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Abstract

Given a function based on the computation of an NP machine, can one in general
eliminate some solutions? That is, can one in general decrease the ambiguity? This
simple question remains, even after extensive study by many researchers over many
years, mostly unanswered. However, complexity-theoretic consequences and enabling
conditions are known. In this tutorial-style article we look at some of those, focusing on
the most natural framings: reducing the number of solutions of NP functions, refining
the solutions of NP functions, and subtracting from or otherwise shrinking #P functions.
We will see how small advice strings are important here, but we also will see how
increasing advice size to achieve robustness is central to the proof of a key ambiguity-
reduction result for NP functions.

1 Introduction

Seal up the mouth of outrage for a while,

Till we can clear these ambiguities.

—Shakespeare, Romeo and Juliet, Scene 5, Act 3.

In everyday life it is natural to value clarity, and in particular to value those cases

when a problem has a single, crisp answer. For example, if the question is, “Who won this
∗This article is based on an invited talk at the Eighth Workshop on Descriptional Complexity of Formal

Systems. Supported in part by grant NSF-CCF-0426761. URLs: http://www.cs.rochester.edu/u/pfali,
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presidential election?”, not many people would be happy with the answer “Maybe Al Gore

did and maybe George W. Bush did” or with the answer “Both Al Gore and George W.

Bush did.” And if a baseball team is deciding who will have the lead-off spot in the batting

order, “Al and George will” is far from an acceptable outcome.

In theoretical computer science, issues of ambiguity and multiplicity are also quite cen-

tral. For a regular language, we may wonder about the size of the smallest unambiguous

finite automata that accepts it. For a context-free language, we may ask whether it has an

unambiguous context-free grammar. For an NP language, we may ask whether it is in UP,

the unambiguous version of NP. For a multivalued NP function, we may ask whether it

has a single-valued refinement—a pruning that on each instance on which the function has

many solutions thins it down to exactly one solution.

In this paper, we will survey the issue of whether multiplicities can be reduced—whether

solutions can be eliminated—in the case of functions involving NP machines. In particular,

we will try to gather together and put in context for the reader as many of the known

results on this as this article’s space and flow constraints allow and, in some selected cases,

will try to convey the flavor of representative proofs.

We will study the two most natural domains in which solution reduction is studied for

functions based on NP machines: (a) reducing and refining solutions of NPMV functions

(multivalued NP functions) and (b) reducing #P functions. It would be nice if all such

reductions could be achieved with neither cost nor consequence. However, this seems not

to be the case. Rather, in some cases solution reduction can be done and in other cases

solution reduction can be shown to imply unlikely complexity-theoretic consequences.

This paper is structured as follows. Section 2 looks at solution reduction and solution

refinement for NPMV functions. We will see that reducing solutions by polynomial-time

computable, polynomially-bounded amounts is easy, but that refining solutions from many

to one (or even from two to one) is impossible unless the polynomial hierarchy collapses.

In the proof of this latter result we will see that small advice strings play a central role

but that accepting an increase in advice size—in order to gain robustness—is the critical

step in the proof. Section 3 focuses on the closure properties of #P—the class of functions

that reflect the number of accepting paths of NP machines—with respect to decreasing

operations, e.g., proper decrement, proper subtraction, minimum, integer division, etc. We

will see that for each of these cases, #P is not closed under that type of decrease unless an

unlikely complexity class collapse occurs.

Globally, we will take our alphabet Σ to be {0, 1}, N will denote {0, 1, 2, . . .}, N+ will
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denote {1, 2, 3, . . .}, and for n, m ∈ N, n −̇ m denotes max(n−m, 0).

2 Reducing and Refining NPMV Functions

This section focuses on whether we can reduce or refine the solutions of multivalued NP

functions. Let us start by defining the classes and notions that will be needed.

2.1 Definitions

Let f be a (potentially) partial, (potentially) multivalued function. (In mathematics, one

would call f a special kind of relation, but in theoretical computer science the term “mul-

tivalued function” is the norm in this context.) So, on each input x, either f is undefined

or some strings from Σ∗ are viewed as outputs of f . Following the standard notational

approach to multivalued functions (see [Sel94]), we will set set-f(x) = {y | y is an output

of f(x)}. Note in particular that set-f(x) = ∅ if and only if f(x) is undefined. The “set-”

notation avoids having to treat “undefined” as a special case, since it converts everything

to clean output sets.

The classes of multivalued and single-valued NP functions, NPMV and NPSV, were

introduced in the seminal paper of Book, Long, and Selman [BLS84]. These functions are

structured as follows. Given a nondeterministic Turing machine N having a designated out-

put tape whose running time (i.e., the maximum number of steps of any of its computation

paths) is polynomially bounded in the length of its input, on a given input we view each

path that rejects as having no output. We view each path that accepts as outputting (a

single string, namely) whatever string is between the fixed left-end marker of the machine’s

output tape and the cell under the output tape head (but not including the content of either

of those cells). We view the machine, overall, as computing a potentially partial, potentially

multivalued function f , where the outputs of f on input x are precisely the outputs of N ’s

accepting paths.

NPMV is the class of all partial, multivalued functions computed by nondeterministic

polynomial-time machines. NPSV is defined as the set of all NPMV functions f such

that (∀x ∈ Σ∗)[‖set-f(x)‖ ≤ 1]. NPMVtotal (respectively, NPSVtotal) denotes all f ∈
NPMV (respectively, NPSV) such that (∀x ∈ Σ∗)[‖set-f(x)‖ ≥ 1]. These classes have been

studied for many years, though under differing notations ([BLS84], and see also the excellent

survey [Sel94]). What in this paper we for clarity denote as NPMVtotal and NPSVtotal are

usually referred to simply as NPMVt and NPSVt in the literature.
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Note that it is completely legal for different paths of an NP machine (modeling an

NPMV function) to output the same value. However, since we view set-f(x) as a set rather

than a multiset, a given element is simply a regular member of set-f(x) regardless of the

(nonzero!) number of paths on which it is output. Also, note that it is completely legal for

a multivalued function to happen to sometimes or always have only one output value—by

multivalued we just mean “allowed to have multiple values.”

We will be concerned with eliminating solutions from NPMV functions.

Definition 2.1 Given partial, multivalued functions f and g, we say that g is a fair reduc-

tion of f exactly if (∀x ∈ Σ∗)[set-g(x) ⊆ set-f(x)].

Of course, every partial, multivalued function f is a fair reduction of itself, and the

always undefined function is a fair reduction of all partial, multivalued functions. The

latter fact makes clear why fair reductions are not the “right” notion to study: We want

to prune down the number of outputs of multivalued functions—but certainly not to the

point of eliminating all solutions. Rather, our dream case is to prune down from multiple

solutions to one solution.

To capture the type of reduction we truly wish for, the right notion is not that of fair

reduction, but rather is the notion of refinement.

