
Detecting Unknown HTTP-based Malicious Communication

Behavior via Generated Adversarial Flows and Hierarchical Traffic

Features

Xiaochun Yuna, Jiang Xieb,d, Shuhao Lib,c,d,∗, Yongzheng Zhangb,c,d, Peishuai Sunb,d

aNational Computer Network Emergency Response Technical Team/Coordination Center of China,
Beijing, China

bInstitute of Information Engineering, Chinese Academy of Sciences, Beijing, China
cKey Laboratory of Network Assessment Technology, University of Chinese Academy of Sciences, Beijing,

China
dSchool of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract

Malicious communication behavior is the network communication behavior generated by
malware (botnet, spyware, etc.) after victim devices are infected. Experienced adversaries
often hide malicious information in HTTP traffic to evade detection. However, related
detection methods have inadequate generalization ability because they are usually based on
artificial feature engineering and outmoded datasets. In this paper, we propose an HTTP-
based Malicious Communication traffic Detection Model (HMCD-Model) based on generated
adversarial flows and hierarchical traffic features. HMCD-Model consists of two parts. The
first is a generation algorithm based on WGAN-GP to generate HTTP-based malicious
communication traffic for data enhancement. The second is a hybrid neural network based
on CNN and LSTM to extract hierarchical spatial-temporal features of HTTP-based traffic.
In addition, we collect and publish a dataset, HMCT-2020, which consists of large-scale
malicious and benign traffic during three years (2018-2020). Taking the data in HMCT-
2020(18) as the training set and the data in other datasets as the test set, the experimental
results show that the HMCD-Model can effectively detect unknown HTTP-based malicious
communication traffic. It can reach F1 ≈ 98.66% in the dataset HMCT-2020(19-20), F1
≈ 90.69% in the public dataset CIC-IDS-2017 and F1 ≈ 83.66% in the real traffic, which
is 20+% higher than other representative methods on average. This validates that HMCD-
Model has the ability to discover unknown HTTP-based malicious communication behavior.

Keywords: Malicious Behavior Detection, CNN, LSTM, GAN, Hierarchical Features

∗The corresponding author of this paper is Shuhao Li.
Email addresses: yunxiaochun@cert.org.cn (Xiaochun Yun), xiejiang@iie.ac.cn (Jiang Xie),

lishuhao@iie.ac.cn (Shuhao Li), zhangyongzheng@iie.ac.cn (Yongzheng Zhang),
sunpeishuai@iie.ac.cn (Peishuai Sun)

Preprint submitted to Nuclear Physics B September 8, 2023

ar
X

iv
:2

30
9.

03
73

9v
1

 [
cs

.C
R

]
 7

 S
ep

 2
02

3

1. Introduction

Malicious traffic detection generated by malware is one of the hot issues in cyber security
[15, 22]. In this paper, we call the network communication behavior generated by malware
(botnet, spyware, etc.) after malware infects the victim device as malicious communication
behavior. One of the main carriers of these behavior is HTTP traffic[44]. Experienced
adversaries construct HTTP-based malicious communication traffic by imitating the network
behavior of benign users and hiding malicious information into the fields used commonly
in benign traffic. These unknown HTTP-based malicious traffic is highly similar to benign
traffic, usually can bypass the detection systems. Therefore, it is difficult but necessary to
detect HTTP-based malicious communication behavior, especially unknown. This motivates
researchers to pursue advanced detection techniques.

The key to detecting unknown HTTP-based malicious communication behavior is to
improve the generalization ability of detection methods, i.e., the ability to discover unknown
attacks by the known. There are two main challenges for detecting:

1) Feature extract. Traffic feature of HTTP-based malicious communication behavior
is complex. However, many detection methods ([44, 33], etc.) rely on feature rules and expert
knowledge so that they are difficult to grasp the essential laws of HTTP-based malicious
communication behavior. The establishment of artificial feature engineering in a single
experimental environment will cause the model to over-fit, which limits the generalization
of method. This makes it difficult for a method to detect unknown HTTP-based malicious
communication traffic. Namely, a method may perform well in assigned datasets, but poor
in other large-scale datasets and real traffic environments.

2) Experimental dataset. The data scale associated with HTTP-based malicious
communication behavior is relatively small. Many works ([1, 34], etc.) rely on private
experimental data (the collection period is short and the collection points are limited), or
rely on public malicious traffic datasets. However, due to the issue of timeliness, it is difficult
for those datasets to cover all forms of such malicious traffic that occurs in the future.

In this paper, to cope with the above challenges in the detection of unknown HTTP-based
malicious communication behavior, we propose an HTTP-based Malicious Communication
traffic Detection Model (HMCD-Model). The main contributions are as follows:

• We analyze the HTTP-based malicious communication behavior from the
perspective of adversary. We employ WGAN-GP [16] to synthesize Generated Ad-
versarial Flows (GAFs) with maliciousness, compliance, covertness and multiformity
for data enhancement. GAFs look highly similar to benign flows, which can be used
as a supplement to labeled data and improve the generalization of HMCD-Model.

• We propose a prototype system composed of a hybrid neural network to ex-
tract the hierarchical spatial-temporal features of HTTP traffic from packet
level and flow level. In this system, CNN is used to extract the spatial features of
a packet, and LSTM is used to extract the temporal features of a flow. In addition,
statistical features are also extracted hierarchically to improve detection performance.

2

And we discard miss-leading attributes (ip, url, etc.) that could easily lead to mis-
judgment in data pre-processing.

• We publish a dataset HMCT-2020 based on the real network environment,
which consists of large-scale HTTP-based malicious communication traffic and benign
traffic during three years (2018-2020)1. There are about 76,760 malicious flows and
4,798,110 benign flows. HMCT-2020 can not only support our experiments but also
help researchers further study HTTP-based malicious communication behavior.

Experimental results show that HMCD-Model has excellent detection performance. In
HMCT-2020 dataset, F1 is 99.46%(+0.19, -0.30), and FPR is 0.48%(+0.20, -0.34). For
generalization (Taking the data in HMCT-2020(18) as the training set and the data in other
datasets as the test set), our model has obvious advantages compared with the representative
works in HMCT-2020 and the public dataset CIC-IDS-2017[35]. In addition, we also collect
malicious traffic generated by malware and a large amount of benign background traffic
from the real world, In the comparative experiment, the F1 and FPR of HMCD-Model can
reach 83.66%(+2.15, -3.79) and 2.57%(+3.26, -1.71), which are also better than baselines
and other methods[44, 33]. The results prove that our method has a stronger ability to
discover unknown malicious communication behavior.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. In Section 3, we analyze the HTTP-based malicious communication behavior. Feature
analysis of HTTP traffic is in Section 4. Subsequently, Section 5 introduces the composition
of HMCD-Model. In Section 6, we evaluate our method and show the relevant experimental
results. Finally, we discuss and summarize in Section 7 and Section 8, respectively.

2. Related Work

In cyber security, malicious behavior detection is a hot issue[22]. We detect unknown
HTTP-based malicious communication behavior based on deep learning, which belongs to
the field of intrusion detection. Next, the related research status will be introduced.

2.1. Malicious Behavior Detection

Malicious behavior detection methods used in Intrusion Detection Systems (IDSs) [29]
can be divided into feature detection and anomaly detection. Feature detection [3], also
called misuse detection, fits the behavior patterns of known attacks and establishes a corre-
sponding feature behavior database. Anomaly detection [5], also called behavior detection,
mainly builds a feature database by fitting the characteristics of benign network behavior.
Anomaly detection is slightly weaker than feature detection when detecting known attacks.
However, anomaly detection can detect 0-day attacks more effectively. And this is very im-
portant for network security, because the network environment is becoming more and more
complex, new 0-day attacks are constantly occurring, and a method that can effectively
detect new attacks is necessary.

1The published dataset can be found at https://github.com/BitBrave-Xie/HMCD-Model.

3

2.1.1. Malicious Behavior Detection Based on Feature Selection and Machine Learning

Many works are based on some public network datasets (ISCX-2012 [37], KDD CUP 99
[40], CIC-IDS-2017, etc.), and then malicious behavior detection methods combining feature
selection and machine learning are employed.

Aburomman et al. [1] review intrusion classification algorithms based on commonly used
methods in the field of machine learning. In particular, considering integration methods
of homogeneous and heterogeneous types, various integration and hybrid technologies are
studied.

Wang et al. [44] propose an effective and automatic malware detection method using
the text semantics of network traffic, treating each HTTP flow generated by software as a
text document and processing it through N-gram to extract text-level features. Then, an
automatic feature selection algorithm based on chi-square test is used to identify meaningful
features, and these features are used to establish a support vector machine (SVM) classifier
[42] for malicious behavior detection.

Salo et al. [33] propose an ensemble classifier based on SVM, Instance-based learn-
ing algorithms (IBK) [2], and multilayer perceptron (MLP) [46] for intrusion detection,
which combines the approaches of Information Gain (IG) and Principal Component Anal-
ysis (PCA). The experimental results in datasets ISCX 2012, NSL-KDD [43] and Kyoto
2006+ [39] show that IG-PCA-Ensemble can learn more key features, and its classification
accuracy, detection rate and false alarm rate are better than most of the existing advanced
methods.

There are also many other studies about malicious behavior detection. Some methods are
mainly based on collected experimental datasets. Wang et al.[45] propose BotMark for bot-
nets detection based on flow-based and graph-based network traffic behavior. Du et al. [13]
use SVM to differentiate the two types of anomaly in the mixed traffic. Shrestha et al. [38]
use SVM for covert channel detection. Others methods are mainly based on public intrusion
detection datasets. Zhou et al. [48] propose a heuristic dimension reduction algorithm CFS-
BA-Ensemble based on feature selection and ensemble learning technology.Selvakumar et al.
[34] deploy filters and wrappers based on the firefly algorithm in the feature selector, and
use C4.5 and BN to classify in KDD CUP 99 dataset. Hajisalem et al. [18] propose a hybrid
classification method based on Artificial Bee Colony (ABC) [23] and Artificial Fish Swarm
(AFS) [17] algorithms. The method is superior to traditional machine learning methods in
the NSL-KDD dataset and the UNSW-NB15 dataset [30].

