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a b s t r a c t 

With the ever-increasing threat of malware attacks, building an effective malware classifier to detect mal- 

ware promptly is of utmost importance. Malware visualization approaches and deep learning techniques 

have proven effective in classifying sophisticated malware from benchmark datasets. A major problem 

with traditional deep learning classifier is the need to re-train the classifier when a new malware family 

emerges. In this paper, we propose few-shot classification techniques which allows us to classify mal- 

ware based on a few instances and without the need for re-training the classifier for novel malware fam- 

ilies. We also propose a novel malware visualization technique that can represent a malware binary as a 

3-channel image. We experiment with two distinct few-shot learning architectures namely CSNN (Con- 

volutional Siamese Neural Network) and Shallow-FS (Shallow Few-Shot). CSNN is more suitable when 

scarce data is available for training, otherwise Shallow-FS can be used to achieve better performance. 

Our architectures outperforms state of the art few-shot learning approaches and achieves high accuracy 

in traditional malware classification. Our experiments show our models’ ability to classify recent and 

novel malware families from just a few instances with high accuracy. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The ever-increasing risk of malware ( mal icious soft ware ) at- 

acks have been a significant threat to internet users around the 

lobe. Currently, malware is one of the primary attack vectors used 

y cybercriminals to perform malicious activities. The Mcafee ATR 

hreat Reports (2021) showed an immense increase in Powershell 

hreats, MacOS malware, Office malware, Mobile malware, Ran- 

omware, and Linux malware in the second half of 2020. According 

o the AV-test statistics report ( AV Test malware statistics, 2021 ), 

hey discovered approximately 100 million new malware files in 

he first half of 2021. As reported by the Kaspersky Security Net- 

ork ( IT threat evolution, 2021 ), they observed new attempts to 

un money stealing malware on the computers of 119,252 unique 

sers in Q2 of 2021. These statistics support the fact that malware 

s a growing threat to Internet users. It is important to note that 

ith the steady increase in sheer number of malware, their fami- 

ies and their variants are also constantly evolving according to the 

forementioned reports. 
∗ Corresponding authors. 
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The functionalities and capabilities of a malware can vary de- 

ending upon various factors such as the intended platform for 

alware, its types, its family, and other malware characteristics. 

dware, Trojan, Backdoor, Ransomware, Spyware, Worm, etc., are 

 few examples of types of malware. Malware types can be fur- 

her divided into families and their variants based on various fac- 

ors such as malware codebase, malware development groups, and 

any more ( SANS Webcast Recap, 2020 ). To avoid detection, mal- 

are authors use a variety of obfuscation techniques such as dead- 

ode insertion, instruction reordering, and control flow flattening 

 Alrabaee et al., 2018 ). The use of obfuscation techniques in com- 

ination with frequent updates to the malware codebase makes it 

ery challenging to accurately classify malware into its families. 

Malware poses massive security risks to governments, busi- 

esses and individual users. There exist multiple strategies to mit- 

gate malware attacks and accurate malware classification is an in- 

egral part of these strategies. Security analysts and researchers 

nalyse malware files to understand their behavioural characteris- 

ics and purpose, which helps them build better defenses against 

ther malware files from the same family. There are mainly two 

istinct types of malware analysis: static analysis and dynamic anal- 

sis . Static analysis involves analyzing the malware binary content 

ithout executing it. On the other hand, dynamic analysis involves 

https://doi.org/10.1016/j.cose.2022.102887
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102887&domain=pdf
mailto:conti@math.unipd.it
mailto:S.C.Khandhar@student.tudelft.nl
mailto:vinod.p@cusat.ac.in
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nalyzing the malware behaviour while/after executing it in mem- 

ry. Static analysis is faster than dynamic analysis, but it is not re- 

ilient against sophisticated code obfuscation techniques. On the 

ther hand, dynamic analysis is often unaffected by code obfusca- 

ion and polymorphic malware ( Gibert et al., 2020b ) but is slower 

n comparison. 

Traditionally, malware detection/classification is performed us- 

ng signature-based or heuristic-based methods. Signature-based 

ethods deploy a signature for distinct malware families and vari- 

nts, which acts as a prototype and allows newly discovered mal- 

are files to be accordingly classified. Heuristic-based methods, on 

he other hand, uses rules and byte patterns created by industry 

xperts and analysts from existing malware data to classify new 

alware ( Ye et al., 2017 ). These approaches mostly fall under the 

ategory of static malware analysis. In the last few years, a static 

alware analysis technique known as Malware visualization intro- 

uced by Nataraj et al. (2011) has prevailed in solving the prob- 

em of malware classification. Many recent works, as mentioned in 

ection 2.1 , have used this technique to tackle the problem of mal- 

are classification. 

Malware visualization is a technique that consists of represent- 

ng the contents of a malware binary in some form as an image. 

raditionally, the raw bytes of the malware binary are read as 8-bit 

nsigned integers and stored into a vector. This vector is reshaped 

nto a matrix and can then be visualized as a grayscale image. Af- 

er carefully performing multiple experiments, we noted that cer- 

ain features extracted from the malware were more accurate in 

lassifying malware than raw bytes. Instead of visualizing the raw 

ontents of the malware binary, as proposed in previous research 

orks ( Dai et al., 2018; Nataraj et al., 2011; Vasan et al., 2020a;

020b ), we visualize the various features extracted from the mal- 

are binary which are inspired by recent malware classification 

pproaches ( Han et al., 2015; Xiao et al., 2020; Yuan et al., 2020 ). 

Furthermore, we investigate the use of a shallow Convolutional 

eural Network (CNN) ( LeCun et al., 1995 ) architecture in combi- 

ation with few-shot learning to recognize unknown malware clas- 

ification. The Few-shot learning approach was first proposed by 

ei-Fei et al. (2006) . Few-shot models learn classification from a 

ew labelled instances from each given class ( Wang et al., 2020 ). 

he idea behind our approach is to provide a testbed for a deep 

earning model to classify malware feature images when provided 

ith a few instances of each class and that some of these malware 

amilies were unknown to the classifier while training. Formally, 

e use the term unknown family/class throughout this paper for 

amilies/classes that are unknown to the classifier during its train- 

ng and are only introduced during evaluation. In this paper, we 

se the few-shot classification terms such as query image/instance, 

upport set, similarity metric, etc. as defined in other well-known 

ew-shot learning papers ( Chen et al., 2019; Tran et al., 2019; Wang 

t al., 2020 ). We implement the few-shot learning technique us- 

ng Convolutional Siamese Neural Network (CSNN) ( Bromley et al., 

993; Koch et al., 2015 ) and the Shallow-FS architecture on three 

istinct PE malware datasets. 

The summary of the contributions of this paper are mentioned 

elow: 

• We performed comprehensive experiments on benchmark PE 

datasets such as Malimg and Microsoft BIG 2015. Additionally, 

we compiled our own dataset, namely the MalwareBazaar (Mal- 

baz) dataset, containing recent malware collected in mid-2021 

to thoroughly validate the effectiveness of our classifier. 

• We propose a novel malware visualization technique, namely 

the GEM image. The GEM coloured 3-channel image is formed 

by fusing the Markov image, entropy graph image and gray- 

level matrix image. Our experiments show that the GEM images 

outperform the standard malware visualization techniques such 
2

as grayscale images and colour-mapping grayscale images. We 

also introduce a novel way to visualize GLCM features by re- 

arranging and visualizing the Gray-Level Co-occurrence Matrix, 

instead of extracting 2nd order statistical features from it. 

