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ARTICLE INFO ABSTRACT

Keywords: The defense of Use-After-Free (UAF) exploits generally could be guaranteed via static or dynamic
Use-After-Free vulnerability analysis, however, both of which are restricted to intrinsic deficiency. The static analysis has
fine-grained memory permission man- limitations in loop handling, optimization of memory representation and constructing a satisfactory
agement testinput to cover all execution paths. While the lack of maintenance of pointer information in dynamic
static instrumentation analysis may lead to defects that cannot accurately identify the relationship between pointers and
Vulnerability Discovery memory.

System Security In order to successfully exploit a UAF vulnerability, attackers need to reference freed memory.

However, main existing schemes barely defend all types of UAF exploits because of the incomplete
check of pointers. To solve this problem, we propose UAF-GUARD to defend against the UAF exploits
via fine-grained memory permission management. Specially, we design two key data structures to
enable the fine-grained memory permission management to support efficient relationship search for
pointers and memory, which is the key design of our defending scheme against UAF exploits. In
addition, UAF-GUARD can precisely locate the position of UAF vulnerabilities, so that malicious
programs can be terminated in the place where the abnormality is discovered.

We implement UAF-GUARD on a 64-bit Linux system, and further use UAF-GUARD to
transform a program into a suitable version that can defend against UAF vulnerabilities exploits.
Compared with main existing schemes UAF-GUARD is able to effectively and efficiently defend
against all the three types of UAF exploits with acceptable space overhead (26.4% for small programs
and 0.3% for large programs) and time complexity (21.9%).

1. Introduction Livshits and Zorn (2009)). Attackers could utilize UAF vul-
nerabilities to perform malicious operations such as arbitrary
reading, writing back, and code execution. Not only that,
once an attacker obtains process information, it will be easier
to bypass system security defense tools, for example, Canary
can cause a Program to crash, use unexpectc?d. yalues, or UMWiki (2015), PIE Hat (2012), ASLR SearchSecurity
execute code” (2018)y(CWE). UAF Vulnerabilities cannot (2014). Arbitrary write-back or code execution could cause

%Zel); p1011 ted IS.(ll.lVIduaHyi)Whldi meznslthat 4 s‘nlllglehple;:le of the attacker to hijack the control flow, furthur to get shell and
vulnerability must be exploited along with other heap " W oo o system permissions.

memory vulnerabilities (e.g., Heap Spray Ratanaworabhan,

UAF (Use-After-Free) vulnerability is a kind of memory
corruption flaw, defined by Common Weakness Enumera-
tion (CWE) as "referencing memory after it has been freed

- Memory error detector could be used to capture UAF
This work is partially sponsored by National Key R&D Program of it : oo

vulnerabilities at program runtime. By maintaining the state

China (No. 2019YFB2101700), National Science Foundation of China (No. prog y . &
62172297, No. 61902276), the Key Research and Development Project of of the allocated me'mory , We can .det.ermme whether the
Sichuan Province (No. 2021YFSY0012), and Tianjin Intelligent Manufac- released memory will be used again in the future. But P.
turing Special Fund Project (No. 20211097, No. 20201159). ) Ratanaworabhan et al. proposed Heap Spray Ratanaworab-
*Wenging Lei and Jian Liu are the corresponding authors (Email: han et al. (2009), which can force the program to reallocate

raidy_518 @tju.edu.cn, jianliu@tju.edu.cn).
%4 1Tosinet ju.edu. cn (G. Xu): raidy_518etju.edu.cn (W, Lei); memory on the freed memory. That means the heap memory

glx_0826@tju.edu.cn (L. Gong); jianliuetju.edu.cn (J. Liu); allocation process could be easily controlled by attackers.

bai931214@tju.edu.cn (H. Bai); chenkai@iie.ac.cn (K. Chen); .

wangran8088@gmail.com (R. Wang); wangweil@bjtu.edu.cn (W. Wang); Control Flow Integrity (CFI) tool may defend UAF

k.liang-3etudelft.nl (K. Liang); willetju.edu.cn (W. Wang); weme@dtu. dk vulnerabilities due to an assumption that the ultimate goal

(W. Meng); (Sl)i”@hir"s"ima‘“-ac-jp (S. Liw) of current attacks is to either disclose information or control
ORCID(S):

the target host via hijacking control flow to execute malicious
code. The existing tools utilize coarse-grained CFI to avoid
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expensive overhead and false positive alarms. However re-
cent works Davi, Sadeghi, Lehmann and Monrose (2014);
GAﬁktaS, Athanasopoulos, Bos and Portokalidis (2014a);
GAdiktas, Athanasopoulos, Polychronakis, Bos and Portoka-
lidis (2014b) demonstrate that all the coarse-grained CFI
could be easily bypassed.

Our contributions. Facing the fact that all the aforemen-
tioned anti-UAF mechanisms suffer from either high false
negative rates or being bypassable via certain exploitation
techniques, in our previous work, we proposed the UAF-
GUARD for UAF defense by maintaining the relationship
between pointers and memory. This paper expand the pre-
vious workXu, Li, Li and et.al (2020) with addition of
instruction types for scanning, completing the data structure
of pointers and memory to enhance the overall efficiency,
proposing a pointer filtering algorithm to increase the effi-
ciency further and fully analyzing the safety of the method.
In addition, an extended utilization of the method is pro-
posed.

By constructing an efficient data structure, our UAF-
GUARD is allowed to maintain pointer-to-memory permis-
sions at runtime, so that it could precisely identify the
relationship of pointers and memory before target operations
for eliminating the vulnerabilities caused by pointer abuse.
UAF-GUARD can terminate the runtime program which
cannot pass the vulnerability check. Moreover, it can pre-
cisely locate the position of the vulnerability which resides
at the exact point where the program is terminated. Our
new design can effectively prevent the UAF vulnerabilities
exploitation and further mitigate the risks in the existing
heap management mechanism.

Our contributions are summarized as follows:

1) We improve UAF-GUARD. Using designed key data
structure to completely represent the relations of pointer-
to-pointer and pointer-to-memory, UAF-GUARD can
check the permission of the pointer to memory at run-
time for preventing pointer abuse and further defending
against all types of vulnerabilities’ exploits.

2) We design an approach to optimizing the efficiency of
our detection and defense. By leveraging the target in-
struction filter algorithm, we reduce the overhead to an
acceptable level.

3) We illustrate how to develop an automated tool for min-
ing the UAF vulnerabilities by introducing two mature
dynamic analysis techniques, namely symbolic execution
and fuzzing.

Roadmap. In Section 2, we introduce Use-After-Free ex-
ploits, and define three types of UAF vulnerabilities as
the basic theory in our designed UAF-GUARD. Section 3
defines the key data structures, and proposes the technical
details of UAF-GUARD. In Section 4, we give a theoretical
security analysis. Section 5 implements a UAF-GUARD
prototype system to evaluate the effectiveness and perfor-
mance. In Section 6, we discuss the usage scenarios and scal-
ability, and analyze the limitations about overhead. Section 7

Table 1
The off-the-shelf heap memory management mechanisms.

Heap Memory

Platfopmn Management Mechanism
General purpose allocator  dImalloc

Glibc ptmalloc2

FreeBSD & Firefox jemalloc

Google tcmalloc

Solaris libumem

gives the related work. Finally, the conclusion and future
works are shown in Section 8.

2. Background

With the development of network information, more and
more researchers are concentrated in the cyberspace. Recent
researches from our laboratory are also worth mentioning,
including Xu, Bai, Xing, Luo, Xiong, Cheng, Liu and Zheng
(2022a); Xu, Dong, Xing, Lei, Liu, Gong, Feng, Zheng and
Liu (2022b). As a security threat to the underlying computer
system, uaf vulnerability deserves more attention in this new
era of big data network. The principle of uaf vulnerabilities
and the basic process of being exploited are introduced in
this section. In addition, a definition rule is designed, which
divides vulnerabilities into three types.

2.1. Use-After-Free Exploits

The command to allocate dynamic memory for a process
in Linux operating system is brk or mmap, and the memory
management mechanism is responsible for allocating mem-
ory for processes. The reason is that using memory directly
is prone to generate the memory fragmentation. The off-the-
shelf heap memory management mechanisms are shown in
Table 1. After the allocated memory is freed by the heap
memory management, there would be UAF vulnerabilities
exploitation if the memory is used in an improper way. A
typical process of UAF vulnerabilities exploitation can be
described as follows.

step 1: Request for a block of heap memory allocated and
managed by the heap memory management mechanism.

step 2: Free the memory block.

step 3: Find a certain pointer, which points to the mem-
ory or can access it after calculation.

step 4: Exploit this pointer to read, write or execute
operations.

step 5: In some cases, this memory may be re-allocated
and reused.

Steps 1-2 are executed by the original program, while
steps 3-5 are carried out by attackers.

2.2. Three Types of UAF Vulnerabilities

To clearly demonstrate the superiority of UAF-GUARD,
the UAF vulnerabilities is defined into three types according
to the source of exploited pointers, which are shown in
Table 2

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier
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Table 2
Three types of UAF vulnerability.