2.1.2. Malicious Behavior Detection Based on Deep Learning

Deep learning is widely researched and applied in the field of intrusion detection due to
its powerful feature extraction capabilities [25]. After the traffic is simply pre-processed,
the neural network can automatically extract features and do not require researchers to put
more effort into establishing feature engineering.

Chowdhury et al. [9] extract outputs from different layers in CNN and implement a
linear SVM and 1-nearest neighbor classifier for few-shot intrusion detection. Kim et al.
[24] propose a multi-mode deep learning method for malware detection. Caviglione et al.

4

[4] use neural networks and decision trees to detect malware using covert channels. Du et
al. [12] use LSTM to perform malicious behavior detection.

2.2. Traffic Generation based on GAN

Currently, many researchers use deep learning technology to synthesize traffic data, which
is used to bypass detection systems or enrich experimental data. Attempts to introduce the
GAN to this field have shown promise. Zingo et al. [49] propose the ”GAN vs Real (GvR)
score”, a task-based metric which quantifies how well a traffic GAN generator informs a
classifier compared to the original data. Experiments show that it is possible to train
accurate traffic anomaly detectors with GAN-generated network traffic data based on GvR.

Li et al. [26] propose a dynamic traffic camouflaging technique, coined FlowGAN, to
dynamically morph traffic feature as another ”normal” network flow to bypass Internet
censorship. The core idea of FlowGAN is to automatically learn the features of the ”normal”
network flow, and dynamically morph the on-going traffic flows based on the learned features
by GAN. Experimental results on a dataset involving 10,000 realworld flows show that the
effectiveness and the efficiency of FlowGAN.

Ring et al. [31] generate flow data based on GANs and propose three different flow-based
data pre-processing methods in order to convert them to continuous values. On this basis,
a network traffic evaluation method based on domain knowledge definition quality test is
proposed. Experiments on the CIDDS-001 dataset [32] show that two of the three methods
can generate high-quality data.

Lin et al. [27] propose a framework based on GANs, namely IDSGAN, to generate
adversarial samples to evade the detection of IDSs. IDSGAN uses generators to convert
original malicious traffic into hostile malicious traffic and uses discriminators to simulate a
black box detection system.

Cheng et al. [7] propose a GAN method for creating network traffic data at the ip
packet layer. It prove feasibility in the generation of real traffic flows such as ICMP Pings,
DNS queries, and HTTP web requests. Experiments show that the generated packets can
be successfully transmitted through the Internet and the corresponding response can be
obtained.

Jan et al. [21] propose request data synthesis method to synthesize unseen (or future)
robot behavior distribution. The synthesis method has distributed perception capabilities
and uses two different generators in GAN to generate data for clustering regions and outliers
in the feature space.

Hao et al. [19] propose a GAN-based data augmentation method. The features of flow-
based network traffic are first preprocessed to fit the GAN, and then the Earth-Mover (EM)
distance is employed to capture the distribution of low-dimensional subspace data, while
an encoder structure is added to learn latent space representations to enhance the vanilla
GAN. They construct an imbalanced dataset based on a real-world dataset and compare it
with other methods, obtaining better performance in terms of recall, F1 score and AUC.

Cheng et al. [8] propose Attack-GAN based on the structure of SeqGAN [47], to generate
domain-constrained adversarial network traffic at the packet level. Specifically, adversarial
packet generation is formulated as a sequential decision process. In this case, each byte in

5

the packet is considered a token in the sequence. The generator’s goal is to choose a token
that maximizes its expected final reward. Generated network traffic and benign traffic are
classified by black box IDS. The prediction results of IDS are fed into the discriminator to
guide the update of the generator. Experimental results verify that the generated adversarial
examples are able to deceive many existing black-box IDSs.

2.3. Analysis and Summary

For malicious behavior detection, there are two main challenges in the above methods for
detecting unknown HTTP-based malicious communication behavior based on the discussions
above methods. First, these methods have a valuable reference for feature modeling, but it is
difficult to directly apply to the feature extracting of HTTP-based malicious communication
behavior under adversarial conditions. For instance, some unstable features (ip, url, etc.)
used before may be invalid. Moreover, hierarchical spatial-temporal features have not been
considered too much. Second, these methods are usually tested on a single small-scale
dataset, which cannot fully verify their generalization ability.

For traffic generation based on GAN, current methods for generating traffic samples
are basically imitating specific datasets (CIDDS-001, etc.) or specific formats to generate
various flow-based statistical data (number of packets, duration of the flow, etc.), not to
generate real traffic that can be transmitted on the network, especially HTTP-based mali-
cious communication behavior. This makes various traffic generation technologies have great
limitations and can only be applied to a specific experimental scene.

Therefore, we build a hybrid neural network model for HTTP-based malicious commu-
nication behavior detection. Then, we propose a generation algorithm with good generality
to synthesize GAFs. In addition, we construct a well-represented HTTP-based malicious
communication traffic dataset to verify our model under different experimental conditions.

3. Analysis on HTTP-based Malicious Communication Behavior

We show the general process of HTTP-based malicious communication behavior, as
shown in Fig. 1. An HTTP-based malware attack can be divided into four phases: im-
plantation phase, incubation phase, communication phase and execution phase. 1) During
the implantation phase, the adversary scan the victim device, or the victim accesses the
StepStone/C&C server. Then, an HTTP-based malware script is covertly downloaded to
the victim device. 2) During the incubation phase, usually, the malicious script sleeps for
a period of time and enters the incubation phase to avoid being detected. 3) Then, the
malware script enters the communication phase and sends on-line packets to contact the
StepStone/C&C server. 4) Finally, the malware script enters the execution phase and begin
to carry out various local actions according to instructions of the adversary.

HTTP-based malicious communication behavior can be effectively detected in the com-
munication phase according to the instruction and the type of malicious interaction, because
this is the phase where the characteristics of malicious communication behavior are most
obvious. During the communication phase, defenders can analyze the traffic generated by

6

StepStone/C&C server Adversary

Victim device

(4) Execution Phase:
 The malware performs local actions

(4)

(2)

(2) Incubation Phase:
 The malware goes silent

(1.1)

(1.2)

(3.1)

(3.2)

(1) Implantation Phase:
 (1.1) The adversary scans and compromises the victim device through the StepStone/C&C server
 (1.2) The victim device accesses the StepStone/C&C server and downloads the malware script

(3) Communication Phase:
 (3.1) The victim device contacts the StepStone/C&C server
 (3.2) The adversary sends instructions to the victim device through the StepStone/C&C server

Figure 1: General process of HTTP-based malicious communication behavior.

malware, then, detect HTTP-based malicious communication behavior and find the adver-
sary.

However, experienced adversaries usually construct HTTP-based malicious communica-
tion traffic by imitating the network behavior of benign users to evade the detection of
defenders, making it difficult to distinguish from benign traffic. For instance, fig. 2 shows a
flow consisting of two packets that belongs to HTTP-based malicious communication behav-
ior. And we can divide the packet into three different components: 1) Malicious components,
contain malicious content and has actual attack significance. For instance, the part enclosed
by dotted line “jk?c=2&=. . . ” in Fig. 2; 2) Fixed components, are the components with
a fixed format that may not exist in an HTTP packet but cannot be changed; 3) Covert-
ness components, are the other components except malicious and fixed component. Based
on these three components, an adversary can synthesize a variety of malicious traffic to
evade the detection of defenders by imitating benign traffic (such as embedding different
instructions in the malicious components).

GET

jk?c=2&p=f4xZ24H4EPu_hGnxe7oUJh0cvXvXo50j9_VnCX+zlI=&k1

HTTP/1.1

Accept: */*

User-Agent: MeDcore

Connection: Keep-Alive

Content-Type: text/xml; charset="UTF-16LE"

Host:

HTTP/1.1 200 OK

Server: Tengine

Date: Tue, 25 Jul 2019 14:27:35 GMT

Content-Type: application/zip

Content-Length: 258

Connection: close

\x08\x00\x02\x00\x01\x0b\x02\x00\x00\x00\x07succeed\x0c\x00\r\x02

\x00\x03\x00\x00

Figure 2: A malicious flow consisting of two packets (a request and a response) generated by HTTP-based
malicious communication behavior during the communication phase.

In this paper, we focus on the scene that an HTTP-based malware attack the victim
devices and we need find a method to detect it during the communication phase. There-
fore, we build a hybrid neural network to extract features of malicious traffic, and design

7

a traffic generation algorithm based on the four characteristics of HTTP-based malicious
communication traffic.

4. Feature Analysis of HTTP-based Malicious Communication Traffic

We define a flow as a sample. Flow is full-duplex in application layer, including request
and response packets with the same quintuple (src ip, src port, dst ip, dst port, TCP) over
a period of time. A flow has multiple packets. Each packet is composed of payload and
different fields, which has hierarchical structures. Therefore, we divide a flow into packet
level (Pkt-level) and flow level (Flow-level) to extract features from different hierarchies.

HTTP/1.1 200 OK

Server: Tengine

Date: Tue, 25 Jul 2019 14:27:35 GMT

Content-Type: application/zip

Content-Length: 258

Connection: close

\x08\x00\x02\x00\x01\x0b\x02\x00\x00\x00\x07succeed\

x0c\x00\r\x02\x00\x03\x00\x00

Figure 3: A example of converting a packet(top) of a flow into a two-dimensional image(bottom).

4.1. Feature Analysis of Packet
Text Feature: The text content of an HTTP packet is composed of a payload and

different header fields. The feature information of HTTP-based malicious communication
behavior is usually hidden in these contents. For detecting unknown malicious communi-
cation behavior, we consider that the miss-leading contents (ip, url, etc.), will bring false
positives. For instance, the host field of the packet can be changed to evade detection when
the malicious communication information embedded in a packet is consistent. Therefore, we
drop these miss-leading contents. Then, a packet is processed as a two-dimensional image
with one channel, as shown in Fig. 3.