• Our CSNN architecture combined with the GEM image outper- 

forms the state of art few-shot classification approaches for the 

benchmark PE malware datasets. CSNN achieves an unknown 

family classification accuracy of 96.21%, 94.99% and 93.42% for 

the three aforementioned datasets, when trained on approxi- 

mately 10% of the dataset and evaluated on the rest. 

• To the best of our knowledge, we are the first to exper- 

iment with malware classification under the standard eval- 

uation setting for few-shot classification as described by 

Chen et al. (2019) in their paper. Inspired by their work, we 

use the Shallow-FS model to perform 10-shot unknown family 

classification which yielded an accuracy of 98.26%, 88.68% and 

97.65% for the three datasets. This method also outperforms the 

few-shot classification approaches for the benchmark PE mal- 

ware datasets. 

Section 2 provides a comprehensive discussion of the related 

ork in the domain of malware classification and visualization. 

ection 3 provides a detailed description of our proposed method- 

logies including the datasets, feature extraction techniques, GEM 

mage construction and model architectures used in this paper. 

ection 4 continues with an individual discussion for each exper- 

ment we performed and its results in detail. Section 5 discusses 

he results of the experiments results and we try to explain our 

esults and draw comparisons with other state of the art classi- 

ers. Section 6 concludes our paper and provides suggestions and 

 few ideas that can enhance and continue our malware classifica- 

ion approach. 

. Related work 

.1. Malware detection/classification based on malware visualized 

mages and deep learning 

The concept of malware visualization was first proposed by 

ataraj et al. (2011) that targets at representing the bytes of a 

alware as pixels of an image. The malware visualized as an im- 

ge can be fed to various CNN architectures for classification. They 

ere the first to classify malware using visualization techniques. 

hey represented binary files as grayscale images and utilized sim- 

larity computations. They also used GIST features to extract gra- 

ient properties and these features were provided to a K-Nearest 

eighbor (KNN) classifier. Makandar and Patrot (2017) used the 

isualisation technique in combination with Support Vector Ma- 

hines (SVM) classifier. They used feature processing techniques 

uch as Gabor Wavelet, GIST and Discrete Wavelet Transform 

o construct an effective texture feature vector of an image. 

i et al. (2018) and Qiao et al. (2019) used specific algorithms, such 

s SimHash and Word2Vec ( Mikolov et al., 2013 ) respectively, on 

alware disassembly to represent it as an image and further clas- 

ify using deep CNNs. 

Xiao et al. (2020) used the structural entropy to visualize mal- 

are binaries as entropy graphs. These entropy graphs are fed to 

 deep CNN to extract features and an SVM classifier is used for 

lassification. Vu et al. (2020) proposed an approach that targets 

ixel encoding and arranging bytes from malware binaries into 

mages for malware detection. These images have statistical and 

yntactic artifacts, for example, entropy or strings, and their pix- 

ls are filled with space-filling curves. Vasan et al. (2020a,b) pro- 

osed two distinct approaches for malware visualized image clas- 

ification. Firstly, they proposed an ensemble CNN-based archi- 

ecture for obfuscated and un-obfuscated malware detection. Sec- 
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Table 1 

Malimg Dataset. 

Family code Family Number of samples 

A1 Instantaccess 431 

A2 Dialplatform.B 177 

A3 Autorun.K 106 

A4 Dontovo.A 162 

A5 Lolyda.AA1 213 

A6 Lolyda.AT 159 

A7 Adialer.C 122 

A8 Fakerean 381 

A9 Rbot!gen 158 

A10 Allaple.A 2949 

A11 VB.AT 408 

A12 Yuner.A 800 

A13 Malex.gen!J 136 

A14 Agent.FYI 116 

A15 Skintrim.N 80 

A16 Obfuscator.AD 142 

A17 Lolyda.AA2 184 

A18 Lolyda.AA3 123 

A19 Wintrim.BX 97 

A20 Swizzor_C2LOP 606 

A21 Allaple.L 1591 

A22 Alueron.gen!J 198 

Table 2 

Microsoft BIG 2015 Dataset. 

Family code Family Number of samples 

B1 Ramnit 1541 

B2 Lollipop 2478 

B3 Kelihos_v3 2942 

B4 Vundo 475 

B5 Simda 42 

B6 Tracur 751 

B7 Kelihos_v1 398 

B8 Obfuscator.ACY 1228 

B9 Gatak 1013 
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ndly, they presented a method that converts raw malware bina- 

ies into colour images and a fine-tuned CNN architecture for clas- 

ification. In the second approach, they used transfer learning for 

etter performance and data augmentation for tackling class im- 

alance. All of the approaches mentioned above achieved high ac- 

uracies for classifying malware. 

.2. Malware detection/classification using few-shot learning 

The concept of Few-shot learning was first proposed by Fei- 

ei et al. (2006) . They explored a Bayesian implementation of 

he idea of taking advantage of previously learned knowledge in- 

tead of learning from scratch. Hsiao et al. (2019) used Siamese 

eural networks to classify malware images. They preprocess 

heir datasets using malware visualization and average hash al- 

orithm. They concluded that their approach outperformed base- 

ine methods such as nearest neighbor and random guessing. 

ai et al. (2020) also proposed the use of Siamese neural networks 

o classify Android malware. They used the Siamese neural net- 

ork as a feature extractor to generate feature embeddings and 

ttached it to a Multi-layer Perceptron (MLP) to classify the gener- 

ted embeddings. Rong et al. (2021) converted the network traffic 

ata generated by malware variants into grayscale images. These 

mages are used as input to a prototype-based few-shot learning 

odel. They achieved a very high accuracy and concluded that 

heir method is universal and robust in detecting malware variants 

n network environments. 

Wang et al. (2021) proposed a meta-learning based few-shot 

earning technique to classify novel malware families. They use 

PI invocation sequences from dynamic analysis of malware. Their 

ethod achieved a high accuracy in a 5-way classification task on 

 Virus Share and APIMDS dataset. Tran et al. (2019) used well- 

nown Meta-learning approaches such as Matching Network and 

rototypical Network to classify malware visualized images. They 

erformed experiments on benchmark PE malware datasets such 

s Malimg and Microsoft BIG 2015. They performed 1-shot and 4- 

hot malware classification experiments and achieved higher ac- 

uracies than previous works on the PE benchmark datasets. To 

he best of our knowledge, the last discussed approach is the only 

ork that showed the effectiveness of static analysis features and 

ew-shot classification, especially meta-learning, on PE malware 

atasets. 

.3. Malware detection/classification based on alternative approaches 

Here we discuss the state-of-the-art research in the do- 

ain of malware detection/classification based on approaches 

hat do not use malware visualization, deep learning or few- 

hot learning. Nataraj et al. (2010) employed an SVM to clas- 

ify packed and unpacked executables based on bigram features. 

urguera et al. (2011) built an Android malware detector that 

everages dynamic analysis to discriminate between malicious and 

enign apps. Their method was effective in isolating malware and 

lerting application consumers that have already downloaded mal- 

are. Natani and Vidyarthi (2013) proposed a method for detecting 

alware that uses the API function frequency as a feature vector 

or categorizing malicious files. Chuang and Wang (2015) also pro- 

osed a model for malware detection based on SVM classifier and 

PI calls. 

