
1

Strategic Signaling for Utility Control in Audit
Games

Jianan Chen, Qin Hu, and Honglu Jiang

Abstract—As an effective method to protect the daily access
to sensitive data against malicious attacks, the audit mechanism
has been widely deployed in various practical fields. In order
to examine security vulnerabilities and prevent the leakage of
sensitive data in a timely manner, the database logging system
usually employs an online signaling scheme to issue an alert
when suspicious access is detected. Defenders can audit alerts
to reduce potential damage. This interaction process between a
defender and an attacker can be modeled as an audit game.
In previous studies, it was found that sending real-time signals
in the audit game to warn visitors can improve the benefits of
the defender. However, the previous approaches usually assume
perfect information of the attacker, or simply concentrate on the
utility of the defender. In this paper, we introduce a brand-
new zero-determinant (ZD) strategy to study the sequential
audit game with online signaling, which empowers the defender
to unilaterally control the utility of visitors when accessing
sensitive data. In addition, an optimization scheme based on
the ZD strategy is designed to effectively maximize the utility
difference between the defender and the attacker. Extensive
simulation results show that our proposed scheme enhances the
security management and control capabilities of the defender to
better handle different access requests and safeguard the system
security in a cost-efficient manner.

Index Terms—Audit game, zero-determinant strategy, utility
control, signaling, game theory

I. INTRODUCTION

Since the databases of modern organizations store a large
amount of private information, such as personal health and
commercial secrets, their sensitivity and economic value make
the databases prominent targets of malicious attacks or illegal
invasions. Therefore, audit mechanisms are widely deployed,
which utilize a combination of manual operations and auto-
mated methods to detect and deter attackers. Currently, the
audit mechanism has become a typical method employed by
many organizations with a large amount of sensitive informa-
tion, such as hospitals, banks, and search engine companies,
to prevent information security attacks [1].

Despite the extensive employment of audit mechanisms,
information leakage and illegal transactions caused by various
attacks are still widespread according to a recent report [2].
This concern can be even worse as some internal malicious
users can abuse their authority to launch attacks. These vicious
attacks from inside are less likely to be audited because
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they have certain privileges. To deal with these problems,
modern databases are usually equipped with alarm functions
in the audit mechanism to notify visitors and defenders of the
potential risks during access to critical information [3], [4].
These alerts, which will be sent to defenders, are triggered
by some specific access requests meeting predefined rules.
In some audit mechanisms, users (or attackers) are granted
with access permissions by defenders. And these granted
permissions will be recorded in the log so that defenders can
retrospectively check for any potential abuse or attack.

Currently, researchers usually model the above audit process
between the defender and the attacker as an audit game
[5]–[7]. To further enhance the timeliness in this process,
other researchers introduce a signaling scheme working in
an online manner. Whenever an access request triggers an
alarm, the auditor will send a signal to the visitor to remind
him/her that the requested data are sensitive. The behavior of
sending a signal can be real-time with manual operations, or it
can be automatic according to offline-setting rules. Although
signaling does not substantially defend against attacks, it
can help defenders discover security vulnerabilities promptly
and prevent attackers from making more severe damages. In
addition, the signaling step can interfere with attackers by
strategically disclosing noisy information. The effectiveness of
signaling has been proved in [8], and there are several studies
[5], [9], [10] based on the Stackelberg game providing auditors
with better strategic guidance in defending the database. In the
industry, multiple medical centers and online service websites
have deployed signaling schemes to protect sensitive data [11].

However, there exist two major shortcomings of the current
research on signaling-based audit games. First, the widely
employed Stackelberg game model usually assumes perfect
information of attackers, which can be unrealistic since at-
tackers may adopt various strategies in practice [10], [12].
Second, the existing studies focus more on the defender’s
interest without considering the attacker’s utility, implying that
the higher interest of the defender corresponds to the lower
utility of the attacker [3], [6], [13], which may not hold for
all types of attacks.

In this paper, we model the interactions between the de-
fender and the attacker as a sequential game, where the
attacker can observe the action of the defender regarding
sending signals. In this sequential game, the defender acting
first will be at a disadvantage, since the attacker can make
more beneficial choices after witnessing the defender’s behav-
ior, leading to enormous losses for the defender in the long
run. To solve this problem, given that the defender cannot
fully detect the attacker’s strategy, a brand-novel approach
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is employed to allow the defender to play against various
attackers flexibly. More specifically, no matter what strategy
the attacker employs, the defender can always deliberately set
a feasible strategy of signaling and auditing to control the
damages brought by the attack. Furthermore, compared with
the existing methods, our proposed strategy is more in line
with the real audit environment where the defender may not
be able to predict the specific strategy adopted by an attacker.
To achieve these goals, we employ the zero-determinant (ZD)
strategy [14] to analyze the sequential audit game, which
empowers the defender to unilaterally manage the utility of the
attacker and even the utility difference between the defender
and the attacker. By this means, we can address the issues
of the existing studies, where the perfect information of the
attacker is not required, but the interest of the attacker is
explicitly considered and restricted.

Our main contributions can be summarized as follows:
• Considering that the audit action of the defender might

be deterministic or probabilistic, we propose two different
sequential games to model the interactions between the
defender and the attacker, which describes the audit game
in a more comprehensive manner.

• To unilaterally control the attacker’s utility, we introduce
a strategy guide for the defender with the help of the
extended ZD strategy, which enables the defender to set
up defense strategies for a low utility of the attacker in
an effective way. Besides, we reveal the critical strategy
variable in utility control for the defender by analyzing
the controlling gradients and value ranges.

• For the cost-efficiency of utility control, we design an
optimization scheme based on the ZD strategy to maxi-
mize the utility difference between the defender and the
attacker, instead of controlling the utility of the attacker
solely.

• Through comparing with classic strategies, we evaluate
the effectiveness of our proposed ZD strategy-based
schemes, where the defender adopting the ZD strategy
can efficiently control the utility of the attacker using
various strategies, and further maximize the utility differ-
ence between the defender and the attacker.