Statistical Features: Malicious and benign packets are different in many statistical
values. For instance, an adversary usually uses fewer fields for simplicity. The length of the
domain name used by the adversary is longer and unreadable due to the occupation of the
domain name space. Therefore, we propose statistical feature engineering combined with
the raw data, to further improve the performance of the detection model. The statistical
features at Pkt-level are shown in Tab 1. RFC1998 [6] recommends that web services use
47 field lines for HTTP-based communication, but most web services do not use that much.
Therefore, we consider counting the features of 18 fields. It will be discarded if exceeded
and be filled with 0 if missed.

8

Table 1: Statistical features at Pkt-level

Type Position

packet type 0
length of url or state description 1

protocol version 2
lines of fields 3

lengths of fields name 4-21
lengths of fields value 22-39
length of payload 40

4.2. Feature Analysis of Flow

HTTP-based malicious communication traffic consists of multiple packets in a flow. The
features provided by a single packet are limited, and analysis based on the entire flow can
get more information. Generally, there are more packets in a malicious flow compared with
benign traffic behavior. Usually, the bytes of response are larger but the bytes of request are
smaller. Therefore, we perform feature analysis at Flow-level. Statistics such as the number
of packets and length sequences are used as part of statistical feature engineering, as shown
in Tab 2. The number of packets of a flow will not exceed 50, if it is exceeded, it will be
discarded, or if it is missing, it will be filled with 0.

Table 2: Statistical features at Flow-level

Type Position

count of request pkts 0
count of ’get’ 1
count of ’post’ 2
count of ’head’ 3

count of ’options’ 4
count of other requests 5
count of response pkts 6

count of ’1XX’ 7
count of ’2XX’ 8
count of ’3XX’ 9
count of ’4XX’ 10

count of ’5XX’ and others 11
count of other responses 12

mean of pkt bytes 13
seq of pkts bytes 14-63

9

5. HMCD-Model Methodology

GAF Samples

Data Pre-processing
Layer

HMCD-Model (Training)

Training

Detection
Hybrid Neural Network

Field-based Decoder

fd1: GET... fd2 fdn

GAN1 GANnGAN2

Field-based Encoder

Labeled

data

Generation Algorithm of Adversarial

Flows

Model Layer

Unlabeled

data
HMCD-Mode (Trained)

HTTP/1.1 200 OK

Server: Tengine

Date: Tue, 25 Jul 2019 14:27:35 GMT

Content-Type: application/zip

Content-Length: 258

Connection: close

\x08\x00\x02\x00\x01\x0b\x02\x00\x

GET

jk?c=2&p=f4xZ24H4EPu_hGn

Accept: */*

User-Agent: MeDcore

Connection: Keep-Alive

Content-Type: text/xml; charset="UTF-16LE"

Host:

Hierarchical Features

Flow-Stat Pkt-Stat

Pkt-Text

HTTP/1.1 200 OK

POST /index.html

...

GET /index.html

HMCB Scene

Field-based Dictionary

Figure 4: Training and detection process for HTTP-based malicious communication traffic (HMCB Scene:
HTTP-based malicious communication behavior scene).

5.1. Overview

As shown in Fig. 4, we build HMCD-Model. The training and detection process of the
model is composed of two different stages.

Generation of Adversarial Flows: Generate HTTP-based malicious communication
traffic for data enhancement. Based on a field-based dictionary, we use WGAN-GP to insert
malicious content into benign traffic packets to generate malicious flows, that is Generated
Adversarial Flows (GAFs), which are used to enrich the multiformity of training samples.

Training and Detection: Build a hybrid neural network. First, the labeled traffic data
from the real world is used for model training, and GAFs are also added to the training set
to improve the generalization of the model. Then, the trained HMCD-Model fixes the pa-
rameters, and performs unknown HTTP-based malicious communication behavior detection
in various experimental scenarios.

Intuitively, we first introduce the hybrid neural network used to extract features, and
then introduce the adversarial flows generation algorithm.

5.2. Hybrid Neural Network based on Hierarchical Spatial-temporal Features

The hybrid neural network based on hierarchical spatial-temporal features is shown in
Fig. 5, and the basic unit of its detection is flow. In the spatial, the text features of the packet
have structural information. So we use CNN to extract content and structural features. In
the temporal, a flow usually has multiple packets, and there is natural timing between the
packets. So we use LSTM to extract its sequence features.

10

Hierarchical

Features

Fl-Stat

Pkt-Stat

Pkt-Text

HTTP

Flow

Vps_1

Vps_2

Vpt_1

Vpt_2

Vfs

Vps_k

Vpt_k

F-DNN

P-DNN1

P-DNN2

P-DNNk

…

…

…

P-CNN1

P-CNN2

P-CNNk

…

V'pt_1

V'ps_1

V'pt_1

V'ps_1

V'pt_2

V'ps_2

V'pt_2

V'ps_2

V'pt_k

V'ps_k

V'pt_k

V'ps_k

…

LSTM

Cell1

LSTM

Cell2

LSTM

Cellk

…

V''pst

V'fs

V''pst

V'fs
FP-DNN

Benign

Malicious

Figure 5: Structure of the hybrid neural network (Vfs: normalized Flow-Stat vector; Vps ∗: normalized

Pkt-Stat vector; Vpt ∗: normalized Pkt-Text vector; V
′

∗ , V
′′

∗ : intermediate variables; k: the packet size in an
HTTP flow).

5.2.1. Feature Extract at Pkt-level

A packet has content and structure information. We cut a raw packet into a two-
dimensional image with one channel to form text feature of the packet. In addition, we
extract packet statistics to obtain more comprehensive packet information.

Text Feature Extract of Packet: The hybrid neural network uses CNN to process
packet text information (Pkt-Text). CNN exploits convolution and pooling operations,
which can perform translation-invariant classification of input information according to its
hierarchical structure [14]. The single element output of the convolution layer corresponds to
a matrix feature map input, as shown in Eq (1), where Z l is input feature, wl+1 is convolution
kernel, fconv is the size of kernel and s0 is the stride. Convolution kernel parameters are
shared, and the connection between layers are sparse, which allow it to effectively extract
features with a small amount of calculation.

The pooling layer performs feature selection and information filtering in the input fea-
tures. As shown in Eq (2), where fpool is the size of pooling. In this paper, we use maximum
pooling (p → +∞) to retain the most significant features.

Z l+1(i, j) = [Z l ⊗ wl+1](i, j) + b

=

Kl∑
k=1

fconv∑
x,y=1

[
Z l

k(s0i+ x, s0j + y)wl+1
k (x, y))

]
+ b (1)

Z l
k(i, j) =

 fpool∑
x,y=1

Z l
k(i+ x, j + y)p

 1
p

(2)

Statistical Feature Extract of Packet: The statistics of a single packet is a 41-
dimensional vector (Pkt-Stat), and there is no obvious characteristic relationship between
the components. Therefore, we exploit DNN to process the Pkt-Stat and integrating them
into lower latitude feature space.

11

5.2.2. Feature Extract at Flow-level

Packets of a flow have natural timing relationship according to the transmission timing.
These packets form sequence features with a consistent format after packets are processed
by CNN and DNN. Therefore, we extract sequence and statistical features in a flow at
Flow-level.

Sequence Feature Extract of Flow: Packets of the same flow are serially transmitted
on a timeline to form sequence data, which are suitable for processing using RNN. And
the packets in the flow may have a long dependency due to delays and re-transmissions.
LSTM can alleviate the long-term dependency problem [20]. Therefore, we use LSTM
instead of traditional RNN to extract the sequence features of flow. It uses gate structure to
selectively remember and forget information. Each gate is composed of an activation layer
and a pointwise operation. By choosing to store information for subsequent processing,
information can be transmitted further along the timing chain. Sundermeyer et al. [41]
show that the most important component in LSTM is the forget gate. As shown in Eq (3),
the forget gate, ft, decides the proportion of the retained information according to the stored
information ht−1 and the input xt at the current stage. Followed is the input gate, ft. And
it decides how much new information to add, as shown in Eq (4).

ft = δ(Wf · [ht−1, xt] + bf) (3)

it = δ(Wi · [ht−1, xt] + bi) (4)

Statistical Feature Extract of Flow: The statistics of a flow (Flow-Stat) is a 64-
dimensional vector. There is no obvious relationship between the components. Therefore,
we exploit DNN to process the vector. The input features are dimensional reduced and
integrated into low-latitude feature vectors, which combined with LSTM output and then
entered into subsequent neurons.

5.2.3. Feature Aggregation

FP-DNN takes the sequence and statistical features as input, which processed by LSTM
and DNN. It exploits fully-connected layers for processing and outputs the final detection
result. The final detection result of HMCD-Model is output after feature reduction and
nonlinear transformation.

5.2.4. Time Complexity of Hybrid Neural Network

Time complexity is the number of executions of each operation in an algorithm or model,
and is called operation frequency or time frequency. The time complexity of the neural
network is the number of operations for each basic operation of the model in training and
testing.

The time complexity, Thnn, consists of the time of each local networks during training
and testing, including feature extract and feature aggregation, as shown in Eq (5), where
Tdnn is the sum of Tp−dnn, Tf−dnn and Tfp−dnn, N is the sample size. When model structure
(the size of packet, etc.) are determined, its time complexity is linearly related to the sample
size, that is, O(N). By the way, in this hybrid neural network, the number of neurons in

12

each component is small to to improve the training and detection speed (convolution kernel,
etc.). And some local networks can work simultaneously (e.g. text feature and statistical
feature extract of packet, sequence feature and statistical feature extract of flow), and most
neural networks are matrix operations, so there are many parallel computing strategies that
can further accelerate the model.