Gibert et al. (2020a) introduced a framework for malware clas- 

ification that combines distinct features to discover relationships 

etween different modalities. Their multi-modal approach maxi- 

izes the benefits of multiple feature types while accurately re- 

ecting the characteristics of malware executables and classifica- 

ion performance. Y. Ki et al. Ki et al. (2015) proposed a tech- 

ique that used DNA sequence alignment algorithms to extract 
3 
ommon API call sequence patterns of malicious functions from 

arious types of malware. Their experiments concluded that their 

pproach resulted in almost perfect classification on their own PE 

alware dataset. Pascanu et al. (2015) proposed an approach that 

earns the language of malware communicated through executed 

nstructions and extracts robust, temporal domain properties, akin 

o natural language modelling. Their model was effective and out- 

erformed classic Recurrent Neural Networks (RNN) in majority of 

heir experiments. 

Our work differs from the previously mentioned works, as we 

ropose the classification of malware from the benchmark PE 

atasets using different few-shot learning approaches. To the best 

f our knowledge, we use shallow architectures such as CSNN and 

hallow-FS for few-shot classification which have not been used to 

lassify PE malware before. 

. Proposed method 

In this section, we discuss the methodologies and individ- 

al components of our proposed few-shot classification approach. 

ig. 1 depicts our proposed approach and its components. 

.1. Datasets 

To validate our approach and create an effective malware 

lassifier, it is necessary to use well-known state of art mal- 

are datasets. We use three distinct datasets, namely the Malimg 

ataset (refer Table 1 ), Microsoft BIG 2015 (refer Table 2 ) dataset 

nd MalwareBazaar dataset (refer Table 3 ). 
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Fig. 1. Our proposed approach shows the process of extracting three distinct features from a malware binary and fusing them into a 3-channel GEM image. This GEM image 

is then used as input to our few-shot classification models to predict the family label of the malware binary. The Support set mentioned in the figure is a collection of a 

fixed number of images randomly chosen from each class of the training set. These images are conceptually similar to a point of reference for the ML model. 

Table 3 

Malbaz Dataset. 

Family code Family Number of samples 

C1 CobaltStrike 592 

C2 Trickbot 513 

C3 njrat 606 

C4 Cutwail 445 

C5 AveMariaRAT 604 

C6 GandCrab 146 

C7 Quakbot 462 

C8 IcedId 430 

C9 CryptBot 133 

C10 RedLineStealer 345 

C11 Dridex 1659 

C12 Emotet 1229 

C13 Sodinokibi 233 

C14 AgentTesla 679 
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.1.1. Malimg dataset (Dataset-A) 

Nataraj et al. (2011) introduced this dataset intending to explore 

ignal and image processing techniques in the field of malware 

lassification, and researchers have used it as a benchmark in var- 

ous state-of-art research. In total, it contains 9339 malware sam- 

les, distributed among 25 malware families, represented in the 

orm of grayscale images. Instead of using the 25-family Malimg 

ataset, we use the 22-family Malimg dataset as suggested by the 

uthors ( Nataraj et al., 2011 ). The authors suggest combining the 

ariants of Swizzor and C2LOP families into one family. We also 

iscovered certain threat reports ( Microsoft Threat report, 2009; 

010 ) suggesting that Swizzor is an alias for C2LOP family. 

.1.2. Microsoft BIG 2015 dataset (Dataset-B) 

This dataset was introduced by Microsoft and was part of a 

aggle competition hosted by Microsoft Ronen et al. (2021) in 

015. It is a massive dataset consisting of 21,741 malware sam- 

les. This dataset is further divided into two parts, a training set 

f 10,868 samples and a testing set of 10,873 samples. The training 
4 
et is labelled, and the testing set was not publicly released. For 

his work, we only use the labelled training set (specifically, only 

he .bytes file), which consists of 9 malware families. 

It is important to note that a lot of files in the dataset have a

ot of noise as many bytes in those files are represented by “??”

ymbol. We remove the 8 files that only contain the “??” symbols. 

.1.3. Malbaz dataset (Dataset-C) 

Malware is frequently evolving which requires a malware clas- 

ifier to possess the ability to classify recently discovered malware. 

e collected malware executables in May of 2021 from a pub- 

ic malware repository - MalwareBazaar. We leveraged the Mal- 

areBazaar API to compile a dataset containing 8076 samples dis- 

ributed among 14 malware families. We leveraged the threat in- 

elligence provided by third-party vendors on MalwareBazaar to 

liminate any false positives. Throughout this paper, we refer to 

his dataset as the Malbaz dataset. Almost all previous works test 

he efficacy of their classifier on older benchmark datasets. In this 

aper, we test our classifiers on the benchmark datasets as well as 

he Malbaz dataset to better gauge the effectiveness and efficacy of 

ur classifier. 

.2. Feature extraction 

It is essential to extract relevant features from the malware im- 

ges to build an effective malware classifier using malware feature 

isualization. Instead of using a very deep CNN to extract textural 

nd structural features from a grayscale image of a malware binary, 

e experimented with various malware-domain specific features 

hat have shown to be effective in previous research works ( Han 

t al., 2015; Xiao et al., 2020; Yuan et al., 2020 ) and are mentioned

elow. 

.2.1. Markov images 

This feature extraction method was introduced and discussed 

y Yuan et al. (2020) . For this technique, we view the bytes of the

alware binary as byte streams. 
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Fig. 2. An example of Markov image generation from a hypothetical malware bi- 

nary. The malware binary is viewed as a byte stream and a Byte frequency table is 

generated based on the occurrence of each byte in the byte-steam. This Byte fre- 

quency table is then converted to a Byte probability table which when normalized 

results in the Markov image. 
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Fig. 3. Structural similarities and differences between Markov images. We en- 

hanced the Markov images for better distinguishability and visual clarity. 

Fig. 4. An example of Entropy graph generation from a hypothetical malware bi- 

nary of size 2560 bytes. The malware binary is divided into 128-byte blocks. After 

calculating the Shannon entropy of each block, these blocks are plotted in a graph 

forming the Entropy graph image. 

Fig. 5. Structural similarities and differences between Entropy Graph images. 
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In order to generate a Markov image from a malware binary, 

 matrix of size 256 × 256 is generated and initialized with zeros. 

ormally, a sliding window of size 2 slides over the byte stream 

enerating bi-grams out of the entire byte stream. For each bi- 

ram, we treat the first byte of the bi-gram as the row number, 

nd we treat the second byte of the bi-gram as the column num- 

er and add a 1 at the respective position in the matrix. For exam- 

le, a bi-gram 0x01 0x02 will result in a 1 being added to the cell

orresponding row 1 and column 2. 

P T i j = 

{
BF T i j 

S i 
, if S i � = 0 

0 , otherwise 
(1) 

I i j = 

BP T i j − min (BF T [ i ]) 

max (BF T [ i ]) − min (BF T [ i ]) 
(2) 

here 

• BP T i j represents the i th row and jth column of the Byte Prob-

ability Table. Similarly, BF T i j and MI i j represents the same val- 

ues for the Byte Frequency Table and the Markov image respec- 

tively. 

• S i represents the sum of all values in the i th row. 

After repeating this process for all bi-grams, we have a Byte fre- 

uency table with each cell representing the frequency of occur- 

ence of each bi-gram. Further dividing each entry in the table by 

he sum of all entries in the respective row will transform it into 

yte probability table which can be directly visualized as an im- 

ge, namely the Markov image. As a result, an entry represented 

y row number x and column number y will be the conditional 

robability of a subsequent byte in the byte stream being y given 

he current byte is x . The generation of the Byte Probability Table 

nd the Markov Image, as shown in Fig. 2 , is formally described 

n Eq. (1) and (2) . Fig. 3 depicts a few examples of Markov images

rom malware samples. 