Definition 2.2 ([Sel94]) Given partial, multivalued functions f and g, we say that g is a

refinement of f , denoted g ⊆c f , exactly if g is a fair reduction of f and (∀x ∈ Σ∗)[set-g(x) 6=
∅ iff set-f(x) 6= ∅].

That is, a refinement removes zero or more values from the output set, but never removes so

many as to cross from having some outputs to having no outputs. It is true that each f will

trivially be a refinement of itself, but theorems about refinement generally block that case

via conditions that ensure that, unless f is NPSV to begin with, solution eliminations will

occur (the exact nature of which will vary from theorem statement to theorem statement).

2.2 Fairly Reducing NPMV Functions by Small Amounts Can Be Done

for Free

It is rather unfortunate that the natural goal is to understand refinements rather than to

understand fair reductions. The reason it is unfortunate is that eliminating small numbers

of solutions turns out to be easy and consequence-free for the case of fair reductions.
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Theorem 2.3 NPMV is closed under fair reduction via proper subtraction of polynomial-

time computable (or even NPSVtotal-computable1), polynomially value-bounded numbers of

solutions. (That is, if f ∈ NPMV and g : Σ∗ → N is a total, polynomial-time computable

(or even NPSVtotal-computable) function such that for some polynomial r it holds that

(∀x ∈ Σ∗)[g(x) ≤ r(|x|)], then there exists some function h ∈ NPMV such that h is a fair

reduction of f and, for each x ∈ Σ∗, it holds that ‖set-h(x)‖ = ‖set-f(x)‖ −̇ g(x).)

Proof. Let N be an NPTM modeling f . Compute g(x) ∈ N. Since g(x) ∈ NPSVtotal, we

do this nondeterministically, and on all paths that compute an output value (and note that

all those will compute the same output value) do the following. Nondeterministically guess

a 1 + g(x) tuple of distinct computation paths of N on input x. If all 1 + g(x) paths are

accepting paths and have pairwise distinct outputs, then on the current path output the

lexicographically largest output. Otherwise, the current path has no output (rejects). It is

easy to see that we have just given an NP machine whose outputs on each x are exactly

all the elements of set-f(x) (if any) that are not among the g(x) lexicographically smallest

elements of set-f(x). q

So, for example, NPMV is closed under fair reduction via proper decrement. We will

see in Section 3 that #P lacks that closure unless NP ⊆ SPP, and for the case of refinement

we will see in Section 2.3 that even refining from (at most) two solutions to (at most) one

would collapse the polynomial hierarchy.

There is a class, SpanP [KST89], that focuses on the number of distinct outputs of NP

machines. Note that Theorem 2.3, due to its focus on cardinality reduction, is close to being

a theorem about SpanP being closed under proper subtraction of simple, small functions

(we have not been able to yet find that theorem in the literature, but it certainly seems a

natural theorem that thus might be already known), except Theorem 2.3 is in fact stronger,

since Theorem 2.3 is not merely reducing the “span” of an NPMV function, but is even

doing so in a way that respects solution names (that is, that employs a fair reduction).

Exactly due to this connection between fair reductions and SpanP, it is certainly true

that if NPMV is closed under fair reduction via proper subtraction of polynomial-time

computable functions (note that we have removed the limitation that they be small in

value), then SpanP is closed under proper subtraction of polynomial-time computable func-

tions. Ogiwara and Hemachandra [OH93] have shown that the latter closure is completely
1Technically, NPSVtotal functions map from Σ∗ to a single-valued subset of Σ∗, but via a bit of type

coercion and the standard bijection between N and Σ∗ we may view them in this particular setting as a way

of computing a mapping from Σ∗ to N.
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characterized by the complexity class collapse NP = C · NP (“C ·” has its usual literature

meaning, namely, application of the counting operator associated with PP) or, equivalently,

NP = PH = C=P = PP = CH. So, certainly “NPMV is closed under fair reduction via

proper subtraction of polynomial-time computable functions” implies that collapse. How-

ever, we observe that it is not hard to see that NP = PH = C=P = PP = CH implies

“NPMV is closed under fair reduction via proper subtraction of polynomial-time com-

putable functions.” To see this, the crucial thing to note is that in PPNP we can accept the

set that (for a fixed machine N modeling an NPMV function, call it f) answers the question

(the input to the set is 〈x, n, y〉) “On input x is it the case that y ∈ set-f(x) and there are at

least n elements in set-f(x) that are lexicographically less than y.” But PPNP ⊆ CH, and so

the assumption NP = CH makes it easy to see the desired implication (similarly to the proof

of Theorem 2.3, we can kill off an appropriate collection of lexicographically smallest output

values). So putting together the previous comments, NPMV is closed under fair reduction

via proper subtraction of polynomial-time computable functions exactly if NP = C · NP.

It is also easy to see that this remains true even if the subtracted functions are allowed to

be NPSVtotal-computable: Our algorithm can simply start off by NPSVtotal-computing the

number of solutions to remove, and then each path that successfully computes that value

proceeds using the above approach.

Theorem 2.4 The following conditions are equivalent.

1. NPMV is closed under fair reduction via proper subtraction of polynomial-time com-

putable functions.

2. NPMV is closed under fair reduction via proper subtraction of NPSVtotal-computable

functions.

3. NP = C ·NP.

Equivalently, in light of [OH93] and the above discussion, NPMV is closed under fair reduc-

tion via proper subtraction of polynomial-time computable functions (or even NPSVtotal-

computable functions) exactly if SpanP is closed under proper subtraction of polynomial-

time computable functions. [OH93] provides about a dozen other statements that are equiv-

alent to each of these statements, i.e., that are also characterized by NP = C ·NP.

Readers interested in the class defined by the closure of SpanP under subtraction (not

proper subtraction, but subtraction; so this class will have functions that can take on
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negative values) are referred to the interesting work of Mahajan, Thierauf, and Vinodchan-

dran [MTV94], which provides for SpanP a “gap”-like analog that parallels the relationship

of GapP to #P.

2.3 Refining NPMV Functions to Unique Solutions Collapses the Poly-

nomial Hierarchy, As Do Many Other Refinement Hypotheses

In this section we survey the known cases in which refining NPMV functions collapses the

polynomial hierarchy.

Let NP2V denote all f ∈ NPMV satisfying (∀x ∈ Σ∗)[‖set-f(x)‖ ≤ 2] [HNOS96].

Among the standard classes we will employ are PH (the polynomial hierarchy: P ∪ NP ∪
NPNP ∪ . . .) [MS72,Sto76], ZPP (zero-error probabilistic polynomial time) [Gil77], S2 (the

symmetric version of NPNP) [Can96,RS98], and SNP∩coNP
2 (all sets computable via relativiz-

ing S2 with sets from NP∩coNP) (see [CCHO05]). For completeness we give the definitions

of S2 and SNP∩coNP
2 .

