully-handpicked
bytes at the end of the file. In addition, Demetrio et al. (2019)
refined the aforementioned technique by using feature attribu-
tion to identify the most influential input features contributing
to each decision and thus, reducing the number of bytes needed
to be manipulated in order to evade the malware detector.

Alternatively, Anderson et al. (2018) presented a pioneer-
ing attack using reinforcement learning to craft adversarial ex-
amples using a series of actions to manipulate a malware bi-
nary. In their work, they trained an agent to evade a malware
detector based on features extracted from the PE header and
sections metadata, the import and export tables, counts of hu-
man readable strings, the byte histogram and a 2D byte-entropy
histogram of the executable. To do so, they allowed the agent to
perform various mutations on the executable that do not break
its file format or alter the code execution, such as appending
bytes at the end of sections, adding functions to the import ad-
dress table. However, as their results show, the evasion rate
between their agent and a random agent is practically the same,
mainly because the nature of the mutations implemented, be-
ing the use of packing the most successful mutation as it is the
technique that affects the most features used for training the ML
detector.

The aforementioned attacks (Suciu et al., 2019; Kolosn-
jaji et al., 2018; Demetrio et al., 2019; Anderson et al., 2018)
mainly rely on appending some bytes at the end of the sections
or at the end of the PE file. However, these attacks are quite
different from those employed by malware authors in a real
world scenario to obfuscate the executables. Common obfus-
cation techniques are the dead code insertion technique, the in-
struction replacement technique and the subroutine reordering
technique, just to name a few. Subsequently, in this work, we
address this problem by evaluating the robustness of a state-of-
the-art malware classifier (Gibert et al., 2017, 2021) against the
simplest obfuscation technique, the dead code insertion tech-
nique, and we present a framework to enhance its performance.
This classifier has been selected because of its superior perfor-
mance with respect to deep learning byte-based approaches in
the literature (Krčál et al., 2018; Raff et al., 2018).

3. Reinforcement Learning Framework

In this paper, we present a Proof of Concept (PoC) of a deep
reinforcement learning framework to induce misclassification
of malicious Portable Executable (PE) files over malware fam-
ilies.

Reinforcement learning (Kaelbling et al., 1996) is a branch
of machine learning where an agent seeks to learn optimal decision-
making by trying to maximize cumulative rewards to achieve a
specific goal. The two main components are the environment
and the agent. On the one hand, the environment represents the
problem to be solved. On the other hand, the agent represents
the learning algorithm used to perform actions in the environ-
ment in order to maximize the rewards. Thus, reinforcement

learning (RL) algorithms study the interaction of agents in such
environments and learn to optimize the behavior of the agents
in order to maximize the rewards. The learning process consists
of an agent and an environment that continuously interact with
each other, as shown in Figure 1. At each time step, the agent
takes action at on the current observation of the environment st ,
based on its policy π(at ,st), and receives a reward rt+1 and the
next observation of the environment st+1.

The problem of inducing misclassification of malware sam-
ples can be framed as a Makov Decision Proces (Bellman, 1957),
or MDP, which is a formalism that allows to define the inter-
action between the agent and environment as a tuple of four
elements (S, A, T, R):

• S: Set of states. At each time step, the state of the envi-
ronment is an element s ∈ S, where st denotes the state of
the environment at time step t.

• A: Set of actions. At each time step, the agent chooses an
action a ∈ A, where at denotes the action chosen at time
step t. The set of actions that can be performed on a par-
ticular state s ∈ S, is denoted A(s), where A(s)⊆ A. Note
that in some systems not all actions can be applied in ev-
ery state. This occurs in our case, as there are positions
in the assembly language source code that we will not be
able to insert dead instructions because it will break the
executable.

• T (st ,at ,st+1): State transition function that describes how
the environment’s state changes when the agent performs
an action in a given state. By applying action at ∈ A in a
state st ∈ S, the system makes a transition from state st to
a new state st+1 ∈ S, based on a probability distribution
over the set of possible transitions. The transition func-
tion T is defined as the probability of ending up in state
st+1 after performing action at in state st .

Assuming that the system is Markovian, i.e. the result of
an action does not depend on previous actions and pre-
vious states, but only depends on the current state, the
transition function can be mathematically described as
follows:

T (st ,at ,st+1)=P(st+1|st ,at)=P(st+1|st ,at ,st−1,at−1, ...)
(1)

• R(st ,at ,rt+1): Reward model used to describe the reward
value the agent receives from the environment after tran-
sitioning from state s ∈ S to the new state s

′ ∈ S with
action a ∈ A.

To sum up, at each time step, the agent will receive some
state of the environment s ∈ S. Given this representation, the
agent selects an action to take. Then, the environment transi-
tions to a new state and the agent is given a reward as a con-
sequence of its previous actions. This continuous interaction
of the agent with the environment creates a trajectory of states,
actions and rewards, which can be interpreted as:

S0,A0,R1,S1,A1,R2,S2,A2,R3, ...

3

Thus, the goal of the agent is to derive a policy π , the strategy
that the agent will pursue, so as to maximize the total amount of
rewards it receives over the course of action. In consequence,
the agent does not want to maximize the immediate rewards but
the cumulative rewards that it will receive over time. At a given
time step t, the cumulative reward is defined as:

Gt =
T−t−1

∑
i=0

γ
iRt+i+1 (2)

where T is the final time step and γ is the discount factor used
to control the importance of future rewards.