.2.2. Entropy graph images 

This feature extraction method was introduced by 

an et al. (2015) and was further used and discussed by 

iao et al. (2020) . In our approach, we slightly modify the 

pproach by dividing the byte sequence of a malware binary into 

locks of 128 bytes. The malware binary is padded with null bytes 
5

o make the binary size a multiple of 128. Given that an executable 

ontains n blocks of 128 bytes, we calculate the Shannon entropy 

f each block as mentioned in Eq. (3) 

(B i ) = −
255 ∑ 

k =0 

P (b ki ) ∗ log(P (b ki )) (3) 

here 

• B i stands for i th block and b ki stands for k th byte in the i th

block 

• H(B i ) is the Shannon entropy of i th 128-byte block of the byte 

sequence and P (b ki ) is the probability of k th byte in the i th

block. 

After we obtain the Shannon entropy for all 128-byte blocks, 

e plot these block entropies on a graph where the X-axis repre- 

ents the 128-byte blocks, and the Y-axis represents the Shannon 

ntropy of the respective block. All the plots generated are resized 

o a size of 256 × 256 . 

The resizing of the image allows us to use any malware binary 

egardless of its file size. Fig. 4 summarizes the Entropy graph gen- 

ration process and Fig. 5 depicts a few examples of Entropy graph 

mages. 

.2.3. Gray level matrix image 

This feature extraction approach is one of the contributions of 

ur work. Most previous works used the 2nd order statistical fea- 

ures extracted from the Gray-Level Co-occurrence Matrix (GLCM). 
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Fig. 6. An example of Stacked gray-level matrix generation from a hypothetical 

malware binary. The malware binary is visualized and then a GLCM is created from 

the grayscale image with reduced levels. This GLCM is then rearranged to form a 

Gray-level matrix image. 

Fig. 7. Structural similarities and differences between Gray-level matrix images. 
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Fig. 8. Structural similarities and differences between GEM images. 

Table 4 

Baseline model configuration. The abbreviation ReLU stands for Rectified Linear 

Unit. 

Layer Activation Filters Units Kernel 

size 

Conv2D ReLU 128 - (5, 5) 

MaxPool2D - - - (2, 2) 

Conv2D ReLU 256 - (3, 3) 

MaxPool2D - - - (2, 2) 

Flatten - - - - 

Dense ReLU - 256 - 

Dense ReLU - 128 - 

Dense Softmax - variable - 
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hese features are one-dimensional, and thus, are not compatible 

ith the input requirements of a CNN. Our solution to this prob- 

em was to use the GLCM and the textural and spatial information 

tored in it directly as an image, namely Gray Level Matrix Image, 

hich is compatible with a 2-dimensional CNN. 

To begin generating the Gray-level matrix images, we convert 

ach malware binary to a grayscale image and then discretize 

he grayscale image reducing its levels from 256 to 128. The dis- 

retization speeds up the GLCM generation process significantly. 

 GLCM is calculated, from this 128-level grayscale image, for 

istance value of 1 and angle values of 0 ◦, 45 ◦, 90 ◦ and 135 ◦.

he resulting GLCM would be a 4-dimensional matrix of shape 

28 × 128 × 1 × 4 . Formally, for each distance and angle value, this 

atrix contains a sub-matrix of size 128 × 128 containing the tex- 

ural and spatial information. As we only use one distance value, 

he calculated GLCM can be reshaped to 128 × 128 × 4 , and the 

ub-matrices of size 128 × 128 for all 4 angle values are separated. 

hese 4 matrices are stacked as illustrated in Fig. 6 , to form a final

mage of size 256 × 256 . The pixel values of this image are nor-

alized between 0 and 1 before inputting into a CNN. Fig. 6 sum- 

arizes the Gray-level Matrix image generation process and Fig. 7 

epicts a few examples of Gray-level Matrix images. 

.3. GEM image construction 

To achieve our aim of building an effective malware classifica- 

ion system and enhancing our system’s performance, we experi- 

ented with all the feature extraction techniques mentioned pre- 

iously. We generated feature images from malware binaries and 

ttempted traditional malware classification using the Shallow- 

NN model discussed in the subsequent section. After experi- 

enting with different feature extraction techniques, we observed 
6

ixed results, i.e. some feature extraction techniques performed 

etter on one dataset, whereas others performed better on another 

ataset. The experimentation details are mentioned in Section 4.1 . 

To solve this problem and to achieve competitive performance 

ith the state-of-the-art results across all the datasets, we de- 

ided to fuse the individual feature images into a single 3-channel 

mage. The fusion process begins with an empty array of shape 

 × 256 × 256 . The Markov image, Entropy graph image and Gray- 

evel matrix image are placed at each index of this array. Therefore, 

e refer to this 3-channel image as the GEM (Gray-level matrix 

mage + Entropy graph image + Markov image) image in this work. 

A significant advantage of having a 3-channel image is that it 

an be visualized as a RGB coloured image which can be used di- 

ectly with state of art Transfer learning models. Fig. 8 depicts a 

ew example of GEM images. 

.4. Traditional classification models 

In this section, we describe the traditional CNN architectures 

sed in this paper. 

.4.1. Shallow-CNN architecture 

Our aim was to build an effective yet practically deployable 

alware classifier. We use a shallow CNN architecture that can be 

rained efficiently, can classify malware quickly and with a high 

ccuracy. Thus, we experimented with a shallow CNN architecture, 

eferred as the Shallow-CNN model ( Khandhar, 2021 ). This model 

as two convolution layers, each of which is followed by a pooling 

ayer, followed by two fully-connected layers. Table 4 shows the 

ull configuration of the Shallow-CNN. In contrast to most state of 

rt Transfer learning and Deep learning models, the training of the 

hallow-CNN is quick. 

.5. Few-shot classification models 

Scarcity of malware samples for malware families is a major 

roblem when it comes to the domain of malware classification 

 Wang et al., 2021 ). Training a traditional malware classifier re- 

uires a large amount of data. Another limitation of traditional 

eep-learning models is that they can only classify an instance 

nto one of the classes the model was trained on. 

In order for the model to classify data from a previously 

nknown class, it would require re-training using a significant 
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mount of data from this new class. To tackle these problems, we 

se two models (1) Convolutional Siamese Neural Network (CSNN) 

2) Shallow Few-Shot (Shallow-FS). For each model, we discuss be- 

ow the scenarios in which they can be more effective. 

.5.1. CSNN 

The Siamese Neural Network was first conceptualized and pro- 

osed by Bromley et al. (1993) . It has previously been used to clas-

ify malware by various researchers. After repeated experiments, 

e observed that CSNN can classify malware with high accuracy 

fter only training it on a small percentage of the dataset and 

hen there is an equal number of instances from each class in the 

raining set. These observations are also supported by other previ- 

us research works ( Bai et al., 2020; Hsiao et al., 2019 ). The reason

ehind this could be that the CSNN learns similarities and dissim- 

larities between pairs of training data instead of learning to map 

 dataset instance to a softmax activation. 

The general structure of the CSNN can be visualized as two 

NNs operating in parallel with shared weights and combined with 

 similarity metric (refer Fig. 10 ). The CNN used in our CSNN is the

ame as Shallow-CNN but with the last Softmax-activated layer re- 

oved. During backpropagation, the weights and parameters are 

pdated simultaneously for both CNNs. The output of the last fully- 

onnected layer of both the CNNs is provided as input to a Eu- 

lidean similarity metric which outputs a score between 0 and 1, 

hich is formally described in Eqs. (4) and (5) . 

The Euclidean similarity used in the CSNN is described by the 

ollowing equation: 

 ( P, Q ) = 

√ 

n ∑ 

i =1 

( q i − p i ) 
2 (4) 

ucl idean simil arity = 

1 

1 + d ( P, Q ) 
(5) 

alculates the similarity score based on euclidean distance as 

hown in Segaran (2007) where 

• d represents Euclidean distance and P , Q are the two feature 

vectors. 