UAF

vulnerability Type Artack Means

Type | original pointer
Type Il fulfilled by pointer assignment
Type Il fulfilled by calculating relative offset

int main(){
char *ptr = (char *)malloc(20);
free (ptr) ;

strcpy(ptr, "Use-After-Free");
return 0;

}

Figure 1: An example of Type | UAF vulnerability.

int main() {

char *ptr = (char *)malloc(20);
char *ptr2 = ptr;

_int64 val = (_inté64)ptr;

free (ptr) ;

ptr = 0;

strepy(pte2, "Use-After-Free™)?
strcpy((char *) (val + i

"Use-After-Free") ;

return 0;

3}

Figure 2: An example of Type Il UAF vulnerabilities.

Type Iis the most common UAF vulnerability, which can
directly use pointers allocated with corresponding memory
space. Such vulnerabilities are caused by the failure to cancel
the reference of the pointer in time and cause the pointer to
be dangling. We provide a simple example in Figure 1.

In Type II, the pointer is obtained through pointer prop-
agation, and the pointer must rely on an existing pointer to
the UAF vulnerability. As shown in Figure 2 (at line 9), when
the memory space is allocated, the pointer variable ptr will
be returned, but the value of the pointer variable ptr2 is the
same as ptr through assignment. UAF vulnerabilities caused
by ptr2 should belong to type II.

Type III pointers are obtained by directly calculating the
offset. Type III vulnerabilities usually need to be combined
with other vulnerabilities, such as integer overflow and stack
segment overflow. Figure 2 (line 10) shows a simple example
of Type IIL.

3. UAF-GUARD Design

The overview of the UAF-GUARD is presented firstly
in this section. In addition, two works have been done to
improve the performance of our schema: 1) two key data
structures and 2) a target instruction filtering algorithm to
optimize overhead. We will introduce our technical details
from static instrumentation and runtime defending.

compiling and linking
A

the program

SO |;’> pointer filtering ‘%r> static handling |:‘J> protéie}:d by
code algorithm (LLVM PASS) ) -
ﬁ GUARD

Figure 3: The overall framework of UAF-GUARD.

3.1. System Overview

UAF-GUARD checks the memory pointer permission of
each pointer operation at runtime, and strictly restricts the
use of pointers in user space. This method could effectively
detect UAF vulnerabilities theoretically. UAF-GUARD is
lightweight, it can reduce the risk of various heap vulner-
abilities; prevent the exploitation of heap vulnerabilities,
especially for UAF vulnerabilities, and can also pinpoint
the location of UAF vulnerabilities. Besides, it cannot be
bypassed by off-the-shelf exploitation.

As described in Section 2.1, a successful exploitation
over a UAF vulnerability requires: 1) the memory manage-
ment mechanism frees the allocated memory, 2) attackers
read, write or operate the freed memory, and 3) subsequent
exploitation, including reallocating the freed memory, infor-
mation leakage and control flow hijack. Traditional solutions
nullify the corresponding pointer to prevent the pointer from
reading, writing or operating the memory after step ). But
this is not valid for Type III exploitation. If the exploitation
is detected in step 2), it can be defended easily. In essence,
step 2) is to exploit the pointer to illicitly operate the freed
memory. In contrast, we mark each memory block status
in UAF-GUARD, which can be represented in meta-data
and doubly linked list (see Section 3.2). Different from
traditional process memory permissions which are coarse-
grained and generally divided by segments, UAF-GUARD
manages the memory permission in a fine-grained way to
prevent pointer from being abused.

Anoverview of UAF-GUARD based on the LLVM llvm-
admin team (2018) compiler framework/system is shown in
Figure 3. UAF-GUARD participates in the compilation and
linking process of the source code so that it can: 1) insert
the instrumentation code in the compiled target program, 2)
link the compiled function library with the binary program
during the linking process, and 3) implement the instru-
mentation function to produce the protected binary program.
Besides, we will design and deploy an error-handling mech-
anism in UAF-GUARD, for the purpose of mitigating the
risk of DoS attack yielded by improper pointer handling.
Finally, to provide as much as vulnerability information
for maintainers, a module to record the vulnerability log is
designed.

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier
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e nYa Enhanced red-
addr addr addr black tree
next-addr next-addr next-addr
size |r[WXI\, pre-addr pre-addr
- 32 W — meta-data ptr-data
metadata S~ \\\E‘f‘dmﬂ_,/” g --=" ptr-data

Figure 4: Data structure of meta-data, ptr-data and the
relationship between memory and pointer.

3.2. Proposed Key Data Structures
3.2.1. Data Structure for Memory, Pointer and Their
Relationship

"Special" data structures is designed to record the infor-
mation of memory, pointer and their relationship. Metadata
is used to describe the basic unit of a storage block. As
shown in Figure 4, the metadata includes three fields: addr,
next-addr, and size|rwx. addr indicates the starting position
of the data in the memory block. next-addr represents the
address of the next data structure in the linked list associated
with the memory, and the last field size|rwx consists of two
parts. size is the size of the memory. Since the memory block
allocated by ptmalloc2 is 8 byte aligned in 32-bit operation
system - i.e. the size of this field is a multiple of 8, and thus
we can utilize the last three bits of this field (rwx) to store the
permissions (i.e., read, write, execute) of memory.

The ptr_data in Fig 4 depicts the data type ptr-data which
describes the pointer information. ptr-data has three fields:
addr, next-addr, and prev-addr. addr indicates the address
of pointer variable. next-addr shares the same definition as
in meta-data. The last field pre-addr indicates the previous
data structure address in the linked list associated with
the pointer. This field contains two types of addresses: 1)
data structure type addresses, and 2) addresses of memory
metadata with memory permissions.

Figure 4 shows the data structure of the relationship
between the memory and the pointer. UAF-GUARD op-
erates through pointers (including inserting and deleting
elements), through a double-linked list, and uses fields con-
taining pointer information for data types of metadata and
ptr-data to describe the permissions of pointers to memory.

The data types proposed in this section are used to
describe memory and pointer information. The data type
of the meta-data is accurate to bit, which greatly decreases
the space requirement for UAF-GUARD. The doubly linked
list is sufficient to describe the many-to-one relationship
between pointers and memory. As for the time overhead, if
the size of the doubly linked list is m (where the number
of nodes is m), the complexity of traversal operation is
bounded by O(m), and the complexity of inserting and delet-
ing operations is O(c) (where c is a constant). In practical
applications, m is small, the number of pointers linked to the

size  next-addr

Figure 5: Data structure of the enhanced red-black tree.

same memory is relatively small, therefore the complexity
of the traversal operation is acceptable.

3.2.2. Enhanced Red-black Tree For Quick Query

An enhanced red-black tree is utilized to quickly query
the meta-data and ptr-data.

Statistically, more than 80% of the operations in the
UAF-GUARD query the data of the corresponding data
type through the pointer address or the memory address.
Therefore, query optimization is necessary. An enhanced
red-black tree based on the typical red-black tree algorithm
1s designed. The data structure is shown in Fig 5.

The enhanced red-black tree is derived as follows:

1) The type of the red-black tree nodes is expanded. The
memory or the pointer address and other fields in corre-
sponding data type is used as the key and the node ex-
tension contents, respectively. When the key is searched
out, the complete data information can be obtained at the
same time.

2) The ability of preserving the relationship for the red-
black tree is expanded. Through the accurate storage of
the meta-data and the ptr-data, the data structure of the
doubly linked list could be maintained. Therefore, the
associated data can be quickly obtained via traversing the
doubly linked list (when the node in the doubly linked list
is searched out).

3) The search way of the red-black tree nodes is expanded.
The following means is leveraged to decide if a memory
address addr has been allocated: A memory block in the
red-black tree is located firstly, which is closest to the
addr, whose address is not larger than addr. If addr is in
the range of this memory block, the addr is an allocated
heap memory address; otherwise, the addr is not allocated
or it has been freed.

The enhanced red-black tree enjoys the following advan-
tages.

1) Itenjoys high query efficiency which is as stable as that of
the typical red-black tree. Although the implementation
of red-black tree may be sophisticated, it also maintains
good efficiency in the worst cases (w.r.t. query). As for
the time overhead, when the number of nodes is n, the

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier
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complexity of searching, inserting and deleting nodes
only requires O(log n).

2) Since UAF-GUARD leverages the address as the unique
identity, the address can be used as the query key. Be-
sides, we can easily present the partial order relationship
for the integer, thus it is convenient to build a fast and
efficient query data structure.

3) Since there is no any overlap between memory blocks,
the tree provides a great convenience for searching in
UAF-GUARD. There are also plenty of accesses way
similar to tree structure in real world situations. For
example, the parent structure in the browser contains
pointers to multiple substructures. When accessing the
content of the substructure through the parent structure
pointer, the conversion to IR is an access to a certain
address in the heap memory block. In this regard, the tree
structure could be appropriate to heap memory blocks.

In conclusion, the tree significantly improves the effi-
ciency of searching the pointers & memory and obtaining
the permission of the pointer to memory, and expands the
record range of the heap memory so as to precisely locate
the location that the pointer points to.

3.3. Technical Details
The design of static detection mechanism and runtime
library for defense is introduced.

3.3.1. Static Instrumentation

The UAF-GUARD static tool in the LLVM llvm-admin
team (2018) compiler framework is designed and imple-
mented. The goals of UAF-GUARD we designed are as
follows:

1) Generate the corresponding meta-data (see Section 3.2)
for each memory allocating.