The policy π is a function that maps a given state s to proba-
bilities of selecting each possible action from that state. In other
words, for each state s ∈ S, π is a probability distribution over
a ∈ A(s). Most MDPs derive optimal policies by learning value
functions. There are two types of value functions: (1) functions
of states, or (2) state-action pairs, that estimate how good it is
for the agent to be in a given state, or how good it is for the
agent to perform a given action in a given state, respectively,
where the quality of a state or a state-action pair is given in
terms of expected return. Considering that the rewards an agent
expects to receive are dependent on the actions it takes in given
states and that these are influenced by the policy the agent is
following, we can see that the value functions are defined with
respect to policies.

So, the state-value function for a given policy π , denoted as
vπ , indicates how good any given state is for an agent following
policy π . In other words, the value of state s under policy π

is the expected return from starting from state s at time t and
following π thereafter. Mathematically, vπ(s) is defined as:

vπ(s) = Eπ [Gt |St = s] = Eπ [
∞

∑
i=0

γ
iRt+i+1|St = s] (3)

Similarly, the action-value function for a given policy π ,
denoted as qπ , indicates how good it is for the agent to take any
given action from a given state while following policy π . In
other words, the value of action a in state s under policy π is
the expected return from starting from state s at time t, taking
action a, and following policy π thereafter. Mathematically,
qπ(s,a) is defined as:

qπ(s,a) =E[Gt |St = s,At = a] =Eπ [
∞

∑
i=0

γ
iRt+i+1|St = s,At = a]

(4)
It is also common to refer to the action-value function qπ

as the Q-function while the output from the Q-function for any
given state-action pair (s,a) is referred to its Q-value. In other
words, the Q-value associated with a state-action pair (s,a) rep-
resents the quality of taking action a in state s.

As already defined, the goal of the agent is to derive a policy
π that maximizes the total amount of rewards received. That is,
the policy that yields more return to the agent than all the other
policies.

In terms of return, given two policies π and π
′
, policy π

is considered to be better than or the same as policy π
′

if the
expected return of π is greater than or equal to the expected
return of policy π

′
for all states.

π ≥ π
′
i f and only i f vπ(s)≥ v

π
′
(s) f or all s ∈ S (5)

A policy that is better than or at least the same as all other
policies is called the optimal policy, and will be denoted π∗
from now on.

The optimal policy has an associated optimal state-value
function, denoted as v∗ and defined as

v∗(s) = max
π

vπ(s) (6)

for all s∈ S. In other words, v∗ gives the largest expected return
achievable by any policy π for each state.

Similarly, the optimal policy has an optimal action-value
function, or optimal Q-function, which we denote as q∗ and
define as

q∗(s,a) = max
π

qπ(s,a) (7)

for all s ∈ S and a ∈ A(s). In other words, q∗ gives the largest
expected return achievable by any policy π for each possible
state-action pair.

One fundamental property of q∗ is that it must satisfy the
following equation.

q∗(s,a) = E[Rt+1 + γ max
a′

q∗(s
′
,a
′
)] (8)

This is called the Bellman optimality equation. It states that,
for any state-action pair (s,a) at time t, the expected return from
starting in state s, selecting action a and following the optimal
policy π∗ thereafter is going to be the expected reward we get
from taking action a in state s, which is Rt+1, plus the maximum
expected discounted return that can be achieved from any pos-
sible next state-action pair (s

′
, a
′
). Since the agent is following

the optimal policy, the following state s
′

will be the state from
which the best possible next action a

′
can be taken at time t +1

As a result, the optimal policy can be determined from the
optimal state-value function q∗, because once q∗ has been solved,
we can determine the optimal policy by finding the action a that
maximizes q∗(s,a). Mathematically, this can be written as fol-
lows:

π∗(s) = argmax
a

q∗(s,a) (9)

In other words, the best action from any given state is the action
that has the highest expected return based on the possible next
states resulting from taking that action.

One algorithm to find the optimal Q-values for each state-
action pair is the Q-learning algorithm (Watkins and Dayan,
1992). This algorithm iteratively updates the Q-values for each
state-action pair using the Bellman equation until the Q-function
converges to the optimal Q-function q∗. In the Q-learning algo-
rithm, the Q-function is stored as a table with each cell corre-
sponding to the Q-value of an action a in a given state s. Then,

4

Agent

Malware sample Malware classifier

Environment State st+1, Reward rt+1

State st , Reward rt
Action at

Figure 1: Reinforcement learning schema for evading a malware detector. At
time step t, the agent takes as input the state st and the reward rt . It selects the
best action at to perform, i.e. the location to insert the NOP instruction that
has a higher Q-value, and modifies the malware sample. Afterwards, it checks
whether or not the mutated sample produces a misclassification. If not, the pro-
cedure is repeated until the sample is misclassified or it reaches the maximum
number of modifications allowed to be performed by the agent before declaring
failure.

the Q-values are updated iteratively according to the following
update rule:

Q(st ,at) = (1−α)Q(st ,at)+α(rt + γ max
a

Q(st+1),a) (10)

Given infinite exploration time and a partly-random policy,
it has been proved that the Q-learning algorithm can derive the
optimal policy for any given finite MDP. However, although the
Q-learning algorithm works well in very simple environments
with a very limited number of actions and states such as the
Frozen Lake 4, CartPole-v1 5, among others, this approach is to-
tally impractical in complex environments as it requires having
a finite state and action spaces and storing the full state-action
table in memory (which is often unfeasible). As a result, the
Double Q-learning algorithm (Mnih et al., 2013, 2015; Hasselt
et al., 2016) with experience replay (Lin, 1992) has been imple-
mented to estimate the optimal Q-function. For a more detailed
description of the algorithm, we refer the readers to Section 3.3.