Thnn = N · (Tcnn + Tlstm + Tdnn)

∼ O (β ·N) ∼ O (N)
(5)

5.3. Generation Algorithm of Adversarial Flows

In an adversarial environment, the HTTP-based malicious communication traffic col-
lected from Internet is difficult to cover all the specific forms. Therefore, we design a gener-
ation algorithm for generating adversarial flows. The algorithm first builds a dictionary of
packet fields (field-based dictionary) based on the real traffic dataset, and then, generates
corresponding packets, and combines the packets into flow.

In this paper, each of our generated adversarial flow consists of a request packet and a
response packet. The process of generation algorithm is described in detail below.

HMCT-2020 Dataset

Benign HTTP Flows

HMCB Scene

Vmal-pos

Field-based Dictionary

fd1

fdben_1

fdmal_1

fd2

fdn

…

Benign

Malicious

Field-based Encoder

Vin1 VinnVin2

Field-based

GAN1

Field-based

GAN2

Field-based

GANn

Vout1 VoutnVout2

Field-based Decoder

Generative Adversarial Flows

…

…

…

fnamefname fcontentfcontent

fdgray_1

Split based on Field

Figure 6: Process of generating HTTP-based malicious communication traffic (HMCB Scene: HTTP-based
malicious communication behavior scene).

13

5.3.1. Generation Process of GAFs

The adversary always hides the malicious content in certain packet fields in the scene of
HTTP-based malicious communication behavior. Therefore, we first generate each content
in a flow based on the fields of a packet. Then, we splice these field-based contents to
synthesize malicious packets, and then splice these packets to flows.

The process of generating HTTP-based malicious communication traffic is shown in
Fig. 6. The process is divided into: 1) We analyze the traffic and generate corresponding
benign and malicious dictionaries. 2) We randomly select the malicious content in the
malicious dictionary and determine the location where it appears in HTTP benign flows,
and finally obtain the corresponding field code Vin. 3) We input multiple Vin of a packet to
the corresponding GAN for training, and output the generated field code Vout. 4) According
to the HTTP specification, multiple Vout are decoded to packets and spliced into complete
malicious communication flow.

Field-based Dictionary: We build a field-based dictionary, field dict, as shown in
Eq (6). field dict is a two-level dictionary and contains three second-level dictionaries (ma-
licious dictionary (fdmal,) gray dictionary (fdgray) and benign dictionary (fdben)). HTTP
packets have fixed structure, each row is independent and has specific meaning. Therefore,
we divide packets by row, and each row is split into a fixed field-based name fname (“GET”,
“Accept”, etc.) and a remaining fixed field-based content fcontent (may contain malicious
information). The key of the first-level dictionary is fname (“Date”, etc.) and the value is a
second-level dictionary. According to the syntax and semantics of the fcontent, we divide it
into several words (“text”, “xml”, etc.) by special characters (“,”, “:”, etc.).

field dict =


fname 1 : fdmal 1 + fdgray 1 + fdben 1

fname 2 : fdmal 2 + fdgray 2 + fdben 2

...
fname n : fdmal n + fdgray n + fdben n

 (6)

For instance, we show an example in Fig. 2. These two packets are divided into 11 pairs of
fnames, and fcontents. In the first one, fname is “GET”, and fcontent (“jk?c=2&p=f4Z24. . . ”)
can be split into words (“jk”, “c”, “2”, “p”, “f4Z24...”, etc.) by the characters like “?”,
“=”, “&”. We use words that appear more than p times as keys to make the dictionary
statistically stable and control the size of dictionary by adjusting the value of p. In addition,
keys of fdmal only appear in malicious HTTP packets, keys of fdben only appear in benign
HTTP packets, and keys of fdgray appear in both.

Encoder: According to the analysis about HTTP-based malicious communication be-
havior (see Section 3), we set the vector Vmal−pos to present the possible positions of packets
in a flow where adversaries usually hide malicious content. As shown in Eq (7), where pi is
the replacement position, wi is the malicious content word randomly selected from the keys
in the fdmal, m is length of the Vmal−pos. Several parts of benign contents are replaced with
malicious contents based on Vmal−pos. Then, the field-based contents through replacement
are encoded as integer vectors (Vin 1, Vin 2, etc.).

Vmal−pos = {⟨p1, w1⟩ , ⟨p2, w2⟩ , ..., ⟨pm, wm⟩} (7)

14

Field-based GAN: The Field-based GAN is responsible to generate malicious content
which is highly similar to benign content. As shown in Fig. 7, Field-based GAN consists of
two modules: the Generator (G) and the Discriminator (D). The structure of the G is as
same as D, but their order is reversed. G is to imitate real field-based benign contents and
generate fake, and D is to judge whether the generated contents by G are similar to the real
benign contents.

ResBlock

Real Field-based

Content Code VIn*

One-Hot Encoder

r

Conv1d

ResBlock

ResBlock

Dense

Discriminator (D)

Output Probability D(x)

…

Synthetic Field-based

Content Code VOut*

One-Hot Decoder

G(z)

Conv1d

ResBlock

ResBlock

Dense

Generator (G)

Fixed distribution Pz

…

Softmax

Seed z

Conv1d

Conv1d

+

Figure 7: Structure of Field-based GAN.

In Field-based GAN, we introduce the idea of WGAN-GP [16], which makes Field-based
GAN to generate diverse data. WGAN-GP defines a well-defined training procedure, which
makes the generator easier to train than traditional GAN. It describes the distance between
pg and pr by the Wasserstein distance. WGAN-GP can be considered a min-max game,
as shown in Eq (8), where z is the input of G which is a random 1-D tensor z filled, R is
the regular term and E is the cross-entropy function. Through Eq (8), Field-based GAN
continuously reverses iterative neural network training G and D, takes the random seed z
as the input of G, output the content sample G(z), and takes the Vin and G(z) (one-hot
form) as the input of D. When all parameters converge, we decode the generated G(z) into
the generated content Vout.

min
G

max
D

L(D,G) = Ez∼Pz [D(G(z))]− Ex∼Pr [D(x)] +R (8)

Algorithm Description: The generation algorithm of adversarial flows based on the
above-described generation process is shown in Algorithm 1. The input of the algorithm
is the fname and fcontent of HTTP benign flows and the Vmal−pos. The output is GAFs.
Algorithm guarantees maliciousness of GAFs through Vmal−pos. The strategy of dividing

15

packets based on fields ensures compliance of the generated traffic. Field-based GAN will
imitate the characteristics of benign traffic when generating traffic, which ensures covertness
of the generated traffic. In addition, we use the WGAN-GP to optimize the training process
and enhance multiformity of GAFs.

Algorithm 1 generation algorithm of adversarial flows

Input: benign-flows : HTTP-based benign traffic. Vmal−pos: the vector that may contain
malicious information. N : the number of samples that need to generate.

Output: g flows: generated HTTP-based malicious communication flows.
Step 1: Dictionaries
Segement words and build dictionaries field dict from HMCD-2020 datasets
Step 2: Encoder
for ffield in field dict do
The content-string is separated from the corresponding fields of benign traffic
Encode the content-string as Vcode based on field dict

end for
Step 3: Field-basd GAN
for t=0 in number of iterations do
The seed(z) is transformed into the sample G(z) with the same dimension as Vcode

Convert G(z) to Vmal−code based on Vmal−pos

Take Vcode and Vmal−code as inputs to D
Update D model and G model by Eq (8)

end for
Step 4: Generated Adversarial Flows (GAFs)
Decode the generated G(z) and merge it into a malicious communication flow g flow
g flows = N generated HTTP-based malicious communication flows

5.3.2. Time Complexity of Generation Algorithm

The algorithm traverses the input data once in building the dictionary and encoding
stage. In the generation stage, the time complexity (Tga) is shown in Eq (9), where N is the
sample size, F is the number of Field-based GAN, Cl is the number of convolution kernels of
l-th layer, M is the size of the feature map, and K is kernel size, Din and Dout are the input
and output of the fully-connected layer. All the parameters are constants after the model
structure is determined. Therefore, the time complexity of the entire generation algorithm
(Tga) can be regarded as O(N).

Tga ∼ O

(
N · F ·

L∑
l=1

(
M2

l ·K2
l · Cl−1 · Cl + 2 ·Din ·Dout

))
∼ O (α ·N) ∼ O (N)

(9)

16

6. Experimental Evaluation

6.1. Datasets

6.1.1. HMCT-2020 Dataset

Currently, there are no large-scale public intrusion detection datasets specifically for
HTTP-based malicious communication behavior detection, the relevant datasets that con-
tain HTTP-based malicious communication traffic have limited specific attack forms. There-
fore, we publish the dataset HMCT-2020 and the hashing technology is used for data masking
to protect privacy. HMCT-2020 can be divided into two datasets from the timeline, HMCT-
2020(18) and HMCT-2020(19-20). The traffic in HMCT-2020(18) is mainly captured from
the Internet during November 2018. The traffic in HMCT-2020(19-20) is captured from the
Internet between July 2019 and March 2020. Finally, after data cleaning and application
layer packet extraction, the captured traffic forms the dataset HMCD-2020, the details of
which are shown in Tab 3. The dataset can be found in there2.

Table 3: Statistics on packet size and flow size in HMCT-2020

Packet (in bytes) Flow (in packtes)

Malicious Benign Total Malicious Benign Total

HMCT-2020
(18)

Count
(in packets)

1.49M 11.48M 12.97M
Count

(in flows)
35.58K 3.92M 3.95M

Size 429.96M 6.5G 6.93G Size 1.49M 11.48M 12.97M
Min 15 12 12 Min 2 1 1
Max 46.55K 10.23K 46.55K Max 50 50 50
Mean 289.25 566.33 534.58 Mean 41.77 2.93 3.28

HMCT-2020
(19-20)

Count
(in packets)

68.77K 2.86M 2.93M
Count

(in flows)
41.18K 882.0K 923.17K

Size 29.6M 1.73G 1.76G Size 68.77K 2.86M 2.93M
Min 15 19 15 Min 1 1 1
Max 6.32K 7.08K 7.08K Max 50 50 50
Mean 430.41 604.43 600.34 Mean 1.67 3.24 3.17

There are two sources of malicious traffic in HMCT-2020. One is to directly extract
relevant malicious traffic from the network operator’s existing IDSs. The other is to actively
capture traffic by running target malware in a sandbox. In HMCT-2020(18), a total of
35,583 flows are obtained, and in HMCT-2020(19-20), a total of 41,177 flows are obtained.