The remainder of this paper is organized as follows. We
introduce the most related work in Section II. Two game
models are presented in Section III. Section IV displays how
the defender uses the ZD strategy to unilaterally control the
attacker’s utility. Section V proposes an optimization scheme
to control the utility difference between the defender and the
attacker. Experimental evaluation is reported in Section VI and
the whole paper is concluded in Section VII.

II. RELATED WORK

Most of the research on audit games focus on three aspects:
dealing with different types of alarms, adapting to actual
database scenarios, and optimizing the expected utility of the
defender.

In order to solve the challenge of handling different types
of alarms, Yan et al. proposed a game-theoretic audit method
which first determines the priority of different alarms, and

then assigns distinct amounts of resources to alarms with
resource upper limits [7], [15]. Schlenker et al. proposed a
method to distribute appropriate alerts to security analysts for
different fields [16]. In [8], based on the two-stage security
game framework, Xu et al. studied this problem by solving
an optimization problem of Stacklberg equilibrium with a
developed scalable approach.

Regarding the extension to the real-world scenario, Blocki et
al. generalized the audit game model to account for multiple
audit resources where each resource is restricted to audit a
subset of potential violations [17]. Korzhyk et al. designed a
polynomial time algorithm for security games with multiple
resources [18]. Schlenker et al. used an approach based on
game theory to address alerts [16], which can be well extended
to different database security applications. Kiral et al. analyzed
the inherent role conflicts of internal audit in risk management
using signal game model [19].

Optimizing the expected utility of auditors can bring direct
economic benefits to the database, where the related research
can be divided into two categories: classic security game based
and two-stage security game based. Blocki et al. first modeled
the audit problem between an auditor and an auditee as a
classic security game [17]. In this case, the auditor takes a
strategic action with the goal of learning an optimized resource
allocation strategy to optimize the auditor’s expected utility.
However, other research [10] claimed that the scalability of
this framework is limited since the methods in [6], [17]
regarded alerts as targets that could be attacked, which are
not easy to apply to database. Xu et al. proposed a two-
stage security game framework to overcome this challenge
[8], where the characteristic is that the defender will leak his
own information and send a signal in the second stage, which
can protect the target with a better performance. A subsequent
work [9] extended the advantages of signaling to Stackelberg
games. This shows that the signal can also enhance the defense
performance in the security game to a certain extent.

Our work is more related to optimizing the expected utility
of the defender, which is usually modeled as Stackelberg
games in previous studies. It is worth noting that the Stackel-
berg game requires complete information, which is difficult to
achieve in a real audit environment. In the face of unknown
strategy attacks, defenders need to respond more efficiently,
which inspires this paper. Besides, previous research pay more
attention to the utility of the defender, but lacked research on
attackers’ behaviors. We use the ZD strategy in this paper to
allow the defender to have more control over the attacker’s
utility with unknown strategies, which has no requirement on
the information completeness of audit games.

III. GAME MODELS

We consider the interaction process occuring between an
attacker and a defender, starting with the attacker issuing an
access request for a certain type of data. Access to different
types of data will trigger different types of alerts. After one
type of alert verifies the access permission which does not
necessarily ensure security, but allows the visitor to enter the
database, the defender receives the alarm and chooses whether
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Attacker:
Send Request

Defender:
Signal or Not

Attacker:
Attack or Quit

Defender:
Audit or Not

Audit Process Starts Audit Process Ends

Fig. 1. The interaction process between the attacker and the defender.

to send a signal for real-time notification. The content of
the prompt can be like if the attacker continues to visit, it
may be reviewed. At this point, when receiving a prompt,
the attacker clearly knows that the defender has sent a signal.
Next, the attacker can further choose to continue access (and
carry out illegal activities) or exit directly according to whether
he receives the signal. After performing this operation, the
defender will decide whether to audit based on whether there
is a signal sent.

As shown in Fig. 1, the attacker first sends a request, and
then the defender chooses whether to send a signal according
to his request. Next, the attacker decides whether to continue
or not based on the signaling behavior of the defender. The
actions of both parties are carried out strictly in order, and the
previous actions of the other party can be observed. Therefore,
we define the interaction process between the attacker and
defender as a sequential game.

Since the attacker can access the database multiple times
or different units of the database, the defender interacts with
the same attacker in multiple rounds, leading to an iterative
sequential game. Participants of this kind of non-zero-sum
iterative sequential game may get into trouble because of
the existence of dominant strategies. In practical, this is not
conducive to defenders. Nash equilibrium reveals the dominant
strategies of both parties in this type of game. Therefore, we
study the Nash equilibrium that may exist in this game, hoping
to adopt a reasonable strategy to control the attacker’s utility.

The defender will choose whether to audit or not according
to the situation of sending signals after the attacker’s action.
The relationship between signaling and auditing can be proba-
bilistic, where the defender audits with a certain probability. Or
it could be deterministic, where the defender only audits after
sending a signal. In the following context, in order to study the
defender’s strategy more comprehensively, we establish two
models, the deterministic model and the probabilistic model.

A. Deterministic Model

In the deterministic model, the correlation between the
defender’s signaling and auditing is simple: for the alert of
type η, if the defender sends a signal for the attacker’s request,
she1 will definitely audit the request; otherwise she will not.
We denote the action of the defender as d ∈ {0, 1}, where
0 represents that the defender chooses not to send a signal

1For the sake of distinction, we use “she” to refer to the defender and “he”
to refer to the attacker.

to the current request or audit it, while 1 indicates that the
defender sends a signal to the current request and audits it.
The attacker’s action is denoted as a ∈ {0, 1}, where 0 refers
to attack and 1 refers to quit without further attacks. Thus,
there are four possible states of the game between the defender
and the attacker, i.e., da = (00, 01, 10, 11).

