

Delft University of Technology

A few-shot malware classification approach for unknown family recognition using malware
feature visualization

Conti, Mauro; Khandhar, Shubham ; Vinod, P.

DOI
10.1016/j.cose.2022.102887
Publication date
2022
Document Version
Final published version
Published in
Computers and Security

Citation (APA)
Conti, M., Khandhar, S., & Vinod, P. (2022). A few-shot malware classification approach for unknown family
recognition using malware feature visualization. Computers and Security, 122, 1-16. Article 102887.
https://doi.org/10.1016/j.cose.2022.102887

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cose.2022.102887
https://doi.org/10.1016/j.cose.2022.102887

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Computers & Security 122 (2022) 102887

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A few-shot malware classification approach for unknown family

recognition using malware feature visualization

Mauro Conti a , b , Shubham Khandhar b , P. Vinod

c , ∗

a Department of Mathematics, University of Padua, Padua, Italy
b Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
c Department of Computer Applications, Cochin University of Science & Technology, Cochin, Kerala, India

a r t i c l e i n f o

Article history:

Received 30 January 2022

Revised 21 July 2022

Accepted 18 August 2022

Available online 20 August 2022

Keywords:

Malware classification

Few-shot learning

Siamese neural networks

Deep neural networks

GEM Image

Malware visualization

a b s t r a c t

With the ever-increasing threat of malware attacks, building an effective malware classifier to detect mal-

ware promptly is of utmost importance. Malware visualization approaches and deep learning techniques

have proven effective in classifying sophisticated malware from benchmark datasets. A major problem

with traditional deep learning classifier is the need to re-train the classifier when a new malware family

emerges. In this paper, we propose few-shot classification techniques which allows us to classify mal-

ware based on a few instances and without the need for re-training the classifier for novel malware fam-

ilies. We also propose a novel malware visualization technique that can represent a malware binary as a

3-channel image. We experiment with two distinct few-shot learning architectures namely CSNN (Con-

volutional Siamese Neural Network) and Shallow-FS (Shallow Few-Shot). CSNN is more suitable when

scarce data is available for training, otherwise Shallow-FS can be used to achieve better performance.

Our architectures outperforms state of the art few-shot learning approaches and achieves high accuracy

in traditional malware classification. Our experiments show our models’ ability to classify recent and

novel malware families from just a few instances with high accuracy.

© 2022 Elsevier Ltd. All rights reserved.

1

t

g

b

T

t

s

t

t

t

w

r

u

i

w

l

a

t

p

m

A

a

t

t

m

w

c

(

b

v

n

i

t

a

t

h

0

. Introduction

The ever-increasing risk of malware (mal icious soft ware) at-

acks have been a significant threat to internet users around the

lobe. Currently, malware is one of the primary attack vectors used

y cybercriminals to perform malicious activities. The Mcafee ATR

hreat Reports (2021) showed an immense increase in Powershell

hreats, MacOS malware, Office malware, Mobile malware, Ran-

omware, and Linux malware in the second half of 2020. According

o the AV-test statistics report (AV Test malware statistics, 2021),

hey discovered approximately 100 million new malware files in

he first half of 2021. As reported by the Kaspersky Security Net-

ork (IT threat evolution, 2021), they observed new attempts to

un money stealing malware on the computers of 119,252 unique

sers in Q2 of 2021. These statistics support the fact that malware

s a growing threat to Internet users. It is important to note that

ith the steady increase in sheer number of malware, their fami-

ies and their variants are also constantly evolving according to the

forementioned reports.
∗ Corresponding authors.

E-mail addresses: conti@math.unipd.it (M. Conti), S.C.Khandhar@student.

udelft.nl (S. Khandhar), vinod.p@cusat.ac.in (P. Vinod) .

o

d

y

w

ttps://doi.org/10.1016/j.cose.2022.102887

167-4048/© 2022 Elsevier Ltd. All rights reserved.
The functionalities and capabilities of a malware can vary de-

ending upon various factors such as the intended platform for

alware, its types, its family, and other malware characteristics.

dware, Trojan, Backdoor, Ransomware, Spyware, Worm, etc., are

 few examples of types of malware. Malware types can be fur-

her divided into families and their variants based on various fac-

ors such as malware codebase, malware development groups, and

any more (SANS Webcast Recap, 2020). To avoid detection, mal-

are authors use a variety of obfuscation techniques such as dead-

ode insertion, instruction reordering, and control flow flattening

 Alrabaee et al., 2018). The use of obfuscation techniques in com-

ination with frequent updates to the malware codebase makes it

ery challenging to accurately classify malware into its families.

Malware poses massive security risks to governments, busi-

esses and individual users. There exist multiple strategies to mit-

gate malware attacks and accurate malware classification is an in-

egral part of these strategies. Security analysts and researchers

nalyse malware files to understand their behavioural characteris-

ics and purpose, which helps them build better defenses against

ther malware files from the same family. There are mainly two

istinct types of malware analysis: static analysis and dynamic anal-

sis . Static analysis involves analyzing the malware binary content

ithout executing it. On the other hand, dynamic analysis involves

https://doi.org/10.1016/j.cose.2022.102887
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102887&domain=pdf
mailto:conti@math.unipd.it
mailto:S.C.Khandhar@student.tudelft.nl
mailto:vinod.p@cusat.ac.in
https://doi.org/10.1016/j.cose.2022.102887

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

a

o

s

o

t

i

i

m

a

w

t

e

m

c

m

d

l

S

w

i

T

u

i

t

t

c

c

w

2

w

a

N

n

s

F

f

T

l

w

f

w

f

i

u

s

f

e

i

1

d

b

w

S

o

i

S

i

t

r

fi

a

t

2

2

i

N

m

a

w

T

i

d

N

v

c

s

t

N

a

m

s

w

a

c

p

i

s

e

p

s

t

nalyzing the malware behaviour while/after executing it in mem-

ry. Static analysis is faster than dynamic analysis, but it is not re-

ilient against sophisticated code obfuscation techniques. On the

ther hand, dynamic analysis is often unaffected by code obfusca-

ion and polymorphic malware (Gibert et al., 2020b) but is slower

n comparison.

Traditionally, malware detection/classification is performed us-

ng signature-based or heuristic-based methods. Signature-based

ethods deploy a signature for distinct malware families and vari-

nts, which acts as a prototype and allows newly discovered mal-

are files to be accordingly classified. Heuristic-based methods, on

he other hand, uses rules and byte patterns created by industry

xperts and analysts from existing malware data to classify new

alware (Ye et al., 2017). These approaches mostly fall under the

ategory of static malware analysis. In the last few years, a static

alware analysis technique known as Malware visualization intro-

uced by Nataraj et al. (2011) has prevailed in solving the prob-

em of malware classification. Many recent works, as mentioned in

ection 2.1 , have used this technique to tackle the problem of mal-

are classification.

Malware visualization is a technique that consists of represent-

ng the contents of a malware binary in some form as an image.

raditionally, the raw bytes of the malware binary are read as 8-bit

nsigned integers and stored into a vector. This vector is reshaped

nto a matrix and can then be visualized as a grayscale image. Af-

er carefully performing multiple experiments, we noted that cer-

ain features extracted from the malware were more accurate in

lassifying malware than raw bytes. Instead of visualizing the raw

ontents of the malware binary, as proposed in previous research

orks (Dai et al., 2018; Nataraj et al., 2011; Vasan et al., 2020a;

020b), we visualize the various features extracted from the mal-

are binary which are inspired by recent malware classification

pproaches (Han et al., 2015; Xiao et al., 2020; Yuan et al., 2020).

Furthermore, we investigate the use of a shallow Convolutional

eural Network (CNN) (LeCun et al., 1995) architecture in combi-

ation with few-shot learning to recognize unknown malware clas-

ification. The Few-shot learning approach was first proposed by

ei-Fei et al. (2006) . Few-shot models learn classification from a

ew labelled instances from each given class (Wang et al., 2020).

he idea behind our approach is to provide a testbed for a deep

earning model to classify malware feature images when provided

ith a few instances of each class and that some of these malware

amilies were unknown to the classifier while training. Formally,

e use the term unknown family/class throughout this paper for

amilies/classes that are unknown to the classifier during its train-

ng and are only introduced during evaluation. In this paper, we

se the few-shot classification terms such as query image/instance,

upport set, similarity metric, etc. as defined in other well-known

ew-shot learning papers (Chen et al., 2019; Tran et al., 2019; Wang

t al., 2020). We implement the few-shot learning technique us-

ng Convolutional Siamese Neural Network (CSNN) (Bromley et al.,

993; Koch et al., 2015) and the Shallow-FS architecture on three

istinct PE malware datasets.

The summary of the contributions of this paper are mentioned

elow:

• We performed comprehensive experiments on benchmark PE

datasets such as Malimg and Microsoft BIG 2015. Additionally,

we compiled our own dataset, namely the MalwareBazaar (Mal-

baz) dataset, containing recent malware collected in mid-2021

to thoroughly validate the effectiveness of our classifier.

• We propose a novel malware visualization technique, namely

the GEM image. The GEM coloured 3-channel image is formed

by fusing the Markov image, entropy graph image and gray-

level matrix image. Our experiments show that the GEM images

outperform the standard malware visualization techniques such
2

as grayscale images and colour-mapping grayscale images. We

also introduce a novel way to visualize GLCM features by re-

arranging and visualizing the Gray-Level Co-occurrence Matrix,

instead of extracting 2nd order statistical features from it.

• Our CSNN architecture combined with the GEM image outper-

forms the state of art few-shot classification approaches for the

benchmark PE malware datasets. CSNN achieves an unknown

family classification accuracy of 96.21%, 94.99% and 93.42% for

the three aforementioned datasets, when trained on approxi-

mately 10% of the dataset and evaluated on the rest.