Benign traffic comes from the network gateway of our network security lab. After autho-
rization, we deploy a traffic collection device at the gateway to collect traffic while ensuring

2https://github.com/BitBrave-Xie/HMCD-Model

17

security and data privacy. Finally, HMCT-2020(18) contains the benign flows of 3,981,567,
and HMCT-2020(19-20) contains the benign flows of 923,172.

We employ multiple ways to ensure the validity of traffic data labels in HMCT-2020.
First, malicious traffic and benign traffic originate from different channels, and are naturally
distinguishable so that they can be self-labeled. For instance, we class malicious traffic
captured by partner operators’ existing IDSs and traffic generated by malware running in
sandboxes as malicious, and traffic captured from lab network gateways as benign. Second,
after cleaning the traffic data, we randomly sample from the preliminary labeled data to
make artificial judgments to further increase the accuracy of data labeling. Finally, we
construct the labeled dataset HMCT-2020.

6.1.2. Other Datasets

In this paper, the malicious traffic in the published intrusion detection dataset and the
malicious traffic generated by the malware are collected to further test the generalization of
model.

CIC-IDS-2017: CIC-IDS-2017[35] is an intrusion detection dataset with complete traf-
fic published by the Canadian Institute for Cybersecurity at University Of New Brunswick,
in 2018. It contains benign traffic and latest common attacks (Web Attack, Infiltration, etc.).
We select all HTTP-based malicious traffic as positive samples and all the background traffic
as the unknown benign traffic. The specific dataset details are shown in Tab 4.

Table 4: Statistics on packet size and flow size in CIC-IDS-2017

Packet (in bytes) Flow (in packets)

Malicious Benign Total Malicious Benign Total

Count
(in packets)

131.1K 438.58K 569.68K
Count

(in flows)
27.47K 106.23K 133.7K

Size 285.21M 580.78M 865.99M Size 131.1K 438.58K 569.68K
Min 16 16 16 Min 2 1 1
Max 20.17K 24.71K 24.71K Max 50 50 50
Mean 2.18K 1.32K 1.52K Mean 4.77 4.13 4.26

82-Malware-Traffic: We collect HTTP traffic generated by 82 malware from an influ-
ential malware web3. The selection condition is malware with behavioral characteristics that
meet the conditions of HTTP-based malicious communication behavior, such as Gootkit. In
addition, we collect a large amount of background traffic from different Internet gateways
as unknown benign traffic. The details about traffic can be found in our publish link (in
Introduction). The specific dataset details are shown in Tab 5.

3http://www.malware-traffic-analysis.net/index.html

18

Table 5: Statistics on packet size and flow size in 82-Malware-Traffic

Packet (in bytes) Flow (in packets)

Malicious Malicious

Count
(in packets)

70.19K
Count

(in flows)
3.19K

Size 22.94M Size 70.19K
Min 15 Min 1
Max 7.41K Max 50
Mean 326.81 Mean 21.98

6.2. Evaluation Metrics and Environmental Configuration

6.2.1. Evaluation Metrics

There are 4 basic metrics in the experiment. True-Positive (TP), is the number of mali-
cious samples classified as malicious. False-Positive (TP), is the number of benign samples
classified as malicious. True-Negative (TN), is the number of benign samples classified as
benign. False-Negative (FN), is the number of malicious samples classified as benign.

Based on the above metrics, We use precision (P), recall (R) and false positive rate
(FPR) to evaluate a model’s performance in detecting HTTP-based malicious communi-
cation behavior, as shown in Eq(10) to Eq(12). In addition, F1 is also used to verify the
overall performance of a model in detecting malicious behavior. As shown in Eq(13), Pk

and Rk are the precision and recall of the model in the k-th experiment. Because the same
experiment will be repeated Nr times, it will produce multiple indicators of the same type,
here we calculate the macro average to get the final result.

P =
1

Nr

Nr∑
k=1

TPk

TPk + FPk

(10)

R =
1

Nr

Nr∑
k=1

TPk

TPk + FNk

(11)

FPR =
1

Nr

Nr∑
k=1

FPk

FPk + TNk

(12)

F1 =
1

Nr

Nr∑
k=1

2× Pk ×Rk

Pk +Rk

(13)

19

6.2.2. Environmental Configuration

The system environment is Ubuntu16.04 LTS. The hardware facilities are 16-core CPU
and 128G memory. TensorFlow2.0 in Python3.7 is used to implement the model. To accel-
erate training and detection, 3 NVIDIA TITAN XPs are deployed on the server.

As a rule of thumb, we set some hyper-parameters for the model and related experiments.
Field-based GAN has 7 convolutional layers and 2 full-connected layers. CNN has one
convolutional layer with two 2 × 8 neurons. LSTM cell uses 16 neurons. The structure of
DNN is 10, 8, 2. The other parameters about HMCD-Model are shown in Tab 6.

Table 6: Parameter configuration of HMCD-Model during training

Type Value

Loss function Cross-Entropy
Activation function ReLU

Optimizer Adam
learning rate 1e-3
Batch size 128
Epochs 50

In addition, we set a sample consist the first two packets in a flow, and the size of a
packet is 20 × 40. The number of repeated experiments is Nr = 5. During the training of
model, the 5-fold cross validation is used.

For the experimental data, we conduct experiments by randomly sampling part of the
traffic data from the datasets. Specifically, for the training set data, we randomly sample it
in HMCT-2020(18), and for the test set data, we randomly sample it from different datasets
according to the different requirements of the experiment. Tab 7 shows the details of the data
composition of the training and test sets for each experiment. For instance, when detecting
82-Malware-Traffic, we select all malicious traffic. In addition, in order to ensure that the
experimental results can truly reflect the performance of the model in the entire dataset, all
data in each experiment are re-sampled randomly from the corresponding dataset.

For the number of GAFs in the training set, theoretically, the more GAFs, the higher
the generalization of the HMCD-Model, but our preliminary experimental results show that
it will reduce the performance of the model when the number of GAFs in the training set
is too large. This is because a generated adversarial flow sample we generate consists of
a request and a response, which can only imitate part of the HTTP-based real malicious
communication behavior. The generated data can only change in a certain local feature
space, so the excessive proportion of GAFs in the training set will lead to the performance of
the model overfitting and reduce its generalization performance. In subsequent experiments,
in the combination of training and test sets ep1 to ep4, we add 10,000 GAFs to the training
set. That is, there are 30,000 malicious samples in the training set, consisting of 20,000 real
traffic samples and 10,000 GAFs.

20

Table 7: Data composition of training set and test set in different experiments

Training set Test set

Data source
Malicious
samples

Benign
samples

Data source
Malicious
samples

Benign
samples

ep1 HMCT-2020(18) 20,000 50,000 HMCT-2020(18) 10,000 10,000
ep2 HMCT-2020(18) 20,000 50,000 HMCT-2020(19-20) 30,000 30,000
ep3 HMCT-2020(18) 20,000 50,000 CIC-IDS-2017 27,474 30,000
ep4 HMCT-2020(18) 20,000 50,000 82-Malware-Traffic 3,138 4,000

6.3. Ablation Study on Key Factors in HMCD-Model

We add statistical features to improve the detection performance of HMCD-Model and
GAFs to improve the data multiformity. We verify these key factors in HMCT-2020 and
observe corresponding improvements.

Table 8: Performance improvements of HMCD-Model due to the addition of statistical features and GAFs
(ep2 in Tab 7)

HMCT-2020(19-20)
(ep2)

P (%) R(%) F1(%) FPR(%)
HMCD-Model without
Statistical Features

97.33
+0.75
−0.62

99.37
+0.27
−0.16

98.33
+0.34
−0.32

2.73
+0.65
−0.79

HMCD-Model
without GAFs

94.63
+3.86
−4.50

95.74
+2.68
−5.96

95.15
+3.31
−3.62

5.50
+5.15
−3.99

HMCD-Model 97.94
+0.7
−1.51

99.39
+0.18
−0.25

98.66
+0.38
−0.89

2.10
+1.57
−0.73

6.3.1. Statistical Features

We extract statistical features from Pkt-level and Flow-level. The addition of statistical
features can make HMCD-Model get more comprehensive information and easier to extract
the essential features of the flow. Traffic in HMCT-2020(18) is used training set, the exper-
imental results are shown in Tab 8. All the indicators of HMCD-Model have been improved
after adding statistical features.

6.3.2. Generated Adversarial Flows

GAFs are used for data enhancement, to enrich the data multiformity of the training
set. The experimental results are shown in Tab 8. After adding GAFs, the model can
be increased to 98.66% in F1, and the FPR can be reduced to 2.10%. GAFs expand the

21

training set so that the model can learn more malicious behavior scenes, reduce over-fitting,
and improve its generalization ability. We show a generated adversarial flow in Fig. 8, which
consists of a request and a response.

POST /ctrlt/diagnostic/shards/14/&/v1/ctrlt/ /v1/phpunit/as... HTTP/1.1

Host: steeLcti1918035169cobweb. 254.steeLcncn152

Content-Type: jsonwwwUTFtext/dataformformtextcharset=wwwhtmlurle...

Content-Length: 430

HTTP/1.1 200 OK

Date: Wed2107,Apr032029531655

Server: 2 ./nginxCentOS)CentOSnginx

Content-Length: 430

Content-Type: jsonwwwUTFtext/dataformformtextcharset=wwwhtmlurle...