2) In order to protect all heap memory blocks, for each
pointer block, propagate associated memory information
or update pointer memory permissions.

In the compilation phase, the following handlings is
considered.

1) Analyze each instruction in each function through LLVM
IR pointer operation, and store related parameters and
opcodes through preset variables.

2) Classify according to the instructions parsed in 1), and
then insert the correct detection function according to the
specific instruction content.

The instrumentation functions and their corresponding
instructions are described in Table 3. We will describe in
detail the processing details of each type of instruction in
LLVM IR below:

1) Memory allocation, reading and writing instructions (at
lines 1-4 in Table 3).

e Memory allocation/free instructions. It can be seen
that the alloca instruction requests to the stack for
memory space, thus it is not our target. Obtaining

memory space requires calling instructions to send
the request to the heap. Taking C++ (Ubuntu
Linux x86 system) as an example, we use the
callemalloc(k) instruction to operate, where k is a
positive integer and the return value is (i8x)ptr. In
UAF-GUARD, if the memory block is successfully
allocated, the record of the memory block allocated
by the detection function create(ptr, k) will be
inserted into the data structure. When releasing
memory, we use call@free(ptr) instruction. Before
inserting the instruction, the detection function
remove (ptr) needs to be inserted to delete the record
of the memory block. If the record is successfully
deleted, the command will be executed normally.

e Memory read instruction. The instruction is read
from the memory. In order to prevent the instruction
from invalidating the pointer, the check function
check(ptr) is inserted before the load instruction,
usually %val = 1load 132, 1i32x %ptr. At this
time, reading the process memory relies on the
pointer, which is equivalent to the pointer used by
the read permission. If check(ptr) does not raise
an exception, the instruction is successfully exe-
cuted (but not vice versa). If val is a pointer type,
the detection function trace(ptr, val) is inserted
before the instruction. Here we introduce "permis-
sion propagation": if ptr is a resolved effective
heap memory address, then val will obtain memory
permission. Otherwise, the instruction cannot be
executed because ptr is an invalid address at this
time.

e Memory write instruction. This operation uses
store i32 3, i32x %ptr. The check function
check(ptr) is inserted before writing the instruc-
tion. Because writing to the process memory is
operated by pointers, it is equivalent to writing
through pointers. In the case that check(ptr) does
not throw an exception, the instruction will be
executed.

2) Arithmetic operation instructions and bit operation in-
structions (at line 5 in Table 3), including add/fadd,
sub/fsub, mul/fmul, udiv/sdiv/fdiv, urem/
srem/frem, shl, 1lshr, ashr, an-d, or, xor. The instruc-
tions associated with the heap memory pointer are UAF-
GUARD?’s only concern. When the pointer ptr is in-
cluded in the arithmetic result, it is necessary to insert a
detection function trace(val, ptr) before the instruction,
and then directly assign the result to the pointer ptr. That
is, the pointer variable ptr will be assigned to the value
val calculated by the instruction to change the address
pointed to by the pointer. If the value is a valid address,
ptr will get memory permission, and the UAF-GUARD
data structure will also update the record of ptr’s memory
permission.

3) Atomic memory modification instructions (at line 6 in
Table 3), including cmpxchg, atomicrmw and getelementptr.
Since all of these instructions include memory reading

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier
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Table 3

The instrumentation functions and their corresponding instructions.

Instructions Type Instructions

Instrumentation

Function Description

Memory Request call@malloc(k)

create(ptr, k)

build the permission of pointer to memory

Memory Free call@free(ptr) remove(ptr) remove the permission of pointer to memory
2y B heck(pt - .
Memory Read %val = load i32, i32* %ptr sheck(ptr) check/trace the permission of pointer to memory
trace(ptr, val)
Memory Write store i32 3, i32* %ptr check(ptr) check the permission of pointer to memory

add/fadd, sub/fsub, mul/fmul
udiv/sdiv/fdiv, urem/srem/frem
shl, Ishr, ashr, and, or, xor
cmpxchg, atomicrmw,
getelementptr

Arithmetic operation
& bit operation

Atomic memory
modification

trace(ptr, val)

check(ptr)
trace(ptr, val)

trace the permission of pointer to memory

check/trace the permission of pointer to memory

and writing, and pointer permission propagation, the
instrumentation function check(), trace() is chosen to
be inserted, which is the same as the description in the
previous types.

3.3.2. Runtime Defending

The UAF-GUARD runtime library is designed to com-
plete the task of runtime defense, according to the preset
detection functions during the compilation of static instruc-
tions. There are four main instrumentation functions, namely
create(), trace(), check(), and remove(). In our design, the
information of memory block and pointers is stored in the
enhanced red-black tree (please refer to Section 3.2.2), while
the relationship of memory and pointer is described by
doubly linked list (see Section 3.2.1). In this section, we will
elaborate the internal logic of the instrumentation functions.

create(). The establishment of the permission relationship
between the pointer and the memory is implemented by the
instrument function create(ptr, k). ptr is a pointer to the
memory address allocated by the heap memory management
mechanism, and k is the size of the heap memory space
requested by the user, in bytes. The technical details of
create() are as follows:

1) If the value of ptr is null, it means that malloc() has not
successfully allocated memory, and the establishment of
permission relationships will be stopped.

2) Otherwise, the establishment of the metadata of the
storage block and the ptr data of the pointer is based on
the values of ptr and k, and the relationship between the
metadata and the ptr data will also be established in the
double-linked list.

The key of meta-data is the memory address, while the key
of ptr-data is the pointer address.

check(). The permission to check the pointer to the memory
is implemented by the tool function check(ptr). The ptr
is the pointer to be checked. The process of check() is
described as follows:

1) Obtain the address and value of the pointer through ptr.

2) Search for pointer information in the tree structure. If
ptr-data is not found in the pointer, it indicates that

the pointer has been abused and the UAF vulnerability
will be exploited. The current status information will be
recorded including CPU, memory, function-call stack,
and the program throw the corresponding exception.

3) Otherwise, if the information of ptr-data is obtained by
us, the metadata of the memory associated with the
pointer in the doubly linked list can be further tracked,
and the range of the memory block can be calculated
to determine whether: a) The value of ptr is within the
range to prevent passing Allocate or calculate the offset to
obtain the pointer; b) The pointer has the corresponding
authority in the reading, writing and execution of the
memory.

The ptr can pass the test only when the above two
conditions are met. Otherwise, there is a unauthorized op-
eration of pointer, which can yield the UAF vulnerabilities.
Namely, the current status and the related information of the
illegal operation will be recorded and the instruction will be
forbidden.

trace(). The transfer of memory permissions between point-
ers is implemented by the instrument function trace(ptri,
ptr2). The ptr1 is a heap memory address or a pointer that
points to a heap memory block, and the ptr2 is the pointer to
be assigned. Overloaded functions with different parameters
are handled by trace(). The process of trace() is as follows:

1) If ptr1isa pointer, its legality is determined by its address
and value.

2) If ptr1 is the heap memory address, whether the address
is valid and whether the allocated heap memory address
will be the focus of our confirmation.

3) If ptr1 is illegal, a program exception will be triggered
and the status information will be recorded.

4) If ptr1 is legal, whether the information of ptr2 has been
established will be checked by us. If not, the ptr-data of
ptr2 will be constructed by us and inserted into the tree
structure. Finally, after inserting ptr2 into the two-way
linked list of ptr1, the permission transfer is complete.

remove(). The authority to delete the pointer to the memory
is implemented by the tool function by remove(ptr). ptr is
the heap memory address or pointer to the heap memory
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Algorithm 1 Target Instruction Filtering Algorithm

1: for function in Code do

2 for instruction in function do

3 lhs = instruction.lhs

4: rhs = instruction.rhs

5: op = instruction.op

6 if isPointer(lhs) and pointToHeap(lhs) then
7 goto Processer

8

9

end if
: if isPointer(rhs) and pointToHeap(rhs) then
10: goto Processer
11: end if
12: continue
13:  end for
14: end for
15:

16: Processer(op,lhs,rhs)

block. remove(ptr) is an overloaded function, the process is
as follows.

1) If ptr is a heap memory address (in this sense, the
remove() corresponds to the free() in ptmalloc2), we
check if the address is valid. If no, it indicates that the
memory to be freed is the pointer’s unprivileged mem-
ory, unallocated memory or freed memory. the status
information is recorded including current stack frame,
registration, and the program throws an exception and
will be terminated. Otherwise, the pointer information
ptr-data of all associated pointers and the metadata of the
corresponding storage block will be searched and the data
structure maintained. After that, these elements will be
removed from the tree structure and free up space.

2) If ptris a pointer, it dedicate that the pointer life cycle has
ended is the removal permission. We need to determine
whether ptr exists in the tree structure. If they are, they
will be deleted from the two-way linked list and tree
structure. Otherwise, it indicates that the pointer does not
point to the storage block.