Definition 2.5 1. ([Can96,RS98]) A language L is in S2 if there exists a polynomial-

time computable 3-argument boolean predicate P and a polynomial p such that, for all

x ∈ Σ∗,

(a) x ∈ L ⇐⇒ (∃y ∈ Σ∗ : |y| = p(|x|))(∀z ∈ Σ∗ : |z| = p(|x|))[P (x, y, z) = 1], and

(b) x /∈ L ⇐⇒ (∃z ∈ Σ∗ : |z| = p(|x|))(∀y ∈ Σ∗ : |y| = p(|x|))[P (x, y, z) = 0].

2. ([CCHO05]) A language L is in SNP∩coNP
2 if there exists a 3-argument boolean predicate

P ∈ NP ∩ coNP and a polynomial p such that, for all x ∈ Σ∗,

(a) x ∈ L ⇐⇒ (∃y ∈ Σ∗ : |y| = p(|x|))(∀z ∈ Σ∗ : |z| = p(|x|))[P (x, y, z) = 1], and

(b) x /∈ L ⇐⇒ (∃z ∈ Σ∗ : |z| = p(|x|))(∀y ∈ Σ∗ : |y| = p(|x|))[P (x, y, z) = 0].

However, for the purposes of this paper, the only thing important to remember is that

NP ∪ coNP ⊆ S2 ⊆ SNP∩coNP
2 ⊆ ZPPNP ⊆ NPNP ∩ coNPNP.

Also, we will need to draw on the notion of Karp–Lipton advice classes, in particular

(NP ∩ coNP)/poly.

Definition 2.6 (instantiating [KL80] to the case of (NP ∩ coNP)/poly)

(NP ∩ coNP)/poly denotes each set L such that there exists a set A ∈ NP ∩ coNP
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and a polynomially length-bounded function f : Σ∗ → Σ∗ such that, (∀x ∈ Σ∗)[x ∈ L ⇐⇒
〈x, f(0|x|)〉 ∈ A].

Informally put, there is an “advice-interpreter” set in NP∩ coNP (this will soon come back

to haunt us!) that with the right advice (which is short and depends only on the length

of x) accepts exactly A. (NP ∩ coNP)/quadratic is analogous to Definition 2.6 except with

f required to be quadratically length-bounded.

We will draw on the following recent result, which we state without proof.

Theorem 2.7 ([CCHO05]) NP ⊆ (NP ∩ coNP)/poly =⇒ SNP∩coNP
2 = PH.

Finally, we will draw on two more items. The first is the notion of NPSV-selectivity,

and the second is a relatively easy lemma linking refinement to NPSV-selectivity.

Definition 2.8 ([HNOS96]) A set L is said to be NPSV-selective if there is a function

f ∈ NPSV such that

(a) (∀x, y ∈ Σ∗)[set-f(x, y) ⊆ {x, y}] and

(b) (∀x, y ∈ Σ∗)[{x, y} ∩ L 6= ∅ =⇒ (set-f(x, y) 6= ∅ ∧ set-f(x, y) ⊆ A)].

Lemma 2.9 ([HNOS96]) The following are equivalent.

1. All NPMV functions have NPSV refinements.

2. All NP2V functions have NPSV refinements.

3. All NP sets are NPSV-selective.

Proof. 1 =⇒ 2 is immediate. Regarding 2 =⇒ 3, note that for each NP set L there

clearly is an NP2V function fL such that (∀x, y ∈ Σ∗)[set-fL(x, y) = L ∩ {x, y}]. Note that

if fL has an NPSV refinement, that refinement proves under Definition 2.8 that L is NPSV-

selective. So 2 =⇒ 3. Regarding 3 =⇒ 1, let f be an NPMV function computed by

NPTM N . Consider the set A = {〈x, s〉 | x ∈ Σ∗ and b ∈ {0, 1}∗ and there is some accepting

path of N on input x whose nondeterministic guess sequence has s as a prefix}. Note that

A ∈ NP. But if A is NPSV-selective, via NPSV function g, we can (deterministically) check

whether N(x) has no nondeterministic guesses and if so we are done and we output the

corresponding output if any, and otherwise we run g(〈x, 0〉, 〈x, 1〉) and every accepting path

of that checks whether the guess sequence it found is the full guess sequence for that path,

and if so outputs the corresponding output if any, and otherwise continues the self-reduction
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process one more level (i.e., on a path that found that 〈x, 0〉 is output by g(x), move on to

simulating g(〈x, 00〉, 〈x, 01〉)). We always, in calling g, order its arguments g(〈x, α〉, 〈x, β〉)
when α ≤lex β. Note that the just-described process creates an NPSV refinement of f , so

3 =⇒ 1. q

We finally must state the key link between refinement and hierarchy collapse.

Theorem 2.10 ([HNOS96]) NPSV-selective ∩NP ⊆ (NP ∩ coNP)/poly.

We can now show that unique solutions collapse the polynomial hierarchy. The follow-

ing result is due to [HNOS96], except it is stated here with the stronger conclusion that

Theorem 2.7 (of [CCHO05]) gave it.

Theorem 2.11 ([HNOS96] in light of [CCHO05]) If all NPMV functions (or even all

NP2V functions) have NPSV refinements, then SNP∩coNP
2 = PH.

Proof of Theorem 2.11. If all NPMV functions have NPSV refinements (or even

all NP2V functions do) then by Lemma 2.9 all NP sets are NPSV-selective. So by

Theorem 2.10, NP ⊆ (NP ∩ coNP)/poly. So by Theorem 2.7, SNP∩coNP
2 PH. q

We are done, except for the proof of Theorem 2.10. We do not formally prove that, but

rather we will give a high-level exposition of the proof. (For a formal proof, see [HNOS96].)

Suppose we are given an NP set L that is NPSV-selective via NPSV function f . Without the

loss of generality, f is symmetric (i.e., (∀x, y ∈ Σ∗)[f(x, y) = f(y, x)])—otherwise replace f

with f ′(a, b) = f(min(a, b),max(a, b)), which is symmetric and which can easily be seen to

be an NPSV-selector for L since f is an NPSV-selector for L. Consider for some arbitrary

n ∈ N the set Ln = L ∩ Σn. Imagine each element of Ln being a node in a tournament

such that, for a, b ∈ Ln, a 6= b, there is an edge from a to b if and only if b ∈ set-f(a, b).

By a standard divide-and-conquer argument, originally used by Ko [Ko83] in the related

context of showing that P-selective ⊆ P/poly, it is easy to see (the first step is to eliminate

half the graph by choosing as part of Sn some node that points to at least half the other

nodes—by counting, some such node must exist) that there will be a subset, Sn, of Ln of

cardinality at most blog2(‖Ln‖+ 1)c such that Ln = {y ∈ Σn | (∃a ∈ Sn)[y ∈ set-f(a, y)]}.
Since ‖Ln‖ ≤ 2n and each string in Sn has n bits, clearly Sn can be coded using O(n2) bits.