• To the best of our knowledge, we are the first to exper-

iment with malware classification under the standard eval-

uation setting for few-shot classification as described by

Chen et al. (2019) in their paper. Inspired by their work, we

use the Shallow-FS model to perform 10-shot unknown family

classification which yielded an accuracy of 98.26%, 88.68% and

97.65% for the three datasets. This method also outperforms the

few-shot classification approaches for the benchmark PE mal-

ware datasets.

Section 2 provides a comprehensive discussion of the related

ork in the domain of malware classification and visualization.

ection 3 provides a detailed description of our proposed method-

logies including the datasets, feature extraction techniques, GEM

mage construction and model architectures used in this paper.

ection 4 continues with an individual discussion for each exper-

ment we performed and its results in detail. Section 5 discusses

he results of the experiments results and we try to explain our

esults and draw comparisons with other state of the art classi-

ers. Section 6 concludes our paper and provides suggestions and

 few ideas that can enhance and continue our malware classifica-

ion approach.

. Related work

.1. Malware detection/classification based on malware visualized

mages and deep learning

The concept of malware visualization was first proposed by

ataraj et al. (2011) that targets at representing the bytes of a

alware as pixels of an image. The malware visualized as an im-

ge can be fed to various CNN architectures for classification. They

ere the first to classify malware using visualization techniques.

hey represented binary files as grayscale images and utilized sim-

larity computations. They also used GIST features to extract gra-

ient properties and these features were provided to a K-Nearest

eighbor (KNN) classifier. Makandar and Patrot (2017) used the

isualisation technique in combination with Support Vector Ma-

hines (SVM) classifier. They used feature processing techniques

uch as Gabor Wavelet, GIST and Discrete Wavelet Transform

o construct an effective texture feature vector of an image.

i et al. (2018) and Qiao et al. (2019) used specific algorithms, such

s SimHash and Word2Vec (Mikolov et al., 2013) respectively, on

alware disassembly to represent it as an image and further clas-

ify using deep CNNs.

Xiao et al. (2020) used the structural entropy to visualize mal-

are binaries as entropy graphs. These entropy graphs are fed to

 deep CNN to extract features and an SVM classifier is used for

lassification. Vu et al. (2020) proposed an approach that targets

ixel encoding and arranging bytes from malware binaries into

mages for malware detection. These images have statistical and

yntactic artifacts, for example, entropy or strings, and their pix-

ls are filled with space-filling curves. Vasan et al. (2020a,b) pro-

osed two distinct approaches for malware visualized image clas-

ification. Firstly, they proposed an ensemble CNN-based archi-

ecture for obfuscated and un-obfuscated malware detection. Sec-

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

o

r

s

b

b

c

2

F

t

s

n

t

g

l

B

t

w

a

a

d

i

m

t

i

l

A

m

a

k

P

p

a

s

c

t

w

f

d

2

m

t

s

s

B

l

b

a

w

m

f

p

A

s

b

m

fl

t

n

Table 1

Malimg Dataset.

Family code Family Number of samples

A1 Instantaccess 431

A2 Dialplatform.B 177

A3 Autorun.K 106

A4 Dontovo.A 162

A5 Lolyda.AA1 213

A6 Lolyda.AT 159

A7 Adialer.C 122

A8 Fakerean 381

A9 Rbot!gen 158

A10 Allaple.A 2949

A11 VB.AT 408

A12 Yuner.A 800

A13 Malex.gen!J 136

A14 Agent.FYI 116

A15 Skintrim.N 80

A16 Obfuscator.AD 142

A17 Lolyda.AA2 184

A18 Lolyda.AA3 123

A19 Wintrim.BX 97

A20 Swizzor_C2LOP 606

A21 Allaple.L 1591

A22 Alueron.gen!J 198

Table 2

Microsoft BIG 2015 Dataset.

Family code Family Number of samples

B1 Ramnit 1541

B2 Lollipop 2478

B3 Kelihos_v3 2942

B4 Vundo 475

B5 Simda 42

B6 Tracur 751

B7 Kelihos_v1 398

B8 Obfuscator.ACY 1228

B9 Gatak 1013

c

v

a

m

l

i

t

p

t

p

d

o

s

c

3

u

F

3

c

w

d

a

ndly, they presented a method that converts raw malware bina-

ies into colour images and a fine-tuned CNN architecture for clas-

ification. In the second approach, they used transfer learning for

etter performance and data augmentation for tackling class im-

alance. All of the approaches mentioned above achieved high ac-

uracies for classifying malware.

.2. Malware detection/classification using few-shot learning

The concept of Few-shot learning was first proposed by Fei-

ei et al. (2006) . They explored a Bayesian implementation of

he idea of taking advantage of previously learned knowledge in-

tead of learning from scratch. Hsiao et al. (2019) used Siamese

eural networks to classify malware images. They preprocess

heir datasets using malware visualization and average hash al-

orithm. They concluded that their approach outperformed base-

ine methods such as nearest neighbor and random guessing.

ai et al. (2020) also proposed the use of Siamese neural networks

o classify Android malware. They used the Siamese neural net-

ork as a feature extractor to generate feature embeddings and

ttached it to a Multi-layer Perceptron (MLP) to classify the gener-

ted embeddings. Rong et al. (2021) converted the network traffic

ata generated by malware variants into grayscale images. These

mages are used as input to a prototype-based few-shot learning

odel. They achieved a very high accuracy and concluded that

heir method is universal and robust in detecting malware variants

n network environments.

Wang et al. (2021) proposed a meta-learning based few-shot

earning technique to classify novel malware families. They use

PI invocation sequences from dynamic analysis of malware. Their

ethod achieved a high accuracy in a 5-way classification task on

 Virus Share and APIMDS dataset. Tran et al. (2019) used well-

nown Meta-learning approaches such as Matching Network and

rototypical Network to classify malware visualized images. They

erformed experiments on benchmark PE malware datasets such

s Malimg and Microsoft BIG 2015. They performed 1-shot and 4-

hot malware classification experiments and achieved higher ac-

uracies than previous works on the PE benchmark datasets. To

he best of our knowledge, the last discussed approach is the only

ork that showed the effectiveness of static analysis features and

ew-shot classification, especially meta-learning, on PE malware

atasets.

.3. Malware detection/classification based on alternative approaches

Here we discuss the state-of-the-art research in the do-

ain of malware detection/classification based on approaches

hat do not use malware visualization, deep learning or few-

hot learning. Nataraj et al. (2010) employed an SVM to clas-

ify packed and unpacked executables based on bigram features.

urguera et al. (2011) built an Android malware detector that

everages dynamic analysis to discriminate between malicious and

enign apps. Their method was effective in isolating malware and

lerting application consumers that have already downloaded mal-

are. Natani and Vidyarthi (2013) proposed a method for detecting

alware that uses the API function frequency as a feature vector

or categorizing malicious files. Chuang and Wang (2015) also pro-

osed a model for malware detection based on SVM classifier and

PI calls.

Gibert et al. (2020a) introduced a framework for malware clas-

ification that combines distinct features to discover relationships

etween different modalities. Their multi-modal approach maxi-

izes the benefits of multiple feature types while accurately re-

ecting the characteristics of malware executables and classifica-

ion performance. Y. Ki et al. Ki et al. (2015) proposed a tech-

ique that used DNA sequence alignment algorithms to extract
3
ommon API call sequence patterns of malicious functions from

arious types of malware. Their experiments concluded that their

pproach resulted in almost perfect classification on their own PE

alware dataset. Pascanu et al. (2015) proposed an approach that

earns the language of malware communicated through executed

nstructions and extracts robust, temporal domain properties, akin

o natural language modelling. Their model was effective and out-

erformed classic Recurrent Neural Networks (RNN) in majority of

heir experiments.

Our work differs from the previously mentioned works, as we

ropose the classification of malware from the benchmark PE

atasets using different few-shot learning approaches. To the best

f our knowledge, we use shallow architectures such as CSNN and

hallow-FS for few-shot classification which have not been used to

lassify PE malware before.

. Proposed method

In this section, we discuss the methodologies and individ-

al components of our proposed few-shot classification approach.

ig. 1 depicts our proposed approach and its components.

.1. Datasets

To validate our approach and create an effective malware

lassifier, it is necessary to use well-known state of art mal-

are datasets. We use three distinct datasets, namely the Malimg

ataset (refer Table 1), Microsoft BIG 2015 (refer Table 2) dataset

nd MalwareBazaar dataset (refer Table 3).

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 1. Our proposed approach shows the process of extracting three distinct features from a malware binary and fusing them into a 3-channel GEM image. This GEM image

is then used as input to our few-shot classification models to predict the family label of the malware binary. The Support set mentioned in the figure is a collection of a

fixed number of images randomly chosen from each class of the training set. These images are conceptually similar to a point of reference for the ML model.

Table 3

Malbaz Dataset.

Family code Family Number of samples

C1 CobaltStrike 592

C2 Trickbot 513

C3 njrat 606

C4 Cutwail 445

C5 AveMariaRAT 604

C6 GandCrab 146

C7 Quakbot 462

C8 IcedId 430

C9 CryptBot 133

C10 RedLineStealer 345

C11 Dridex 1659

C12 Emotet 1229

C13 Sodinokibi 233

C14 AgentTesla 679

3

s

c

i

p

f

d

a

v

d

2

3

K

2

p

o

s

t

t

l

s

3

s

W

l

w

t

t

e

t

t

p

t

o

3

a

v

a

w

t

e

b

3

b

m

.1.1. Malimg dataset (Dataset-A)

Nataraj et al. (2011) introduced this dataset intending to explore

ignal and image processing techniques in the field of malware

lassification, and researchers have used it as a benchmark in var-

ous state-of-art research. In total, it contains 9339 malware sam-

les, distributed among 25 malware families, represented in the

orm of grayscale images. Instead of using the 25-family Malimg

ataset, we use the 22-family Malimg dataset as suggested by the

uthors (Nataraj et al., 2011). The authors suggest combining the

ariants of Swizzor and C2LOP families into one family. We also

iscovered certain threat reports (Microsoft Threat report, 2009;

010) suggesting that Swizzor is an alias for C2LOP family.