We can depict the sequential interaction process between
the defender and the attacker in one round using a game tree
as shown in Fig. 2. In the game tree, the payoffs in four states
can be calculated as follows: i) for da = 00, as the defender
chooses not to send a signal and the attacker doesn’t attack,
no one costs or acquires anything; ii) for da = 01, since the
defender chooses not to send a signal but the attacker continues
to attack, the defender suffers a loss td without auditing, while
the attacker gains income ra from a successful attack; iii) for
da = 10, the defender sends a signal and audits but the attacker
quits, so the defender spends c as the cost of auditing while the
attacker acquires nothing; iv) when da = 11, meaning that the
defender sends a signal and audits while the attacker deploys
malicious attack, the defender suffers a loss tm plus the cost
of audit c, where tm denotes the loss of being attacked but
auditing timely; as for the attacker, the audit operation brings
the attacker a decrease of sa on income ra, where sa refers to
the loss of the attacker being audited. Subsequently, we can
define the payoff vectors of the defender (D) and the attacker
(A) as:

Uη
D = (0,−td,−c,−c− tm),

Uη
A = (0, ra, 0, ra − sa).

It should be noted that td, c, tm, ra, and sa are all positive.
In particular, for the attacker, once the attack is successful
without being caught, the benefit is large since the attacker
can obtain valuable information or destroy the database. While
for the defender, timely auditing after the attack or taking
other repair measures, such as rollback, can only reduce the
defender’s loss. For the defender, auditing the attack can bring
more benefit, i.e., the loss of non-auditing is larger than that
of auditing. Therefore, we assume td > tm + c. From the
defender’s point of view, she can gain from the historical data
about the attacker’s income ra and the loss caused by the audit
sa. These two values, ra and sa, help the defender to control
the attacker’s utility in future games.

From the perspective of the attacker being the last player to
perform action, the action with the greatest benefit is 1, so he
makes this choice no matter what the situation is. Then, if the
attacker’s best action is to attack, from the defender’s point of
view, the most profitable action is 1, and this choice should
be made no matter what the circumstance is. Thus, the Nash
equilibrium of this game is da = 11.

B. Probabilistic Model

Different from the deterministic model, we now consider
a situation closer to the reality, that the defender does not
have to be fully deterministic with only auditing after sending
the signal. Sometimes, out of some strategic considerations,
the defender will not audit after sending the signal, or audit
unexpectedly without sending a signal. In this case, we assume
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Fig. 2. The game tree of the deterministic model.

that there is a probability between the defender’s signaling and
auditing behavior, leading to the probabilistic model.

In the probabilistic model, we assume that if the defender
sends a signal, the auditing will be done with the probability
of τ ; otherwise, she audits with the probability of δ, where
τ > δ, as it is natural to be more inclined to audit when
sending a signal.

Similar to the deterministic model, the probabilistic model
also produces four possible states of the game between the
defender and the attacker: da = (00, 01, 10, 11). The payoffs
of four states are calculated as follows: i) for da = 00, as
the defender chooses not to send the signal and the attacker
doesn’t attack, the defender emerges an audit cost of c with
the probability of δ while the attacker acquires nothing; ii)
for da = 01, the defender chooses not to send the signal
but the attacker attacks, the defender’s loss consists of three
parts: the audit cost, denoted as c, with the probability of
δ, the loss of being attacked without audited, denoted as td,
with the probability of 1 − δ, and the loss of being attacked
but audited sooner, denoted as tm, with the probability of δ.
Attacker gains income ra minus punishment sa from the audit
with the probability of δ; iii) for da = 10, the defender sends
a signal and audits with the probability of τ but the attacker
quits, so the defender spends c as the cost of auditing with the
probability of τ and the attacker acquires nothing; iv) for da =
11, denoting that the defender sends a signal and the attacker
attacks. The defender’s loss consists of three parts: the audit
cost, denoted as c, with the probability of τ , the loss of being
attacked without audited, denoted as td, with a probability of
1−τ , the loss of being attacked but audited sooner, denoted as
tm, with the probability of τ . While the attacker gains income
ra minus punishment sa from the audit with the probability
of τ . Subsequently, the payoff vector of the defender is Ũη

D =
(−δc,−δc− (δtm+(1−δ)td),−τc,−τc− (τtm+(1−τ)td))
and that for attacker is Ũη

A = (0, ra − δsa, 0, ra − τsa). For
the sake of notation simplicity, we omit η in the following
expressions, using UA, UD, ŨA and ŨD instead of Uη

A,
Uη
D, Ũη

A and Ũη
D, respectively.

Other related restrictions are similar to those in the above
subsection, but with an additional restriction τ > δ. Since the
attacker acts secondly, he will choose 1 to make the largest
profit. For the defender, we can also conclude that the benefit

of choosing 1 is always greater. So the Nash equilibrium in
the probabilistic model is still da = 11.

IV. UTILITY CONTROL OF THE ATTACKER USING THE
ZERO-DETERMINANT STRATEGY

According to the analysis of Section III, we can see that
there is a sequential Nash equilibrium in the game between the
defender and the attacker, where the attacker’s optimal strategy
is to attack because the attack always brings him positive
benefits, while the defender’s optimal strategy is to send a
signal and audit (with a higher probability in the probabilistic
model) since auditing can effectively reduce the loss in both
the deterministic model and the probabilistic model. In the
long run, the defender consumes a lot of resources to send
signals and conduct audits to play against potential attackers.
However, considering that the defender’s resource budget is
generally limited, it is impossible to audit all requests includ-
ing requests from non-attackers without restrictions. To solve
this challenge, it becomes necessary to figure out an efficient
strategy to audit requests, which can bring several benefits
as follows. Firstly, this can effectively improve the audit
efficiency and ensure the security of database information.
Secondly, defender can also reduce the costs of signaling and
auditing by sending signals strategically. In addition, reducing
the number of signal prompts can improve the user experience
for normal users.