It would be wonderful to declare victory now, via claiming that we have an (NP ∩
coNP)/quadratic attack that on length n inputs uses Sn as the advice and sees whether

an input x, |x| = n, beats at least one element of Sn. This at first would seem to work

perfectly, but in fact there is a subtle yet severe problem.
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That problem can be seen as follows. Imagine the allegedly “NP ∩ coNP” set of (NP ∩
coNP)/quadratic that on input 〈x,B〉 takes the advice B = {a1, a2, . . . , ak} (allegedly B =

S|x|) and runs f(x, a1) and on each path that accepts (and thus chooses x or a1) runs f(x, a2)

and on each path that accepts... etc., etc. At the end of this sequence, assuming B = S|x|,

each path that found an accepting path for each of the k applications of f definitively knows

that x ∈ L (namely, if at least one of the k applications of f had x as an output) or knows

that x /∈ L (namely, if none of the k applications yielded x as the output). The problem is

the innocent-looking “assuming B = S|x|”! Everything we just described works perfectly if

B = S|x|, i.e., if we are given the correct advice. But the definition of (NP ∩ coNP)/poly

requires the advice interpreter to be an NP ∩ coNP set, and since the alleged advice is

part of that set’s input, that means we must be “NP ∩ coNP”-like even when given lies for

advice. Informally put, “NP∩coNP”-like means having a machine that on each input has at

least one path that accepts or rejects, each accepting or rejecting path must be correct, and

paths also are allowed to neither accept nor reject. (The technical term for such “NP∩coNP

machines” is “strong” computation (see [Lon82,Sel78]).) However, our selector f is NPSV,

not necessarily NPSVtotal! If B = S|x| then all the ai’s are members of L, and so each

f(x, ai) is defined since ai ∈ L =⇒ set-f(x, ai) 6= ∅ (by the definition of NPSV-selectivity).

But if B is untrue advice and contains some ai that does not belong to L and x /∈ L, then

f(x, ai) may be undefined and our computation is not “NP ∩ coNP”-like and the proof is

in shambles.

The fix is to trade advice size for robustness. Instead of quadratic-sized advice, S|x|, let

us instead require the advice to be S|x| plus, for each ai ∈ S|x|, a proof that ai ∈ L. Since

L ∈ NP, such proofs exist. Now, our “NP∩ coNP”-like attack is home free. Given the true

advice, it does the right thing, as described above. Given a giant lie—a bunch of ai’s not

all accompanied by valid membership proofs—it will detect that it is being lied to, and will

reject. And, most interestingly, given a subtle lie—an advice set B′ = {a1, a2, . . . , ak} whose

ai’s are all length |x| strings and that all are accompanied by valid membership proofs in

L but such that B′ does not happen to have the property (which S|x| crucially does have)

that Ln = {y ∈ Σn | (∃a ∈ B)[y ∈ set-f(a, y)]}—we will fail to detect that we are being

lied to, but nonetheless will act in an “NP∩ coNP”-like fashion, since the fact that each ai

belongs to L ensures that each application of f(x, ai) has an output. In brief, by going from

quadratic to polynomial advice (the polynomial depends on the certificate size of L ∈ NP),

we made our advice interpreter robust enough to weather lies.

This completes the proof sketch for Theorem 2.10.
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We conclude this section by briefly listing results more recent than Theorem 2.11 that

show additional cases where refining solutions collapses the polynomial hierarchy. To do

so, we will use the notation that for each A ⊆ N+, NPAV denotes all NPMV functions

f such that (∀x ∈ Σ∗)[‖set-f(x)‖ ∈ A ∪ {0}] [HOW02]. For example, NPMV = NPN+V,

NPSV = NP{1}V, and NP2V = NP{1,2}V. So Theorem 2.11 says NP{1,2}V ⊆c NP{1}V =⇒
SNP∩coNP

2 = PH. The following results give other hypotheses sufficient to collapse the

hierarchy, but unfortunately they collapse it to a level substantially higher than SNP∩coNP
2 .

The reason is that no analog of Theorem 2.10 is known for these cases, and so the proofs

use weaker techniques such as direct quantifier exchange.

Theorem 2.12 ([NRRS98]) Let k ∈ N+. If NP{1,2,...,k+1}V ⊆c NP{1,2,...,k}V, then

NPNP = PH.

Theorem 2.13 ([Ogi96]) Let 0 < γ < 1. If NPN+V ⊆c NP{1,2,...,bmax(1,nγ)c}V (here n is

the length of the input), then NPNP = PH.

Even more recently, the following flexible but complex cases have been established (note

that Theorem 2.15 implies Theorem 2.12).

Theorem 2.14 ([HOW02]) Let A,B ⊆ N+ be nonempty. Suppose there exist four inte-

gers c > 0, d > 0, e ≥ 0, and δ ≥ 0 satisfying the following conditions:

1. d ≤ c ≤ 2d and δ < 2d− c,

2. c, 2d + e ∈ A,

3. c− δ ≤ min{i | i ∈ B} ≤ c, and

4. 2d− (2δ + 1) ≥ max{i ∈ B | i ≤ 2d + e}.

Then NPAV ⊆c NPBV implies NPNP = PH.

Theorem 2.15 ([HOW02]) Let k ≥ 2 and d, 1 ≤ d ≤ k − 1, be integers. Let A,B ⊆ N+

be such that
(
k−1
k−d

)
∈ A,

(
k

k−d

)
∈ A, and max{i | i ∈ B and i ≤

(
k

k−d

)
} ≤ dk

de − 1. Then

NPAV ⊆c NPBV implies NPNP = PH.

We refer the reader to [HOW02] for a wide variety of corollaries that follow from

Theorems 2.14 and 2.15, for proofs of these results, and for a discussion of how an even

more general “lowness” result can unify and extend further these claims.
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This section focused on cases where refining solutions implies hierarchy collapses. For

completeness, we mention that there is a relatively general result known showing that in

many cases one can nontrivially refine functions. Theorem 2.16 is proven by tuple trickery

reminiscent in flavor to that used in the proof of Theorem 2.3.

Theorem 2.16 ([HOW02]) Let A ⊆ N+ and B ⊆ N+ be finite sets such that A =

{a1, . . . , am} with a1 < a2 < · · · < am. If ‖A‖ = 0 or (∃b1, . . . , bm : 0 < b1 < · · · <

bm)[{b1, . . . , bm} ⊆ B and a1 − b1 ≥ · · · ≥ am − bm ≥ 0], then NPAV ⊆c NPBV.

For example, Theorem 2.16 yields NP{10,20,100}V ⊆ NP{5,12,92}V.

3 Reducing #P Functions

The goal of this section is to survey known results regarding reducing the number of solutions

of #P functions. For example, given two #P functions f and g, is the function h(x) =

f(x) −̇ g(x) aways a #P function? Alternatively, can we show some unlikely complexity-

theoretic consequence that would follow were #P to be closed under proper subtraction?

We will see that the latter seems to be the case.