Figure 8: A generated adversarial flow composed of two packets (a request and a response).

In addition, we visualize the partial sample features distribution from the training set of
HMCT-2020(18) and the corresponding GAFs feature distribution. The feature distribution
based on t-SNE dimension reduction is shown in Fig. 9. HTTP-based malicious communi-
cation traffic and benign traffic are distributed in different feature spaces. Benign traffic can
be grouped into a large cluster as a whole because they usually have some common char-
acteristics. HTTP-based malicious communication traffic is distributed in multiple small
clusters and the whole is relatively scattered. Because the behavior and purpose of different
attackers represented by these flows are different, they often construct flows with extremely
different characteristics to bypass different detection systems. The distribution of GAFs
also shows the same phenomenon of small cluster distribution as HTTP-based malicious
communication traffic. They are distributed in the feature space outside the benign traffic.
This shows that our generation algorithm can effectively generate adversarial samples and
fill the feature space of HTTP-based malicious communication traffic.

Figure 9: The feature distribution of HTTP-based malicious communication traffic, benign traffic and GAFs
based on t-SNE dimension reduction.

6.4. Generalization Comparison
We investigate research work related to HTTP-based malicious communication behavior

and selected two well-represented works. Wang et al. [44] regard traffic as language and use

22

N-gram and SVM for detection, which can obtain 99.15% accuracy when detecting malware
flows and can detect 54.81% for unknown malicious applications. Salo et al. [33] propose a
novel hybrid dimensionality reduction technique for intrusion detection combining IG and
PCA with an ensemble classifier based on SVM, IBK, and MLP, named IG-PCA-Ensemble.
It can achieve 99+% performance in dataset ISCX-2012, NSL-KDD and Kyoto2006+.

We implement these two methods and select hyper-parameters of the two methods ac-
cording to the trade-off strategy between detection performance and detection time in the
experiments.

N-gram+SVM: Wang et al. We use two packets as the input feature for each flow. For
other hyper-parameters, we follow the selection of the original paper under the reasonable
time cost. We set the word length N = 1 in N-gram and the feature number K = 600 for
each sample according to Wang’s experiment results.

IG-PCA-Ensemble: We set the number of neighbors of IBK to six, SVM is a linear kernel,
and MLP has 128 neurons. It reads the first two packets for each flow, selects the top 17
most important information through IG, and reduces to 12-dimensional features based on
PCA.

We compare the generalization of HMCD-Model, N-gram+SVM, and IG-PCA-Ensemble
in a variety of experimental environments. In addition, we also compare HMCD-Model with
classic baseline machine learning methods in 82-Malware-Traffic (see Appendix A).

6.4.1. Generalization Comparison in Dataset HMCT-2020

We select data from the HMCT-2020(18) to form the training set and the test set.
The results of experiments are shown in Tab 9. It shows that HMCD-Model has the best
detection performance overall. In HMCT-2020(18), compared with N-gram+SVM, HMCD-
Model has the same level of detection performance, but its F1 ≈ 99.46% is 13.8% higher
than IG-PCA-Ensemble (the F1 ≈ 85.66%).

Table 9: Performance comparison in dataset HMCT-2020(18) (ep1 in Tab 7)

HMCT-2020(18)
(ep1)

P (%) R(%) F1(%) FPR(%)

N-gram+SVM 99.79
+0.11
−0.07

98.92
+0.62
−2.18

99.35
+0.32
−1.10

0.21
+0.07
−0.11

IG-PCA-Ensemble 83.92
+4.89
−5.73

87.71
+1.93
−2.71

85.66
+1.31
−2.13

17.21
+7.79
−6.50

HMCD-Model 99.52
+0.34
−0.20

99.39
+0.43
−0.41

99.46
+0.19
−0.30

0.48
+0.20
−0.34

In addition, we use the data of HMCT-2020(18) for training and the data of HMCT-
2020(19-20) with more malicious types for testing to examine the generalization of the
model against concept migration. The experimental results of the three methods are shown

23

in Tab 10. Obviously, HMCD-Model has significantly better detection performance than
the other two methods. For instance, HMCD-Model’s FPR is only 2.1%, and the F1 has a
35.67% and 26.07% improvement over N-gram+SVM, IG-PCA-Ensemble, respectively.

Table 10: Generalization comparison in dataset HMCT-2020(19-20) (ep2 in Tab 7)

HMCT-2020(19-20)
(ep2)

P (%) R(%) F1(%) FPR(%)

N-gram+SVM 81.79
+1.83
−1.07

51.24
+1.31
−1.24

62.99
+0.73
−0.84

11.42
+1.08
−1.34

IG-PCA-Ensemble 75.92
+6.05
−6.21

70.07
+4.68
−4.87

72.59
+0.60
−0.45

23.02
+9.46
−8.68

HMCD-Model 97.94
+0.70
−1.51

99.39
+0.18
−0.25

98.66
+0.38
−0.89

2.10
+1.57
−0.73

The features of malicious traffic in HMCT-2020(19-20) have no major change in the over-
all spatio-temporal behavior compared to HMCT-2020(18) and only the attack information
in packets is different. N-gram+SVM relies more on the content information in packets and
works well when detecting malicious traffic similar to the training data in contents. When
the information changes, its generalization performance will decrease significantly. IG-PCA-
Ensemble relies more on the behavior characteristics of malicious traffic at Flow-level and is
not sensitive to attack information, which results in its overall detection performance being
centered. Compared with these two methods, HMCD-Model extracts hierarchical spatio-
temporal of traffic features from Pkt-level and Flow-level respectively. Therefore, it shows
excellent detection performance to resist concept migration.

6.4.2. Generalization Comparison in Dataset CIC-IDS-2017

We selected the data in the dataset HMCT-2020(18) and CIC-IDS-2017 for generalization
detection, one for training and the other for testing. Since the malicious communication
traffic type in CIC-IDS-2017 is relatively single and the correspondingly constructed field-
based dictionary cannot cover more malicious scenes, making it difficult for HMCD-Model
to generate GAFs. Therefore, we use data in HMCT-2020(18) as the training set and data in
CIC-IDS-2017 as the test set. The experimental results are shown in Tab 11. The precision
of N-gram+SVM is P =98.38% and the FPR is 0.35, but other metrics are very low. This is
because N-gram+SVM increases the threshold for determining a sample as malicious, which
means a lot of false negatives. For instance, the F1 of N-gram+SVM is 56.34%, and is
34.35% lower than HMCD-Model. In addition, N-gram+SVM and IG-PCA-Ensemble have
large fluctuations in CIC-IDS-2017, which makes them easy to lose detection performance.
Therefore, in general, our method has the best overall performance.

The detection results of these three methods have large fluctuations. The fluctuation of
N-gram+SVM comes from the change of training data. N-gram+SVM is sensitive to content

24

Table 11: Generalization comparison in dataset CIC-IDS-2017 (ep3 in Tab 7)

CIC-IDS-2017
(ep3)

P (%) R(%) F1(%) FPR(%)

N-gram+SVM 98.38
+1.31
−2.44

51.28
+43.55
−48.92

56.34
+40.86
−51.73

0.35
+0.53
−0.30

IG-PCA-Ensemble 73.71
+15.68
−62.25

75.04
+18.53
−74.06

73.45
+17.98
−71.65

10.50
+0.96
−2.94

HMCD-Model 86.93
+12.03
−11.13

95.32
+3.14
−2.80

90.69
+6.77
−5.03

15.37
+16.06
−14.37

information of packets. It is difficult to extract features effectively when the difference
between the content information of the training data and the test data exceeds a threshold.
The fluctuation of IG-PCA-Ensemble mainly comes from the change of training data and
the uncertainty of its own model. The fluctuation of HMCD-Model mainly comes from the
initialization and update of parameters of the model itself. But it can be stabilized through
multiple iterations of training, so the HMCD-Model is relatively more stable.

6.4.3. Generalization Comparison in 82-Malware-Traffic

We capture relevant malicious traffic data from the Internet to verify the generalization
performance of the model more comprehensively. We use data in HMCT-2020(18) as the
training set and data in 82-Malware-Traffic as the test set. The experimental results are
shown in Tab 12. Similarly, the precision of N-gram+SVM is P =99.71% and the FPR is
0.14, but other metrics are very low. This is because N-gram+SVM increases the threshold
for determining a sample as malicious, which means a lot of false negatives. For instance,
the F1 of N-gram+SVM is 66.09%, and is 17.57% lower than HMCD-Model. In general, the
HMCD-Model also has the best comprehensive performance and is more stable, with F1 of
83.66% and FPR of 2.57%.

Table 12: Generalization comparison in 82-Malware-Traffic (ep4 in Tab 7)

82-Malware-Traffic
(ep4)

P (%) R(%) F1(%) FPR(%)

N-gram+SVM 99.71
+0.16
−0.26

49.43
+0.29
−1.09

66.09
+0.26
−0.94

0.14
+0.14
−0.08

IG-PCA-Ensemble 94.18
+0.45
−0.64

72.55
+14.03
−20.92

80.81
+9.15
−14.00

4.54
+1.44
−1.61

HMCD-Model 96.62
+2.26
−4.27

73.77
+2.01
−3.41

83.66
+2.15
−3.79

2.57
+3.26
−1.71

25

The detection results of the three detection models in the real traffic environment has
deteriorated compared with in HMCT-2020 and CIC-IDS-2017. This is because the real
network environment is more complicated and the form of unknown malicious traffic is more
variable. The traffic generated by malware is not all traffic related to malicious communi-
cation behavior, which leads to false positives.

6.4.4. Comparison in Time Cost

We compared the detection time of HMCD-Model with N-gram+SVM and IG-PCA-
Ensemble. Taking 10,000 samples as a unit, the detection time of each model is shown in
Fig 10. IG-PCA-Ensemble spends the least time in detecting because its feature space is
low-dimensional. However, there is no free lunch in the world. Although the detection time
of IG-PCA-Ensemble is fast, its generalization performance is not satisfactory.