3.4. Optimization

Many instructions including the pointer operations are
involved in a system. A target instruction filtering algorithm
therefore needs to be proposed to filter the unrelated instruc-
tions, in which the pointers do not point to the heap memory.
In the compilation phase, the algorithm only detects the
target pointers which point to the heap memory rather than
stack frame. On one hand, there are many protections to
increase the difficulty of stack frame utilization, e.g., ASLR
SearchSecurity (2014), Canary UMWiki (2015) and CFI
Zhang, Wei, Chen, Duan, Szekeres, McCamant, Song and
Zou (2013). On the other hand, the pointers in the stack
frame have such a short life-cycle that it is difficult to be
continuously utilized.

Through the filtering algorithm, the detection of most
non-target pointers can be prevented. The details of the

algorithm are given in Algorithm 1. At lines 1-2, all the
instructions in function are traversed repeatedly. The current
instruction information is obtained at lines 3-5. After that,
we check if the instruction includes the pointer to heap mem-
ory atlines 6-11, if yes, the program will goto "Processer()”,
and otherwise it jumps out of this loop (at line 12). At the
end, we pick out the instructions containing pointers to heap
memory.

The completeness of the target instruction filtering algo-
rithm can be analyzed as follows:

1) If the pointer points to heap memory directly, our UAF-
GUARD will be able to detect it.

2) If the pointer to the non-heap memory can point to
the heap memory through discontinuous access, it will
still be detected as the target pointer when subsequent
utilization occurs.

3) If the pointer to the non-heap memory realizes the data
leakage or overflow through continuously read, write
or operating other functions, it will surely go through
the no memory mapping regions between the segments
and access the memory illegally, which will trigger the
"Segmentation fault" to terminate the process.

4. Security Analysis

In this section, we analyze the security of UAF-GUARD
in theoretical level. The analysis mainly considers two as-
pects: one is the detection capability, and the other is the
risk of being bypassed.

For Type I, UAF-GUARD establishes the pointer-to-
memory relationship right after the heap memory blocks are
allocated. This can be used to prevent any memory blocks
breaking away from monitoring and therefore, our system is
able to reduce the false negative rate. From the view point
in the life-cycle of pointer, UAF-GUARD maintains the
pointer-to-memory relationship to reduce the false positive
rate prior to the operating of pointer. Once the target heap
memory is freed, UAF-GUARD removes the permission
of pointer to memory immediately. Therefore, when the
memory is re-operated by the pointer, the exploitation of the
vulnerability can be prevented effectively, and the details of
the vulnerability can be reported.

For Type II, UAF-GUARD pays attentions to the prob-
lem of pointer permission propagation and further, designs
the corresponding instrumentation function for each situa-
tion (please refer to Section 3.4). In this way, both the false
positive and negative rates can be reduced.

For the more advanced exploitation, Type III, UAF-
GUARD could also detect pointers according to their ad-
dress. This type of UAF vulnerability is to use the pointer
obtained from the relative offset to exploit the vulnerability.
Regarding this feature of the vulnerability, it doesn’t mean
that Type III could block or prevent check() or any other
instrumentation functions. Since the Type III pointers has
never been recorded in data structures or has not previ-
ously obtained permission to the memory block through the
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Table 4

Comparison between UAF-GUARD and DANGNULL. Note the same UAF vulnerabilities are chosen for the comparison. Test
| is the implementation of Type | UAF vulnerability in Figure 1, while test Il and Il are the implementations of Type I, Il
respectively in Figure 2. By “SIGSEGV", "TRIGGER", “NORMAL" and “ASSERTION" we mean “throw a exception", “trigger
the vulnerability", “run in a normal way", and “the security assertion of Chrome", respectively.

oo . Position Of Vulnerabilities Detection Result

Vulnerabilities Incidence < 5 : Type

n Gompiled Binaiy UAF-GUARD DANGNULL
CVE-2010-2939 OpenSSL 1.0.0a,0.9.8,0.9.7 0x80000000022ba510 I SIGSEGV SIGSEGV
CVE-2016-4077 Wireshark 2.0.0-2.0.3 - Il SIGSEGV SIGSEGV
CVE-2013-2909  Google Chrome < 30.0.1599.66  0x1bfc9901lecel 1l SIGSEGV NORMAL
CVE-2013-2909 Google Chrome < 30.0.1599.66  0x7f2f57260968 Il SIGSEGV NORMAL
CVE-2013-2918 Google Chrome < 30.0.1599.66  0x490341400000 1 SIGSEGV TRIGGER
CVE-2013-2922  Google Chrome < 30.0.1599.66  0x60b000006da4 1 SIGSEGV NORMAL
CVE-2013-6625 Google Chrome < 31.0.1650.48 0x897ccce6951 Il SIGSEGV SIGSEGV
CVE-2012-5137 Google Chrome < 23.0.1271.95 0x612000046c18 1 SIGSEGV ASSERTION
Our Test | - - | SIGSEGV SIGSEGV
Our Test Il - - Il SIGSEGV SIGSEGV
Our Test Il - - 11 SIGSEGV TRIGGER

normal process, it cannot pass the security check, and its
exploitation will be prevented.

The design of UAF-GUARD is quite similar to that
of static analysis, which requires the clear description of
the pointer-to-memory relationship. It is noted that UAF-
GUARD can only detect the instructions at program run-
time. If the undetected part is subsequently exploited, UAF-
GUARD can also detect it. That is the reason why UAF-
GUARD can be seen as an "upgraded" version of the static
analysis.

5. Experimental

To verify the effectiveness and efficiency of UAF-
GUARD, the UAF-GUARD prototype is here implemented.
Our experiments include the security and performance tests.
The security test covers all types of UAF vulnerabilities
and some CVE vulnerabilities, while the performance one
presents the analysis of the compiling/linking process and
actual running costs. We do compare UAF-GUARD with
others in the above tests.

From the tests, we show that UAF-GUARD can guaran-
tee the security of the program at runtime but also protect
it from UAF vulnerabilities exploitation. At the same time,
the overhead of UAF-GUARD can also satisfy the efficiency
requirement of the program at runtime.

5.1. Experimental Environment
several mainstream programs are used to evaluate the
safety and performance of UAF-GUARD.

1) UAF-GUARD’s defense effectiveness is evaluated against
all types of UAF vulnerabilities.

2) Further testing for known CVE vulnerabilities in multiple
versions of multiple programs including Chrome, Wire-
shark and OpenSSL.

3) The time cost of UAF-GUARD in the compilation phase
is calculated. For the sake of simplicity and fairness in the

comparison, the same pending procedures are utilized in
related works, such as bzip2 and gcc.

4) Based on the compilation results, the time overhead of
UAF-GUARD at runtime is analyzed, and it is proved
that UAF-GUARD can ensure the security of the pro-
gram at runtime.

All the experiments in this article are done on a PC. The
configuration is as follows: eight-core Intel Core i17-6700HQ
CPU @ 2.60GHz, 16 GB RAM and 500 GB SSD, 64-bit
Ubuntu 16.04 (Linux Kernel 4.16).

5.2. Effectiveness of Detection

The test benchmark set used in the experiment is a num-
ber of chromium versions that contain more vulnerabilities,
which is the same as test benchmark set of DANGNULL. In
addition, the open loopholes of OpenSSL and Wireshark are
utilized, in order to enhance the reliability of the experiment.

Table 4 is the comparison results between UAF-GUARD
and DANGNULL. For our designed tests for the types
of vulnerabilities (Test I, II, and III), we stress that the
experimental results of UAF-GUARD and DANGNULL
are different through analyzing the exception sinceinforma-
tion. The SIGSEGV in UAF-GUARD is thrown by UAF-
GUARD itself, UAF-GUARD detects the instruction that
the pointer illegally operates the memory, and automatically
terminates the process to prevent pointer abusing. However,
the SIGSEGV in DANGNULL is caused by its referring the
memory of the oxe address, which can not be read, written
and executed. The type III UAF vulnerabilities cannot be
detected by DANGNULL, because the pointer information
is insufficient (along with the result) so that the target pointer
can not be traced. Note that this is also the untraceable reason
for the result of CVE-2013-2918. In contrast, UAF-GUARD
is able to detect and terminate the execution of instruction
in time. In the case of vulnerability CVE-2013- 2909 and
CVE-2013-2922, DANGNULL will not report an exception,
because its design principle is to make the dangling pointer
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Table 5

Changes in file size during compilation and connection. aAlJBefore CompilationaAi: the size of program before compiling.
3AlJIncreasedAl: the increased size of program. dAlJInstrumentationdAl: the number of instrumentation functions.

File Size Instrumentation
Name Language Increase
Before
DANGNULL  Percentage UAF-GUARD  Percentage DANGNULL —GlLJJ):E{D
gce C 8380KB  768KB 4.7% 584KB 2.3% 9264 6342
soplex C++ 4202KB  453KB 1.9% 422KB 0.7% 264 278
povray C++ 3383KB  513KB 4.2% 458KB 2.0% 941 654
h264ref C 1225KB  420KB 4.1% 418KB 2.3% 154 167
gobmk C 5504KB  416KB 0.8% 420KB 0.5% 201 219
chromium C++ 1858MB  10MB 0.5% 7™ B 0.3% 140k 87k
sjeng C 276KB 386KB 5.8% 396KB 2.2% 17 17
namd C++ 1182KB  382KB 1.1% 408KB 1.5% 45 53
hmmer C 814KB 396KB 3.2% 412KB 2.7% 94 97
sphinx3 C 541KB 389KB 3.5% 416KB 4.8% 170 139
milc C 351KB 386KB 4.6% 410KB 5.7% 71 82
astar C++ 195KB 378KB 4.1% 408KB 9.2% 54 59
bzip C 172KB 378KB 4.7% 398KB 4.7% 13 15
mcf C 53KB 376KB 11.3% 404KB 26.4% 95 106
libquantum C 106KB 378KB 7.5% 400KB 9.4% 21 21
Ibm C 37KB 374KB 10.8% 393KB 8.1% 9 9
Table 6

The rendering time of accessing web pages by the chromium, which is the mean of the results from one thousand experiments.