.1.2. Microsoft BIG 2015 dataset (Dataset-B)

This dataset was introduced by Microsoft and was part of a

aggle competition hosted by Microsoft Ronen et al. (2021) in

015. It is a massive dataset consisting of 21,741 malware sam-

les. This dataset is further divided into two parts, a training set

f 10,868 samples and a testing set of 10,873 samples. The training
4
et is labelled, and the testing set was not publicly released. For

his work, we only use the labelled training set (specifically, only

he .bytes file), which consists of 9 malware families.

It is important to note that a lot of files in the dataset have a

ot of noise as many bytes in those files are represented by “??”

ymbol. We remove the 8 files that only contain the “??” symbols.

.1.3. Malbaz dataset (Dataset-C)

Malware is frequently evolving which requires a malware clas-

ifier to possess the ability to classify recently discovered malware.

e collected malware executables in May of 2021 from a pub-

ic malware repository - MalwareBazaar. We leveraged the Mal-

areBazaar API to compile a dataset containing 8076 samples dis-

ributed among 14 malware families. We leveraged the threat in-

elligence provided by third-party vendors on MalwareBazaar to

liminate any false positives. Throughout this paper, we refer to

his dataset as the Malbaz dataset. Almost all previous works test

he efficacy of their classifier on older benchmark datasets. In this

aper, we test our classifiers on the benchmark datasets as well as

he Malbaz dataset to better gauge the effectiveness and efficacy of

ur classifier.

.2. Feature extraction

It is essential to extract relevant features from the malware im-

ges to build an effective malware classifier using malware feature

isualization. Instead of using a very deep CNN to extract textural

nd structural features from a grayscale image of a malware binary,

e experimented with various malware-domain specific features

hat have shown to be effective in previous research works (Han

t al., 2015; Xiao et al., 2020; Yuan et al., 2020) and are mentioned

elow.

.2.1. Markov images

This feature extraction method was introduced and discussed

y Yuan et al. (2020) . For this technique, we view the bytes of the

alware binary as byte streams.

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 2. An example of Markov image generation from a hypothetical malware bi-

nary. The malware binary is viewed as a byte stream and a Byte frequency table is

generated based on the occurrence of each byte in the byte-steam. This Byte fre-

quency table is then converted to a Byte probability table which when normalized

results in the Markov image.

a

F

g

g

a

b

p

c

B

M

w

q

r

t

B

a

b

p

t

a

i

f

3

H

X

a

b

Fig. 3. Structural similarities and differences between Markov images. We en-

hanced the Markov images for better distinguishability and visual clarity.

Fig. 4. An example of Entropy graph generation from a hypothetical malware bi-

nary of size 2560 bytes. The malware binary is divided into 128-byte blocks. After

calculating the Shannon entropy of each block, these blocks are plotted in a graph

forming the Entropy graph image.

Fig. 5. Structural similarities and differences between Entropy Graph images.

t

c

o

H

w

w

s

e

t

r

e

i

3

o

t

In order to generate a Markov image from a malware binary,

 matrix of size 256 × 256 is generated and initialized with zeros.

ormally, a sliding window of size 2 slides over the byte stream

enerating bi-grams out of the entire byte stream. For each bi-

ram, we treat the first byte of the bi-gram as the row number,

nd we treat the second byte of the bi-gram as the column num-

er and add a 1 at the respective position in the matrix. For exam-

le, a bi-gram 0x01 0x02 will result in a 1 being added to the cell

orresponding row 1 and column 2.

P T i j =

{
BF T i j

S i
, if S i � = 0

0 , otherwise
(1)

I i j =

BP T i j − min (BF T [i])

max (BF T [i]) − min (BF T [i])
(2)

here

• BP T i j represents the i th row and jth column of the Byte Prob-

ability Table. Similarly, BF T i j and MI i j represents the same val-

ues for the Byte Frequency Table and the Markov image respec-

tively.

• S i represents the sum of all values in the i th row.

After repeating this process for all bi-grams, we have a Byte fre-

uency table with each cell representing the frequency of occur-

ence of each bi-gram. Further dividing each entry in the table by

he sum of all entries in the respective row will transform it into

yte probability table which can be directly visualized as an im-

ge, namely the Markov image. As a result, an entry represented

y row number x and column number y will be the conditional

robability of a subsequent byte in the byte stream being y given

he current byte is x . The generation of the Byte Probability Table

nd the Markov Image, as shown in Fig. 2 , is formally described

n Eq. (1) and (2) . Fig. 3 depicts a few examples of Markov images

rom malware samples.

.2.2. Entropy graph images

This feature extraction method was introduced by

an et al. (2015) and was further used and discussed by

iao et al. (2020) . In our approach, we slightly modify the

pproach by dividing the byte sequence of a malware binary into

locks of 128 bytes. The malware binary is padded with null bytes
5

o make the binary size a multiple of 128. Given that an executable

ontains n blocks of 128 bytes, we calculate the Shannon entropy

f each block as mentioned in Eq. (3)

(B i) = −
255 ∑

k =0

P (b ki) ∗ log(P (b ki)) (3)

here

• B i stands for i th block and b ki stands for k th byte in the i th

block

• H(B i) is the Shannon entropy of i th 128-byte block of the byte

sequence and P (b ki) is the probability of k th byte in the i th

block.

After we obtain the Shannon entropy for all 128-byte blocks,

e plot these block entropies on a graph where the X-axis repre-

ents the 128-byte blocks, and the Y-axis represents the Shannon

ntropy of the respective block. All the plots generated are resized

o a size of 256 × 256 .

The resizing of the image allows us to use any malware binary

egardless of its file size. Fig. 4 summarizes the Entropy graph gen-

ration process and Fig. 5 depicts a few examples of Entropy graph

mages.

.2.3. Gray level matrix image

This feature extraction approach is one of the contributions of

ur work. Most previous works used the 2nd order statistical fea-

ures extracted from the Gray-Level Co-occurrence Matrix (GLCM).

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 6. An example of Stacked gray-level matrix generation from a hypothetical

malware binary. The malware binary is visualized and then a GLCM is created from

the grayscale image with reduced levels. This GLCM is then rearranged to form a

Gray-level matrix image.

Fig. 7. Structural similarities and differences between Gray-level matrix images.

T

w

l

s

w

e

t

c

A

d

T

1

m

t

t

s

T

i

m

m

d

3

t

m

v

a

C

m

Fig. 8. Structural similarities and differences between GEM images.

Table 4

Baseline model configuration. The abbreviation ReLU stands for Rectified Linear

Unit.

Layer Activation Filters Units Kernel

size

Conv2D ReLU 128 - (5, 5)

MaxPool2D - - - (2, 2)

Conv2D ReLU 256 - (3, 3)

MaxPool2D - - - (2, 2)

Flatten - - - -

Dense ReLU - 256 -

Dense ReLU - 128 -

Dense Softmax - variable -

m

b

d

w

c

i

3

l

w

i

c

r

f

3

u

3

m

t

a

r

h

l

f

a

S

3

p

(

q

D

i

u

hese features are one-dimensional, and thus, are not compatible

ith the input requirements of a CNN. Our solution to this prob-

em was to use the GLCM and the textural and spatial information

tored in it directly as an image, namely Gray Level Matrix Image,

hich is compatible with a 2-dimensional CNN.

To begin generating the Gray-level matrix images, we convert

ach malware binary to a grayscale image and then discretize

he grayscale image reducing its levels from 256 to 128. The dis-

retization speeds up the GLCM generation process significantly.

 GLCM is calculated, from this 128-level grayscale image, for

istance value of 1 and angle values of 0 ◦, 45 ◦, 90 ◦ and 135 ◦.

he resulting GLCM would be a 4-dimensional matrix of shape

28 × 128 × 1 × 4 . Formally, for each distance and angle value, this

atrix contains a sub-matrix of size 128 × 128 containing the tex-

ural and spatial information. As we only use one distance value,

he calculated GLCM can be reshaped to 128 × 128 × 4 , and the

ub-matrices of size 128 × 128 for all 4 angle values are separated.

hese 4 matrices are stacked as illustrated in Fig. 6 , to form a final

mage of size 256 × 256 . The pixel values of this image are nor-

alized between 0 and 1 before inputting into a CNN. Fig. 6 sum-

arizes the Gray-level Matrix image generation process and Fig. 7

epicts a few examples of Gray-level Matrix images.

.3. GEM image construction

To achieve our aim of building an effective malware classifica-

ion system and enhancing our system’s performance, we experi-

ented with all the feature extraction techniques mentioned pre-

iously. We generated feature images from malware binaries and

ttempted traditional malware classification using the Shallow-

NN model discussed in the subsequent section. After experi-

enting with different feature extraction techniques, we observed
6

ixed results, i.e. some feature extraction techniques performed

etter on one dataset, whereas others performed better on another

ataset. The experimentation details are mentioned in Section 4.1 .

To solve this problem and to achieve competitive performance

ith the state-of-the-art results across all the datasets, we de-

ided to fuse the individual feature images into a single 3-channel

mage. The fusion process begins with an empty array of shape

 × 256 × 256 . The Markov image, Entropy graph image and Gray-

evel matrix image are placed at each index of this array. Therefore,

e refer to this 3-channel image as the GEM (Gray-level matrix

mage + Entropy graph image + Markov image) image in this work.

A significant advantage of having a 3-channel image is that it

an be visualized as a RGB coloured image which can be used di-

ectly with state of art Transfer learning models. Fig. 8 depicts a

ew example of GEM images.