• p i and q i represent the i th element of the feature vectors P and

Q respectively. 

While training the CSNN, multiple pairs of images from the 

ame family and different families are provided. After training the 

SNN, in an ideal case, we expect the output of the CSNN to be 1

or similar images (malware images from the same family) and 0 

or dissimilar images (malware images from different families). The 

ranches of the CSNN can be visualized as an embedding function 

hat embeds the input image in the embedding space. During its 

raining, the CSNN learns to generate similar embeddings for sim- 

lar input images and vice versa. In the end, the embeddings from 

he same class output a high Euclidean similarity in the embed- 

ing space and vice versa. We use the CSNN to perform one-shot 

alware classification, where the support set contains one image 

rom each family we wish to classify. For every query instance, we 

rovide the CSNN with a pair consisting of the query instance and 

ach image from the support set. The family label of the support 

et image, which is contained in the pair that outputs the highest 

imilarity score, is assigned to the query instance. 

CSNN can tackle the data scarcity problem because it does not 

equire large amounts of training data. It can also tackle the un- 

nown class classification problem, under the condition that at 

east one instance of that class is available in the support set. As 

he CSNN learns the similarity between images, it is able to recog- 

ize the similarity between the query instance and the support set 

nstance from the same unknown class. 
7

.5.2. Shallow-FS 

This model was inspired by the Baseline classifier proposed by 

hen et al. (2019) . The authors in their work concluded that their 

imple Baseline model outperformed many meta-learning based 

ew-shot classification approaches. The Baseline model consists of 

 pre-trained CNN-based feature extractor and a Multi-Layer Per- 

eptron (MLP) with a single hidden layer and a softmax layer to 

utput class probabilities. We experimented with their architecture 

nd slightly simplified it for efficient performance. In our Shallow- 

S, we completely remove the MLP and instead use a Cosine simi- 

arity metric directly on the feature vectors extracted by the CNN- 

ased feature extractor. The CNN architecture we use here is the 

ame as the Shallow-CNN architecture with the Softmax-activated 

ayer removed. The advantage of this simplified Shallow-FS model 

ver Baseline model is that no fine-tuning is required when un- 

nown classes are added/removed from the support set of the clas- 

ifier. 

The structure of the Shallow-FS begins with the feature extrac- 

or from our Shallow-CNN model which maps an image to an em- 

edding in the embedding space. 

For the purpose of this work, we perform 10-shot classification 

ith the Shallow-FS which implies selecting ten random instances 

rom each class for the support set. Theoretically, it is possible to 

erform N-shot classification where N can be any number. It is also 

ossible to perform variable-shot learning where a different num- 

er of images are chosen from each class to be in the support set, 

ut it is outside the scope of this study. The embeddings of each 

lass in the support set are then averaged to generate mean em- 

eddings for each class in the support set. The Cosine similarity 

etric outputs a similarity score, between 0 and 1, for each pair 

onsisting of a support set embedding and the query embedding. 

he family label of the support set image, which is contained in 

he pair that outputs the highest similarity score, is assigned to 

he query instance. Algorithm 1 describes the process of 10-shot 

lassification in detail. 

The training of the Shallow-FS feature extractor is conducted in 

 traditional manner. Formally, the Shallow-CNN model is trained 

ith malware data and then the Softmax-activation layer is re- 

oved which results in a trained feature extractor for the Shallow- 

S. The Shallow-FS model can tackle the data scarcity problem, 

nder the practical observation that there exist malware fami- 

ies with sufficient data for training. Thus, the Shallow-FS feature 

xtractor can be trained on this data and can be used to clas- 

ify malware families with scarce data. In order to tackle the un- 

nown class classification problem, it works in a similar manner to 

he CSNN. An appropriately trained feature extractor should gener- 

te similar embeddings for instances of the same family and vice 

ersa. 

The cosine similarity score is formally described by the follow- 

ng equation: 

osine _ similarity (X, Y ) = 

X · Y 

| X || Y | (6) 

here X , Y are the two feature vectors and · represents the vector 

ot product. 

.6. Evaluation metrics 

We mention all the standard performance metrics that we use 

o measure and evaluate the performance of our classifiers. 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

(7) 

 recision = 

T P 

T P + F P 
and Recall = 

T P 

T P + F N 

(8) 
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Algorithm 1: Pseudocode for 10-shot classification with 

Shallow-FS. 

Input : pre-trained f eat ure _ ext ractor, test _ sample , 10-shot 

support _ set of shape n × 10 × 256 × 256 × 3 where n 

is the number of classes 

Output : The malware family label of the input GEM image 

famil y _ l abel 

/* We describe the pseudocode for generating the mean 
feature vectors for the support set. It is important 
to note that this needs to be performed only once 
until any classes are added/removed from the support 
set for classification */ 

num classes ← n ; 

/* The array that will contain the similarity scores of 
all the query image and support set images ′ pairs. 
An index i represents the similarity score of the 
i th class */ 

result arr ← empty array of size num_classes ; 

/* The array that will contain the averaged feature 
vectors of all the support set images per class */ 

mean support set ← empty array of size 

num _ classes × 256 × 256 × 3 ; 

for i ← 0 to ( num classes − 1 ) do 

/* The array that contains the feature vectors 
produced by the Shallow-FS model for all 10 
images of the i th class */ 

feature vectors ← empty array of size 10 × 128 ; 

feature vectors ← model. predict( support _ set[ i ] ) ; 
/* Average the feature vectors and store the mean 

feature vector in the i th index of the array */ 
mean support set [ i ] ← mean( feature vectors , axis = 0 ) ; 

end 

/* Get the feature vector of the query image from the 
Shallow-FS */ 

feature vector input ← model. predict( input _ img) ; 
for i ← 0 to ( num classes − 1 ) do 

/* Get the cosine similarity score between the query 
image feature vector and i th class support set 
mean feature vector, and store it at the i th 
index of the results_arr */ 

result arr [ i ] ← cosine_similarity( feature vector input , 

mean support set [ i ] ) ; 
end 

/* The family label is the index of the element in the 
array with the highest similarity score */ 

famil y _ l abel ← argmax( result arr) 
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Table 5 

Computing environment and specifications. 

Parameters Google Apple Macbook 

Colaboratory Free Pro 2017 

CPU Intel(R) Intel(R) 

Xeon(R) Core(TM) i7 

No. of CPU Cores 2 4 

CPU Frequency 2.3 GHz 2.8 GHz 

RAM 12 GB 16 GB 

GPU Nvidia K80 / T4 Radeon Pro-555 

GPU Memory 12 GB 2 GB 

Python version 3.7 3.8 
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 1 = 

2 ∗ P recision ∗ Recall 

P recision + Recall 
(9) 

There are two other metrics that we use in this paper: 

Macro F1 score is defined as the unweighted mean of class- 

ise F1 scores. 

Weighted F1 score is defined as the weighted mean of class- 

ise F1 scores. In other words, it is a modification of Macro 

1 score that takes class imbalance into account. The mean is 

eighted by the number of instances in each class. 