Next, Section 3.1 describes the environment, and Section 3.2
describes the action space. Afterwards, Section 3.3 describes
the reinforcement learning algorithm used to approximate the
optimal Q-function and the convolutional neural network ar-
chitecture used to determine the best position to which insert
the NOP instructions in order to bypass the malware classifier.
Lastly, Section 3.5 briefly resumes the machine learning classi-
fier that we aim to bypass by modifying the assembly language
source code of the executable with the insertion of NOP instruc-
tions.

3.1. Environment
The environment consists of an initial malware sample (one

malware sample per episode) and the malware classifier (the
attack target). Each time step or turn within an episode provides
the following feedback to the agent:

4https://gym.openai.com/envs/FrozenLake-v0/
5https://gym.openai.com/envs/CartPole-v1/

• A reward value rt ∈R given for mislabeling the malware
family. The reward value rt at time step t is equal to the
difference between the loss of the previous state and the
loss of the current state of the classifier that we want to
evade.

rt =−1∗ (losst−1− losst) (11)

where losst refers to the multi-class logarithmic loss or
cross entropy loss returned by the classification model for
state st . Thus, if the reward at time step t, rt , is positive,
it indicates that the action performed at time step t, at ,
has increased the error loss of the target classifier. On the
other hand, if the reward at time step t, rt , is negative then,
the action at time step t, at has negatively contributed to
the misclassification of the current executable.

• The state st of the environment (malware sample) is rep-
resented as a sequence of assembly language instructions
extracted from the assembly language source code of the
Portable Executable file, whereas the assembly language
source code can be obtained by disassembling the Portable
Executable file using any disassembler of your choice,
i.e. IDA Pro 6, Radare2 7, Ghidra 8. One particularity
of using the sequence of instructions to represent an ex-
ecutable is that the resulting length of the sequence will
differ from one executable to the other. In addition, for
each instruction added to the executable, the size of the
resulting sequence of instructions will be incremented
by one. Instead of taking the assembly language source
code as a whole, including its arguments, we decided to
only take as input the mnemonics of the instruction. The
mnemonic of a given instruction refers to the portion of
the machine language instruction that specifies the opera-
tion to be performed, i.e. on encountering the instruction
lea eax, [esp+8], we simply take as input the opcode lea.

Based on the feedback provided by the reward, the agent learns
which action to choose from a set of mutations (See Section 3.2)
given the environment’s state (sequence of assembly language
instructions), while preserving the format and function of the
PE file.

3.2. Action Space
The mutations represent the actions or moves available to

the agent within the environment. Formally, the set of all possi-
ble actions is defined as A= {insert0, insert1, ..., insertn}, where
inserti refers to inserting a NOP instruction at position i in the
assembly language instruction sequence. Therefore, at time
t, the agent chooses action at . In this paper, we only con-
sidered as valid actions the insertion NOP instructions as it is
the simplest dead code instruction available (Balakrishnan and
Schulze, 2005). The NOP or no-op instruction (short for no op-
eration) is an assembly language instruction that does nothing.
An example is provided in Figure 2. In addition, the number

6https://www.hex-rays.com/ida-pro/
7https://rada.re/n/
8https://ghidra-sre.org/

5

https://gym.openai.com/envs/FrozenLake-v0/
https://gym.openai.com/envs/CartPole-v1/
https://www.hex-rays.com/ida-pro/
https://rada.re/n/
https://ghidra-sre.org/

of actions available differs for each sample because it depends
on the size and the content of their assembly language source
code. Take into account that the locations to which the NOP
instructions are inserted must not break the executable.

Figure 2: Snapshot of a piece of assembly language source code with a NOP
instruction inserted at the location 0x00408ABF.

3.3. Agent

The agent takes the assembly language instructions of the
sample and executes the action that will eventually yield the
highest cumulative reward. This action is selected according to
the Q-values provided by a deep Q-network (DQN). See Fig-
ure 3. For each given input state, the Q-network outputs the
estimated Q-values for each action that can be taken from that
state.

State Q-Network

Q-value 1

Q-value 2

Q-value N

Figure 3: Black-box representation of the Q-Network. The Q-Network takes as
input the state, i.e. the assembly language source code of malware, and outputs
the estimated Q-values of inserting a NOP instruction to all locations of the
source code.

To train this network, we used the Double Q-learning al-
gorithm (Hasselt et al., 2016), which decouples the action se-
lection from the target Q-value generation, with experience re-
play (Lin, 1992). The Double Q-learning algorithm uses two
networks, the primary network, Q, and the target network, Qtarget,
to select what is the best action to take for the next state and
to calculate the target Q-value of taking that action at the next
state, respectively. The weights of the primary network at time
step t are denoted as θ while the weights of the target network
at time step t are denoted as θ

′
. Notice that the primary net-

work and the target network architectures are the same. The

only difference between them is their weights. Mathematically,
this can be formulated as follows:

Q∗(st ,at)≈ r(st ,at)+ γQtarget(st+1,argmax
a

Q(st+1,a;θ);θ
′
)

(12)
The update of the target network stays unchanged from the

primary network, and it slowly copies the weights of the pri-
mary network Q using the Polyak averaging:

θ
′ ← τθ +(1− τ)θ

′
(13)

To train Q-networks it is used a technique called experience
replay during training (Lin, 1992). The idea behind is to store
the agent’s experiences at each time step in a replay memory
data set and use these experiences to update the weights of the
Q-network through gradient descent.