.4. Traditional classification models

In this section, we describe the traditional CNN architectures

sed in this paper.

.4.1. Shallow-CNN architecture

Our aim was to build an effective yet practically deployable

alware classifier. We use a shallow CNN architecture that can be

rained efficiently, can classify malware quickly and with a high

ccuracy. Thus, we experimented with a shallow CNN architecture,

eferred as the Shallow-CNN model (Khandhar, 2021). This model

as two convolution layers, each of which is followed by a pooling

ayer, followed by two fully-connected layers. Table 4 shows the

ull configuration of the Shallow-CNN. In contrast to most state of

rt Transfer learning and Deep learning models, the training of the

hallow-CNN is quick.

.5. Few-shot classification models

Scarcity of malware samples for malware families is a major

roblem when it comes to the domain of malware classification

 Wang et al., 2021). Training a traditional malware classifier re-

uires a large amount of data. Another limitation of traditional

eep-learning models is that they can only classify an instance

nto one of the classes the model was trained on.

In order for the model to classify data from a previously

nknown class, it would require re-training using a significant

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

a

u

(

l

3

p

s

w

a

w

t

o

b

i

a

C

a

s

m

u

c

c

w

f

d

E

c

s

s

C

f

f

b

t

t

i

t

d

m

f

p

e

s

s

r

k

l

t

n

i

3

C

s

f

a

c

o

a

F

l

b

s

l

o

k

s

t

b

w

f

p

p

b

b

c

b

m

c

T

t

t

c

a

w

m

F

u

l

e

s

k

t

a

v

i

c

w

d

3

t

A

P

mount of data from this new class. To tackle these problems, we

se two models (1) Convolutional Siamese Neural Network (CSNN)

2) Shallow Few-Shot (Shallow-FS). For each model, we discuss be-

ow the scenarios in which they can be more effective.

.5.1. CSNN

The Siamese Neural Network was first conceptualized and pro-

osed by Bromley et al. (1993) . It has previously been used to clas-

ify malware by various researchers. After repeated experiments,

e observed that CSNN can classify malware with high accuracy

fter only training it on a small percentage of the dataset and

hen there is an equal number of instances from each class in the

raining set. These observations are also supported by other previ-

us research works (Bai et al., 2020; Hsiao et al., 2019). The reason

ehind this could be that the CSNN learns similarities and dissim-

larities between pairs of training data instead of learning to map

 dataset instance to a softmax activation.

The general structure of the CSNN can be visualized as two

NNs operating in parallel with shared weights and combined with

 similarity metric (refer Fig. 10). The CNN used in our CSNN is the

ame as Shallow-CNN but with the last Softmax-activated layer re-

oved. During backpropagation, the weights and parameters are

pdated simultaneously for both CNNs. The output of the last fully-

onnected layer of both the CNNs is provided as input to a Eu-

lidean similarity metric which outputs a score between 0 and 1,

hich is formally described in Eqs. (4) and (5) .

The Euclidean similarity used in the CSNN is described by the

ollowing equation:

 (P, Q) =

√

n ∑

i =1

(q i − p i)
2 (4)

ucl idean simil arity =

1

1 + d (P, Q)
(5)

alculates the similarity score based on euclidean distance as

hown in Segaran (2007) where

• d represents Euclidean distance and P , Q are the two feature

vectors.

• p i and q i represent the i th element of the feature vectors P and

Q respectively.

While training the CSNN, multiple pairs of images from the

ame family and different families are provided. After training the

SNN, in an ideal case, we expect the output of the CSNN to be 1

or similar images (malware images from the same family) and 0

or dissimilar images (malware images from different families). The

ranches of the CSNN can be visualized as an embedding function

hat embeds the input image in the embedding space. During its

raining, the CSNN learns to generate similar embeddings for sim-

lar input images and vice versa. In the end, the embeddings from

he same class output a high Euclidean similarity in the embed-

ing space and vice versa. We use the CSNN to perform one-shot

alware classification, where the support set contains one image

rom each family we wish to classify. For every query instance, we

rovide the CSNN with a pair consisting of the query instance and

ach image from the support set. The family label of the support

et image, which is contained in the pair that outputs the highest

imilarity score, is assigned to the query instance.

CSNN can tackle the data scarcity problem because it does not

equire large amounts of training data. It can also tackle the un-

nown class classification problem, under the condition that at

east one instance of that class is available in the support set. As

he CSNN learns the similarity between images, it is able to recog-

ize the similarity between the query instance and the support set

nstance from the same unknown class.
7

.5.2. Shallow-FS

This model was inspired by the Baseline classifier proposed by

hen et al. (2019) . The authors in their work concluded that their

imple Baseline model outperformed many meta-learning based

ew-shot classification approaches. The Baseline model consists of

 pre-trained CNN-based feature extractor and a Multi-Layer Per-

eptron (MLP) with a single hidden layer and a softmax layer to

utput class probabilities. We experimented with their architecture

nd slightly simplified it for efficient performance. In our Shallow-

S, we completely remove the MLP and instead use a Cosine simi-

arity metric directly on the feature vectors extracted by the CNN-

ased feature extractor. The CNN architecture we use here is the

ame as the Shallow-CNN architecture with the Softmax-activated

ayer removed. The advantage of this simplified Shallow-FS model

ver Baseline model is that no fine-tuning is required when un-

nown classes are added/removed from the support set of the clas-

ifier.

The structure of the Shallow-FS begins with the feature extrac-

or from our Shallow-CNN model which maps an image to an em-

edding in the embedding space.

For the purpose of this work, we perform 10-shot classification

ith the Shallow-FS which implies selecting ten random instances

rom each class for the support set. Theoretically, it is possible to

erform N-shot classification where N can be any number. It is also

ossible to perform variable-shot learning where a different num-

er of images are chosen from each class to be in the support set,

ut it is outside the scope of this study. The embeddings of each

lass in the support set are then averaged to generate mean em-

eddings for each class in the support set. The Cosine similarity

etric outputs a similarity score, between 0 and 1, for each pair

onsisting of a support set embedding and the query embedding.

he family label of the support set image, which is contained in

he pair that outputs the highest similarity score, is assigned to

he query instance. Algorithm 1 describes the process of 10-shot

lassification in detail.

The training of the Shallow-FS feature extractor is conducted in

 traditional manner. Formally, the Shallow-CNN model is trained

ith malware data and then the Softmax-activation layer is re-

oved which results in a trained feature extractor for the Shallow-

S. The Shallow-FS model can tackle the data scarcity problem,

nder the practical observation that there exist malware fami-

ies with sufficient data for training. Thus, the Shallow-FS feature

xtractor can be trained on this data and can be used to clas-

ify malware families with scarce data. In order to tackle the un-

nown class classification problem, it works in a similar manner to

he CSNN. An appropriately trained feature extractor should gener-

te similar embeddings for instances of the same family and vice

ersa.

The cosine similarity score is formally described by the follow-

ng equation:

osine _ similarity (X, Y) =

X · Y

| X || Y | (6)

here X , Y are the two feature vectors and · represents the vector

ot product.

.6. Evaluation metrics

We mention all the standard performance metrics that we use

o measure and evaluate the performance of our classifiers.

ccuracy =

T P + T N

T P + T N + F P + F N

(7)

 recision =

T P

T P + F P
and Recall =

T P

T P + F N

(8)

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Algorithm 1: Pseudocode for 10-shot classification with

Shallow-FS.

Input : pre-trained f eat ure _ ext ractor, test _ sample , 10-shot

support _ set of shape n × 10 × 256 × 256 × 3 where n

is the number of classes

Output : The malware family label of the input GEM image

famil y _ l abel

/* We describe the pseudocode for generating the mean
feature vectors for the support set. It is important
to note that this needs to be performed only once
until any classes are added/removed from the support
set for classification */

num classes ← n ;

/* The array that will contain the similarity scores of
all the query image and support set images ′ pairs.
An index i represents the similarity score of the
i th class */

result arr ← empty array of size num_classes ;

/* The array that will contain the averaged feature
vectors of all the support set images per class */

mean support set ← empty array of size

num _ classes × 256 × 256 × 3 ;

for i ← 0 to (num classes − 1) do

/* The array that contains the feature vectors
produced by the Shallow-FS model for all 10
images of the i th class */

feature vectors ← empty array of size 10 × 128 ;

feature vectors ← model. predict(support _ set[i]) ;
/* Average the feature vectors and store the mean

feature vector in the i th index of the array */
mean support set [i] ← mean(feature vectors , axis = 0) ;

end

/* Get the feature vector of the query image from the
Shallow-FS */

feature vector input ← model. predict(input _ img) ;
for i ← 0 to (num classes − 1) do

/* Get the cosine similarity score between the query
image feature vector and i th class support set
mean feature vector, and store it at the i th
index of the results_arr */

result arr [i] ← cosine_similarity(feature vector input ,

mean support set [i]) ;
end

/* The family label is the index of the element in the
array with the highest similarity score */

famil y _ l abel ← argmax(result arr)

F

w

w

F

w

4

i

a

i

Table 5

Computing environment and specifications.

Parameters Google Apple Macbook

Colaboratory Free Pro 2017

CPU Intel(R) Intel(R)

Xeon(R) Core(TM) i7

No. of CPU Cores 2 4

CPU Frequency 2.3 GHz 2.8 GHz

RAM 12 GB 16 GB

GPU Nvidia K80 / T4 Radeon Pro-555

GPU Memory 12 GB 2 GB

Python version 3.7 3.8

l

m

e

f

W

c

n

T

t

a

M

m

c

a

t

S

o

W

p

f

a

u

n

i

a

c

4

S

t

t

i

S

m

n

n

d

f

d

i

m

c

p

t

a

a

s

h

9

 1 =

2 ∗ P recision ∗ Recall

P recision + Recall
(9)

There are two other metrics that we use in this paper:

Macro F1 score is defined as the unweighted mean of class-

ise F1 scores.