In this section, we resort to the zero-determinant (ZD)
strategy for achieving the above goals. Previous studies have
proved that the ZD strategy ensures a linear relationship
between the incomes of two players in the iterative game
by setting an appropriate mixed strategy for one player, and
even unilaterally set the opponent’s expected income. This
suggests us to propose a strategy to help the defender control
the attacker’s utility and prevent the database from excessive
damages. Nonetheless, the classic ZD strategy studies the
simultaneous game between two parties without knowing each
other’s actions. Therefore, we need to expand the ZD strategy
to our sequential games.

As mentioned in [14], a long-memory player has no priority
against a short-memory player in an iterated game. Therefore,
we assume that the defender has only one round of memory.
The defender’s mixed strategy in a round is the conditional
probability of choosing the strategy 0 based on all possible
states of the previous round. As for the attacker, he has only
one round of memory as well. His mixed strategy in a round
is the conditional probability of choosing the strategy 0 based
on all possible states of the previous round.

Definition IV.1. (The defender’s mixed strategy p). The
mixed strategy of defender is denoted as p = (p1, p2, p3, p4),
with each element being the probability of the defender to
choose 0 when the outcome state of the previous round is
da = (00, 01, 10, 11).

Thus, 1−pi (i ∈ {1, 2, 3, 4}) denotes the probability of the
defender to choose 1 when the outcome state of the previous
round is da = (00, 01, 10, 11).
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Definition IV.2. (The attacker’s mixed strategy q). The mixed
strategy of the attacker is denoted as q = (q1, q2), with each
element being the probability of the attacker to choose 0 when
the defender’s action in the current round is d = (0, 1).

Respectively, 1−q1 and 1−q2 denote the probability of the
attacker to choose 1 when the defender’s action in this round
is d = (0, 1).

Based on the above definitions, p and q can compose
a Markov matrix denoting the state transition between two
consecutive rounds, which can be expressed as:

M =


p1q1 p1(1− q1) (1− p1)q2 (1− p1)(1− q2)
p2q1 p2(1− q1) (1− p2)q2 (1− p2)(1− q2)
p3q1 p3(1− q1) (1− p3)q2 (1− p3)(1− q2)
p4q1 p4(1− q1) (1− p4)q2 (1− p4)(1− q2)

 .
Each element in M is the transition probability from the
state in the last round to that in the current round. Taking
the first row of M as an example, four elements denote the
transition probabilities from state da = 00 at the last round
to the four possible states da = 00, 01, 10, 11 in the current
round. The other three rows, similarly, correspond to the states
da = 01, 10, 11 in the last round.

We can easily calculate that M′ ≡M−I is singular with the
determinant value of zero. Besides, the stationary vector of M,
denoted as v, satisfies vTM = vT which equals vTM′ = 0.
Applying Cramer’s rule on matrix M′, we can get:

Adj(M′)M′ = det(M′)I = 0,

where Adj(M′) denotes the adjugate matrix of M′. Thus, we
can conclude that every row of Adj(M′) is proportional to
v. The determinant of M′ is unchanged if we add the first
column of M′ into the second and third columns. Thus, we can
calculate the dot product of an arbitrary four-element vector
f = (f1, f2, f3, f4) and the stationary vector v as follows:

v · f ≡ D(p,q, f)

= det


p1q1 − 1 p1 − 1 (1− p1)q2 + p1q1 − 1 f1
p2q1 p2 − 1 (1− p2)q2 + p2q1 f2
p3q1 p3 (1− p3)q2 + p3q1 − 1 f3
p4q1 p4 (1− p4)q2 + p4q1 f4

 ,
(1)

where the second column is under the control of the defender.
Combining payoff vectors of the defender and the attacker,
their respective utilities in the stationary state are:

ua =
v ·UA

v · 1
=
D(p,q,UA)

D(p,q,1)
,

ud =
v ·UD

v · 1
=
D(p,q,UD)

D(p,q,1)
.

The above equations show that the utility of the attacker and
that of the defender depend linearly on their corresponding
payoff vectors. Thus, their linear combination of utilities will
be calculated as:

αua + βud + γ =
D(p,q, αUA + βUD + γ1)

D(p,q,1)
, (2)

with α, β, γ being constant parameters. It brings us many good
attributes, allowing the defender to have a chance to make the
determinant D(p,q, αUA+βUD+γ1) vanish. In fact, when
the defender chooses a strategy that satisfies p̂ = αUA +
βUD+γ1, where p̂ denotes the second column of D(p,q, f),
the second column and the forth column of D(p,q, αUA +
βUD + γ1) can be the same, then (2) changes to:

αua + βud + γ = 0. (3)

Thus, a linear relationship between ua and ud is enforced.
The ZD strategy, however, is not feasible in all cases, which
depends on whether the range of p is [0,1].

We can deploy the ZD strategy in the deterministic model
and the probabilistic model, which provides the defender
with a powerful approach to unilaterally control the attacker’s
utility.

A. Deterministic Model

In this part, we start with the basic deterministic model to
find a strategy for the defender to control the attacker’s utility.
Generally, we analyze the relationship between the defender’s
strategy and the attacker’s utility to get an appropriate strat-
egy, and then find the most efficient variable to control the
attacker’s income, where the maximum and minimum utility
of the attacker are analyzed as well to help the defender to
assess potential risks.