Website Complexity of Page Rendering Time
Requests DOM Nodes  Original Time(s) DANGNULL(s) Increase(%) UAF-GUARD(s) Increase(%)

qq.com 92 2604 0.53 0.75 41.5 0.67 30.2
youtube.com 54 2397 3.11 4.13 32.8 3.72 25.4
baidu.com 21 142 0.21 0.25 19.0 0.25 19.0
taobao.com 80 1069 0.31 0.38 22.6 0.38 22.6
google.com 24 360 1.11 1.35 21.6 1.35 22,5
amazon.com 216 1508 2.28 2.66 16.7 2.67 17.1
gmail.com 52 240 1.82 2.23 225 2.24 23.1
twitter.com 18 668 3.45 3.81 10.4 3.96 15.1
Average 80 1124 1.73 1.95 21.7 1.94 21.9

empty and allow the program to enter the path of normal
execution through other branch structures. As a result, the
location of the vulnerabilities cannot be reported as UAF-
GUARD does.

Through the above comprehensive analysis based on
vulnerabilities, UAF-GUARD is highly competitive with
others w.r.t. UAF vulnerabilities at runtime. Although DAN-
GNULL is lightweight, the insufficient pointer information
makes it deficient and suffers from the risk of bypassing.

5.3. Performance
Two aspects are considered in the performance test:

1) We tested the program under static compilation and
linking, including changes in file size and command
functions.

2) We also tested the extra overhead incurred by UAF-
GUARD at runtime.

5.3.1. Overhead at Compiling and Linking Process

Program changes are measured by calculating the dif-
ference between file sizes before and after compilation and
linking, and collected statistical information for detection
functions in experiments. The experiment counts related
information under the compiling and linking state of 16
programs. Our test of UAF-GUARD is based on the LLVM
compiler project, and the experimental results are shown in
Table 5

From Table 5, for the smaller programs, the space over-
head of UAF-GUARD is quite similar to that of DAN-
GNULL. But, for the larger programs, the space overhead of
the program is less than DANGNULL with a decrease from
0.5% to0 0.3%.

The fixed runtime library of UAF-GUARD is 390KB,
which is a huge increase for small programs like mcf. How-
ever, the average overhead can reach 5.2% if we minus the

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier

Page 9 of 16



Journal Pre-proof

UAF-GUARD

size of the fixed runtime library. For the larger programs,
the changes of program is less than DANGNULL, since
the UAF-GUARD filters out non-target pointers through the
target filtering optimization (please refer to Section 3.4). For
example, in the chromium case, UAF-GUARD just increases
0.3% overhead which is less than that of DANGNULL,
0.5%. Besides, DANGNULL suffers from the redundant op-
erations caused by insufficient pointer information. For the
smaller programs, the instrumentation function is required
to transmit more information than DANGNULL when han-
dling partial pointer in UAF-GUARD. Accordingly, UAF-
GUARD has more variation than DANGNULL. But in terms
of numerical values, it should be acceptable in practice. In
summary, the performance of UAF-GUARD in the compil-
ing and linking phase is competitive and attractive.

The number of detection functions is different. This is
due to the fact that the size of each program is different, and
this also leads to the fact that the file size changes are also
inconsistent. UAF-GUARD needs the support of the runtime
library, which is about 390KB in size. We recommend
precise detection and defense against UAF exploits, and this
extra overhead is very necessary to record the pointer state.

5.3.2. Runtime Overhead

Due to its distinct features, UAF-GUARD performs bet-
ter in large scale programs. To simplify the comparisons,
we only use one software, namely chromium, in test. The
chromium is selected in the experiment because it brings
convenience in obtaining the source code and meanwhile,
the input of compilation and test can be implemented in a
relatively lightweight way.

A chrome plug-in for the UAF-GUARD is designed and
implemented, which records the results of accessing the
Alexa top 100 websites. Due to space limit, we here only
list the results for the top 8 (out of the 100) websites in
Table 6. Each set of the results represents the total time taken
by the website from the loading to finishing rendering of
the webpages, where the time is the mean from the 1000
repeated experiments. From this, we try to precisely reflect
the user experience after deploying our UAF-GUARD.

In order to control the variables, the following means
need to be taken:

1) All web requests are from the same network environment.
2) Accessing the local caches is not allowed.

3) All processes are terminated that may interfere with data
communication.

The complexity of the defense process in our UAF-
GUARD is determined by the number of DOM nodes after
the webpages are rendered. The results are shown in Table 6.
According to the data in Table 6, the time cost of the two
methods is similar, and most of them are within 0.5s.

In order to compare the extra overhead of UAF-GUARD
with others more comprehensively, select various open
source programs are selected as the test set. Different pro-
grams contain distinct number of pointer operations and the
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Figure 6: The comparison results of the running time.

operations on heap memory. This, we state, may present di-
verse comparison in defending efficiency. The experimental
results are shown in Fig 6

UAF-GUARD and DANGNULL have similarities in de-
sign, but the main difference is that UAF-GUARD maintains
the relationship of pointer-to-memory. Therefore, UAF-
GUARD may have an extra constant complexity, which is
less favourable when the program size is small or with less
heap memory operations. However, the overhead difference
(between the two methods) does not exceed 5% and if the
program is getting more complicated, the time overhead
will be much lower than that of DANGNULL (thanks to
the accurate target pointer filtering of UAF-GUARD and
the optimization of the data structure). Note DangSan takes
the same strategy as DANGNULL and its high efficiency
relies on the use of multi-threading. We can conclude that
the performance of UAF-GUARD is better than the other
two solutions for the case where the programs do not support
multi-threading, e.g., astar.

Through the code analysis, if there are many requests for
heap memory space in the program, UAF-GUARD will have
to generate a huge overhead, e.g., the time overhead will
be doubled in the worst case. However, in most cases, the
increased overhead is between 0% and 50%. This does out-
perform DANGNULL whose average increased overhead
is 80%. In short, our UAF-GUARD provides an efficient
defense solution at program runtime.

In addition, compared with static analysis, UAF-GUARD
enjoys the following advantages:

1) It has small overhead, because it does not need the
program branch coverage and memory representation.
Therefore, UAF-GUARD can protect the program at
runtime.

2) UAF-GUARD only detects the current execution path
and stores the sufficient and valid pointer and memory
information, which helps reduce the false negative rate.

We state that UAF-GUARD is competitive with both the
previous static and dynamic analysis for the UAF vulnera-
bilities.
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6. Discussion and Analysis

In this section, some usage scenarios are introduced
firstly for UAF-GUARD, and then we discuss how to extend
our work for practical cases. We also introduce an overview
design of an automated vulnerability mining scheme on top
of UAF-GUARD using the symbolic execution and fuzzing
(which will be part of our future work). Finally, we have brief
discussions over the limitations of UAF-GUARD.

6.1. Usage Scenarios

Being designed to detect and defend UAF vulnerabili-
ties, our analysis shows that UAF-GUARD outperforms the
other existing works in terms of the overall performance with
acceptable overload. In a word, it has the following usage
scenarios:

1) UAF-GUARD is able to defend UAF vulnerabilities at
runtime. As demonstrated in Section 5, UAF-GUARD
has an acceptable overhead, and hence it is suitable for
defending UAF vulnerabilities at runtime.

2) UAF-GUARD can be used for back-end UAF detection.
Many zero-day attacks are based on UAF vulnerabilities
Swamy, Cristian and Elia (2013); Liu, Zhang and Wang
(2018). UAF-GUARD can detect these attacks.

3) Considering the fact that our UAF-GUARD perfor-
mances better in terms of overhead in complicated pro-
grams, it is more suitable for such large scale software
like Chromium.

4) UAF-GUARD can not only defend all the three types of
UAF vulnerabilities completely, but also be expediently
transplanted to further defend other types of heap vulner-
abilities, such as Heap Overflow, and Double Free.

6.2. Scalability

As mentioned previously, UAF-GUARD is able to pre-
cisely identify the location of vulnerabilities, based on what
it can achieve the automated vulnerability mining through
introducing automatic analysis techniques, e.g., symbolic
execution and fuzzing Stephens, Grosen, Salls, Dutcher,
Wang, Corbetta, Shoshitaishvili, Kruegel and Vigna (2016);
Xu, Kashyap, Min and Kim (2017). In the following para-
graphs, we will show how to achieve the automated vul-
nerability mining using symbolic execution, and provide an
overview idea for automated auditing on program vulner-
abilities. Note that Angr Yi, Yang, Guo, Wang, Liu and
Zhao (2018), which is one of the classic symbolic execution
techniques, will be merged with our UAF-GUARD.