Weighted F1 score is defined as the weighted mean of class-

ise F1 scores. In other words, it is a modification of Macro

1 score that takes class imbalance into account. The mean is

eighted by the number of instances in each class.

. Classification experiments and results

This section describes all of our significant experiments. It is

mportant to note that, due to the COVID-19 global pandemic, the

vailability and accessibility to powerful hardware was very lim-

ted. Thus, we were forced to perform experiments on personal
8
aptops and cloud services such as Google Colaboratory. All of our

odels are implemented in Keras using a Tensorflow backend. The

xecution of training and the evaluation of the models was per-

ormed on Google Colaboratory running a Python 3.7 environment.

e used the free Google Colaboratory instances to execute our

ode which adjusts the hardware allocation on the fly, providing

o guarantees for resource availability (Google Colaboratory, 2021).

he data preprocessing, feature extraction and GEM image genera-

ion was performed on an Apple Macbook Pro-2017. Ideally avail-

ble resources on a free Google Colaboratory instance and an Apple

acbook Pro-2017 are mentioned in Table 5 .

We perform two types of experiments using the proposed

ethodologies: (1) traditional classification (2) unknown-class

lassification. Traditional classification is when a model is trained

nd then evaluated on all classes that were present during the

raining of the model. Typically, this is implemented using a

oftmax-activated layer which has a fixed number of units and can

nly predict the class probabilities for that fixed number of classes.

e perform the traditional classification experiments to show the

otential of the GEM images in a standard evaluation setting and

or the sake of completeness and comparison with other state of

rt works. Unknown-class classification is when the model is eval-

ated on all classes that were present during training as well as

ew classes that were unknown to the model during training. We

mplement this by withholding classes from the training dataset

nd use few-shot classification techniques to perform unknown-

lass classification.

.1. Traditional classification experiments

For all the experiments under this section, we used the

hallow-CNN classifier. Also, all the experiments performed had

he data split as 70% of the dataset for training and 30% of

he dataset for evaluation. We started experimenting with var-

ous feature extraction and visualizing techniques mentioned in

ection 3.2 and more. The results of these experiments are sum-

arized in Fig. 9 . We can observe that different visualization tech-

iques result in varying performance across all three datasets. It is

otable that the GEM image performed the best across all three

atasets, where as other methods performed at a high accuracy

or some datasets but gave worse performance on more recent

atasets. These results supported our decision of using the GEM

mages for further experiments.

As the classification results of the GEM images are the best and

ost interesting, we summarize the results of traditional classifi-

ation with GEM images in Fig. 11 . We can observe that, this ap-

roach was able to classify 19 families with 100% accuracy, and

he remaining with an accuracy higher than 98% for Dataset-A. It

chieved an accuracy higher than 96% accuracy for 8 families, and

pproximately 64% accuracy for 1 family for the Dataset-B. It clas-

ified 4 families with a 100% accuracy, 7 families with an accuracy

igher than 97% and the remaining with an accuracy higher than

0% for Dataset-C.

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 9. Performance comparison between various feature extraction techniques. The GEM image consistently shows better performance over the grayscale and individual

feature images for all three datasets. These experiments were performed using traditional classification using Shallow-CNN model.

Fig. 10. The architecture of CSNN built using the feature extractor from the

Shallow-CNN model. The feature extractor with the shared weights is joined using

the Euclidean similarity metric.

4

f

m

i

t

t

t

u

t

t

C

t

d

s

s

4

c

c

t

Table 6

Training set details for Experiment-1.1: Few-shot traditional classification with

CSNN.

Dataset No. of No. of Total no. of % of

classes in samples samples in total

training selected training data

set per class set

Dataset-A 22 50 1100 11.77%

Dataset-B 9 150 1350 12.43%

Dataset-C 14 60 840 10.39%

s

T

t

s

D

1

f

h

n

s

d

w

w

i

t

w

a

A

t

D

3

w

4

s

o

c

n

D

.2. Experiments using the CSNN model

This section describes the classification experiments we per-

ormed on the three datasets using the CSNN model. As we have

entioned previously, CSNN performs better when there are equal

nstances from each class, and when only a small percentage of

he total data is in the training set. For all the experiments with

he CSNN, we split the data such that percentage of total data in

he training set was approximately 10% and the rest in the eval-

ation set. In all further experiments, we trained the CSNN using

he the Adam optimizer with a learning rate of 0.0 0 01 . We used

he Early Stopping regularization technique to efficiently train the

SNN as well as to avoid overfitting. Early stopping usually caused

he training of CSNN to stop after 10–12 epochs irrespective of the

ataset. Typically, the CSNN model is used in 1-shot classification

cenarios, and thus, we also experiment on CSNN with 1-shot clas-

ification.

.2.1. 1-Shot traditional classification experiments

For these experiments, the CSNN is trained and evaluated on all

lasses present in the dataset. We evaluate the CSNN using 1-shot

lassification, implying that 1 instance from each class is selected

o be in the support set at random. The training set is formed by
9
electing a certain number of samples from each class at random.

his number is decided such that the number of samples in the

raining set are approximately 10% of the total data. Table 6 de-

cribes the training set formation for each dataset in greater detail.

ataset-B contains a family with only 42 samples, but we require

50 samples from each class to have an equal number of instances

rom each class. In practice, we would tackle this problem by with-

olding this class from the training set. For the sake of complete-

ess, we use the random oversampling technique which involves

electing, with replacement, instances from a minority class at ran-

om. We ensured that no samples from the training set overlapped

ith the evaluation set.

The results of the experiments (refer Fig. 12) are competitive

ith the state of art results for traditional classification, consider-

ng that the CSNN was trained on 10% of the dataset. The 1-shot

raditional classification with CSNN was able to classify 11 families

ith 100% accuracy, 8 families with an accuracy higher than 99%,

nd the remaining with an accuracy higher than 86% for Dataset-

. It classified 6 families with an accuracy higher than 95% and

he remaining families with an approximately 85% accuracy for

ataset-B. It classified 9 families with an accuracy higher than 97%,

 families with an accuracy higher than 94%, and the remaining

ith an accuracy higher than 77%.

.2.2. 1-Shot unknown-class classification

To emulate unknown-family recognition similar to a real world

etting, we withheld classes from the training set and these are

nly presented to the CSNN while evaluation. The number of

lasses withheld in the training set is proportional to the total

umber of classes in the dataset. For Dataset-A, Dataset-B and

ataset-C, the number of classes withheld are 5, 2 and 3 respec-

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 11. Results for the traditional classification using our Shallow-CNN model.

Fig. 12. Results for the 1-shot traditional classification using our CSNN model.

t

t

i

e

s

t

u

4

f

t

t

t

ively. The classes with the least number of instances are selected

o be withheld. The splitting of data into the training set and test-

ng set is similar to the previous experiment. Table 7 describes the

xact split of the data. One sample from each class in the testing

et was selected to be in the support set at random. The results of

he experiments (refer Fig. 13) outperform state of art results for

nknown-class classification using CSNN.
10
.3. Experiments using the Shallow-FS model

This section describes the classification experiments we per-

ormed on the three datasets using the Shallow-FS model. For

hese experiments, we split the data into the training set and the

esting set. 70% of data from each class forms the training set, and

he remaining 30% of the data forms the testing set. The Shallow-

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 13. Results for the 1-shot unknown-class classification using our CSNN model. The classes in black represent classes withheld from the training set and only present in

the evaluation set. The classes in gray are present in both the sets.

Table 7

Training set details for Experiment-1.2: One-shot novel-class classification with

CSNN.

Dataset No. of. No. of Total no. of % of

classes in samples samples in total

training selected training data

set per class set

Malimg 17 50 850 9.10%

BIG 2015 7 150 1050 9.66%

MalBaz 11 60 660 8.17%

F

0

c

u

i

t

m

4

o

u

c

m

c

f

e

w

i

h

s

a

i

a

9

D

w

c

4

s

o

t

l

T

a

fi

C

t

t

F

b

t

t

M

a

r

o

s

c

W

m

t

5

t

S was trained using the Adam optimizer with a learning rate of

.0 0 01 . We used the Early stopping regularization technique to effi-

iently train the Shallow-FS and to avoid overfitting. Early stopping

sually caused the training of Shallow-FS to stop after 4–6 epochs

rrespective of the dataset. We already performed 1-shot classifica-

ion experiments using the CSNN model, so we decided to experi-

ent with 10-shot classification using the Shallow-FS model.

.3.1. 10-Shot traditional classification

For these experiments, the Shallow-FS is trained and evaluated

n all classes present in the dataset. We evaluate the Shallow-FS

sing 10-shot classification, implying that 10 instances from each

lass are selected to be in the support set at random. Further-

ore, the feature vectors of the 10 selected instances from each

lass were averaged to form the mean feature vectors. These mean

eature vectors are then provided, in combination with the feature

mbedding of the query instance, to the Cosine similarity metric.

The results of the experiments (refer Fig. 14) are competitive

ith the state of art traditional classification results. Comparing

t to the Shallow-CNN experiments, as both these experiments

ad similar split of the data, we observe the Shallow-FS performs

lightly worse for Dataset-B and Dataset-C. The Shallow-FS was

ble to classify 19 families with a 100% accuracy, and the remain-

ng with an accuracy higher than 98% for Dataset-A. It achieved an

ccuracy higher than 97% for 7 families, an accuracy higher than
11
4% for 1 family and 74% accuracy for the remaining family for

ataset-B. It classified 3 families with 100% accuracy, 7 families

ith an accuracy higher than 97% and the remaining with an ac-

uracy higher than 81%.