. Classification experiments and results 

This section describes all of our significant experiments. It is 

mportant to note that, due to the COVID-19 global pandemic, the 

vailability and accessibility to powerful hardware was very lim- 

ted. Thus, we were forced to perform experiments on personal 
8 
aptops and cloud services such as Google Colaboratory. All of our 

odels are implemented in Keras using a Tensorflow backend. The 

xecution of training and the evaluation of the models was per- 

ormed on Google Colaboratory running a Python 3.7 environment. 

e used the free Google Colaboratory instances to execute our 

ode which adjusts the hardware allocation on the fly, providing 

o guarantees for resource availability ( Google Colaboratory, 2021 ). 

he data preprocessing, feature extraction and GEM image genera- 

ion was performed on an Apple Macbook Pro-2017. Ideally avail- 

ble resources on a free Google Colaboratory instance and an Apple 

acbook Pro-2017 are mentioned in Table 5 . 

We perform two types of experiments using the proposed 

ethodologies: (1) traditional classification (2) unknown-class 

lassification. Traditional classification is when a model is trained 

nd then evaluated on all classes that were present during the 

raining of the model. Typically, this is implemented using a 

oftmax-activated layer which has a fixed number of units and can 

nly predict the class probabilities for that fixed number of classes. 

e perform the traditional classification experiments to show the 

otential of the GEM images in a standard evaluation setting and 

or the sake of completeness and comparison with other state of 

rt works. Unknown-class classification is when the model is eval- 

ated on all classes that were present during training as well as 

ew classes that were unknown to the model during training. We 

mplement this by withholding classes from the training dataset 

nd use few-shot classification techniques to perform unknown- 

lass classification. 

.1. Traditional classification experiments 

For all the experiments under this section, we used the 

hallow-CNN classifier. Also, all the experiments performed had 

he data split as 70% of the dataset for training and 30% of 

he dataset for evaluation. We started experimenting with var- 

ous feature extraction and visualizing techniques mentioned in 

ection 3.2 and more. The results of these experiments are sum- 

arized in Fig. 9 . We can observe that different visualization tech- 

iques result in varying performance across all three datasets. It is 

otable that the GEM image performed the best across all three 

atasets, where as other methods performed at a high accuracy 

or some datasets but gave worse performance on more recent 

atasets. These results supported our decision of using the GEM 

mages for further experiments. 

As the classification results of the GEM images are the best and 

ost interesting, we summarize the results of traditional classifi- 

ation with GEM images in Fig. 11 . We can observe that, this ap-

roach was able to classify 19 families with 100% accuracy, and 

he remaining with an accuracy higher than 98% for Dataset-A. It 

chieved an accuracy higher than 96% accuracy for 8 families, and 

pproximately 64% accuracy for 1 family for the Dataset-B. It clas- 

ified 4 families with a 100% accuracy, 7 families with an accuracy 

igher than 97% and the remaining with an accuracy higher than 

0% for Dataset-C. 
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Fig. 9. Performance comparison between various feature extraction techniques. The GEM image consistently shows better performance over the grayscale and individual 

feature images for all three datasets. These experiments were performed using traditional classification using Shallow-CNN model. 

Fig. 10. The architecture of CSNN built using the feature extractor from the 

Shallow-CNN model. The feature extractor with the shared weights is joined using 

the Euclidean similarity metric. 
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Table 6 

Training set details for Experiment-1.1: Few-shot traditional classification with 

CSNN. 

Dataset No. of No. of Total no. of % of 

classes in samples samples in total 

training selected training data 

set per class set 

Dataset-A 22 50 1100 11.77% 

Dataset-B 9 150 1350 12.43% 

Dataset-C 14 60 840 10.39% 
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.2. Experiments using the CSNN model 

This section describes the classification experiments we per- 

ormed on the three datasets using the CSNN model. As we have 

entioned previously, CSNN performs better when there are equal 

nstances from each class, and when only a small percentage of 

he total data is in the training set. For all the experiments with 

he CSNN, we split the data such that percentage of total data in 

he training set was approximately 10% and the rest in the eval- 

ation set. In all further experiments, we trained the CSNN using 

he the Adam optimizer with a learning rate of 0.0 0 01 . We used

he Early Stopping regularization technique to efficiently train the 

SNN as well as to avoid overfitting. Early stopping usually caused 

he training of CSNN to stop after 10–12 epochs irrespective of the 

ataset. Typically, the CSNN model is used in 1-shot classification 

cenarios, and thus, we also experiment on CSNN with 1-shot clas- 

ification. 

.2.1. 1-Shot traditional classification experiments 

For these experiments, the CSNN is trained and evaluated on all 

lasses present in the dataset. We evaluate the CSNN using 1-shot 

lassification, implying that 1 instance from each class is selected 

o be in the support set at random. The training set is formed by 
9 
electing a certain number of samples from each class at random. 

his number is decided such that the number of samples in the 

raining set are approximately 10% of the total data. Table 6 de- 

cribes the training set formation for each dataset in greater detail. 

ataset-B contains a family with only 42 samples, but we require 

50 samples from each class to have an equal number of instances 

rom each class. In practice, we would tackle this problem by with- 

olding this class from the training set. For the sake of complete- 

ess, we use the random oversampling technique which involves 

electing, with replacement, instances from a minority class at ran- 

om. We ensured that no samples from the training set overlapped 

ith the evaluation set. 

The results of the experiments (refer Fig. 12 ) are competitive 

ith the state of art results for traditional classification, consider- 

ng that the CSNN was trained on 10% of the dataset. The 1-shot 

raditional classification with CSNN was able to classify 11 families 

ith 100% accuracy, 8 families with an accuracy higher than 99%, 

nd the remaining with an accuracy higher than 86% for Dataset- 

. It classified 6 families with an accuracy higher than 95% and 

he remaining families with an approximately 85% accuracy for 

ataset-B. It classified 9 families with an accuracy higher than 97%, 

 families with an accuracy higher than 94%, and the remaining 

ith an accuracy higher than 77%. 

.2.2. 1-Shot unknown-class classification 

To emulate unknown-family recognition similar to a real world 

etting, we withheld classes from the training set and these are 

nly presented to the CSNN while evaluation. The number of 

lasses withheld in the training set is proportional to the total 

umber of classes in the dataset. For Dataset-A, Dataset-B and 

ataset-C, the number of classes withheld are 5, 2 and 3 respec- 
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Fig. 11. Results for the traditional classification using our Shallow-CNN model. 

Fig. 12. Results for the 1-shot traditional classification using our CSNN model. 
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ively. The classes with the least number of instances are selected 

o be withheld. The splitting of data into the training set and test- 

ng set is similar to the previous experiment. Table 7 describes the 

xact split of the data. One sample from each class in the testing 

et was selected to be in the support set at random. The results of 

he experiments (refer Fig. 13 ) outperform state of art results for 

nknown-class classification using CSNN. 
10 
.3. Experiments using the Shallow-FS model 

This section describes the classification experiments we per- 

ormed on the three datasets using the Shallow-FS model. For 

hese experiments, we split the data into the training set and the 

esting set. 70% of data from each class forms the training set, and 

he remaining 30% of the data forms the testing set. The Shallow- 



M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887 

Fig. 13. Results for the 1-shot unknown-class classification using our CSNN model. The classes in black represent classes withheld from the training set and only present in 

the evaluation set. The classes in gray are present in both the sets. 

Table 7 

Training set details for Experiment-1.2: One-shot novel-class classification with 

CSNN. 

Dataset No. of. No. of Total no. of % of 

classes in samples samples in total 

training selected training data 

set per class set 

Malimg 17 50 850 9.10% 

BIG 2015 7 150 1050 9.66% 

MalBaz 11 60 660 8.17% 
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t

S was trained using the Adam optimizer with a learning rate of 

.0 0 01 . We used the Early stopping regularization technique to effi- 

iently train the Shallow-FS and to avoid overfitting. Early stopping 

sually caused the training of Shallow-FS to stop after 4–6 epochs 

rrespective of the dataset. We already performed 1-shot classifica- 

ion experiments using the CSNN model, so we decided to experi- 

ent with 10-shot classification using the Shallow-FS model. 