In addition, N-gram+SVM spends the second least time in detecting, because its feature
space is relatively small and it uses linear SVM for detection. However, N-gram+SVM
uses bag-of-words and Chi-square algorithms in pre-processing, which means it is difficult
to arbitrarily increase the packet extraction content and feature space. Its storage space,
pre-processing time and SVM convergence time will increase exponentially when there is too
much input information.

The detection time of HMCD-Model is of the same magnitude as N-gram+SVM. In fact,
the internal structure of HMCD-Model supports parallel processing, such as the processing
of packet text and statistical features can be performed in parallel. The matrix operation
characteristics of neural networks also enable HMCD-Model to make full use of the comput-
ing advantages of GPUs. More importantly, HMCD-Model maintains a good generalization
detection ability, the detection time and the size of the feature space of the data are lin-
ear. Therefore, HCMD-Model is undoubtedly a more competitive and better comprehensive
performance detection method from the current Internet big data environment.

N-gram+SVM IG-PCA-Ensemble HMCD-Model
0.0

0.5

1.0

1.5

2.0

2.5

D
et

ec
tio

n
tim

e
/s

Figure 10: Comparison on detection time cost (per 10,000 samples).

7. Discussion

1) How to select the hyper-parameters?
We determine some of the best hyper-parameters (the number of packets in a flow, the

byte size in a packet, etc.) of HMCT-Model through experiments. The magnitude of the

26

combination of hyper-parameters is very high and we cannot evaluate all solutions. As a
rule of thumb, we use the method of controlling variables to cover the best solution as much
as possible and to achieve a trade-off between detection performance and time cost. For
instance, increasing the number of packets in a flow will improve the detection accuracy of
the model, but the convergence time and detection speed will be slower. Therefore, we set
two packets in a flow considering the trade-off between detection time and accuracy.

2) What are the limitations of HMCD-Model?
HMCD-Model will cause misjudgment in two cases: First, some packets (such as packets

in CIC-IDS-2017) have less packet content and insufficient features. Fewer features cannot
give the model enough information. Second, the traffic generated by malware is indistin-
guishable from benign data. For instance, some malicious request packets have only two
lines. However, benign packets in practice also have similar characteristics, which leads to
inaccurate final judgment results of the model.

GAN can be used to generate HTTP-based malicious communication traffic, but it is
generated based on existing frameworks. It still has certain limitations in many unknown
attack scenes.

3) Why choose WGAN-GP to generate GAFs?
Compared with vanilla GAN, WGAN-GP has stronger imitation ability and easier con-

vergence, while maintaining the diversity of generated data [16]. HTTP-based application
layer traffic belongs to text data, which is more difficult to generate than image data, and
vanilla GAN is difficult to imitate. In this paper, when we try to generate GAFs with
vanilla GAN, the model has a high probability of collapse and fails to converge. Therefore,
WGAN-GP is relatively more suitable.

4) Can GAFs be used in other related methods to improve performance?
In this paper, we utilize WGAN-GP to construct generated adversarial flows (GAFs)

for data enhancement, to compensate for the insufficiency of real HTTP-based malicious
communication traffic. The experiments in Section 6.3.2 show that GAFs can improve
the generalization of HMCD-Model. We also try to use GAFs for other related methods.
However, experimental results show that although GAFs can improve the performance of
other methods, the improvement is not much, and sometimes even leads to performance
degradation. There are two reasons here. First, other related methods have limitations in
detecting HTTP-based malicious communication traffic and are difficult to comprehensively
extract relevant features. Second, GAFs have a fixed composition, a flow consists of only
one request and one response packet, and the represented feature space is limited.

Taking HMCT2020 (19-20) as an example, we use ep2 as the training set and test set,
and increase GAFs when training N-gram+SVM and IG-PCA-Ensemble. The experimental
results are shown in Tab 13. For N-gram+SVM, after adding GAFs in the training set, the
precision rate is greatly improved (81.79% to 87.56%), but the recall rate is reduced (62.99%
to 63.33%). For IG-PCA-Ensemble, after adding GAFs in the training set, the precision rate
decreases (75.92% to 73.85%) and the recall rate increases (70.07% to 78.55%). In general,
the improvement effect of GAFs on other methods is limited, and for HMCD-Model, the
generalization can be improved comprehensively.

5) Can HMCD-Model be used for HTTPS encrypted traffic detection?

27

Table 13: Generalization Comparison with GAFs in dataset HMCT-2020(19-20) (ep2 in Tab 7)

HMCT-2020(19-20)
(ep2)

P (%) R(%) F1(%) FPR(%)

N-gram+SVM 81.79
+1.83
−1.07

51.24
+1.31
−1.24

62.99
+0.73
−0.84

11.42
+1.08
−1.34

N-gram+SVM (+GAFs) 87.56
+0.81
−2.16

49.60
+2.09
−1.82

63.33
+0.73
−0.84

6.75
+1.04
−0.98

IG-PCA-Ensemble 75.92
+6.05
−6.21

70.07
+4.68
−4.87

72.59
+0.60
−0.45

23.02
+9.46
−8.68

IG-PCA-Ensemble (+GAFs) 73.85
+5.45
−6.52

78.55
+3.81
−4.93

76.13
+0.74
−0.58

24.96
+8.52
−9.79

HMCD-Model 97.94
+0.70
−1.51

99.39
+0.18
−0.25

98.66
+0.38
−0.89

2.10
+1.57
−0.73

Currently, many studies have achieved good results in protocol classification and applica-
tion identification [36, 11, 28] based on the strategy that directly analyzing encrypted traffic
(such as HTTPS) without decryption. However, these methods are difficult to be effective
for the refined detection of highly complex and covert attack traffic (such as HTTP-based
malicious communication traffic). The current mainstream strategy is to deploy the de-
tection system in the terminal instead of the middle. In this way, the natural decryption
capability of the terminal can be used to convert HTTPS to HTTP. Many methods (Wang
et al. [44], etc.) and systems (WAF [10], etc.) for malicious behavior detection are based
on this strategy. We can decrypt HTTPS traffic into HTTP traffic and analyze the mali-
cious behavior it contains. HMCD-Model based on the above strategy can be feasible as an
end-to-end detection method. It can be applied to the IDSs of host/server.

8. Conclusion

For the detection of unknown HTTP-based malicious communication behavior, we pro-
pose HMCD-Model. We build a hybrid neural network to learn the hierarchical spatial-
temporal features of traffic; use GAN to generate adversarial flows to make up for the lack
of real traffic. In addition, we publish dataset HMCT-2020. Compared with the most repre-
sentative methods at present, our model has obvious advantages in generalization, which can
reach the F1 ≈ 83.66% in detection of real malware traffic. HMCD-Model can be applied
to the detection of unknown HTTP-based malicious communication behavior and improve
the capability of defenders against highly complex and covert network attack events.

In the future, we will further collect and expand datasets. In addition, we will fine-
grain such malicious behavior scene to improve the ability of GAN-based malicious traffic
generation.

28

Acknowledgements

This work is supported by the National Key Research and Development Program of China
(Grant No.2018YFB0804704), and the National Key Research and Development Program of
China (Grant No.2019YFB1005201).

A. Generalization Comparison with Classical Baseline Methods

We compared HMCD-Model with classical machine learning methods (Bayes, Decision
Tree, SVM) and conventional neural networks (DNN, CNN, LSTM). We use data in HMCT-
2020(18) as the training set and data in 82-Malware-Traffic as the test set. The experimental
results are shown in Tab. 14. HMCD-Model is at least 5.53% better than other methods
in terms of F1. Although Naive Bayes can achieve the R of 82.07%, the FPR is the
highest, 28.03%. This is because Naive Bayes decreases the threshold for determining a
sample as malicious, which means a lot of false positives. Similarly, the precision of SVM
is P =99.87% and the FPR is 0.08, but other metrics are very low. This is because SVM
increases the threshold for determining a sample as malicious, which means a lot of false
negatives. For instance, the F1 of SVM is only 75.16%. Therefore, HMCD-Model has a
better comprehensive detection performance than other classical methods.

Table 14: Comparison with classical baseline methods (ep4 in Tab 7)

82-Malware-Traffic
(ep4)

P (%) R(%) F1(%) FPR(%)

Naive Bayes 74.55
+0.52
−0.26

82.07
+0.08
−0.2

78.13
+0.32
−0.12

28.03
+0.4
−0.75

Decision Tree 99.7
+0.13
−0.23

58.08
+1.77
−4.06

73.37
+1.46
−3.28

0.18
+0.14
−0.08

SVM 99.87
+0.08
−0.08

60.26
+0.77
−0.48

75.16
+0.57
−0.35

0.08
+0.05
−0.05

DNN 99.83
+0.06
−0.06

55.82
+0.59
−0.5

71.6
+0.49
−0.41

0.10
+0.03
−0.04

CNN 94.95
+1.92
−4.45

52.0
+2.37
−2.16

67.15
+1.38
−1.51

2.83
+2.87
−1.14

LSTM 99.77
+0.11
−0.06

55.44
+2.62
−1.27

71.26
+2.13
−1.03

0.13
+0.03
−0.07

HMCD-Model 96.62
+2.26
−4.27

73.77
+2.01
−3.41

83.66
+2.15
−3.79

2.57
+3.26
−1.71

29

References

[1] Aburomman, A.A., Reaz, M.B.I., 2017. A survey of intrusion detection systems based on ensemble and
hybrid classifiers. Computers & Security 65, 135–152.

[2] Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The
American Statistician 46, 175–185.

[3] Cannady, J., 1998. Artificial neural networks for misuse detection, in: National information systems
security conference, Baltimore. pp. 443–456.

[4] Caviglione, L., Gaggero, M., Lalande, J.F., Mazurczyk, W., Urbański, M., 2015. Seeing the unseen:
revealing mobile malware hidden communications via energy consumption and artificial intelligence.
IEEE Transactions on Information Forensics and Security 11, 799–810.