6.2.1. Basic Scheme of Automated Vulnerability
Mining

Angr can help us analyze programs automatically. Specif-
ically, Angr is able to define any content in a program as
a symbol, traverse almost all execution paths automatically
and further retain the logical expression containing the
symbol according to such structures as program branch. If
the symbol of the logical expression is solvable, we thus
can obtain the corresponding symbol value which covers the

code execution path. The overview steps of the scheme are
as follows:

1) All variables are defined that users can control as sym-
bols.

2) According to the design of UAF-GUARD, the path with
the UAF vulnerability is selected to be the code execution
path.

3) Using Angr to analyze and handle the program automat-
ically, we can get a large number of logical expressions
which contain the input symbols.

4) SMT Solver (Satisfiability Modulo Theories Solver, such
as Z3 Research (2017)) is leveraged here to get the value
of the logical expressions.

5) To further verify the vulnerability and give a PoC to
prove the vulnerability, we artificially reproduce the vul-
nerability based on the value of the symbol.

The UAF vulnerability mining scheme based on the
combination between UAF-GUARD and symbolic execu-
tion is presentable, because the PoC report is sufficient
enough to prove the existence of a UAF vulnerability. Mean-
time, the scheme will enjoy efficiency and low overhead,
since it focuses on covering the targeted path while “ig-
noring" other paths (which saves time in detection), where
by the targeted path we mean those with vulnerabilities but

verified by our UAF-GUARD.

6.2.2. Improved Scheme via Fuzzing

Although being able to locate the logical expression of
the corresponding execution path, the basic scheme suffers
from some difficulties in the expression evaluation. One of
the difficulties is that the symbolic values may fall into a
large domain (for example, a value may be represented as a
string, or a file type) so that the SMT Solver has to take a long
time to solve it. Luckily, such a problem can be optimized
empirically. Another difficulty comes from the operators
in logical expression (e.g., modulo and power operations),
which will also need to spend a long time to solve it.

We stress that fuzzing (which is a common way of
software testing nowadays due to its simple design pattern)
can complement our overview scheme in such a way that we
can use a certain data set for logical expression verification,
and solve part of the symbols in order to accelerate the
solving process.

In terms of algorithm implementation, we can easily
improve the basic vulnerability mining scheme via fuzzing,
so that the resulting scheme is applicable to the systems with
considerable computing resources. In addition, we may still
need to select an appropriate fuzzing data set to provide good
code coverage.

6.3. Limitations

Although UAF-GUARD could defend the UAF vulner-
abilities efficiently at runtime, its space and time overhead
should be further saved, especially for the programs with
restricted performance resources. In future works, we will
try to reduce or merge the usage of instrumentation function
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Table 7

Comparison of UAF-GUARD with other solutions. Note that Runtime Method indicates if the detection algorithm is for runtime,
Explicit Check shows if the detection provides explicitly instrument check for UAF vulnerabilities except with pointer propagation,
False positive rate indicates if the algorithm yields high/low number of false alarm on benign input, Bypassing shows how the
detection can be bypassed with the exploitation techniques, and N/A indicates that the detection cannot be bypassed by far.

Detection Runtime  Explicit Low False o .
Algorithm Method Method ~ Check  Positive Rate Limitation/Bypassing
DANGNULL Lee, Song, Jand, Wang, Kim, Lu and Lee (2015) Dangling painter 7 X v Can't detect Type Ill UAF
nullifacation
: Dangling pointer
Undangle Caballero, Grieco, Marron and Nappa (2012) s i X 4 v N/A
CETS Nagarakatte, Zhao, Martin and Zdancewic (2010) Associating po.mter WI.th v X N/A
memory and taint tracing
. . Fabricate memory chunk
AddressSanitizer Serebryany, Bruening, Potapenko and Vyukov (2012)  Memory error detector X v v o eiedEGs i e
Memcheck Nethercote and Seward (2007) Memory error detector X v X N/A
SafeDispatch Jang, Tatlock and Lerner (2014) Control flow integrity X v v Modify non-control data
Cling Akritidis (2010) Safe heap memory v s v Fabricate heap memory
management mechanism chunk/controlling
Dieharder Novark and D. Berger (2010) safgliesp . v X v Fabricate heap TSNS
management mechanism chunk/controlling
UAF-GUARD Check permission of v & v N/A

pointer to memory

"check ()", optimize the strengthen red-black tree structure
and double linked list, and consider the memory reuse in the
implementation.

7. Related Work

7.1. Static Detection and Defense

Static analysis uses small instruction sets, for exam-
ple, REIL IL Dullien and Porst (2009), Bincoa Bardin,
Herrmann, Leroux, Ly, Tabary and Vincent (2011) and
BAP Brumley, Jager, Avgerinos and J. Schwartz (2011), to
convert binary programs into intermediate representations,
then use abstract interpretation Dolan-Gavitt, Hulin, Kirda,
Leek, Mambretti, Robertson, Ulrich and Whelan (2016) and
symbolic execution techniques Ye, Zhang and Han (2014)
to analyze the intermediate codes, build control flow graphs,
and extract vulnerabilities from the analysis results of the re-
verse software Guilfanov (2017). There are two long-lasting
difficulties in static analysis: a) when a detector encounters a
loop, it has to calculate the possible values of all the variables
in the loop and to know when the loop terminates. This is
known as the Turing Halting Problem and can’t be fully
addressed. b) the value of each memory address must be
changed dynamically with corresponding execution paths,
which may not scale well in practice.

7.2. Dynamic Detection and Defense

Fortunately, the above challenges do not exist in dynamic
analysis. Below, we will have some discussions on the cate-
gories of dynamic analysis.

7.2.1. Direct Detection
Direct Detection usually defend UAF exploits by detect-
ing the pointer directly.

Dangling pointer nullification. DANGNULL Lee et al.
(2015) and DangSan Kouwe, Nigade and Giuffrida (2017)
are the two classic direct detection systems which need to

nullify dangling pointer in time. When carrying out the
pointer propagation, DANGNULL and DangSan leverage
data structure to nullify all pointers which point to the same
freed memory. However, they yield the false negative w.r.t.
the Type III UAF vulnerabilities and meanwhile, they fail to
locate the position of the vulnerabilities.

Dangling pointer taint tracing. Undangle Caballero et al.
(2012) could modify memory allocation function in heap
memory management mechanism. It returns a unique label
and the memory block address while allocating the heap
memory and uses the dynamic taint analysis technique to
track the propagation of these labels. However, this tech-
nique has to maintain the information of pointer propagation
that yields an "extra" of detection overhead. In addition, it
cannot be used to detect Type III UAF.

Associating pointer with memory and taint tracing. This
technique, e.g., CETS Nagarakatte et al. (2010), generates a
unique metadata when allocating the heap memory space to
record the associated pointer. When taint propagation occurs
during pointer allocation and computation, only the meta-
data is updated to maintain the relationship between pointers
and memory. However, this approach does not consider the
case where multiple pointers may point to the same memory
after pointer propagation, which is therefore inevitable to
yield the false negative.

7.2.2. Indirect Detection

Unlike direct detection, the indirect technique makes use
of memory status detection, control flow integrity and secure
heap memory management mechanism.

Memory error detection. Most of this type, such as
AddressSanitizer Serebryany et al. (2012), and Memcheck
Nethercote and Seward (2007), can detect the UAF vulner-
abilities by maintaining the allocated memory status. Mem-
check is a prevalent solution that is built on top of Valgrind
to facilitate program debugging. However, high memory
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and CPU overhead required for error detection comes at a
price. AddressSanitizer Serebryany et al. (2012) optimizes
the representation of memory blocks, and its memory status
acquisition methods are based on existing advanced error
detection. However, this technique could be bypassed if
the heap memory allocation process is compromised. For
example, a possible strategy is to use Heap Spray Ratana-
worabhan et al. (2009) to force the memory block to be
reallocated on the released memory block, that construct a
condition, in which the methodAAZs premise is invalid, and
the exploitation of the UAF vulnerability could continue. On
the contrary, UAF-GUARD could record the information of
pointers and memory usage, while slidecode in Heap Spray
is working. The detailed information records by two data
structure enables attacks to be detected by check().

Control-Flow Integrity (CFI). CFI Jang et al. (2014);
Carlini, Barresi, Payer, Wagner and Gross (2015); Zhang
et al. (2013) enforces the indirect function call to be legiti-
mate, so as to prevent such control-flow hijacking (e.g., ROP
attack Carlini and Wagner (2014)) effectively. In practice,
most CFI methods leverage coarse-grained CFI to avoid
heavy overhead and false positive. Nevertheless, recent work
Davi et al. (2014); GAfiktas et al. (2014a,b); Chen, Xu,
Sezer, Gauriar and Iyer (2005) has found that all current
coarse-grained CFI methods can be bypassed.

Secure heap memory management mechanism. In Akri-
tidis (2010), only the objects with the same type can reuse
the memory. Nonetheless, the mechanism still can be by-
passed through heap manipulation, such as heap memory
forgery and the header modification of memory block. Os-
car H.Y. Dang, Maniatis and Wagner (2017) is a page-
permissions based realizations of lock-and-key protection
scheme. It implements UAF defense by changing the shadow
memory where the memory block is located. However, recy-
cling of virtual pages need to be considered.