From (3), we can see that the defender only needs to play
a fixed strategy satisfying p̂ = αUA + γ1 (setting β = 0) to
set the attacker’s utility. In this case, we can solve the below
equation group: 

p1 − 1 = γ,

p2 − 1 = αra + γ,

p3 = γ,

p4 = α(ra − sa) + γ,

(4)

where p1 and p4 can be used to represent the remaining
variables to get the expression of ua:

ua = −γ
α

=
1− p1

p4 + 1− p1
· (ra − sa). (5)

This expression implies that if the defender adopts a strategy
satisfying p̂ = αUA + γ1, the utility of the attacker can
be determined by the defender. Then, we can analyze the
features of ua. Firstly, the value range of ua is [0, ra − sa];
secondly, in (5), p1 and p4 are variables that are unilaterally
controlled by the defender, so we need to further study the
extent of their influences on ua. By this means, we can reveal
that which variable is more effective to safeguard the system
security to the greatest extent. Therefore, we first take the
partial derivative of ua with respect to p1,

∂ua
∂p1

=
−p4

(p4 + 1− p1)2
· (ra − sa), (6)

where the derivative function decreases monotonically in p1 ∈
[0, 1]. Further, we have:

ua = ua|(p1 = 0) =
1

p4
· (ra − sa),
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ua = ua|(p1 = 1) = 0,

where ua denotes the maximum value of ua and ua denotes
the minimum value of ua. This shows that if the defender only
changes the value of p1 in the strategy, the attacker’s utility
will be a certain value within the range of [0, ra−sap4

].
Similarly, we take the partial derivative of p4,

∂ua
∂p4

=
p1 − 1

(p4 + 1− p1)2
· (ra − sa).

It can be seen that the derivative function decreases monoton-
ically in p4 ∈ [0, 1] and we have:

ua = ua|(p4 = 0) = (ra − sa),

ua = ua|(p4 = 1) =
1− p1
2− p1

· (ra − sa).

This shows that if the defender only changes the value of p4
in the strategy, the attacker’s utility could be a certain value
within the range of [ 1−p12−p1 · (ra − sa), ra − sa].

To control the attacker’s utility more efficiently, we study
which variable is more effective. In other words, when the
increments of p1 and p4 are the same, which one of them
causes a larger loss of the attacker’s utility. Comparing the
partial derivatives of two variables, we have:

∂ua
∂p1
− ∂ua
∂p4

=
1− p1 − p4

(p4 + 1− p1)2
· (ra − sa).

It is clear that, when 1 − p1 − p4 > 0, the partial derivative
of p1 is greater than that of p4. Since they are all negative, it
is more effective for the defender to control attacker’s utility
by changing p4. While when 1 − p1 − p4 < 0, the partial
derivative of p4 is greater than that of p1. At this time, it is
more effective for the defender to control attacker’s utility by
changing p1.

Besides, p1 and p4 also have impacts on the value range of
ua. Regarding p1 as the only variable, ua ∈ [0, ra−sap4

], with
the range size of ra−sa

p4
. Regarding p4 as the only variable,

ua ∈ [ 1−p12−p1 · (ra − sa), ra − sa], with the range size of
ra−sa
2−p1 . The above two sizes of range present the relationship

of ra−sa
2−p1 ≤

ra−sa
p4

, since 2−p1 is in the range of [1, 2] and p4
is in [0, 1], which means p1 has a greater impact on the control
range of ua. Comparing the lower bounds of the above ranges,
we have 0 ≤ 1−p1

2−p1 · (ra− sa), while for the upper bounds, we
have ra−sa

p4
≤ ra − sa. Thus, if the defender tries to control

ua at a low level, it is more effective to change p1.
According to the analysis above, we can conclude that when

p1 < 1−p4, p1 has a greater impact on the value of ua; when
p1 > 1−p4, p4 has a greater impact on the value of ua. In order
to deploy defense strategies more effectively, the defender
should pay attention to the relationship between the p1+p4 and
1. And if the defender can only change one variable, changing
p1 can be more conducive to limit the attacker’s utility.

B. Probabilistic Model

Similarly, we can analyze the probabilistic model. It should
be noted that the two newly added variables τ and δ in the
probabilistic model are unilaterally controlled by the defender,

because they are used to determine the probability of auditing
after signaling. Although τ and δ are different in definition
from the strategy vector p, their property of being controlled
by the defender implies that they are also worthy of being
studied. Solving the equation group like (4), the expression of
ũa in the probabilistic model becomes:

ũa = −γ
α

=
1− p1

p4 + 1− p1
· (ra − τsa). (7)

Clearly, the value range of ũa is [0, ra − τsa]. Further, in
order to allow the defender to control the attacker’s utility ũa
more efficiently, we study the influence of the four variables
p1, p4, τ and δ controlled by the defender on ũa from a
mathematical perspective. Notice that only p1, p4 and τ appear
in (7), so we ignore the effect of δ and take the partial
derivative of ũa with respect to p1 firstly:

∂ũa
∂p1

=
−p4

(p4 + 1− p1)2
· (ra − τsa). (8)

From (8), the derivative function decreases monotonically in
p1 ∈ [0, 1]. If we regard p1 as the only variable, then we have:

ũa = ũa|(p1 = 0) =
1

p4
· (ra − τsa),

ũa = ũa|(p1 = 1) = 0,

where ũa denotes the maximum value of ũa, while ũa denotes
the minimum value of ũa. It can be seen that if the defender
only changes the value of p1 in the strategy, the attacker’s
utility will be a certain value within the range of [0, ra−τsap4

].
Similarly, taking the derivative of p4, we have:

∂ũa
∂p4

=
p1 − 1

(p4 + 1− p1)2
· (ra − τsa),

where the derivative function decreases monotonically in p4 ∈
[0, 1]. Regarding p4 as a variable, we have:

ũa = ũa|(p4 = 0) = ra − τsa,

ũa = ũa|(p4 = 1) =
1− p1
2− p1

· (ra − τsa),

which shows that if the defender only changes the value of
p4 in the strategy, the attacker’s utility will be a certain value
within the range of [ 1−p12−p1 · (ra − τsa), ra − τsa].

In the probabilistic model, the effect of p1 and p4 are similar
to that in the deterministic model. By comparing the partial
derivatives of two variables:

∂ua
∂p1
− ∂ua
∂p4

=
1− p1 − p4

(p4 + 1− p1)2
· (ra − τsa),

we can draw the same conclusion with that in the deterministic
model: when p1 < 1 − p4, p1 has a greater impact on the
control of the value of ũa; when p1 > 1 − p4, p4 is more
effective to control ũa. Thus, p1 has a greater impact on the
value range of ũa as well as on controlling ũa at a low level.