The class #P was defined by Valiant [Val79]. A function f is in #P if there exists a

nondeterministic Turing machine N such that, for each string x, f(x) equals the number

of accepting paths of N on input x. Some typical examples of #P functions include the

function that given a boolean formula φ returns the number of satisfying assignments of φ,

and the function that given a graph and a positive integer k returns the number of distinct

k-colorings of that graph.

We say that f is a closure property if there exists a positive integer i such that f is

a function from Ni to N [OH93]. Within this paper we will mostly be interested in the

cases i = 2 (e.g., proper subtraction, integer division, 2-ary minimum) and i = 1 (e.g.,

proper decrement, integer division by two). One may consider this framework to apply also

to functions that take as arguments not a tuple of natural numbers but rather a tuple of

strings, in such cases implicitly invoking the standard bijection between N and Σ∗. In fact,

we assume that coercions in either direction between N and Σ∗ are done implicitly via such

a bijection whenever from the context it is clear that such coercing is needed, even if we do

not explicitly mention it. f is said to be a P-closure property if f is a closure property and

f is computable in polynomial time.

Definition 3.1 ([OH93]) Let f : Ni → N be a closure property. We will say that #P is
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closed under f—or, equivalently, will say that f is a closure property of #P—if it holds

that (∀g1, g2, . . . , gi ∈ #P)[f(g1(x), g2(x), . . . , gi(x)) ∈ #P].

Note that #P has some very natural closure properties. For example, #P is closed

under addition and multiplication [Reg85]. Let f and g be two #P functions and let Nf

and Ng be two nondeterministic Turing machines via which f and g are defined. #P is

closed under addition because we can construct a nondeterministic Turing machine Nf+g

that on input x nondeterministically chooses one of Nf (x) and Ng(x) to simulate and

then nondeterministically performs that simulation. Closure under multiplication follows

from the fact that on input x we can first simulate Nf (x) and then on every accepting

path we can simulate Ng(x). However, in this paper we are interested in those closure

properties that have the potential to decrease values. Such closure properties include proper

subtraction, proper decrement, integer division, minimum, etc. Note that we have to use

proper subtraction/decrement and integer division since the codomain of #P functions is

N.

The nature of reducing the number of solutions of #P functions is quite different from

the nature of reducing the number of outputs of NPMV functions. For example, if f were

an NPSV refinement of some NPMV function g, it would be totally legal for f to have,

on some (or even all) inputs, more accepting paths than g, provided that for a given input

each of the accepting paths would output the same value. The same comment applies to

fair reductions of solutions. In particular, by Theorem 2.3 we know that NPMV is closed

under fair reductions via proper decrement. However, as we will see, if #P is closed under

proper decrement, then an unlikely complexity class collapse occurs.

The study of the complexity of closure properties of #P (and some other function

classes that we will not discuss here—SpanP, MidP, and OptP) was initiated by Ogiwara

and Hemachandra [OH93]. One of the most important contributions of their work was

introducing the concept of a “hard” P-closure property for a given function class and showing

that #P does indeed have such “hard” P-closure properties. Let f : Ni → N be a closure

property. We will say that f is a #P-hard P-closure property [OH93] if f is a P-closure

property and the following implication is true: If #P is closed under f then #P is closed

under all polynomial-time computable closure properties.

Interestingly enough, #P is closed under every polynomial-time computable closure

property if and only if #P is closed under every closure property f such that f ∈ #P.2

While at first this might seem surprising, it in fact will be established by Theorem 3.2,
2Note the difference between f being a closure property of #P and f ∈ #P being a closure property.
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which itself has a relatively simple proof.

Results regarding closure properties of #P functions involve the classes UP [Val76],

SPP [OH93,FFK94], PP [Sim75,Gil77], C=P [Sim75,Wag86], and ⊕P [PZ83,GP86]. For

the sake of completeness, let us briefly recall their definitions, in the form that is typically

employed in our setting.

A language L belongs to the class UP if there exists a polynomial q and a polynomial-

time computable binary predicate R such that, for each x ∈ Σ∗,

1. x ∈ L =⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ = 1, and

2. x /∈ L =⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ = 0.

Typically, UP is defined directly via unambiguous nondeterministic polynomial-time Turing

machines. That is, a language L belongs to UP if there exists an NP Turing machine N

that on input x has exactly one accepting path if x ∈ L and that has no accepting paths if

x /∈ L. However, the former definition stresses the similarity between UP and SPP. SPP is

a generalization of UP. A language L belongs to SPP if there exist two polynomials, q and

p, and a polynomial-time computable binary predicate R such that, for all x ∈ Σ∗,

1. x ∈ L =⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ = 2p(|x|) + 1, and

2. x /∈ L =⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ = 2p(|x|).

A language L belongs to PP if there exists a polynomial q and a polynomial-time computable

binary predicate R such that, for each x ∈ Σ∗,

x ∈ L ⇐⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ ≥ 2q(|x|)−1.

Similarly, a language L belongs to C=P if there exists a polynomial q and a polynomial-time

computable binary predicate R such that, for each x ∈ Σ∗,

x ∈ L =⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ = 2q(|x|)−1.

A language L belongs to class ⊕P if there exists a nondeterministic polynomial-time Turing

machine N such that, for each x ∈ Σ∗, x ∈ L ⇐⇒ N(x) has an odd number of accepting

paths.

In the former case #P is closed under f and in the latter f is simply stated to be a #P function of type

Ni → N, for some i.
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Naturally, there is a close connection between the above definitions and definitions

directly employing nondeterministic Turing machines. However, the above definitions often

are more convenient in the setting of closure properties.

The following theorem shows that some simple operations that decrease the number of

solutions of #P functions are in fact “the least likely” to be closure properties of #P among

closure properties that plausibly could be closure properties of #P. One can think of this

as a loose parallel to the framework of NP-completeness theory, which shows that certain

NP sets—SAT, CLIQUE, etc.—are “the least likely” NP sets to belong to P.

Theorem 3.2 ([OH93]) The following statements are equivalent.

1. #P is closed under proper subtraction.

2. #P is closed under integer division.3

3. #P is closed under every nonnegative polynomial-time computable function (i.e., #P

has every polynomial-time computable closure property).

4. #P is closed under every #P-computable function (i.e., #P has every #P-computable

closure property).

5. UP = PP.

So proper subtraction and integer division are #P-hard P-closure properties. See [OH93]

for additional #P-hard P-closure properties.

We will give a fairly detailed overview of the proof of Theorem 3.2 (see also [OH93,

HO02]). Clearly, 4 implies 3, and 3 implies both 1 and 2. We will argue in some detail that

1 implies 5, and then we will give overviews of the proofs that 2 =⇒ 5 and that 5 =⇒ 4.

Let us show that if #P is closed under proper subtraction then UP = PP. Assume that

#P is closed under proper subtraction. First we will show that coNP ⊆ UP and then we

will show that PP ⊆ NP. Since PP is closed under complementation, the latter implies

that PP ⊆ coNP. Thus, we have PP ⊆ coNP ⊆ UP, and since UP ⊆ PP holds without

assumption, we have UP = PP.