At a time step t, the agent’s experience denoted as et is de-
fined as a tuple of four elements containing the state of the en-
vironment st , the action at taken from state st , the reward rt+1
the agent receives at time step t +1 as the result of performing
action at on the state st , and the next state of the environment
st+1.

et = (st ,at ,rt+1,st+1)

The advantages of experience replay are various. First, each
experience might be potentially used in multiple weight updates
allowing for greater data efficiency. Second, previous online
learning approaches learned directly from consecutive samples
with strong correlations between them. By sampling a subset of
samples from the experience replay data set, these correlations
are broken and the variance of the updates is reduced (Mnih
et al., 2013).

In addition, to balance between exploration and exploita-
tion during training, we use the epsilon-greedy action selection
algorithm. This algorithm tackles the exploration-exploitation
trade-off by taking an exploratory action with probability ε and
a greedy action with probability 1− ε . Mathematically, the
epsilon-greedy action selection algorithm selects an action at
at time step t as follows:

at =

{
maxQt(a) with probability 1− ε

random action with probability ε
(14)

In our case, the value of ε is set to 1.0 at the beginning of
the training, and it is continuously decreased at each time step
until reaching 0.5. This has been done to allow the agent to
explore more often than not as the state and action spaces in
our problem are very large.

For a complete description of the Double Q-learning algo-
rithm, we refer the readers to Algorithm 1, the work of Hasselt
et al. (2016), and the references therein.

3.4. Q-Network Architecture
An overview of the Q-network is described in Figure 4. It

consists of a convolutional layer to extract features from the
sequence of assembly language instructions followed by a time-
distributed layer that applies the same fully-connected layer to
every time step. The layers description is as follows:

6

Figure 4: Graphical representation of the shallow convolutional Q-network architecture. The Q-network takes as input a Portable Executable (PE) file represented as
a sequence of mnemonics (length N) and represents each mnemonic as a word embedding (size E). Afterwards, a convolutional layer with filters of size 3 is applied
to extract features from the sequence of embedded mnemonics, followed by a time-distributed layer to retrieve the Q-value of inserting a NOP instruction at every
location in the mnemonics sequence.

• Input layer. The network takes as input an executable
represented as a sequence of mnemonics. A mnemonic
is the name of the operation a machine can execute. For
instance, the assembly language instruction mov ebp, esp
is reduced to the mnemonic mov. The main argument
behind this simple representation is that it will generalize
better as it would not be affected by small permutations in
the arguments and thus, the obfuscation technique known
as register reassignment would not alter the output of the
classifier.

• Embedding layer. Each mnemonic is represented as a
low-dimensional vector of real values (word embedding)
of size E, where each value captures a dimension of the
mnemonics’ meaning. E was set to 4 as in (Gibert et al.,
2017). The rationale behind using distributed represen-
tations is to better capture the semantic relationships be-
tween comparable mnemonics.

• Convolutional layer. The convolutional layer extracts N-
gram like features from the sequence of assembly lan-
guage instructions. The size of each filter is h x E where
h= 3. The number of different filters in the convolutional
layer is 10.

• Time-Distributed layer. This layer applies a fully-connected
layer to each of the N mnemonics (N is equal to the size

of the assembly language instructions sequence), inde-
pendently. The input of the fully-connected layer is equal
to the number of filters in the convolutional layer while
the number of output neurons o is equal to 1. At the end,
the softmax function is applied to output the estimated Q-
values of inserting a NOP instruction in any location of
the assembly language instructions given as input to the
network.

For a complete description of the trainable parameters of the
Q-network we refer the readers to Table A.4.

3.5. CNN classifier
The classifier model that our agent is seeking to evade is a

shallow convolutional neural network specifically designed to
learn N-gram based features from a sequence of text (Gibert
et al., 2017, 2021). This classifier has been selected among the
deep learning classifiers in the literature because of its state-
of-the-art performance (Gibert et al., 2021). See Figure 5 and
Table A.5 for a detailed description of the network architecture.

The network takes as input an executable represented as a
sequence of mnemonics and convolves various filters of dif-
ferent sizes to extract n-gram like features. In particular, the
filters have sizes 3, 5 and 7. Afterwards, a global max-pooling
layer is applied to extract the maximum activation of each of
the feature map activations from the previous layer. At the end,

7

Input: Initialize weights θ and θ
′

of primary and
target networks Q and Qtarget, replay buffer D,
τ << 1

for each episode do
for each environment step do

Select action at using Equation 14
Execute at and observe next state st+1 and
reward rt Store transition (st ,at ,rt+1,st+1) in
replay buffer D

end
for each update step do

sample et = (st ,at ,rt+1,st+1)∼ D
Compute target Q-value using Equation 12
Perform gradient descent step on

(Q∗(st ,at)−Q(st ,at))
2 (15)

Update target network parameters using Eq. 13
end

end
Algorithm 1: Double Q-learning algorithm (Hasselt et al.,
2016)

Raw Mnemonics

4-dimensiomal Embedding4×N

Conv 5 (stride 1)100Conv 3 (stride 1)100 Conv 7 (stride 1)100

Global Max Pooling100Global Max Pooling100 Global Max Pooling100

Feature Concatenation300

Softmax9

Figure 5: State-of-the-art convolutional neural network architecture for mal-
ware classification (Gibert et al., 2017).

the softmax function is applied to the linear combination of the
learned features to output the probability distribution over mal-
ware families.