.3.2. 10-Shot unknown-class classification

To emulate unknown-family recognition similar to a real world

etting, we withheld classes from the training set. The withholding

f classes is exactly the same as 1-shot unknown-class classifica-

ion using CSNN (refer Section 4.2.2). For this experiment, we se-

ect ten images from each class to be in the support set at random.

he results of the experiments (refer Fig. 15) outperform state of

rt results for unknown-class classification using few-shot classi-

cation. Interestingly, when comparing the Shallow-FS with the

SNN, we can observe that the Shallow-FS is better at classifying

he unknown classes (withheld classes). While the CSNN struggles

o successfully classify a few of the unknown-classes, the Shallow-

S can classify most with high accuracy.

Fig. 15 clearly demonstrates that this approach provides the

est results for unknown class classification. In order to stress

est this classifier, we extended Dataset-C with two variants of

he Linux-based Mirai malware. We collected 200 Mirai files from

alwareBazaar public malware repository (2021) in June of 2022

nd separated them into two classes, which were unobfuscated Mi-

ai and UPX-obfuscated Mirai. We conducted this exact experiment

n the extended Dataset-C. The overall accuracy and weighted F1-

core were 0.9380 and 0.9367 respectively. From these results, we

an infer that shallow-FS can classify recently distributed malware.

e also show that the GEM image technique is independent of

alware platform, which implies that it can classify malware in-

ended for any operating system as well as memory dumps.

. Discussion

In this section, we discuss the results of the experiments men-

ioned in the previous section in greater detail. We summarize a

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 14. Results for the 10-shot traditional classification using Shallow-FS.

Fig. 15. Results for the 10-shot unknown-class classification using Shallow-FS. The classes in black represent classes withheld from the training set and only present in the

evaluation set. The classes in gray are present in both the sets.

f

e

f

a

L

l

t

(

p

i

t

a

f

a

8

ew general misclassification trends which were observed in the

xperiment results. It is not possible to provide concrete reasoning

or the misclassification. A common trend that we observed across

ll classification models was for the samples of family C10 (Red-

ineStealer) being misclassified as family C9 (CryptBot). We be-

ieve that the reason behind the misclassification between these

wo families is because of the close similarities in their behaviour

 Various Types of Threats, 2021). It also possible that, a few sam-
12
les on MalwareBazaar may be mislabelled as it is a public repos-

tory. We also found a few remarks on the Internet about both

he malware families sharing some codebase and dropping mech-

nisms.

Another interesting result we observed was the CSNN outper-

orming the Shallow-FS model for Dataset-B. CSNN achieved an

ccuracy of 94.99%, where as Shallow-FS achieved an accuracy of

8.68%. On closer observation, we can note that the Shallow-FS

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 16. SSIM analysis of feature embeddings.

c

B

a

i

m

a

c

a

d

t

e

t

o

u

t

w

t

b

t

A

t

6

W

n

f

p

t

l

W

i

a

c

m

n

s

t

e

f

t

G

o

o

t

g

e

p

m

t

w

w

a

d

g

t

s

t

d

d

p

g

p

lassified the unknown and complex to classify family such as

5 better than CSNN. A few other families had many variations

mong the instances of the family. When we selected ten random

nstances, for the support set of the 10-shot classification experi-

ent, the support set feature vectors would have a very high vari-

nce. On the other hand, support set feature vectors for 1-shot

lassification with the CSNN would not have such high variance

s the 10-shot classification. Thus we believe, that the noise intro-

uced in the 10-shot support set feature vector caused Shallow-FS

o perform worse than the CSNN. It is important to note that, gen-

rally, Dataset-B has more noise because of the missing bytes in

he malware samples represented by ’’??’’ . This resulted in an

verall low performance for all our approaches. We also did not

se the .asm file provided in the Dataset-B as our goal was to keep

he pre-processing of the raw binary as minimal as possible.

The shallow CNN architecture we propose the use of in our

ork are far from the norm in state of art malware visualiza-

ion based research works. We would prefer to not use our model

lindly as a black-box. Thus, we take the Shallow-CNN model, pre-

rained on Dataset-C, and remove all the fully-connected layers.

s a result, we get a feature extractor that outputs the result of

he feature extraction process. The output is an image of shape

2 × 62 × 256 , which contains 256 feature maps of size 62 × 62 .

e take two instances from two distinct classes of Dataset-C,

amely Quakbot and GandCrab, and provide them as input to the

eature extractor in all possible permutations (refer Fig. 16). It out-

uts 6 different pairs of feature vectors which are recorded. We

hen use the Structural Similarity Index Measure (SSIM) to calcu-

ate the similarities between all the feature maps of all 6 pairs.

e can clearly observe that the features extracted between the

nstances of the same class have a consistently high SSIM score

cross all feature maps. On the other hand, instances of different
13
lasses show a lot of variance in the SSIM score across all feature

aps.

Previously, we make comparison of the GEM image fusion tech-

ique with the individual feature extraction techniques. We ob-

erved that the GEM image technique performed the best out of

hem all. For the sake of completeness, we ran four additional

xperiments using the Shallow-CNN and the state of art Trans-

er learning model ResNet50. We compare the two different fea-

ure extraction techniques, grayscale image colour-mapped and the

EM image, using the two models. Fig. 18 summarizes the results

f these experiments. We can clearly observe that the GEM image

utperforms the other technique with both the models. For both

he models, the GEM image showed better performance than the

rayscale colour-mapping technique used by various works (Dai

t al., 2018; Vasan et al., 2020a; 2020b). This also shows the com-

atibility of our GEM image technique with the state of the art

odels for better performance over the traditional visualization

echniques.

As we mentioned previously, due to the COVID-19 pandemic,

e had access to very limited hardware. All of our experiments

ere performed on Google Colaboratory, which provides no guar-

ntees for resource availability. Thus the time comparison of our

ifferent models is not precisely accurate, but it still provides a

ood approximation on the time taken by each of the classifica-

ion models. We also provide the comparison of our models with

tate of art Transfer learning models such as ResNet in Fig. 17 . For

he pre-processing of input for ResNet, we do not perform any

ata augmentation and thus, do not take the time taken by any

ata augmentation techniques into account. As observed, the pre-

rocessing time for our approach is much higher because of the

eneration of the GEM image as compared to the standard pre-

rocessing of ResNet. The training time of the CSNN is the low-

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 17. Time based analysis performed for all our classifier models and ResNet50. We recorded and plotted the time taken for pre-processing, training and evalua-

tion/prediction tasks.

Fig. 18. A bar plot showing the difference in performance for the ResNet50 and

the Shallow-CNN architectures. Our model outperforms ResNet50 in both coloured-

image malware visualization techniques, namely colour-mapped grayscale images

and the GEM images. This shows the potential of the GEM image and its compatibil-

ity with the state of the art transfer learning models over colour-mapped grayscale

images.

e

l

t

t

s

m

T

t

b

s

s

c

t

Table 8

Performance comparison of our approaches with the state-of-the-art research.

Authors Year Classification Malimg Microsoft Malbaz

Type accuracy BIG 2015 accuracy

(%) accuracy (%)

(%)

Nataraj et al. 2011 Traditional 98.08 - -

Ni et al. 2018 Traditional - 99.26 -

Vasan et al. 2020 Traditional 98.82 - -

Xiao et al. 2020 Traditional 99.70 100 -

Gibert et al. 2020a Traditional - 99.75 -

Vasan et al. 2020b Traditional 99.50 - -

Shallow-CNN - Traditional 99.93 98.56 98.51

CSNN - Traditional 99.47 97.16 96.97

Shallow-FS - Traditional 99.93 97.91 97.52

Tran et al. 2019 Unknown-class 95.30 70.19 -

CSNN - Unknown-class 96.21 94.99 93.42

Shallow-FS - Unknown-class 98.26 88.68 97.65

r

s

w

w

m

p

f

p

d

s

t

c

T

d

b

a

X

t

S

t

a

f

f

B

st because of the less training data. The rest of our models take

ess time to train than the ResNet because of the shallower archi-

ecture. Interestingly, Shallow-FS model takes the least amount of

ime for prediction. We can observe, that on average, using a Co-

ine similarity score and support set to classify instead of a soft-

ax classifier is faster for classification in our experimental setting.

he reason behind the higher average prediction time of CSNN is

hat it processes two images at a time. We can reduce this time

y extracting the shared CNN in the CSNN and generating support

et feature vectors and query image feature vectors separately. We

tore the values of the support set feature vectors instead of re-

alculating them for every prediction.

The summary of our results and comparison with the state of

he art research works is presented in Table 8 . The rows in bold
14
epresent our proposed models’ performance. None of the prior re-

earch works listed in Table 8 discuss few-shot learning on PE mal-

are except for (Tran et al., 2019). The results from the research

orks (Gibert et al., 2020a; Ni et al., 2018; Xiao et al., 2020) are

arginally better than our classifier models for Dataset-B. The pa-

er by Ni et al. (2018) uses the disassembled .asm files provided

or each malware family to conduct their classification and their

re-processing technique removed approximately 60 files from the

ataset. Relying on disassemblers could make the classifier sen-

itive to sophisticated obfuscation and add to the pre-processing

ime of a malware binary. Also, the accuracy of 99.26% is their best

ase accuracy where as their average case accuracy was 98.86%.

he method proposed by Gibert et al. (2020a) also relies on the

isassembled files to produce an accuracy of 99.75%. Their bytes-

ased classifier, which only considers the .bytes files achieved an

ccuracy of 97.56%. To the best of our knowledge, the method of

iao et al. (2020) performed the evaluation on the actual evalua-

ion set provided in the Microsoft BIG 2015 Kaggle challenge (refer

ection 3.1.2) which is not publicly available. The comparison be-

ween these state of the art works and our work is not entirely fair

s our methodologies and evaluation settings differ conceptually.