[5] Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: A survey. ACM computing surveys
(CSUR) 41, 1–58.

[6] Chen, E., Bates, T., 1996. Rfc1998: An application of the bgp community attribute in multi-home
routing.

[7] Cheng, A., 2019. Pac-gan: Packet generation of network traffic using generative adversarial networks, in:
2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), IEEE. pp. 0728–0734.

[8] Cheng, Q., Zhou, S., Shen, Y., Kong, D., Wu, C., 2021. Packet-level adversarial network traffic crafting
using sequence generative adversarial networks. arXiv preprint arXiv:2103.04794 .

[9] Chowdhury, M.M.U., Hammond, F., Konowicz, G., Xin, C., Wu, H., Li, J., 2017. A few-shot deep
learning approach for improved intrusion detection, in: 2017 IEEE 8th Annual Ubiquitous Computing,
Electronics and Mobile Communication Conference (UEMCON), IEEE. pp. 456–462.

[10] Clincy, V., Shahriar, H., 2018. Web application firewall: Network security models and configuration,
in: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), IEEE. pp.
835–836.

[11] Di Martino, M., Quax, P., Lamotte, W., 2019. Realistically fingerprinting social media webpages
in https traffic, in: Proceedings of the 14th International Conference on Availability, Reliability and
Security, pp. 1–10.

[12] Du, M., Li, F., Zheng, G., Srikumar, V., 2017. Deeplog: Anomaly detection and diagnosis from system
logs through deep learning, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1285–1298.

[13] Du, Z., Ma, L., Li, H., Li, Q., Sun, G., Liu, Z., 2018. Network traffic anomaly detection based on wavelet
analysis, in: 2018 IEEE 16th International Conference on Software Engineering Research, Management
and Applications (SERA), IEEE. pp. 94–101.

[14] Fukushima, K., Miyake, S., Ito, T., 1983. Neocognitron: A neural network model for a mechanism of
visual pattern recognition. IEEE transactions on systems, man, and cybernetics , 826–834.

[15] Ghafir, I., Svoboda, J., Prenosil, V., et al., 2015. A survey on botnet command and control traffic
detection. Int J Adv Comput Netw Secur 5, 7580.

[16] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C., 2017. Improved training of
wasserstein gans, in: Advances in neural information processing systems, pp. 5767–5777.

[17] Gupta, D., Khanna, A., SK, L., Shankar, K., Furtado, V., Rodrigues, J.J., 2019. Efficient artificial
fish swarm based clustering approach on mobility aware energy-efficient for manet. Transactions on
Emerging Telecommunications Technologies 30, e3524.

[18] Hajisalem, V., Babaie, S., 2018. A hybrid intrusion detection system based on abc-afs algorithm for
misuse and anomaly detection. Computer Networks 136, 37–50.

[19] Hao, X., Jiang, Z., Xiao, Q., Wang, Q., Yao, Y., Liu, B., Liu, J., 2021. Producing more with less: A
gan-based network attack detection approach for imbalanced data, in: 2021 IEEE 24th International
Conference on Computer Supported Cooperative Work in Design (CSCWD), IEEE. pp. 384–390.

[20] Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Computation 9, 1735–1780.
[21] Jan, S.T., Hao, Q., Hu, T., Pu, J., Oswal, S., Wang, G., Viswanath, B., 2020. Throwing darts in the

30

dark? detecting bots with limited data using neural data augmentation, in: The 41st IEEE Symposium
on Security and Privacy (IEEE SP).

[22] Jose, S., Malathi, D., Reddy, B., Jayaseeli, D., 2018. A survey on anomaly based host intrusion detection
system, in: Journal of Physics: Conference Series, IOP Publishing. p. 012049.

[23] Karaboga, D., Basturk, B., 2008. On the performance of artificial bee colony (abc) algorithm. Applied
soft computing 8, 687–697.

[24] Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G., 2018. A multimodal deep learning method for android
malware detection using various features. IEEE Transactions on Information Forensics and Security
14, 773–788.

[25] Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J., 2019. A survey of deep learning-based
network anomaly detection. Cluster Computing , 1–13.

[26] Li, J., Zhou, L., Li, H., Yan, L., Zhu, H., 2019. Dynamic traffic feature camouflaging via generative
adversarial networks, in: 2019 IEEE Conference on Communications and Network Security (CNS),
IEEE. pp. 268–276.

[27] Lin, Z., Shi, Y., Xue, Z., 2018. Idsgan: Generative adversarial networks for attack generation against
intrusion detection. arXiv preprint arXiv:1809.02077 .

[28] Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M., 2020. Deep packet: A novel approach for
encrypted traffic classification using deep learning. Soft Computing 24, 1999–2012.

[29] Maki, M.C., Feller, W.J., 1989. Intrusion detection system. US Patent 4,879,544.
[30] Moustafa, N., Slay, J., 2015. Unsw-nb15: a comprehensive data set for network intrusion detection

systems (unsw-nb15 network data set), in: 2015 military communications and information systems
conference (MilCIS), IEEE. pp. 1–6.

[31] Ring, M., Schlör, D., Landes, D., Hotho, A., 2019. Flow-based network traffic generation using gener-
ative adversarial networks. Computers & Security 82, 156–172.

[32] Ring, M., Wunderlich, S., Grüdl, D., Landes, D., Hotho, A., 2017. Flow-based benchmark data sets
for intrusion detection, in: Proceedings of the 16th European conference on cyber warfare and security,
pp. 361–369.

[33] Salo, F., Nassif, A.B., Essex, A., 2019. Dimensionality reduction with ig-pca and ensemble classifier
for network intrusion detection. Computer Networks 148, 164–175.

[34] Selvakumar, B., Muneeswaran, K., 2019. Firefly algorithm based feature selection for network intrusion
detection. Computers & Security 81, 148–155.

[35] Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A., 2018. Toward generating a new intrusion detection
dataset and intrusion traffic characterization., in: ICISSP, pp. 108–116.

[36] Shen, M., Wei, M., Zhu, L., Wang, M., 2017. Classification of encrypted traffic with second-order
markov chains and application attribute bigrams. IEEE Transactions on Information Forensics and
Security 12, 1830–1843.

[37] Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A., 2012. Toward developing a systematic approach
to generate benchmark datasets for intrusion detection. computers & security 31, 357–374.

[38] Shrestha, P.L., Hempel, M., Rezaei, F., Sharif, H., 2015. A support vector machine-based framework
for detection of covert timing channels. IEEE Transactions on Dependable and Secure Computing 13,
274–283.

[39] Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K., 2011. Statistical analysis of honeypot
data and building of kyoto 2006+ dataset for nids evaluation, in: Proceedings of the first workshop on
building analysis datasets and gathering experience returns for security, pp. 29–36.

[40] Stolfo, S., et al., 1999. Kdd-99 dataset. Available on http://www. kdd. ics. uci.
edu/databases/kddcup99/kddcup99. html kddcup99. html .

[41] Sundermeyer, M., Schlüter, R., Ney, H., 2012. Lstm neural networks for language modeling, in: Thir-
teenth annual conference of the international speech communication association.

[42] Suykens, J.A., Vandewalle, J., 1999. Least squares support vector machine classifiers. Neural processing
letters 9, 293–300.

[43] Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A., 2009. A detailed analysis of the kdd cup 99 data

31

set, in: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications,
IEEE. pp. 1–6.

[44] Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., Conti, M., 2017. Detecting android malware leveraging
text semantics of network flows. IEEE Transactions on Information Forensics and Security 13, 1096–
1109.

[45] Wang, W., Shang, Y., He, Y., Li, Y., Liu, J., 2020. Botmark: Automated botnet detection with hybrid
analysis of flow-based and graph-based traffic behaviors. Information Sciences 511, 284–296.

[46] White, B., 1963. Principles of neurodynamics: Perceptrons and the theory of brain mechanisms.
[47] Yu, L., Zhang, W., Wang, J., Yu, Y., 2017. Seqgan: Sequence generative adversarial nets with policy

gradient, in: Proceedings of the AAAI conference on artificial intelligence.
[48] Zhou, Y., Cheng, G., Jiang, S., Dai, M., 2020. Building an efficient intrusion detection system based

on feature selection and ensemble classifier. Computer Networks , 107247.
[49] Zingo, P., Novocin, A., 2020. Can gan-generated network traffic be used to train traffic anomaly clas-

sifiers?, in: 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), IEEE. pp. 0540–0545.

32

	Introduction
	Related Work
	Malicious Behavior Detection
	Malicious Behavior Detection Based on Feature Selection and Machine Learning
	Malicious Behavior Detection Based on Deep Learning

	Traffic Generation based on GAN
	Analysis and Summary

	Analysis on HTTP-based Malicious Communication Behavior
	Feature Analysis of HTTP-based Malicious Communication Traffic
	Feature Analysis of Packet
	Feature Analysis of Flow

	HMCD-Model Methodology
	Overview
	Hybrid Neural Network based on Hierarchical Spatial-temporal Features
	Feature Extract at Pkt-level
	Feature Extract at Flow-level
	Feature Aggregation
	Time Complexity of Hybrid Neural Network

	Generation Algorithm of Adversarial Flows
	Generation Process of GAFs
	Time Complexity of Generation Algorithm

	Experimental Evaluation
	Datasets
	HMCT-2020 Dataset
	Other Datasets

	Evaluation Metrics and Environmental Configuration
	Evaluation Metrics
	Environmental Configuration

	Ablation Study on Key Factors in HMCD-Model
	Statistical Features
	Generated Adversarial Flows

	Generalization Comparison
	Generalization Comparison in Dataset HMCT-2020
	Generalization Comparison in Dataset CIC-IDS-2017
	Generalization Comparison in 82-Malware-Traffic
	Comparison in Time Cost

	Discussion
	Conclusion
	Generalization Comparison with Classical Baseline Methods