4. Evaluation

4.1. The Microsoft Malware Classification Dataset
To validate our method, the data provided by Microsoft for

the Big Data Innovators Gathering (Ronen et al., 2018) has been
used instead of creating our own in-house (non-reproducible)
dataset of benign and malicious samples for reproducibility pur-
poses. Notice that, unlike other domains, there are legal re-
strictions in place that forbid sharing benign binaries such as
copyright laws. In addition, determining whether a file is mali-
cious and its corresponding family is very time-consuming even
for experienced security analysts. Furthermore, the Microsoft
dataset has become the standard benchmark to evaluate the per-
formance of machine learning algorithms for the task of Win-
dows malware classification because it provides high quality

samples from various malware families. The dataset is publicly
accessible and hosted on Kaggle 9, and it contains almost half
of a terabyte of malware belonging to 9 malware families. See
Table 1. For each file, it is provided the hexadecimal repre-

Table 1: Class distribution in the Microsoft dataset (Ronen et al., 2018).
Family Name # Train Samples Type
Ramnit 1541 Worm
Lollipop 2478 Adware
Kelihos_ver3 2942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 TrojanDownloader
Kelihos_ver1 398 Backdoor
Obfuscator.ACY 1228 Obfuscated malware
Gatak 1013 Backdoor

sentation of the file’s binary content and the assembly language
source code generated with the IDA disassembler tool 10. The
assembly language source code of a computer program is the
low-level representation of the program’s statements and ma-
chine code instructions. As observed in Table 1 and Figure 6 ,
the dataset is imbalanced and heterogeneous, with the average
number of assembly language instructions of samples belong-
ing to different families very distinct. This particularity will
greatly affect the performance of the framework as shown in
Section 4.4.

Notice that the methodology described through this paper
can be applied for the task of malware detection with minor
modifications, i.e. reducing the number of output neurons from
9 (number of families in the Microsoft dataset) to 1, indicating
the maliciousness of the executable.

4.2. Experimental Setup

The experiments were run on a computer with the following
specifications: Intel i7-7700K, 32 GB RAM, 2 x Nvidia GTX
1080Ti. The Microsoft dataset comprises two sets, the training
and the test set. But unfortunately, the labels of the test set
are not provided. To evaluate the models on the test set, a file
with the predicted class probabilities for each sample on the set
must be submitted on Kaggle. In consequence, to evaluate our
framework, we divided the training set into three sets: training,
validation and test set, each containing 70%, 15% and 15% of
the samples of the original training set, respectively.

4.3. Parameters Setting

In the experiments, the malware classifier to be evaded is
trained on the training set for 15 epochs and evaluated on the
validation set. The test set is then used to provide an unbiased
evaluation of the fitness of the final model. Figure 7 shows
the confusion matrix, also known as the error matrix, which
summarizes the results of testing the model on the test set. The

9https://www.kaggle.com/c/malware-classification/overview
10https://www.hex-rays.com/products/ida/

8

Figure 6: Average number of instructions per family. It can be observed that the
size of the samples belonging to different families is not similar. For instance,
the samples belonging to the Ramnit and Lollipop families contain 46601.44
and 19157.06 instructions per sample, respectively, while the samples belong-
ing to the Kelihos_ver1 family have only an average of 1326.65 instructions per
sample.

accuracy achieved is 98.65%. Regarding the hyperparameters
of the classifier, the convolutional layer has 300 filters of size
h x M, where h ∈ {3,5,7} and M is the embedding size (M =
4).

For the reinforcement learning framework parameters setup,
the maximum number of modifications per episode is 50 to limit
the number of modifications to the minimum. As observed in
Figure 9, the average number of dead code insertions needed
to degrade the performance of the classifier using a random
agent on average is less than 50 for the Gatak, Kelihos_ver1,
Tracur, Simda, Vundo and Kelihos_ver3 families. Thus, we
considered that 50 insertions were more than enough to test
whether or not the AI agent outperforms the random agent. For
each family, a different model was trained for a total number
of 1000 episodes. In consequence, each model learns which
N-grams need to break or mimic in order to mislabel the sam-
ples of a given malware family. The discount factor γ is set to
0.99997. The major parameter settings in the training algorithm
are shown in Table 2.

4.4. Results

The reinforcement learning models are trained on the sam-
ples from the validation set. To evaluate the performance of
the learned models in mislabeling the malicious samples of any
given family, we recorded the average total reward value, the
average number of NOP insertions and the average accuracy
per family on the test set. The average total reward plot in Fig-
ure 10 shows a 87.62%, 260.95%, 103.09%, 288.05%, 22.88%,
68.75% increase with respect to the cumulative rewards achieved
by a random agent on the Kelihos_ver3, Vundo, Simda, Tracur,
Kelihos_ver1 and Gatak malware families, respectively. In ad-
dition, as it can be observed in Figures 8 and 9, the AI agent
was able to misclassify all the samples on the test set belonging

Figure 7: Confusion or error matrix of the CNN classifier on the test set. Each
row represents a predicted class and each column represents the instances in an
actual class. By definition, a confusion matrix C is such that Ci, j is equal to the
number of observations known to be in family i and predicted to be in family
j. The diagonal represents the case where the prediction of the CNN model
is family i and the actual class is i too. Any off-diagonal entry indicates some
mistake.