Recall that we have assumed that #P is closed under proper subtraction. Let L be

some arbitrary coNP language. By the definition of coNP, there exists a nondeterministic
3Note that for integer division, to avoid the issue of dividing by zero one would have to slightly adjust

the notion of being closed under an operation. We will return to this issue later.

15



polynomial-time Turing machine Nf such that if x ∈ L then Nf (x) has no accepting paths,

and if x /∈ L then Nf (x) has at least one accepting path. (In other words, L is an NP

language.) Let f be the #P function that Nf implicitly defines. Since #P is closed under

proper subtraction, g(x) = 1 −̇ f(x) is a #P function, and so there exists a nondeterministic

Turing machine Ng that on input x has exactly g(x) accepting paths. However, it is easy

to see that

g(x) =

{
1 if x ∈ L,

0 if x /∈ L.

Thus, Ng is a nondeterministic Turing machine that establishes L ∈ UP. (We use the

fact that UP can be defined via unambiguous nondeterministic polynomial-time machines.)

So coNP ⊆ UP. (We mention in passing an alternate attack. Since below we will prove

PP ⊆ UP under our hypothesis, instead of proving coNP ⊆ UP as we just did it would

suffice to prove the weaker statement UP = NP, and that can be briskly seen, under our

hypothesis, as follows: Given any NP machine Nf and its associated #P function f , note

that if #P is closed under proper subtraction then f −̇ (f −̇ 1) must belong to #P, but

this shows that L(Nf ) belongs to UP.)

Now, still under the assumption that #P is closed under proper subtraction, let us show

that PP ⊆ NP. Let L be a PP language defined via a polynomial-time binary predicate R

and a polynomial q such that for all n, q(n) ≥ 1 and, for each x ∈ Σ∗,

x ∈ L ⇐⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ ≥ 2q(|x|)−1.

Naturally, there exists a nondeterministic polynomial-time Turing machine Nf that on input

x has exactly ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ accepting paths. For example, on input x,

this machine can guess a string y of length q(|x|) and then will accept on the current path

exactly if R(x, y) holds.

Let f be the #P function implicitly defined by Nf , and let us consider the function

g(x) = f(x) −̇ (2q(|x|)−1 − 1). Since 2q(|x|)−1 − 1 is clearly a #P function and we assumed

that #P is closed under proper subtraction, g is a #P function as well. Thus, there is

a nondeterministic polynomial-time Turing machine Ng that on input x has exactly g(x)

accepting computation paths. However, it is easy to see that if x ∈ L then g(x) ≥ 1 (as

then f(x) ≥ 2q(|x|)−1) and that if x /∈ L then g(x) = 0 (as then f(x) < 2q(|x|)−1). Thus, Ng

establishes L ∈ NP. Since L was chosen arbitrarily, we have PP ⊆ NP. This concludes the

proof that if #P is closed under proper subtraction then UP = PP.

We will briefly argue as to why 5 implies 4. We assume that UP = PP and we will show,
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separately for each fixed i ∈ N+, that given a #P function f , f : Ni → N, and a sequence of

i #P functions g1, g2, . . . , gi it holds that h(x) = f(g1(x), g2(x), . . . , gi(x)) is a #P function.

Fix an arbitrary i ∈ N+. The idea behind the proof is to somehow get a handle on the

values g1(x), g2(x), . . . , gi(x) and then to directly run f on those values.

As an aside, fix a nice multi-arity pairing function 〈· · · 〉 (see, e.g., [HHT97]). This

function will of course take as arguments tuples of strings (but in fact, it is legal for, as is the

case in the definition of Lj for example, some components to be natural numbers, in which

case the standard bijection between N and Σ∗ will be implicitly applied) and will output a

single string. Returning to our proof, how can we obtain the values g1(x), g2(x), . . . , gi(x)?

First, we observe that for each j, 1 ≤ j ≤ i, the language Lj = {〈x, y〉 | gj(x) ≥ y} is in

PP. PP is closed under truth-table reductions [FR96]. So—though this actually requires

the closure of PP just under bounded-truth-table reductions since i is fixed—the language

L = {〈x, y1, y2, . . . , yi〉 | (∀j ∈ {1, 2, . . . , i})[〈x, yj〉 ∈ Lj ∧ 〈x, yj + 1〉 /∈ Lj ]}

is in PP as well. (We can decide L using 2i queries to languages L1, L2, . . . , Li—two queries

to each Lj , 1 ≤ j ≤ i—each of which can be translated into a query to some selected

PP-complete language.) Clearly, we have that 〈x, y1, . . . , yi〉 ∈ L if and only if for all j,

1 ≤ j ≤ i, it holds that gj(x) = yj .

Now, since UP = PP, we have that L ∈ UP and so there is an unambiguous polynomial-

time nondeterministic Turing machine N that accepts L. Given this machine, we are ready

to show that #P is closed under f . It is enough to construct a nondeterministic Turing

machine M that on input x on each of its computation paths guesses a sequence of i strings

z1, z2, . . . , zi (each zj , 1 ≤ j ≤ i, of appropriately polynomially bounded length) and sim-

ulates N on input 〈x, z1, . . . , zi〉. By the nature of L and the fact that N is unambiguous,

there is only one path of M that reaches N ’s acceptance, and on that path we have complete

information about the values g1(x), g2(x), . . . , gi(x); it remains to simply run the nondeter-

ministic polynomial-time Turing machine via which f is defined with these values as input.

This concludes the proof of the implication 5 =⇒ 4.

Finally, we will quickly argue that if #P is closed under integer division then UP = NP.

Note that in case of integer division we cannot really use our definition of what it means

to be closed under an operation. If f and g are two #P functions then
⌊

f(x)
g(x)

⌋
is undefined

when g(x) = 0. Thus, we say that #P is closed under integer division if for every two #P

functions f and g such that (∀x ∈ Σ∗)[g(x) > 0] the function h(x) =
⌊

f(x)
g(x)

⌋
belongs to #P.

Let L be a PP language. The key point here is that if L ∈ PP then one can (with a bit
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of easy argumentation, which we will leave as an exercise, regarding item 3 below) claim

that there is a positive integer k and a machine M that witnesses the membership of L in

PP that has the following properties:

1. On input x, M has exactly 2|x|
k

computation paths, each containing exactly |x|k

binary nondeterministic choices.

2. If on input x M has at least 2|x|
k−1 accepting paths then x ∈ L.

3. On each input x, M has at most 2|x|
k − 1 accepting paths.

Let f be the #P function defined by M . If #P is closed under integer division then

h(x) =
⌊

f(x)

2|x|k−1

⌋
is a #P function itself. However, we have that h(x) = 1 if x ∈ L and

h(x) = 0 otherwise. (We needed item 3 above to make sure that h(x) is never greater than

1.) Clearly, the nondeterministic polynomial-time machine that defines h is a UP machine

that accepts L. This concludes our proof sketch of Theorem 3.2.