Finally, we discuss the impact of obfuscation on our GEM static

eature extraction technique. Dataset-A and Dataset-B had the Ob-

uscator.AD (family code A16) and the Obfuscator.ACY (family code

8) family respectively (refer Tables 1, 2). All families in Dataset-C

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

Fig. 19. Structural differences observed between GEM images of an unobfuscated

executable of Emotet and Quakbot family. Structural similarities observed between

GEM images of the UPX and Mpress packed executables of the same families.

u

M

W

e

f

w

o

s

t

a

o

(

k

b

u

h

t

t

b

d

t

c

u

d

b

6

i

a

p

G

a

t

i

p

s

d

f

t

t

s

a

c

G

fi

c

i

fi

w

i

a

t

a

w

s

b

f

p

m

m

t

e

c

D

a

r

t

C

v

K

D

i

w

d

R

A

A

A

B

B

B

C

C

D

F

G

sed obfuscation which we verified using third-party vendors on

alwareBazaar public malware repository (2021) (refer Table 3).

e have shown that our classifiers are able to classify the ex-

cutables in these obfuscated families with a high F1-score (re-

er Figs. 11–15). We achieved good results for Dataset-C because

e observed that each malware family in the dataset uses its

wn obfuscation techniques/packers. This phenomenon is often ob-

erved in the wild with malware families using custom obfusca-

ion techniques to evade signature-based detection. To better an-

lyze the GEM image construction on obfuscated files we picked

ne executables from the Quakbot (family code C7) and Emotet

family code C12) families and obfuscated them with commonly-

nown packers such as UPX: the Ultimate Packer for eXecuta-

les (2021) and Mpress executable packer (2021) . We manually

npacked the executables before performing the analysis. Fig. 19

ighlights the structural similarities between the executables from

wo distinct families caused by obfuscation. We can observe that

he GEM images of the unpacked malware are distinct enough to

e classified accurately however, problems would arise when two

istinct malware families use the same obfuscation technique or

ool. It is highly probable that the similarities in this image will

ause a misclassification. This worst-case scenario can be tackled

sing the GEM image technique on memory dumps extracted by

ynamic analysis of the obfuscated binaries instead of the static

inary content.

. Conclusion

This research proposed a the GEM image that is more compat-

ble with shallower CNN architectures than the traditional deeper

rchitectures, allowing for quicker training and classification. We

roposed a Gray-level matrix image that enabled us to visualize

LCM based textural features combined with the Markov image

nd the Entropy graph image. Fusing the three feature extraction

echniques allowed us to visualize malware in a novel way that

s still compatible with state of the art CNN architectures. We ex-

erimentally show that the GEM image format combined with a

hallow CNN architecture showed competitive results for the tra-

itional classification and better results than the state-of-the-art

ew-shot malware classification research. Our proposed CNN archi-

ectures can be used to tackle malware-specific problems such as

he scarcity of samples for specific families and the need to clas-

ify unknown families because of the evolution of malware families

nd zero-day attacks. We experimentally show that our shallow ar-
15
hitecture, Shallow-CNN, performs better when combined with the

EM feature extraction and fusion technique. Our few-shot classi-

cation are still compatible with the traditional malware classifi-

ation, and can further be used to classify unknown malware fam-

lies. We provide reasons for some of the classifications our classi-

er models make aiming towards improved performance in future

orks. Inspired by Ayyar et al. (2021) , we also try to analyze the

ntermediate feature map images of our models which provides us

 better understanding of our model. Lastly, we compare our work

o the state of the art and show the performance improvement we

chieved.

For future work, our approach can be applied to dynamic mal-

are analysis, by generating GEM images of memory dumps in-

tead of raw malware binaries. This would allow the classifier to

e more robust against sophisticated obfuscation techniques. The

eature extraction techniques we use make our approach easily ap-

licable to classifying Internet of Things (IoT) malware, Unix-based

alware, Mobile malware etc. as it does not rely on specifics of a

alware binary. Our approach focuses on fusing the 3 distinct fea-

ure images to form the GEM image, but selection of other feature

xtraction techniques that do not result in a single feature image

an be amalgamated via an ensemble classifier.

eclaration of Competing Interest

This manuscript has not been submitted to, nor is under review

t, another journal or other publishing venue.

The authors have no affiliation with any organization with a di-

ect or indirect financial interest in the subject matter discussed in

he manuscript

RediT authorship contribution statement

Mauro Conti: Conceptualization, Methodology, Validation, In-

estigation, Writing – review & editing, Supervision. Shubham

handhar: Conceptualization, Software, Validation, Investigation,

ata curation, Writing – original draft, Writing – review & edit-

ng, Supervision. P. Vinod: Conceptualization, Methodology, Soft-

are, Validation, Investigation, Data curation, Writing – original

raft, Writing – review & editing, Supervision.

eferences

lrabaee, S., Shirani, P., Wang, L., Debbabi, M., 2018. FOSSIL: a resilient and efficient

system for identifying foss functions in malware binaries. ACM Trans. Privacy
Secur. (TOPS) 21 (2), 1–34 .

V Test malware statistics, 2021. AV Test malware statistics. https://www.av-test.
org/en/statistics/malware (accessed 20 October 2021).

yyar, M. P., Benois-Pineau, J., Zemmari, A., 2021. White box methods for ex-
planations of convolutional neural networks in image classification tasks.

arXiv preprint arXiv:2104.02548 .

ai, Y., Xing, Z., Li, X., Feng, Z., Ma, D., 2020. Unsuccessful story about few shot
malware family classification and siamese network to the rescue. In: 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE,
pp. 1560–1571 .

romley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E.,
Shah, R., 1993. Signature verification using a ǣsiamese ǥ time delay neural net-

work. Int. J. Pattern Recognit. Artif. Intell. 7 (04), 669–688 .

urguera, I., Zurutuza, U., Nadjm-Tehrani, S., 2011. Crowdroid: behavior-based mal-
ware detection system for android. In: Proceedings of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices, pp. 15–26 .
hen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., Huang, J.-B., 2019. A closer look at

few-shot classification. arXiv preprint arXiv:1904.04232 .
huang, H.-Y., Wang, S.-D., 2015. Machine learning based hybrid behavior models for

android malware analysis. In: 2015 IEEE International Conference on Software
Quality, Reliability and Security. IEEE, pp. 201–206 .

ai, Y., Li, H., Qian, Y., Lu, X., 2018. A malware classification method based on mem-

ory dump grayscale image. Digital Invest. 27, 30–37 .
ei-Fei, L., Fergus, R., Perona, P., 2006. One-shot learning of object categories. IEEE

Trans. Pattern Anal. Mach. Intell. 28 (4), 594–611 .
ibert, D., Mateu, C., Planes, J., 2020. HYDRA: a multimodal deep learning frame-

work for malware classification. Comput. Secur. 95, 101873 .

http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0001
https://www.av-test.org/en/statistics/malware
http://arxiv.org/abs/2104.02548
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0006
http://arxiv.org/abs/1904.04232
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0011

M. Conti, S. Khandhar and P. Vinod Computers & Security 122 (2022) 102887

G

G

H

H

I

K

K

K

L

M

M

M

M

M

M

M

N

N

N

N

P

Q

R

R

S

S

T

U

V

V

V

V

W

W

X

Y

Y

M

w
S

s
s

i

U

s

D
H

a
j

v
c

i

o
2

2

a

o

S
c

l
s

A

V

C

d
w

P
j

p
i

S

h
t

n
i

p

ibert, D., Mateu, C., Planes, J., 2020. The rise of machine learning for detection
and classification of malware: research developments, trends and challenges. J.

Netw. Comput. Appl. 153, 102526 .
oogle Colaboratory, 2021. Google Colaboratory. https://colab.research.google.com/

signup (accessed 20 October 2021).
an, K.S., Lim, J.H., Kang, B., Im, E.G., 2015. Malware analysis using visualized images

and entropy graphs. Int. J. Inf. Secur. 14 (1), 1–14 .
siao, S.-C., Kao, D.-Y., Liu, Z.-Y., Tso, R., 2019. Malware image classification us-

ing one-shot learning with siamese networks. Procedia Comput. Sci. 159,

1863–1871 .
T threat evolution, 2021. IT threat evolution Q2 2021. https://securelist.

com/it- threat- evolution- in- q2- 2021- pc- statistics/103607/ (accessed 20 October
2021).

handhar, S., 2021. A few-shot malware classification approach for unknown family
recognition using malware feature visualization.

i, Y., Kim, E., Kim, H.K., 2015. A novel approach to detect malware based on API

call sequence analysis. Int. J. Distrib. Sens. Netw. 11 (6), 659101 .
och, G., Zemel, R., Salakhutdinov, R., et al., 2015. Siamese neural networks for

one-shot image recognition. ICML Deep Learning Workshop, Vol. 2. Lille .
eCun, Y., Bengio, Y., et al., 1995. Convolutional networks for images, speech, and

time series. Handb. Brain Theory Neural Netw. 3361 (10), 1995 .
akandar, A., Patrot, A., 2017. Malware class recognition using image processing

techniques. In: 2017 International Conference on Data Management, Analytics

and Innovation (ICDMAI). IEEE, pp. 76–80 .
alwareBazaar public malware repository, 2021. MalwareBazaar public malware

repository. https://bazaar.abuse.ch/ (accessed 20 October 2021).
cafee ATR Threat Reports, 2021. Mcafee ATR Threat Reports April 2021. https:

//www.mcafee.com/enterprise/en- us/lp/threats- reports/apr- 2021.html (accessed
20 October 2021).

icrosoft Threat report, 2009. Microsoft Threat report Win32/C2Lop.gen!L. https:

//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?
Name=Trojan:Win32/C2Lop.gen!L (accessed 20 October 2021).

icrosoft Threat report, 2010. Microsoft Threat report Win32/C2Lop.gen!M. https:
//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?