to the Kelihos_ver3, Simda, Kelihos_ver1 and Gatak families
while also reducing by 81.81%, 92.62%, 76.47%, and 88.40%
the number of NOP instructions inserted, respectively. As ev-
idenced by the experiments (Table 3), our framework is able
to generate adversarial examples that bypass a state-of-the-art
CNN malware classifier by only inserting NOP instructions.
However, the agent has problems mislabeling the samples be-
longing to the Ramnit, Lollipop, Tracur and Obfuscator.ACY
families because of the following two reasons: First, the sam-
ples of malware belonging to the Kelihos_ver3, Simda, Keli-
hos_ver1 and Gatak families in the training set do not contain
any NOP instruction. As a result, their respective Q-networks
ended up learning the optimal locations to where to insert a
NOP instruction in such a way that it makes the malware classi-
fier detect a pattern characteristic of samples in a different mal-
ware family. On the contrary, the malware samples belonging
to the Ramnit and Lollipop families hardly break the patterns
the classifier has learned to detect as their assembly language
instructions are at least twice as bigger than those of the other
families, and some patterns learned for those families consist
of at least one NOP instruction. You can observe in Table 3
that inserting 50 NOP instructions is not enough to misclas-
sify the executables belonging to these families. This could be
solved by increasing the maximum number of mutations to be
performed or by allowing the agent to insert other dead instruc-
tions such as (1) MOV Reg, Reg, (2) PUSH Reg; POP Reg, (3)
ADD Reg, 0, to see if with the insertion of those instructions we
could make the agent mimic patterns learned for other families.

Nevertheless, in the present paper, we have demonstrated
that the use of simple obfuscation techniques is more than enough
to decrease the overall accuracy of deep learning models, and
we have provided a general framework that uses reinforcement

9

Table 2: List of major parameters and their values in the training algorithm.
Parameter settings Value Description
MAXTURN 50 The maximum number of modifications allowed to be performed by the agent before declaring failure.
EPISODES 1000 The maximum number of episodes played for each family.
Memory buffer max size 2000 The capacity of the replay buffer memory.
Discount factor 0.99997 The discount factor γ used in the Q-learning update.
Initial exploration 1 Initial value of the ε in ε-greedy exploration
Final exploration 0.5 Final value of the ε in ε-greedy exploration
Number of filters (Q-Network) 10 Number of filters in the convolutional layer of the Q-Network.

Figure 8: Performance comparison of the CNN model on the test set. It can be
seen that the DQN agent outperforms the random agent in almost all families
(The lower is the accuracy of the model on the resulting obfuscated test set,
the better). Notice that those families in which the agents haven’t succeeded in
misclassifying any of the samples are not displayed, i.e. Ramnit, Lollipop and
Obfuscator.ACY families.

learning to boost the efficiency of the dead code insertion tech-
nique.

5. Conclusions

This paper proposes a general framework using reinforce-
ment learning to make a state-of-the-art malware classifier to
incorrectly label the samples of a given family. The core com-
ponent is an intelligent agent, which constantly interacts with
malware samples to learn to choose the optimal locations to
where to insert NOP instructions. This has been achieved by
training a shallow convolutional Q-network using the double Q-
learning algorithm. Experiments show that the proposed frame-
work dropped the classification accuracy of the classifier from
98.65% to 56.53% on the test set while having an evasion rate
of 100% for the samples belonging to the Kelihos_ver3, Simda,
and Kelihos_ver1 families. In addition, the Q-network enhanced
the evasion rate of the dead code insertion technique by 11.29%
while also reducing the average number of NOP insertions needed
to mislabel the malware sample by 33%.

5.1. Future Work
One future line of research is the use of additional dead code

instructions (such as the MOV Reg, Reg instruction, the ADD

Figure 9: Comparison of the average number of NOP instructions required by
the DQN and random agents to misclassify the state-of-the-art CNN classi-
fier (Gibert et al., 2017, 2021). Notice that those samples in which the agents
haven’t succeeded in misclassifying any of the samples are not displayed, i.e.
Ramnit, Lollipop and Obfuscator.ACY. In those cases, the average number of
NOP insertions is 50, which is equal to MAXTURN, the maximum number of
modifications allowed to be performed by the agent before declaring failure.

Reg, 0 instruction, the SUB Reg, 0 instruction, the SHL Reg, 0
instruction, among others), and the investigation of other com-
mon obfuscation techniques such as the instruction substitution
technique, the subroutine reordering technique, and the code
reordering through jumps technique. Moreover, instead of de-
veloping adversarial attacks, one line of research could be the
study of potential methods for hardening anti-malware engines
against adversarial crafting.

Acknowledgements

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No. 847402. This
research has been partially funded by the Spanish MICINN
Projects TIN2015-71799-C2-2-P, ENE2015-64117-C5-1-R, PID2019-
111544GB-C22, and supported by the University of Lleida.

References

Ahmadi, M., Giacinto, G., Ulyanov, D., Semenov, S., Trofimov, M., 2015.
Novel feature extraction, selection and fusion for effective malware fam-
ily classification. CoRR abs/1511.04317.
URL http://arxiv.org/abs/1511.04317

10

http://arxiv.org/abs/1511.04317

Table 3: Comparison of the accuracy of the CNN model on the samples of the test set and the obfuscated versions generated by the random agent and the DQN
agent, as well as the average cumulative reward and the average number of NOP insertions of both agents.