Note that Theorem 3.2 shows that if properly subtracting a #P function from a #P

function always yields a #P function, then #P is closed under every #P-computable func-

tion. Can the hypothesis here be weakened? What if we instead assume just that properly

subtracting a nonnegative polynomial-time computable function from a #P function al-

ways yields a #P function? Or what if we instead assume just that properly subtracting a

#P function from a nonnegative polynomial-time computable function always yields a #P

function? Are these two weaker assumptions still powerful enough to cause #P to be closed

under every #P-computable function? The answer is that they both are indeed strong

enough to yield that. That is, it turns out that each one of them is just as demanding an

assumption as the seemingly stronger assumption that properly subtracting a #P function

from a #P function always yields a #P function: All three of these assumptions stand or

fall based on the same complexity-class equality. Of the two extended claims one is already

known, and we state it without proof (Theorem 3.3). The other claim is new to this paper,

and we prove it below as Theorem 3.4.

Theorem 3.3 ([OH93]) UP = PP if and only if for every #P function f and every

polynomial-time computable function g it holds that h(x) = f(x) −̇ g(x) is a #P function.

Theorem 3.4 UP = PP if and only if for every polynomial-time computable function f

and every #P function g it holds that h(x) = f(x) −̇ g(x) is a #P function.
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To prove Theorem 3.4, we will need the following two facts regarding UP, PP, and C=P.

Proposition 3.5 1. [OH93, p. 304] UP = C=P if and only if UP = PP.

2. [Sim75] L ∈ C=P if and only if there exists a polynomial q and a polynomial-time

computable binary predicate R such that, for each x ∈ Σ∗,

(a) x ∈ L =⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ = 2q(|x|)−2, and

(b) x 6∈ L =⇒ ‖{y ∈ Σ∗ | |y| = q(|x|) ∧R(x, y)}‖ < 2q(|x|)−2.

Proof of Theorem 3.4. The “only if” direction follows immediately from Theorem 3.2.

We now will prove the “if” direction by showing that UP = C=P follows if one assumes

that for every nonnegative polynomial-time computable function f and every #P function

g it holds that h(x) = f(x) −̇ g(x) is a #P function. Proving this suffices, since by

Proposition 3.5 we know that UP = C=P is equivalent to UP = PP.

Let L be an arbitrary C=P language. Let R be the polynomial-time predicate and q

be the polynomial whose existence is guaranteed by Proposition 3.5. Clearly there exists

an NP machine M that, on arbitrary input x, guesses a string y from Σq(|x|) and accepts

exactly if R(x, y) holds. And so there is a #P function f—namely the function defined by

the number of accepting paths of M—such that

1. if x ∈ L then f(x) = 2q(|x|)−2, and

2. if x /∈ L then f(x) < 2q(|x|)−2.

By the “if” direction’s assumption that properly subtracting #P functions from non-

negative polynomial-time computable functions only yields #P functions, we have that

g(x) = 2q(|x|)−2 −̇ f(x) is a #P function. Note that g(x) = 0 if x ∈ L and g(x) > 0 if

x /∈ L. Since g is a #P function, by a second application of the “if” direction’s assumption

we have that h(x) = 1 −̇ g(x) is a #P function. But by these constructions,

h(x) =

{
1 if x ∈ L,

0 if x /∈ L.

So each NP machine that instantiates h ∈ #P is in fact a UP machine that accepts L. q

Theorem 3.2 shows that there are #P-hard P-closure properties. It is interesting to

see that these hard closure properties are in fact very simple solution-reducing operations.

As mentioned earlier, #P-hard P-closure properties can be viewed as analogs of complete
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languages, e.g., as analogs of NP-complete languages. On the other hand the closure prop-

erties that #P actually has (e.g., addition and multiplication), can be viewed as analogs of

languages in P. By Ladner’s Theorem [Lad75] we know that if P 6= NP then there are also

intermediate NP languages: Languages that are in NP− P but that are not NP-complete.

Interestingly, there seem to be analogs of those in the world of closure properties as well.

Some candidates for intermediate closure properties are proper decrement, minimum, and

integer division by two. However, much as in the case of the graph isomorphism problem

(which is suspected, but not known, to be NP-intermediate), we do not have a proof that

these P-closure properties are either #P-hard or feasible, but rather have some pieces of

evidence that suggest that that may be the case.

It would be nice to be able to prove that Theorem 3.2 in fact says that every closure

property that isn’t obviously not a closure property of #P becomes a closure property of

#P if proper subtraction is a closure property of #P. The following statement, considered

hand-in-hand with Theorem 3.2, makes it clear that that is indeed the case.

Theorem 3.6 Let f be a closure property. If f 6∈ #P, then #P is not closed under f .

Proof. Let f be a closure property such that f 6∈ #P. Since f is a closure property,

for some i ≥ 0 (and in fact, i = 0 is impossible if f 6∈ #P, so let us suppose i ≥ 1) f

maps from Ni to N. Fix any nice arity-i pairing function, 〈· · · 〉. For each 1 ≤ j ≤ i, let

gj(〈n1, n2, . . . , ni〉) = nj . Note that each gj is a #P function. However, suppose that #P is

closed under f . Then f(g1(〈n1, n2, . . . , ni〉), g2(〈n1, n2, . . . , ni〉), . . . , gi(〈n1, n2, . . . , ni〉)) be-

longs to #P. But f(g1(〈n1, n2, . . . , ni〉), g2(〈n1, n2, . . . , ni〉), . . . , gi(〈n1, n2, . . . , ni〉)) clearly

equals f(n1, n2, . . . , ni), and so f(n1, n2, . . . , ni) ∈ #P, a contradiction, so our supposition

that #P is closed under f must be wrong. q

As we saw in Theorem 3.2, whether #P is closed under its #P-hard P-closure properties

is fully characterized in terms of complexity class collapses by UP = PP. In the case of

proper decrement, integer division by two, and minimum we do not have such complete

characterizations.

Theorem 3.7 1. (Due to Torán, as noted in [OH93].) If #P is closed under proper

decrement, then NP ⊆ SPP.

2. ([OH93]) If UP = NP, then #P is closed under proper decrement.

3. ([OH93]) If #P is closed under integer division by two (i.e., under the function f(n) =⌊
n
2

⌋
), then SPP = ⊕P.
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4. ([OH93]) If #P is closed under minimum then UP = NP and SPP = C=P.

The proofs of these theorems are similar in spirit to the proof of Theorem 3.2. They

are based on the fact that each of the closure properties that we are dealing with has some

kind of a conditional behavior built in that, together with some nondeterministic Turing

machine trickery, can be exploited to cause a given complexity class collapse. For example,

in the case of integer division by two, we can use it (together with the fact that #P is closed

under multiplication by two) to decrement a function by one, provided that the function’s

value is odd. (We integer-divide it by two and then multiply it by two.)

In some cases, a complexity class equality can easily seem to be equivalent to a closure

question. Here are two easy examples of that behavior, both of whose proofs are immediate

from the definitions.