8. Conclusion

In this work, previous schema called UAF-GUARD is
improved, based on the design of fine-grained memory per-
mission management, aiming to identify and locate UAF
vulnerabilities. We design a target instruction filtering al-
gorithm to improve the efficiency of UAF-GUARD by re-
ducing the detection overhead. We also expand the types of
instructions scanned by UAF and improve the data structure
stored between pointers and memory. Finally, we complete
experiments on a 64-bit linux system, and the results show
that UAF-GUARD is superior to other methods in accuracy
and cost defending against three types of uaf vulnerabilities.
In the future, we plan to improve the design and implemen-
tation of UAF-GUARD by symbolic execution and design
an automated UAF vulnerability discovery tool.

References

Akritidis, P., 2010. Cling: A memory allocator to mitigate dangling
pointers, in: Proceedings of the 19th USENIX conference on security

(USENIX Security *10), USENIX Association, Berkeley, CA, USA. pp.
12-12.

Bardin, S., Herrmann, P., Leroux, J., Ly, O., Tabary, R., Vincent, A., 2011.
The bincoa framework for binary code analysis, in: Proceedings of the
23rd international conference on Computer aided verification (CAV
’11), Springer-Verlag, Berlin. pp. 165-170.

Brumley, D., Jager, 1., Avgerinos, T., J. Schwartz, E., 2011. Bap: A binary
analysis platform, in: CAV 201 1: International Conference on Computer
Aided Verification, Springer, Berlin. pp. 463—469.

Caballero, J., Grieco, G., Marron, M., Nappa, A., 2012. Undangle:
early detection of dangling pointers in use-after-free and double-free
vulnerabilities, in: Proceedings of the 2012 International Symposium
on Software Testing and Analysis (ISSTA 2012), ACM, New York, NY,
USA. pp. 133-143. URL: http://dx.doi.org/10.1145/2338965.2336769.

Carlini, N., Barresi, A., Payer, M., Wagner, D.A., Gross, T.R., 2015.
Control-flow bending: On the effectiveness of control-flow integrity, in:
24th USENIX security symposium, USENIX Association, Washington.
pp. 161-176.

Carlini, N., Wagner, D.A., 2014. Rop is still dangerous: breaking modern
defenses, in: Proceedings of the 23rd USENIX conference on security
symposium (SEC’14), USENIX Association, Berkeley, CA, USA. pp.
385-399.

Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, RK., 2005. Non-control-
data attacks are realistic threats, in: Proceedings of the 14th conference
on USENIX security symposium, Berkeley, CA, USA. pp. 12-12.

(CWE), C.W.E., 2018. Cwe-416: Use after free. URL: https://cwe.mitre.
org/data/definitions/416.html. accessed October 11, 2018.

Davi, L., Sadeghi, A.R., Lehmann, D., Monrose, F., 2014. Stitching the
gadgets: on the ineffectiveness of coarse-grained control-flow integrity
protection, in: Proceedings of the 23rd USENIX conference on security
symposium (SEC’14), USENIX Association, Berkeley, CA, USA. pp.
401-416.

Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A., Robertson,
W.K., Ulrich, F., Whelan, R., 2016. Lava: Large-scale automated vul-
nerability addition, in: 2016 ITEEE Symposium on Security and Privacy
(SP), San Jose, CA. pp. 110-121. URL: https://doi.org/10.1109/SP.
2016.15.

Dullien, T., Porst, S., 2009. Reil: A platform-independent intermediate rep-
resentation of disassembled code for static code analysis, in: Proceedings
of Cansecwest, Vancouver.

Guilfanov, I., 2017. Hex-rays. URL: https://www.hex-rays.com/. accessed
October 11, 2018.

GAliktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G., 2014a. Out of
control: Overcoming control-flow integrity, in: Proceedings of the 2014
IEEE Symposium on Security and Privacy (SP ’14), IEEE Computer
Society, Washington. pp. 575-589. URL: https://doi.org/10.1109/SP.
2014.43.

GAdiktas, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis,
G., 2014b. Size does matter: why using gadget-chain length to prevent
code-reuse attacks is hard, in: Proceedings of the 23rd USENIX confer-
ence on security symposium (SEC’14), USENIX Association, Berkeley,
CA, USA. pp. 417-432.

Hat, R., 2012. Position independent executables (pie). URL: https:
//access.redhat.com/blogs/766093/posts/1975793. accessed October 11,
2018.

H.Y. Dang, T., Maniatis, P., Wagner, D., 2017. Oscar: A practical page-
permissions-based scheme for thwarting dangling, in: Proceedings of
the 26th USENIX Security Symposium, Vancouver, BC, Canada. URL:
https://dx.doi.org/10.14722/ndss.2019.23541.

Jang, D., Tatlock, Z., Lerner, S., 2014. Safedispatch: Securing c++ virtual
calls from memory corruption attacks, in: Symposium on Network and
Distributed System Security (NDSS ’14), San Diego, CA, USA. pp. 23—
26. URL: http://dx.doi.org/10.14722/ndss.2014.23287.

Kouwe, E.v.d., Nigade, V., Giuffrida, C., 2017. Dangsan: Scalable use-
after-free detection, in: Proceedings of the Twelfth European Conference
on Computer Systems (EuroSys "17), ACM, New York, NY, USA. pp.
405-419. URL: https://doi.org/10.1145/3064176.3064211.

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier

Page 13 of 16



Journal Pre-proof

UAF-GUARD

Lee, B., Song, C., Jand, Y., Wang, T., Kim, T., Lu, L., Lee, W., 2015.
Preventing use-after-free with dangling pointers nullification, in: Sym-
posium on Network and Distributed System Security (NDSS), ACM,
San Diego, CA, USA. pp. 8-11. URL: http://dx.doi.org/10.14722/
ndss.2015.23238.

Liu, D., Zhang, M., Wang, H., 2018. A robust and efficient defense against
use-after-free exploits via concurrent pointer sweeping, in: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’18), ACM, New York, NY, USA. pp. 1635-1648.
URL: https://doi.org/10.1145/3243734.3243826.

Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S., 2010. Cets:
compiler enforced temporal safety for c, in: Proceedings of the 2010
international symposium on Memory management, ACM, New York,
NY, USA. pp. 31-40. URL: https://doi.org/10.1145/1837855.1806657.

Nethercote, N., Seward, J., 2007. Valgrind: a framework for heavyweight
dynamic binary instrumentation, in: Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI *07), ACM, New York, NY, USA. pp. 89-100. URL:
https://doi.org/10.1145/1250734.1250746.

Novark, G., D. Berger, E., 2010. Dieharder: securing the heap, in: Proceed-
ings of the 17th ACM conference on Computer and communications
security (CCS "10), ACM, New York, NY, USA. pp. 573-584. URL:
https://doi.org/10.1145/1866307.1866371.

Ratanaworabhan, P., Livshits, V.B., Zorn, B.G., 2009. Nozzle: a defense
against heap-spraying code injection attacks, in: Proceedings of the
18th conference on USENIX security symposium (SSYM’09), USENIX
Association, Berkeley, CA, USA. pp. 169-186.

Research, M., 2017. The z3 theorem prover. URL: https://github.com/
Z3Prover/z3/. accessed October 11, 2018.

SearchSecurity, 2014. Address space layout randomization
(aslr). URL: https://searchsecurity.techtarget.com/definition/
address-space-layout-randomization-ASLR. accessed October 11, 2018.

Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D., 2012. Address-
sanitizer: a fast address sanity checker, in: Proceedings of the 2012
USENIX conference on Annual Technical Conference (USENIX ATC
’12), USENIX Association, Berkeley, CA, USA. pp. 28-28.

Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., Vigna, G., 2016. Driller: Augmenting
fuzzing through selective symbolic execution, in: Symposium on Net-
work and Distributed System Security (NDSS), San Diego, CA, USA.
URL: http://dx.doi.org/10.14722/ndss.2016:23368.

Swamy, S.N., Cristian, C., Elia, F., 2013.  Software vulnerability ex-
ploitation trends. URL: https://zh.scribd.com/document/262748190/
Software-Vulnerability-Exploitation-Trends. accessed October 11,
2018.

llvm-admin team, 2018. The llvm compiler infrastructure. URL: https:
//11vm.org/. accessed October 11, 2018.

UMWiki, 2015. Canary (buffer overflow). URL: http://www.cbi.umn.edu/
securitywiki/CBI_ComputerSecurity/MechanismCanary.html.accessed Oc-
tober 11, 2018.

Xu, G., Bai, H., Xing, J., Luo, T., Xiong, N.N., Cheng, X., Liu, S., Zheng,
X.,2022a. Sg-pbft: A secure and highly efficient distributed blockchain
pbft consensus algorithm for intelligent internet of vehicles. Journal of
Parallel and Distributed Computing 194, 1-1-1. URL: https://doi.org/
10.1016/3. jpdc. 2022.01.029.

Xu, G., Dong, W., Xing, J., Lei, W., Liu, J., Gong, L., Feng, M., Zheng,
X., Liu, S., 2022b. Delay-cj: A novel cryptojacking covert attack
method based on delayed strategy and its detection. Digital Commu-
nications and Networks URL: https://doi.org/10.1016/].dcan.2022.04.
030.. available online 13 May 2022.