.3.1. 10-Shot traditional classification 

For these experiments, the Shallow-FS is trained and evaluated 

n all classes present in the dataset. We evaluate the Shallow-FS 

sing 10-shot classification, implying that 10 instances from each 

lass are selected to be in the support set at random. Further- 

ore, the feature vectors of the 10 selected instances from each 

lass were averaged to form the mean feature vectors. These mean 

eature vectors are then provided, in combination with the feature 

mbedding of the query instance, to the Cosine similarity metric. 

The results of the experiments (refer Fig. 14 ) are competitive 

ith the state of art traditional classification results. Comparing 

t to the Shallow-CNN experiments, as both these experiments 

ad similar split of the data, we observe the Shallow-FS performs 

lightly worse for Dataset-B and Dataset-C. The Shallow-FS was 

ble to classify 19 families with a 100% accuracy, and the remain- 

ng with an accuracy higher than 98% for Dataset-A. It achieved an 

ccuracy higher than 97% for 7 families, an accuracy higher than 
11 
4% for 1 family and 74% accuracy for the remaining family for 

ataset-B. It classified 3 families with 100% accuracy, 7 families 

ith an accuracy higher than 97% and the remaining with an ac- 

uracy higher than 81%. 

.3.2. 10-Shot unknown-class classification 

To emulate unknown-family recognition similar to a real world 

etting, we withheld classes from the training set. The withholding 

f classes is exactly the same as 1-shot unknown-class classifica- 

ion using CSNN (refer Section 4.2.2 ). For this experiment, we se- 

ect ten images from each class to be in the support set at random. 

he results of the experiments (refer Fig. 15 ) outperform state of 

rt results for unknown-class classification using few-shot classi- 

cation. Interestingly, when comparing the Shallow-FS with the 

SNN, we can observe that the Shallow-FS is better at classifying 

he unknown classes (withheld classes). While the CSNN struggles 

o successfully classify a few of the unknown-classes, the Shallow- 

S can classify most with high accuracy. 

Fig. 15 clearly demonstrates that this approach provides the 

est results for unknown class classification. In order to stress 

est this classifier, we extended Dataset-C with two variants of 

he Linux-based Mirai malware. We collected 200 Mirai files from 

alwareBazaar public malware repository (2021) in June of 2022 

nd separated them into two classes, which were unobfuscated Mi- 

ai and UPX-obfuscated Mirai. We conducted this exact experiment 

n the extended Dataset-C. The overall accuracy and weighted F1- 

core were 0.9380 and 0.9367 respectively. From these results, we 

an infer that shallow-FS can classify recently distributed malware. 

e also show that the GEM image technique is independent of 

alware platform, which implies that it can classify malware in- 

ended for any operating system as well as memory dumps. 

. Discussion 

In this section, we discuss the results of the experiments men- 

ioned in the previous section in greater detail. We summarize a 
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Fig. 14. Results for the 10-shot traditional classification using Shallow-FS. 

Fig. 15. Results for the 10-shot unknown-class classification using Shallow-FS. The classes in black represent classes withheld from the training set and only present in the 

evaluation set. The classes in gray are present in both the sets. 
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8

ew general misclassification trends which were observed in the 

xperiment results. It is not possible to provide concrete reasoning 

or the misclassification. A common trend that we observed across 

ll classification models was for the samples of family C10 (Red- 

ineStealer) being misclassified as family C9 (CryptBot). We be- 

ieve that the reason behind the misclassification between these 

wo families is because of the close similarities in their behaviour 

 Various Types of Threats, 2021 ). It also possible that, a few sam-
12 
les on MalwareBazaar may be mislabelled as it is a public repos- 

tory. We also found a few remarks on the Internet about both 

he malware families sharing some codebase and dropping mech- 

nisms. 

Another interesting result we observed was the CSNN outper- 

orming the Shallow-FS model for Dataset-B. CSNN achieved an 

ccuracy of 94.99%, where as Shallow-FS achieved an accuracy of 

8.68%. On closer observation, we can note that the Shallow-FS 
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Fig. 16. SSIM analysis of feature embeddings. 
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lassified the unknown and complex to classify family such as 

5 better than CSNN. A few other families had many variations 

mong the instances of the family. When we selected ten random 

nstances, for the support set of the 10-shot classification experi- 

ent, the support set feature vectors would have a very high vari- 

nce. On the other hand, support set feature vectors for 1-shot 

lassification with the CSNN would not have such high variance 

s the 10-shot classification. Thus we believe, that the noise intro- 

uced in the 10-shot support set feature vector caused Shallow-FS 

o perform worse than the CSNN. It is important to note that, gen- 

rally, Dataset-B has more noise because of the missing bytes in 

he malware samples represented by ’’??’’ . This resulted in an 

verall low performance for all our approaches. We also did not 

se the .asm file provided in the Dataset-B as our goal was to keep 

he pre-processing of the raw binary as minimal as possible. 

The shallow CNN architecture we propose the use of in our 

ork are far from the norm in state of art malware visualiza- 

ion based research works. We would prefer to not use our model 

lindly as a black-box. Thus, we take the Shallow-CNN model, pre- 

rained on Dataset-C, and remove all the fully-connected layers. 

s a result, we get a feature extractor that outputs the result of 

he feature extraction process. The output is an image of shape 

2 × 62 × 256 , which contains 256 feature maps of size 62 × 62 .

e take two instances from two distinct classes of Dataset-C, 

amely Quakbot and GandCrab, and provide them as input to the 

eature extractor in all possible permutations (refer Fig. 16 ). It out- 

uts 6 different pairs of feature vectors which are recorded. We 

hen use the Structural Similarity Index Measure (SSIM) to calcu- 

ate the similarities between all the feature maps of all 6 pairs. 

e can clearly observe that the features extracted between the 

nstances of the same class have a consistently high SSIM score 

cross all feature maps. On the other hand, instances of different 
13 
lasses show a lot of variance in the SSIM score across all feature 

aps. 

Previously, we make comparison of the GEM image fusion tech- 

ique with the individual feature extraction techniques. We ob- 

erved that the GEM image technique performed the best out of 

hem all. For the sake of completeness, we ran four additional 

xperiments using the Shallow-CNN and the state of art Trans- 

er learning model ResNet50. We compare the two different fea- 

ure extraction techniques, grayscale image colour-mapped and the 

EM image, using the two models. Fig. 18 summarizes the results 

f these experiments. We can clearly observe that the GEM image 

utperforms the other technique with both the models. For both 

he models, the GEM image showed better performance than the 

rayscale colour-mapping technique used by various works ( Dai 

t al., 2018; Vasan et al., 2020a; 2020b ). This also shows the com- 

atibility of our GEM image technique with the state of the art 

odels for better performance over the traditional visualization 

echniques. 

As we mentioned previously, due to the COVID-19 pandemic, 

e had access to very limited hardware. All of our experiments 

ere performed on Google Colaboratory, which provides no guar- 

ntees for resource availability. Thus the time comparison of our 

ifferent models is not precisely accurate, but it still provides a 

ood approximation on the time taken by each of the classifica- 

ion models. We also provide the comparison of our models with 

tate of art Transfer learning models such as ResNet in Fig. 17 . For

he pre-processing of input for ResNet, we do not perform any 

ata augmentation and thus, do not take the time taken by any 

ata augmentation techniques into account. As observed, the pre- 

rocessing time for our approach is much higher because of the 

eneration of the GEM image as compared to the standard pre- 

rocessing of ResNet. The training time of the CSNN is the low- 
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Fig. 17. Time based analysis performed for all our classifier models and ResNet50. We recorded and plotted the time taken for pre-processing, training and evalua- 

tion/prediction tasks. 