Meanwhile, p1 and p4 have impacts on the value range of
ũa. Regard p1 as the only variable, ũa ∈ [0, ra−τsap4

], with the
range of ra−τsa

p4
. Regard p4 as the only variable, ũa ∈ [ 1−p12−p1 ·

(ra − τsa), ra − τsa], with the range of ra−τsa
2−p1 . As for the

size of range, we have ra−τsa
2−p1 ≤

ra−τsa
p4

as 2−p1 ∈ [1, 2] and
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p4 ∈ [0, 1]. Comparing the lower bounds of the above ranges,
we have 0 ≤ 1−p1

2−p1 · (ra − τsa), while for the upper bounds,
we have ra−τsa

p4
≤ ra − τsa, so p1 has greater influence on

controlling value of ũa.
In addition, the influence of τ on ũa is different from that

of p1 and p4, as the partial derivatives of τ is:

∂ũa
∂τ

=
sa(p1 − 1)

(p4 + 1− p1)
,

which means the relationship between τ and ũa is negative
correlated since p1 ≤ 1. If we only regard τ as a variable, we
have:

ũa = ũa|(τ = 0) =
ra(1− p1)

p4 + 1− p1
,

ũa = ũa|(τ = 1) =
1− p1

p4 + 1− p1
· (ra − sa),

where ũa denotes the maximum value of ũa, while ũa denotes
the minimum value of ũa. This shows that if the defender only
changes the value of τ in the strategy, the attacker’s utility
will be a certain value within the range of [ (1−p1)

p4+1−p1 · (ra −
sa), ra(1−p1)p4+1−p1 ]. Regard τ as the only variable, ũa ∈ [ (1−p1)

p4+1−p1 ·
(ra − sa), ra(1−p1)p4+1−p1 ], whose range is sa(1−p1)

p4+1−p1 .

V. MAXIMIZING THE UTILITY DIFFERENCE USING THE
ZERO-DETERMINANT STRATEGY

The ZD strategy demonstrates powerful control over the at-
tacker’s utility as mentioned in the previous section. Although
controlling the attacker’s utility sometimes leads to excellent
performance, simply controlling the attacker’s utility at a lower
level may result in huge budget expenditures. Therefore, when
necessary, we hope to design a strategy that considers both
the utility of the defender and that of the attacker. Different
from the defender’s utility, the utility difference between the
defender and the attacker is a relative value, and the study
of utility difference is helpful for the defender to flexibly deal
with the strategies of different attackers. Because this repeated
game is not a zero-sum game, if the defender has the highest
utility, the attacker could be likely to get a high utility as well,
which can bring more damage to the database. In this section,
we use the ZD strategy to find the maximum utility difference
in defender’s point of view.

Our main idea is to propose a set of signal and audit
strategies for the defender to make ũd − ũa the largest. It
should be noted that although we proposed two models before,
i.e., the deterministic model and the probabilistic model, in
this section, we use the probabilistic model as an example to
explore the utility difference control. The reason is that com-
pared with the deterministic model, the variables τ and δ in the
probabilistic model expand the action space of the defender,
which is more flexible and comprehensive. In addition, it is
easy to get similar conclusions in the probabilistic model and
the deterministic model, via eliminating the influence of τ and
δ by setting τ = 1 and δ = 0.

According to (3), by setting α = −1 and β = 1, the
utility difference between the defender and the attacker can
be calculated as:

ũd − ũa = −γ.

Hence, the basic issue of maximizing the utility difference can
be achieved by solving:

max −γ,
s.t. 0 ≤ pi ≤ 1,∀i ∈ {1, 2, 3, 4},

which is equivalent to the following optimization problem with
constraints:

min γ,

s.t.


0 ≤ pi ≤ 1,∀i ∈ {1, 2, 3, 4},
p̂ = φ(ŨD − ŨA + γ1),

φ 6= 0.

Among them, p̂ = (p1−1, p2−1, p3, p4) is the second column
in (1), which can be unilaterally determined by the defender’s
strategy. We denote ŨkA and ŨkD as the kth element in ŨA and
ŨD, respectively. Then we can solve the above optimization
problem by considering the following two cases:

1) Case 1: φ > 0. To meet the constraint pi ≥ 0, we can
get the lower bound of γ as follows:

γmin = max(Λk),∀k ∈ {1, 2, 3, 4},

Λk =

{
−ŨkD + ŨkA − 1

φ , k = 1, 2,

−ŨkD + ŨkA, k = 3, 4.

To meet the constraint pi ≤ 1, we can get the upper bound of
γ as follows:

γmax = min(Λl),∀l ∈ {5, 6, 7, 8},

Λl = Λk+4

{
−ŨkD + ŨkA, k = 1, 2,

−ŨkD + ŨkA + 1
φ , k = 3, 4.

Only if γmin ≤ γmax can γ has a feasible solution, which
is equivalent to max(Λk) ≤ min(Λl),∀k ∈ {1, 2, 3, 4},∀l ∈
{5, 6, 7, 8}. If there exists φ > 0 satisfying the above con-
straint, we can obtain the minimum value of γ as follow:

γmin = max{−Ũ1
D + Ũ1

A −
1

φ
,−Ũ2

D + Ũ2
A −

1

φ
,

− Ũ3
D + Ũ3

A,−Ũ4
D + Ũ4

A}

= max{δc− 1

φ
, δc+ (δtm + (1− δ)td) + ra − δsa −

1

φ
,

τc, τc+ (τtm + (1− τ)td) + ra − τsa}. (9)

2) Case 2: φ < 0. Similarly, when considering that pi ≥
0, we have γmin = max(Λl),∀l ∈ {5, 6, 7, 8}; while when
considering that pi ≤ 1, we have γmax = min(Λk),∀k ∈
{1, 2, 3, 4}. In addition, γ is feasible only when γmin ≤ γmax,
i.e., max(Λl) ≤ min(Λk),∀k ∈ {1, 2, 3, 4},∀l ∈ {5, 6, 7, 8}.
Finally, we can get the following result:

γmin = max{−Ũ1
D + Ũ1

A,−Ũ2
D + Ũ2

A,

− Ũ3
D + Ũ3

A +
1

φ
,−Ũ4

D + Ũ4
A +

1

φ
}

= max{δc, δc+ (δtm + (1− δ)td) + ra − δsa,

τc+
1

φ
, τc+ (τtm + (1− τ)td) + ra − τsa +

1

φ
}. (10)

In summary, by (9) and (10), the defender can unilaterally
set the maximum value of ũd − ũa with the ZD strategy p
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meeting p̂ = φ(ŨD − ŨA + γ1), where each element of p
can be calculated by:

pi =

{
Ũ iD − Ũ iA + γmin + 1, i = 1, 2,

Ũ iD − Ũ iA + γmin, i = 3, 4.

Remark. For the deterministic model, we can have the opti-
mization problem as:

min γ,

s.t.


0 ≤ pi ≤ 1,∀i ∈ {1, 2, 3, 4},
p̂ = φ(UD −UA + γ1),

φ 6= 0,

which can be easily solved using the above conclusions.
Specifically, we can derive the maximized utility difference
as:

γmin =


max{−U1

D + U1
A − 1

φ ,−U
2
D + U2

A − 1
φ ,

−U3
D + U3

A,−U4
D + U4

A}, φ > 0,

max{−U1
D + U1

A,−U2
D + U2

A,−U3
D + U3

A + 1
φ ,

−U4
D + U4

A + 1
φ}, φ < 0,

and p is given by

pi =

{
U iD − U iA + γmin + 1, i = 1, 2,

U iD − U iA + γmin, i = 3, 4.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the ZD
strategy for the defender based on simulation experiments.
All experiments are implemented using Matlab R2020a on a
laptop with 2.3 GHz Intel Core i5-8300H processor. Besides,
for the common parameters of the deterministic model and
probabilistic model, we set the following default values: the
loss of non-auditing after being attacked td = 8, the loss
of auditing after being attacked tm = 5; the income of the
successful attack ra = 10, the loss of the attack being audited
sa = 5; the cost of auditing c = 2. Each experiment is repeated
50 times to get the average results for statistical confidence.
We also conduct multiple experiments with different parameter
settings, but all the experimental results are similar or have
the same statistical significance. Therefore, in order to avoid
redundancy, we omit them and report the most representative
experimental results.

A. Unilateral Control of the Attacker’s Utility using the ZD
Strategy

We deploy simulation experiments to verify the effective-
ness of the defender using the ZD strategy to unilaterally
control the attacker’s utility, as well as demonstrate how the
defender controls the attacker’s utility based on p1 and p4.
Fig. 3 plots the attacker’s utility changing with the defender’s
various strategy variables in the deterministic model. As
mentioned in Section IV, p1 and ua are negatively correlated.
The changing rate increases as p1 increases. And p4, is
also negatively correlated with ua while the rate of change
decreases as p4 increases. Fig. 4 presents that the probabilistic
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Fig. 3. The attacker’s utility changes with different defender’s strategy
variables in the deterministic model.
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Fig. 4. The attacker’s utility changes with different defender’s strategy
variables in the probabilistic model.

model has similar properties. It is worth noting that Fig. 4(c)(d)
shows that τ has a linear relationship with ũa, where the higher
the τ , the lower the attacker’s utility.

In addition, to verify the effectiveness of our scheme, we
compare the defender’s ZD strategy with other five classic
strategies. We simulate the entire process of the defender
and the attacker in the deterministic model, for 50 rounds,
in which the defender uses the ZD, All-Zero (ALL0) [20],
All-One (ALL1) [20], Random (Rand) [20], Tit-For-Tat (TFT)
[21], and Win-Stay-Lose-Shift (WSLS) [22] strategies. The at-
tacker adopts ALL0, ALL1, Rand, TFT, and WSLS strategies.
Specifically, ALL0 strategy is defined as: the defender always
takes the action of not sending the signal no matter what the
opponent does and the attacker always chooses to quit. ALL1
strategy means that the defender always sends the signal and
the attacker always chooses to attack. With the Rand strategy,
each player selects the action of 0 with the probability of
0.5. TFT strategy is defined as the player follows the choice
of the opponent in the previous round. While WSLS strategy
is defined as the player follows the choice if it won in the
previous round, but changes to the other action otherwise.

By comparing Fig. 5(a) with the other five figures, we can
easily find that when the attacker adopts ALL1, Rand, TFT and



9

WSLS strategies, the defender’s ZD strategy can effectively
control the attacker’s utility at a lower level. This can prove
that unless the attacker adopts the ALL0 strategy, the ZD
strategy is better than other classic strategies. However, in the
real audit environment, it is almost impossible for the attacker
to adopt ALL0 strategy, because it means that the attacker
does not attack at all. Similarly, we can find in Fig. 5(b) that
if the defender adopts the ALL0 strategy, she can achieve good
results in some cases but the rest can be bad, which reflects that
the inactive defender suffers heavy losses when the attacker
attacks and can only hope that the attacker would quit, which
can not happen in reality.
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Fig. 5. The attacker’s utility under different strategy combinations of the
attacker and the defender in the deterministic model.

Next, we explore the detection performance of the ZD
strategy for potential attacks and plot the Receiver Operating
Characteristic (ROC) curves for the defender deploying the ZD
strategy and other strategies when the attacker uses a classic
strategy in Fig. 6. We regard a test sample as a true positive if
the defender chooses to send a signal and the attacker chooses
to attack. Similarly, we define a sample as a false positive when
the defender sends a signal while the attacker does not attack.
Assuming a sample as a true negative if the defender does
not send any signal but the attacker carries out the malicious
action, and as a false negative if both sides do nothing. The
x-axis depicts the False Positive Rate (FPR). Denoting FP
and TN as the numbers of false positive samples and true
negative samples, respectively, we can calculate FPR = FP

FP+TN .
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Fig. 6. ROC curves under different strategy combinations of the defender
and the attacker in the deterministic model.