CNN accuracy Average number of NOP insertions Average cummulative reward
Malware family No agent Random agent DQN agent Random agent DQN agent Random agent DQN agent
Ramnit 99.15 99.15 99.15 48.58 48.58 0.01 0.01
Lollipop 99.46 99.46 99.19 48.74 48.612 0.01 0.01
Kelihos_ver3 99.54 53.78 0.0 42.60 7.75 0.85 1.60
Vundo 98.77 83.95 55.56 43.79 29.47 0.22 0.81
Simda 100.0 22.22 0.0 30.11 2.22 0.81 1.64
Tracur 96.26 95.33 88.79 46.84 44.14 0.05 0.21
Kelihos_ver1 98.51 0.0 0.0 15.99 3.76 1.39 1.71
Obfuscator.ACY 95.74 95.21 95.74 46.85 46.95 -0.01 0.01
Gatak 98.52 24.44 0.0 29.83 3.46 0.88 1.48

Figure 10: Comparison of the average cumulative reward achieved by the DQN
and random agents. Notice that those families in which the agents haven’t suc-
ceeded in misclassifying any of the samples are not displayed as their average
cumulative reward is almost 0, i.e. Ramnit, Lollipop and Obfuscator.ACY fam-
ilies.

Anderson, H. S., Kharkar, A., Filar, B., Evans, D., Roth, P., 2018. Learning to
evade static PE machine learning malware models via reinforcement learn-
ing. CoRR abs/1801.08917.
URL http://arxiv.org/abs/1801.08917

Balakrishnan, A., Schulze, C., 2005. Code obfuscation literature survey.
Bellman, R., 1957. A markovian decision process. Journal of Mathematics and

Mechanics 6 (5), 679–684.
URL http://www.jstor.org/stable/24900506

Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A., 2019. Explain-
ing vulnerabilities of deep learning to adversarial malware binaries. CoRR
abs/1901.03583.
URL http://arxiv.org/abs/1901.03583

Gibert, D., Béjar, J., Mateu, C., Planes, J., Solis, D., Vicens, R., 2017. Con-
volutional neural networks for classification of malware assembly code. In:
Recent Advances in Artificial Intelligence Research and Development - Pro-
ceedings of the 20th International Conference of the Catalan Association
for Artificial Intelligence, Deltebre, Terres de l’Ebre, Spain, October 25-27,
2017. pp. 221–226.
URL https://doi.org/10.3233/978-1-61499-806-8-221

Gibert, D., Mateu, C., Planes, J., 2020a. Hydra: A multimodal deep learning
framework for malware classification. Computers & Security 95, 101873.
URL https://www.sciencedirect.com/science/article/pii/
S0167404820301462

Gibert, D., Mateu, C., Planes, J., 2020b. The rise of machine learning for

detection and classification of malware: Research developments, trends and
challenges. Journal of Network and Computer Applications, 102526.
URL http://www.sciencedirect.com/science/article/pii/
S1084804519303868

Gibert, D., Mateu, C., Planes, J., Marques-Silva, J., 2021. Auditing static ma-
chine learning anti-malware tools against metamorphic attacks. Computers
& Security 102, 102159.
URL http://www.sciencedirect.com/science/article/pii/
S0167404820304326

Gibert, D., Mateu, C., Planes, J., Vicens, R., 2018. Classification of malware
by using structural entropy on convolutional neural networks.
URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16133

Gibert, D., Mateu, C., Planes, J., Vicens, R., 2019. Using convolutional neural
networks for classification of malware represented as images. J. Comput.
Virol. Hacking Tech. 15 (1), 15–28.
URL https://doi.org/10.1007/s11416-018-0323-0

Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P. D., 2016.
Adversarial perturbations against deep neural networks for malware classi-
fication. CoRR abs/1606.04435.
URL http://arxiv.org/abs/1606.04435

Hasselt, H. v., Guez, A., Silver, D., 2016. Deep reinforcement learning with
double q-learning. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence. AAAI’16. AAAI Press, p. 2094–2100.

Kaelbling, L. P., Littman, M. L., Moore, A. W., May 1996. Reinforcement
learning: A survey. J. Artif. Int. Res. 4 (1), 237–285.

Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C.,
Roli, F., Sep. 2018. Adversarial malware binaries: Evading deep learning for
malware detection in executables. In: 2018 26th European Signal Processing
Conference (EUSIPCO). pp. 533–537.

Krčál, M., Švec, O., Bálek, M., Jašek, O., 2018. Deep convolutional malware
classifiers can learn from raw executables and labels only.
URL https://openreview.net/forum?id=HkHrmM1PM

Lin, L.-J., May 1992. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine Learning 8 (3), 293–321.
URL https://doi.org/10.1007/BF00992699

McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P.,
Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., et al., 2017. Deep
android malware detection. In: Proceedings of the Seventh ACM on Confer-
ence on Data and Application Security and Privacy. CODASPY ’17. Asso-
ciation for Computing Machinery, New York, NY, USA, p. 301–308.
URL https://doi.org/10.1145/3029806.3029823

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M. A., 2013. Playing atari with deep reinforcement learning.
CoRR abs/1312.5602.
URL http://arxiv.org/abs/1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., Hassabis, D., 2015. Human-level control through deep rein-
forcement learning. Nat. 518 (7540), 529–533.
URL https://doi.org/10.1038/nature14236

11

http://arxiv.org/abs/1801.08917
http://www.jstor.org/stable/24900506
http://arxiv.org/abs/1901.03583
https://doi.org/10.3233/978-1-61499-806-8-221
https://www.sciencedirect.com/science/article/pii/S0167404820301462
https://www.sciencedirect.com/science/article/pii/S0167404820301462
http://www.sciencedirect.com/science/article/pii/S1084804519303868
http://www.sciencedirect.com/science/article/pii/S1084804519303868
http://www.sciencedirect.com/science/article/pii/S0167404820304326
http://www.sciencedirect.com/science/article/pii/S0167404820304326
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16133
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16133
https://doi.org/10.1007/s11416-018-0323-0
http://arxiv.org/abs/1606.04435
https://openreview.net/forum?id=HkHrmM1PM
https://doi.org/10.1007/BF00992699
https://doi.org/10.1145/3029806.3029823
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., Swami, A.,
2016. The limitations of deep learning in adversarial settings. In: 2016 IEEE
European Symposium on Security and Privacy (EuroS P). pp. 372–387.

Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S., Xiang, Y., Dec. 2020. A survey
of android malware detection with deep neural models. ACM Comput. Surv.
53 (6).
URL https://doi.org/10.1145/3417978

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C. K.,
2018. Malware detection by eating a whole EXE. In: The Workshops of
the The Thirty-Second AAAI Conference on Artificial Intelligence, New
Orleans, Louisiana, USA, February 2-7, 2018. pp. 268–276.
URL https://aaai.org/ocs/index.php/WS/AAAIW18/paper/
view/16422

Ren, K., Zheng, T., Qin, Z., Liu, X., 2020. Adversarial attacks and defenses in
deep learning. Engineering 6 (3), 346 – 360.
URL http://www.sciencedirect.com/science/article/pii/
S209580991930503X

Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M., 2018. Mi-
crosoft malware classification challenge. CoRR abs/1802.10135.
URL http://arxiv.org/abs/1802.10135

Souri, A., Hosseini, R., Jan 2018. A state-of-the-art survey of malware detection
approaches using data mining techniques. Human-centric Computing and
Information Sciences 8 (1), 3.
URL https://doi.org/10.1186/s13673-018-0125-x

Suciu, O., Coull, S. E., Johns, J., 2019. Exploring adversarial examples in mal-
ware detection. In: 2019 IEEE Security and Privacy Workshops (SPW). pp.
8–14.

Venkatraman, S., Alazab, M., Vinayakumar, R., 2019. A hybrid deep learning
image-based analysis for effective malware detection. Journal of Informa-
tion Security and Applications 47, 377–389.
URL https://www.sciencedirect.com/science/article/pii/
S2214212618304563

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Venkatraman,
S., 2019. Robust intelligent malware detection using deep learning. IEEE
Access 7, 46717–46738.

Watkins, C. J. C. H., Dayan, P., May 1992. Q-learning. Machine Learning 8 (3),
279–292.
URL https://doi.org/10.1007/BF00992698

Zhang, Y., Huang, Q., Ma, X., Yang, Z., Jiang, J., 2016. Using multi-features

and ensemble learning method for imbalanced malware classification. In:
2016 IEEE Trustcom/BigDataSE/ISPA. pp. 965–973.

Appendix A. Configuration Details of the Neural Networks

Layer (type) Output shape Parameters #
input_1 (Input layer) (None, N, 1) 0
embedding_1 (Embedding layer) (None, N, E) 4*557 (E*V)
conv1d_3(Conv_1D) (None, N, 10) 10*3*4
global_maxpool1d_3 (GlobalMaxPooling1D) (None, 10) 0
time_distributed (dense_1) (None, N) 10*1
softmax_1 (Softmax) (None, N) 0
Total trainable parameters 2358

Table A.4: Configuration details of the Q-network architecture used to select
the locations to which insert NOP instructions in a given malware sample in
order to bypass detection. N is the size of the input mnemonics sequence. E
is the embedding size. V is the vocabulary size, i.e. the number of different
mnemonics found in the Microsoft dataset.

Layer (type) Output shape Parameters #
input_1 (Input layer) (None, N, 1) 0
embedding_1 (Embedding layer) (None, N, E) 4*557 (E*V)
conv1d_3(Conv_1D) (None, N, 100) 100*3*4
global_maxpool1d_3 (GlobalMaxPooling1D) (None, 100) 0
conv1d_5(Conv_1D) (None, N, 100) 100*5*4
global_maxpool1d_5 (GlobalMaxPooling1D) (None, 100) 0
conv1d_7(Conv_1D) (None, N, 100) 100*7*4
global_maxpool1d_7 (GlobalMaxPooling1D) (None, 100) 0
features concatenation (None, 300) 0
dense_1 (Dense) (None, 9) 300*9
softmax_1 (Softamx) (None, 9) 0
Total trainable parameters 10928

Table A.5: Configuration details of the shallow CNN architecture for malware
classification.

12

https://doi.org/10.1145/3417978
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422
http://www.sciencedirect.com/science/article/pii/S209580991930503X
http://www.sciencedirect.com/science/article/pii/S209580991930503X
http://arxiv.org/abs/1802.10135
https://doi.org/10.1186/s13673-018-0125-x
https://www.sciencedirect.com/science/article/pii/S2214212618304563
https://www.sciencedirect.com/science/article/pii/S2214212618304563
https://doi.org/10.1007/BF00992698

	1 Introduction
	2 Related Work
	2.1 Machine Learning for Malware Detection and Classification
	2.2 Adversarial Attacks on ML-based Malware Detectors

	3 Reinforcement Learning Framework
	3.1 Environment
	3.2 Action Space
	3.3 Agent
	3.4 Q-Network Architecture
	3.5 CNN classifier

	4 Evaluation
	4.1 The Microsoft Malware Classification Dataset
	4.2 Experimental Setup
	4.3 Parameters Setting
	4.4 Results

	5 Conclusions
	5.1 Future Work

	Appendix A Configuration Details of the Neural Networks