Fig. 18. A bar plot showing the difference in performance for the ResNet50 and 

the Shallow-CNN architectures. Our model outperforms ResNet50 in both coloured- 

image malware visualization techniques, namely colour-mapped grayscale images 

and the GEM images. This shows the potential of the GEM image and its compatibil- 

ity with the state of the art transfer learning models over colour-mapped grayscale 

images. 
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Table 8 

Performance comparison of our approaches with the state-of-the-art research. 

Authors Year Classification Malimg Microsoft Malbaz 

Type accuracy BIG 2015 accuracy 

(%) accuracy (%) 

(%) 

Nataraj et al. 2011 Traditional 98.08 - - 

Ni et al. 2018 Traditional - 99.26 - 

Vasan et al. 2020 Traditional 98.82 - - 

Xiao et al. 2020 Traditional 99.70 100 - 

Gibert et al. 2020a Traditional - 99.75 - 

Vasan et al. 2020b Traditional 99.50 - - 

Shallow-CNN - Traditional 99.93 98.56 98.51 

CSNN - Traditional 99.47 97.16 96.97 

Shallow-FS - Traditional 99.93 97.91 97.52 

Tran et al. 2019 Unknown-class 95.30 70.19 - 

CSNN - Unknown-class 96.21 94.99 93.42 

Shallow-FS - Unknown-class 98.26 88.68 97.65 
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t
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st because of the less training data. The rest of our models take 

ess time to train than the ResNet because of the shallower archi- 

ecture. Interestingly, Shallow-FS model takes the least amount of 

ime for prediction. We can observe, that on average, using a Co- 

ine similarity score and support set to classify instead of a soft- 

ax classifier is faster for classification in our experimental setting. 

he reason behind the higher average prediction time of CSNN is 

hat it processes two images at a time. We can reduce this time 

y extracting the shared CNN in the CSNN and generating support 

et feature vectors and query image feature vectors separately. We 

tore the values of the support set feature vectors instead of re- 

alculating them for every prediction. 

The summary of our results and comparison with the state of 

he art research works is presented in Table 8 . The rows in bold
14 
epresent our proposed models’ performance. None of the prior re- 

earch works listed in Table 8 discuss few-shot learning on PE mal- 

are except for ( Tran et al., 2019 ). The results from the research

orks ( Gibert et al., 2020a; Ni et al., 2018; Xiao et al., 2020 ) are

arginally better than our classifier models for Dataset-B. The pa- 

er by Ni et al. (2018) uses the disassembled .asm files provided 

or each malware family to conduct their classification and their 

re-processing technique removed approximately 60 files from the 

ataset. Relying on disassemblers could make the classifier sen- 

itive to sophisticated obfuscation and add to the pre-processing 

ime of a malware binary. Also, the accuracy of 99.26% is their best 

ase accuracy where as their average case accuracy was 98.86%. 

he method proposed by Gibert et al. (2020a) also relies on the 

isassembled files to produce an accuracy of 99.75%. Their bytes- 

ased classifier, which only considers the .bytes files achieved an 

ccuracy of 97.56%. To the best of our knowledge, the method of 

iao et al. (2020) performed the evaluation on the actual evalua- 

ion set provided in the Microsoft BIG 2015 Kaggle challenge (refer 

ection 3.1.2 ) which is not publicly available. The comparison be- 

ween these state of the art works and our work is not entirely fair 

s our methodologies and evaluation settings differ conceptually. 

Finally, we discuss the impact of obfuscation on our GEM static 

eature extraction technique. Dataset-A and Dataset-B had the Ob- 

uscator.AD (family code A16) and the Obfuscator.ACY (family code 

8) family respectively (refer Tables 1, 2 ). All families in Dataset-C 
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Fig. 19. Structural differences observed between GEM images of an unobfuscated 

executable of Emotet and Quakbot family. Structural similarities observed between 

GEM images of the UPX and Mpress packed executables of the same families. 
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sed obfuscation which we verified using third-party vendors on 

alwareBazaar public malware repository (2021) (refer Table 3 ). 

e have shown that our classifiers are able to classify the ex- 

cutables in these obfuscated families with a high F1-score (re- 

er Figs. 11–15 ). We achieved good results for Dataset-C because 

e observed that each malware family in the dataset uses its 

wn obfuscation techniques/packers. This phenomenon is often ob- 

erved in the wild with malware families using custom obfusca- 

ion techniques to evade signature-based detection. To better an- 

lyze the GEM image construction on obfuscated files we picked 

ne executables from the Quakbot (family code C7) and Emotet 

family code C12) families and obfuscated them with commonly- 

nown packers such as UPX: the Ultimate Packer for eXecuta- 

les (2021) and Mpress executable packer (2021) . We manually 

npacked the executables before performing the analysis. Fig. 19 

ighlights the structural similarities between the executables from 

wo distinct families caused by obfuscation. We can observe that 

he GEM images of the unpacked malware are distinct enough to 

e classified accurately however, problems would arise when two 

istinct malware families use the same obfuscation technique or 

ool. It is highly probable that the similarities in this image will 

ause a misclassification. This worst-case scenario can be tackled 

sing the GEM image technique on memory dumps extracted by 

ynamic analysis of the obfuscated binaries instead of the static 

inary content. 

. Conclusion 

This research proposed a the GEM image that is more compat- 

ble with shallower CNN architectures than the traditional deeper 

rchitectures, allowing for quicker training and classification. We 

roposed a Gray-level matrix image that enabled us to visualize 

LCM based textural features combined with the Markov image 

nd the Entropy graph image. Fusing the three feature extraction 

echniques allowed us to visualize malware in a novel way that 

s still compatible with state of the art CNN architectures. We ex- 

erimentally show that the GEM image format combined with a 

hallow CNN architecture showed competitive results for the tra- 

itional classification and better results than the state-of-the-art 

ew-shot malware classification research. Our proposed CNN archi- 

ectures can be used to tackle malware-specific problems such as 

he scarcity of samples for specific families and the need to clas- 

ify unknown families because of the evolution of malware families 

nd zero-day attacks. We experimentally show that our shallow ar- 
15 
hitecture, Shallow-CNN, performs better when combined with the 

EM feature extraction and fusion technique. Our few-shot classi- 

cation are still compatible with the traditional malware classifi- 

ation, and can further be used to classify unknown malware fam- 

lies. We provide reasons for some of the classifications our classi- 

er models make aiming towards improved performance in future 

orks. Inspired by Ayyar et al. (2021) , we also try to analyze the 

ntermediate feature map images of our models which provides us 

 better understanding of our model. Lastly, we compare our work 

o the state of the art and show the performance improvement we 

chieved. 

For future work, our approach can be applied to dynamic mal- 

are analysis, by generating GEM images of memory dumps in- 

tead of raw malware binaries. This would allow the classifier to 

e more robust against sophisticated obfuscation techniques. The 

eature extraction techniques we use make our approach easily ap- 

licable to classifying Internet of Things (IoT) malware, Unix-based 

alware, Mobile malware etc. as it does not rely on specifics of a 

alware binary. Our approach focuses on fusing the 3 distinct fea- 

ure images to form the GEM image, but selection of other feature 

xtraction techniques that do not result in a single feature image 

an be amalgamated via an ensemble classifier. 
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