The y-axis represents the True Positive Rate (TPR), which is
calculated by TPR = TP

TP+FN with TP denoting the number of
true positive samples and FN denoting the number of false
negative samples.

From Fig. 6, we can see that the ZD strategy outperforms
almost all other strategies since its Area Under the Curve
(AUC) is larger than the AUCs of other strategies. Besides,
the gray dotted line represents the ROC curve of random
guessing with AUC= 0.5, which is used as a reference for
comparison. Specifically, in Figs. 6(a) and (b), the ROC curves
of WSLS, TFT, ALL1, and ALL0 strategies degenerate to the
point (0,1) or (1,0) as the defender only executes the same
action when the attacker deploys the ALL0 or ALL1 strategy.
For example, when the attacker uses the ALL1 strategy and
the defender adopts the TFT strategy, the action in each round
is ad = (1, 1), refering to the point (0,1) in the ROC curve.
In Fig. 6(d), the AUC of the WSLS strategy is close to that
of the ZD strategy, which indicates that the performance of
these two strategies is quite similar when the attacker adopts
the TFT strategy.

B. Maximizing the Utility Difference using the ZD Strategy

We investigate the correctness and effectiveness of our
proposed strategy for optimizing the utility difference between
the defender and the attacker. In this part, we mainly show the
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Fig. 7. The optimization goal ũd− ũa changes with parameters combination
in the probabilistic model.

experimental results of the probabilistic model. As demon-
strated in Section V, it is easy to draw similar conclusions in
the probabilistic model and the deterministic model by setting
τ = 1 and δ = 0. In Fig. 7, we present the solution of the
optimization problem that maximizes ũd − ũa. Based on the
parameter setting mentioned before, we found that there is a
feasible solution for pi in the constraint condition if and only if
φ < 0. We plot the figure of the maximized utility difference
changing with τ and δ when φ = −1. It can be seen that
under this condition, the maximum value of the optimization
target is negatively correlated with τ and positively correlated
with δ. This is because if the defender considers the utilities of
both herself and the attacker, she has to consider appropriately
reducing the probability of auditing (τ ) after signaling because
of the cost of the audit. But the defender cannot reduce this
probability without any limit, because when it reaches a certain
value, it no longer has an impact on the maximum value of the
optimization goal. Fig. 7(c) shows that if the defender changes
τ and δ at the same time while keeping the difference between
them unchanged, τ will have a linear effect on the maximum
utility difference. It is worth noting that in Fig. 7(d) if we set
τ and δ proportionally, the influence of τ on the optimization
goal is also linear.

To verify the effectiveness of our ZD strategy-based scheme,
we set τ = 0.6 and δ = 0.2, and compare the optimization
goal of ZD scheme with those obtained by other classic
strategies, i.e., ALL1, Rand, TFT, and WSLS strategies. Fig.
8 displays the optimization goal ũd − ũa when the defender
takes different strategies. By comparing Fig. 8(a) with the
other five figures, one can conclude that the ZD strategy gets
a larger maximum value of the optimization target, except for
the situation that the attacker adopts the ALL0 strategy and
some situations that the defender adopts the ALL0 strategy.
However, it is rare for an attacker to adopt the ALL0 strategy.
In this case, an active defender consumes more audit budget

than an inactive defender, which makes the total utility less.
Besides, if the defender adopts the ALL0 strategy for a long
time, then she can only hope that the attacker will never attack
(also adopts the ALL0 strategy), which hardly occurs in actual
situations. So in most common cases, using the ZD strategy
can effectively make the difference between the defender’s
utility and attacker’s utility stay at a high level.
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Fig. 8. Maximum of ũd − ũa under different strategy combinations of the
attacker and the defender in the probabilistic model.

VII. RESULTS AND DISCUSSION

In the previous sections, we present a deterministic model
and a probabilistic model to describe the sequential games in
the signaling-based audit mechanism. With the help of the ex-
tended ZD strategy, we can enable the defender to unilaterally
control the attacker’s utility and maximize the utility difference
between the defender and the attacker. However, the following
limitations remain in our model assumptions and experimental
design.
• What if the attacker uses the ZD strategy? In our

experiments, we display the results of the defender’s ZD
strategy playing against other strategies of the attacker.
However, we do not consider what would happen if the
attacker also uses the ZD strategy. This may happen in
an actual situation since the ZD strategy is powerful.

• The assumption of same values for all data. The data
might have different sensitivities, reflecting different im-
portances. Therefore, if the data protected by the defender
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have different values in real situations, the proposed ZD
strategy and its control capability would change, which
is one of the limitations of the current assumptions.

• Utility maximization of the defender. Our proposed ZD
strategy can achieve robust control over the attacker’s
utility and maximize the utility difference. However, it
is not clear whether it would still work when only the
defender’s utility is required to be maximized.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose two sequential game models to
describe the interaction between the defender and the attacker,
where the auditing behavior of the defender is deterministic
and probabilistic. Using the ZD strategy allows the defender
to unilaterally control the attacker’s utility no matter what
strategy the attacker uses. In addition, an optimization scheme
is designed for the defender based on the ZD strategy to
control the utility difference between the defender and the
attacker. Via comparing the ZD strategy with other classic
strategies, experimental results show that the ZD strategy has
better performance in controlling the attacker’s utility as well
as maximizing the utility difference between the defender and
the attacker.

In the future, we will study the situation where the attacker
also adopts the ZD strategy and consider how the defender can
make better defensive actions. We are going to further consider
the implementation and practicality of the ZD strategy for
the audit game when the stored data have different values.
Moreover, we intend to design a new strategy to maximize
the defender’s utility.
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