Name=Trojan:Win32/C2Lop.gen!M (accessed 20 October 2021).
ikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation of word repre-

sentations in vector space. arXiv preprint arXiv:1301.3781 .

press executable packer, 2021. Mpress executable packer. https://www.autohotkey.
com/mpress/mpress _ web.htm (accessed 3 July 2022).

atani, P., Vidyarthi, D., 2013. Malware detection using API function frequency with
ensemble based classifier. In: International Symposium on Security in Comput-

ing and Communication. Springer, pp. 378–388 .
ataraj, L., Jacob, G., Manjunath, B., 2010. Detecting Packed Executables based on

Raw Binary Data. VRL, ECE .

ataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S., 2011. Malware images: visu-
alization and automatic classification. In: Proceedings of the 8th International

Symposium on Visualization for Cyber Security, pp. 1–7 .
i, S., Qian, Q., Zhang, R., 2018. Malware identification using visualization images

and deep learning. Comput. Secur. 77, 871–885 .
ascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A., 2015. Mal-

ware classification with recurrent networks. In: 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1916–1920.

doi: 10.1109/ICASSP.2015.7178304 .

iao, Y., Jiang, Q., Jiang, Z., Gu, L., 2019. A multi-channel visualization method
for malware classification based on deep learning. In: 2019 18th IEEE Inter-

national Conference On Trust, Security And Privacy In Computing And Com-
munications/13th IEEE International Conference On Big Data Science And En-

gineering (TrustCom/BigDataSE), pp. 757–762. doi: 10.1109/TrustCom/BigDataSE.
2019.00109 .

onen, R., Radu, M., Feuerstein, C., Yom-Tov, E., Ahmadi, M., 2021. Microsoft malware

classification challenge. abs/1802.10135 .
ong, C., Gou, G., Hou, C., Li, Z., Xiong, G., Guo, L., 2021. UMVD-FSL: unseen malware

variants detection using few-shot learning. In: 2021 International Joint Confer-
ence on Neural Networks (IJCNN). IEEE, pp. 1–8 .

ANS Webcast Recap, 2020. SANS Webcast Recap 2020. https://www.
vmray.com/cyber- security- blog/practical- malware- family- identification-

sans- webcast- recap/ (accessed 20 October 2021).

egaran, T., 2007. Collective Intelligence-Building Smart Web 2.0 Applications. New-
ton: O’Reilly .

ran, T.K., Sato, H., Kubo, M., 2019. Image-based unknown malware classification
with few-shot learning models. In: 2019 Seventh International Symposium on

Computing and Networking Workshops (CANDARW). IEEE, pp. 401–407 .
16
PX: the Ultimate Packer for eXecutables, 2021. UPX: the Ultimate Packer for eXe-
cutables. https://upx.github.io/ (accessed 3 July 2022).

arious Types of Threats, 2021. Various Types of Threats Disguised as Software
Download Being Distributed. https://asec.ahnlab.com/en/26274/ (accessed 20 Oc-

tober 2021).
asan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., Zheng, Q., 2020. IMCFN: im-

age-based malware classification using fine-tuned convolutional neural network
architecture. Comput. Netw. 171, 107138 .

asan, D., Alazab, M., Wassan, S., Safaei, B., Zheng, Q., 2020. Image-based malware

classification using ensemble of CNN architectures (IMCEC). Comput. Secur. 92,
101748 .

u, D.-L., Nguyen, T.-K., Nguyen, T.V., Nguyen, T.N., Massacci, F., Phung, P.H., 2020.
HIT4Mal: hybrid image transformation for malware classification. Trans. Emerg.

Telecommun.Technol. 31 (11), e3789 .
ang, P., Tang, Z., Wang, J., 2021. A novel few-shot malware classification approach

for unknown family recognition with multi-prototype modeling. Comput. Secur.

106, 102273 .
ang, Y., Yao, Q., Kwok, J.T., Ni, L.M., 2020. Generalizing from a few examples: a

survey on few-shot learning. ACM Comput. Surv. (CSUR) 53 (3), 1–34 .
iao, G., Li, J., Chen, Y., Li, K., 2020. MalFCS: an effective malware classification

framework with automated feature extraction based on deep convolutional neu-
ral networks. J. Parallel Distrib. Comput. 141, 49–58 .

e, Y., Li, T., Adjeroh, D., Iyengar, S.S., 2017. A survey on malware detection using

data mining techniques. ACM Comput. Surv. (CSUR) 50 (3), 1–40 .
uan, B., Wang, J., Liu, D., Guo, W., Wu, P., Bao, X., 2020. Byte-level malware classi-

fication based on markov images and deep learning. Comput. Secur. 92, 101740 .

auro Conti is Full Professor at the University of Padua, Italy. He is also affiliated

ith TU Delft and University of Washington, Seattle. He obtained his Ph.D. from

apienza University of Rome, Italy, in 2009. After his PhD, he was a Post-Doc Re-

earcher at Vrije Universiteit Amsterdam, The Netherlands. In 2011 he joined as As-
istant Professor at the University of Padua, where he became Associate Professor

n 2015, and Full Professor in 2018. He has been Visiting Researcher at GMU, UCLA,

CI, TU Darmstadt, UF, and FIU. He has been awarded with a Marie Curie Fellow-
hip (2012) by the European Commission, and with a Fellowship by the German

AAD (2013). His research is also funded by companies, including Cisco, Intel, and
uawei. His main research interest is in the area of Security and Privacy. In this

rea, he published more than 350 papers in topmost international peer-reviewed
ournals and conferences. He is Area Editor-in-Chief for IEEE Communications Sur-

eys & Tutorials, and Associate Editor for several journals, including IEEE Communi-
ations Surveys & Tutorials, IEEE Transactions on Dependable and Secure Comput-

ng, IEEE Transactions on Information Forensics and Security, and IEEE Transactions

n Network and Service Management. He was Program Chair for TRUST 2015, ICISS
016, WiSec 2017, ACNS 2020, and General Chair for SecureComm 2012, SACMAT

013, CANS 2021, and ACNS 2022. He is Senior Member of the IEEE and ACM. He is
 member of the Blockchain Expert Panel of the Italian Government. He is Fellow

f the Young Academy of Europe.

hubham Khandhar received his MSc degree in computer science with a 4TU spe-
ialisation in cybersecurity from the Delft University of Technology, Delft, Nether-

ands. He holds a BSc degree in computer science from the Vrije Universiteit Am-
terdam, Amsterdam, Netherlands. His research area of interests include Malware

nalysis, Cyber Threat Intelligence, Deep Learning and Few-shot learning.

inod P. , is presently a Professor in the Department of Computer Applications at

ochin University of Science & Technology, Kochi, Kerala, India. He was a Post-

octoral Researcher at the Department of Mathematics, University of Padua, Italy,
here he was a part of the EUH2020 project named TagitSmart. He was also a

ostdoctoral researcher at Malaviya National Institute of Technology, Jaipur, Ra-
asthan under the ISEA project on Mobile Security. He holds his PhD in Com-

uter Engineering from Malaviya National Institute of Technology, Jaipur, India. He
s awarded Marie Skodowska-CurieFellowship (Project Title OPTIMA: Organization

pecific Threat Intelligence Mining and Sharing) by the European Commission. He

as numerous research articles published in peer-reviewed Journals and Interna-
ional Conferences. He also serves as a programme committee member in the Inter-

ational Conferences related to Computer and Information Security. Vinods area of
nterest is Adversarial Machine Learning, Malware Analysis, Context-aware privacy-

reserving Data Mining, and Natural Language Processing.is

http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0012
https://colab.research.google.com/signup
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0015
https://securelist.com/it-threat-evolution-in-q2-2021-pc-statistics/103607/
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0021
https://bazaar.abuse.ch/
https://www.mcafee.com/enterprise/en-us/lp/threats-reports/apr-2021.html
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/C2Lop.gen!L
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/C2Lop.gen!M
http://arxiv.org/abs/1301.3781
https://www.autohotkey.com/mpress/mpress_web.htm
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0031
https://doi.org/10.1109/ICASSP.2015.7178304
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00109
http://arxiv.org/abs/1802.10135
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0035
https://www.vmray.com/cyber-security-blog/practical-malware-family-identification-sans-webcast-recap/
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0038
https://upx.github.io/
https://asec.ahnlab.com/en/26274/
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0046
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0047
http://refhub.elsevier.com/S0167-4048(22)00281-4/sbref0048

	A few-shot malware classification approach for unknown family recognition using malware feature visualization
	1 Introduction
	2 Related work
	2.1 Malware detection/classification based on malware visualized images and deep learning
	2.2 Malware detection/classification using few-shot learning
	2.3 Malware detection/classification based on alternative approaches

	3 Proposed method
	3.1 Datasets
	3.1.1 Malimg dataset (Dataset-A)
	3.1.2 Microsoft BIG 2015 dataset (Dataset-B)
	3.1.3 Malbaz dataset (Dataset-C)

	3.2 Feature extraction
	3.2.1 Markov images
	3.2.2 Entropy graph images
	3.2.3 Gray level matrix image

	3.3 GEM image construction
	3.4 Traditional classification models
	3.4.1 Shallow-CNN architecture

	3.5 Few-shot classification models
	3.5.1 CSNN
	3.5.2 Shallow-FS

	3.6 Evaluation metrics

	4 Classification experiments and results
	4.1 Traditional classification experiments
	4.2 Experiments using the CSNN model
	4.2.1 1-Shot traditional classification experiments
	4.2.2 1-Shot unknown-class classification

	4.3 Experiments using the Shallow-FS model
	4.3.1 10-Shot traditional classification
	4.3.2 10-Shot unknown-class classification

	5 Discussion
	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