Xu, G, Li, M,, Li, X., et.al, 2020. Defending use-after-free via relationship
between memory and pointer, in: Proceedings of the 2020 EAI Collab-
orateCom 2021 - 17th EAI International Conference on Collaborative
Computing: Networking, Applications and Worksharing.

Xu, W., Kashyap, S., Min, C., Kim, T., 2017. Designing new operating
primitives to improve fuzzing performance, in: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17), ACM, New York, NY, USA. pp. 2313-2328. URL: https:

//doi.org/10.1145/3133956.3134046.

Ye, J., Zhang, C., Han, X., 2014. Poster: Uafchecker: Scalable static
detection of use-after-free vulnerabilities, in: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security
(CCS ’14), ACM, New York, NY, USA. pp. 1529-1531. URL: https:
//doi.org/10.1145/2660267.2662394.

Yi, Q., Yang, Z., Guo, S., Wang, C., Liu, J., Zhao, C., 2018. Eliminating path
redundancy via postconditioned symbolic execution. IEEE Transactions
on Software Engineering , 25-43URL: https://doi.org/10.1109/TSE.
2017.2659751.

Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song,
D., Zou, W., 2013. Practical control flow integrity and randomization
for binary executables, in: Proceedings of the 2013 IEEE Symposium on
Security and Privacy (SP ’13), IEEE, Washington. pp. 559-573. URL:
http://dx.doi.org/10.1109/SP.2013.44.

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier

Page 14 of 16



Biography

Journal Pre-proof

UAF-GUARD

Guangquan Xu is a Ph.D. and full professor at the
Tianjin Key Laboratory of Advanced Networking
(TANK), College of Intelligence and Computing,
Tianjin University, China. He received his Ph.D.
degree from Tianjin University in March 2008. He
is a IET Fellow, members of the CCF and IEEE.
His research interests include cyber security and
trust management. He is the director of Network
Security Joint Lab and the Network Attack & De-
fense Joint Lab. He has published 100+ papers in
reputable international journals and conferences,
including IEEE IoT J, FGCS, IEEE access, PUC,
JPDC, IEEE multimedia, and so on. He served as
a TPC member for IEEE UIC 2018, SPNCE2019,
IEEE UIC2015, IEEE ICECCS 2014 and reviewers
for journals such as IEEE access, ACM TIST,
JPDC, IEEE TITS, soft computing, FGCS, and
Computational Intelligence, and so on.

Wenqing Lei is a master’s student at the Col-
lege of Intelligence and Computing, Tianjin Uni-
versity, China. He received his B.S. degree from
the School of Mechenical Engineering, Tianjin
University, China in 2016. His current research
interests include blockchain, Internet security and

cryptography.

Lixiao Gong is working toward the masteraAZs
degree in the College of Intelligence and Com-
puting, Tianjin University, China.She received the
bachelor degree in computer and science from
Institute of Technology of Tianjin University of
Finance and Economics in 2021.Her research in-
terests include IoT Security and Cryptographic Al-
gorithms.

Jian Liu received the B.S. and Ph.D. degrees from
the School of Mathematical Sciences at Nankai
University, Tianjin, China, in 2009, and 2015, re-
spectively. She was a visiting Ph.D. student at the
Department of Mathematics, University of Paris
VIII, Paris, France. She is currently an associate
professor with the School of Cybersecurity, Col-
lege of Intelligence and Computing, Tianjin Uni-
versity, Tianjin, China. Her research interests in-
clude cryptography and coding theory.

Hongpeng Bai is a Eng.D. student at the College
of Intelligence and Computing, Tianjin Univer-
sity, China. He received his master degree from
Changchun University of Science and Technology,
China, in 2021. His current research interests in-
clude Android Malware detection and Zero Trust.

Email: bai931214@tju.edu.cn

i
2

“'

Kai Chen received his Ph.D. degree in the Uni-
versity of Chinese Academy of Science in 2010;
then he joined the Chinese Academy of Science in
January 2010. He became the Associate Professor
in September 2012 and became the full Professor
in October 2015. His research interests include
software analysis and testing; smartphones and
privacy.

Ran Wang received the Master degree from the
School of Computer science and technology, Tian-
jin University, in 2019. He is currently with the
security center, JD.com, China. His main research
field is the network attack and defense.

Wei Wang received the Ph.D. degree in control
science and engineering from XidAZan Jiao- tong
University, in 2006. He was a Postdoc- toral Re-
searcher with the University of Trento, Italy, from
2005 to 2006. He was a Postdoctoral Researcher
with TELECOM Bretagne, and also with INRIA,
France, from 2007 to 2008. He is currently a Full
Professor with the School of Com- puter and In-
formation Technology, Beijing Jiao- tong Univer-
sity, China. He is an Editorial Board member of
Computers & Security and a Young AE of the
Frontiers of Computer Science. He has authored
or coauthored over 80 peer-reviewed papers in
various journals and international conferences. His
main research interests include mobile, computer,
and network security. He was a European ERCIM
Fellow of the Norwegian University of Science and
Technology (NTNU), Norway, and in Interdisci-
plinary Centre for Security, Reliability and Trust
(SnT), University of Luxembourg, from 2009 to
2011.

Kaitai Liang received the Ph.D. degree from the
Department of Computer Science, City University
of Hong Kong, in 2014. He is currently an As-
sistant Professor with Delft university of technol-
ogy, Netherlands. His research interests are ap-
plied cryptography and information security in
particular, encryption, blockchain, post-quantum
crypto, privacy enhancing technology, and security
in cloud computing.

Weizhe Wang received his bachelor degree from
Changchun University of Science and Technology
in 2018. He is currently pursuing his master de-
gree at both College of Intelligence and Comput-
ing, Tianjin University and School of Information
Science, Japan Advanced Institute of Science and
Technology. His research interests include cyber
security, privacy protection.

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier

Page 15 of 16



Journal Pre-proof

UAF-GUARD

Weizhi Meng is currently an assistant profes-
sor in the Cyber Security Section, Department
of Applied Mathematics and Computer Science,
Technical University of Denmark (DTU), Den-
mark. He obtained his Ph.D. degree in Computer
Science from the City University of Hong Kong
(CityU), Hong Kong. Prior to joining DTU, he
worked as a research scientist in Info-comm Secu-
- rity (ICS) Department, Institute for Infocomm Re-
y search, A*Star, Singapore, and as a senior research
associate in CS Department, CityU. He won the
Outstanding Academic Performance Award during
his doctoral study, and is a recipi-ent of the Hong
Kong Institution of Engineers (HKIE) Outstand-
ing Paper Award for Young Engineers/Researchers
inboth 2014 and 2017. He is also a recipient of Best
Paper Award from ISPEC 2018, and Best Student
Paper Award from NSS 2016 and Inscrypt 2019.
His primary research interests are cyber security
and intelligent technology in security, including
intrusion de-tection, smartphone security, biomet-
ric authentication, HCI security, trust computing,
blockchain in security, and malware analysis. He
served as program committee members for 50+
international conferences. He is a senior member
of IEEE.

Shaoying Liu holds a B.Sc and a M.Sc degree in
Computer Science from Xi’an Jiaotong University,
China, and the Ph.D in Computer Science from the
University of Manchester, U.K. He worked as As-
sistant Lecturer and then Lecturer at Xi’an Jiaotong
University, Research Associate at the University
of York, and Research Assistant in the Royal Hol-
loway and Bedford New College at the University
of London, respectively, in the period of 1982 -
1994. He joined the Department of Computer Sci-
ence at Hiroshima City University as Associate
Professor in April 1994, and the Department of
Computer Science in the Faculty of Computer
and Information Sciences at Hosei University in
April 2000. In April 2001 he was promoted to
a Professor. From 1st April 2020, he has been
working at Hiroshima University as a Professor.
He was invited as a Visiting Research Fellow to
The Queen’s University of Belfast from December
1994 to February 1995, a Visiting Professor to the
Computing Laboratory at the University of Oxford
from December 1998 to February 1999, and a
Visiting Professor to the Department of Computer
Science at the University of York from April 2005
to March 2006. From 2003 he is also invited as
an Adjunct Professor to Shanghai Jiaotong Univer-
sity, Xi’an Jiaotong University, Xidian University,
and a Visiting Professor to Shanghai University,
Xi’an Polytechnic University, Bejing Jiaotong Uni-
versity, and Beijing University in China, respec-
tively. He is IEEE Fellow, British Computer So-
ciety (BCS) Fellow, and member of Japan Society
for Software Science and Technology.

G. Xu, W. Lei, L. Gong et al.: Preprint submitted to Elsevier Page 16 of 16



Journal Pre-proof

Declaration of interests

[xI The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

OThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:



Journal Pre-proof

CRediT Author Statement
Guangquan Xu: Supervision, Conceptualization, Funding acquisition Wengqing Lei:
Methodology, Software, Writing- Review & Editing Lixiao Gong: Validation, Formal
analysis. Jian Liu: Investigation Hongpeng Bai: Resources Kai Chen: Visualization
Ran Wang: Writing — Original Draft Wei Wang: Funding acquisition Kaitai Liang:
Project administration Weizhe Wang: Project administration Weizhi Meng: Writing —

Review & Editing Shaoying Liu: Writing — Review&Editing