Proposition 3.8 1. #P is closed under min(1, n) if and only if UP = NP.

2. #P is closed under 1 −̇ n if and only if UP = coNP.

Proof. The proof of the first equivalence is immediate and we will omit it. However, for

the sake of completeness, let us quickly prove the second equivalence. As part of the proof

of Theorem 3.2, following [HO02], we have already observed that if #P is closed under

1 −̇ n then coNP ⊆ UP. Clearly, coNP ⊆ UP implies UP = coNP. It remains to show that

if UP = coNP then #P is closed under 1 −̇ n. Let f be an arbitrary #P function and let

Lf be the language {x | f(x) > 0}. Naturally, Lf belongs to NP and so its complement,

Lf = {x | f(x) = 0}, is in coNP. Since we assumed that UP = coNP we have Lf ∈ UP,

and thus there is a UP machine Mh that accepts Lf . We can view Mh as instantiating a

#P function h such that

h(x) =

{
1 if f(x) = 0,

0 if f(x) > 0.

So the theorem is proven, since clearly h(x) = 1 −̇ f(x). q

As a quick example of how equivalences such as those of Proposition 3.8 can help us

understand the relationships between closure properties, consider the following assertion:

If #P is closed under 1 −̇ n then #P is closed under min(1, n). Faced with that assertion,

one might not (though see the next paragraph) immediately know whether it was true.

However, in light of Proposition 3.8 one instantly knows that the assertion is true, since the

assertion becomes just another way of expressing the obvious fact that UP = coNP implies

UP = NP.
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The observations of the previous paragraph should be contrasted with the somewhat

different—and very general and attractive (at least when it happens to work)—approach

of using equalities to link closure properties in a way that spans all function classes. For

example, for all natural numbers n it clearly holds that min(1, n) = 1 −̇ (1 −̇ n). From that

equality we may in one fell swoop conclude that for every class F of functions mapping

from Σ∗ to N it holds that if F is closed under 1 −̇ n then F is also closed under min(1, n).

Since in light of Theorem 3.7 proper subtraction is unlikely to be a closure property of

#P, it is natural to seek to work around that by making the question a bit more flexible,

and some papers have sought to do so. Building on the ideas of [OH93], interesting work of

Gupta [Gup95,Gup92] has defined and studied analogous notions for the class GapP and for

a quotient-based class he introduced, and also has introduced the notion of seeking not to

exactly compute a closure but rather to approximate it with high probability on each input.

It turns out that in these cases the results one gets are, loosely put, analogous to the vanilla

#P cases. Ogihara et al. [OTTW96] have also suggested a somewhat different way of looking

at closure properties of #P. We have seen that #P is not closed under proper subtraction.

However, in a certain sense it is “close” to being closed under proper subtraction: Given two

#P functions f and g one can easily see that there exists a polynomial p (for example, any

polynomial that is at least one more than the maximum of the nondeterminism polynomials

of two fixed machines modeling f and g) such that h(x) = 2p(|x|) + (f(x) − g(x)) is a #P

function. Thus, if we were allowed to perform some amount of postcomputation, then we

could retrieve the value f(x) −̇ g(x) from h(x).

4 Final Comments

In this paper, we looked at the issue of elimination of solutions in a few differing contexts.

Though the paper is primarily tutorial-like, some results are to the best of our knowledge

new to this paper, in particular Theorem 3.4, Theorem 3.6, Proposition 3.8, and all of

Section 2.2.

Readers interested in the original or alternate treatments of the work covered in parts

of Section 2 are referred to the various original literature papers cited in that section, and

also to [HO02,HT03]. Among the most interesting related open issues are whether the

collapses to NPNP can be strengthened to collapses to SNP∩coNP
2 . Readers interested in

the original or alternate treatments of the work covered in parts of Section 3 are similarly

referred to the various original literature papers cited in that section, and also to [HO93,
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HO02]. Among the most interesting related open issues are whether complete “complexity

class collapse” characterizations can be found for the intermediate closure properties of #P.

Fertile ground for additional research on the complexity of eliminating solutions includes

the recently defined models of cluster-computed functions [HHKW,HHK06] (and [HHK06]

starts in that direction by looking at decrementation) and interval functions [HHKW].

References

[BLS84] R. Book, T. Long, and A. Selman. Quantitative relativizations of complexity

classes. SIAM Journal on Computing, 13(3):461–487, 1984.

[Can96] R. Canetti. More on BPP and the polynomial-time hierarchy. Information

Processing Letters, 57(5):237–241, 1996.

[CCHO05] J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing

provers yield improved Karp–Lipton collapse results. Information and Compu-

tation, 198(1):1–23, 2005.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal

of Computer and System Sciences, 48(1):116–148, 1994.

[FR96] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. Infor-

mation and Computation, 124(1):1–6, 1996.

[Gil77] J. Gill. Computational complexity of probabilistic Turing machines. SIAM

Journal on Computing, 6(4):675–695, 1977.

[GP86] L. Goldschlager and I. Parberry. On the construction of parallel computers from

various bases of boolean functions. Theoretical Computer Science, 43(1):43–58,

1986.

[Gup92] S. Gupta. On the closure of certain function classes under integer division by

polynomially bounded functions. Information Processing Letters, 44(2):205–

210, 1992.

[Gup95] S. Gupta. Closure properties and witness reduction. Journal of Computer and

System Sciences, 50(3):412–432, 1995.

23



[HHK06] L. Hemaspaandra, C. Homan, and S. Kosub. Cluster computing and the power

of edge recognition. In Proceedings of the 3rd Annual Conference on Com-

putation and Logic: Theory and Applications of Models of Computation, pages

283–294. Springer-Verlag Lecture Notes in Computer Science #3959, May 2006.

[HHKW] L. Hemaspaandra, C. Homan, S. Kosub, and K. Wagner. The complexity of

computing the size of an interval. SIAM Journal on Computing. To appear.

[HHT97] Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold computation and cryp-

tographic security. SIAM Journal on Computing, 26(1):59–78, 1997.

[HNOS96] L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. Computing solutions

uniquely collapses the polynomial hierarchy. SIAM Journal on Computing,

25(4):697–708, 1996.

[HO93] L. Hemachandra and M. Ogiwara. Is #P closed under subtraction? In

G. Rozenberg and A. Salomaa, editors, Current Trends in Theoretical Com-

puter Science: Essays and Tutorials, pages 523–536. World Scientific, 1993.

[HO02] L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion.

Springer-Verlag, 2002.

[HOW02] L. Hemaspaandra, M. Ogihara, and G. Wechsung. Reducing the number of so-

lutions of NP functions. Journal of Computer and System Sciences, 64(2):311–

328, 2002.

[HT03] L. Hemaspaandra and L. Torenvliet. Theory of Semi-Feasible Algorithms.

Springer-Verlag, 2003.

[KL80] R. Karp and R. Lipton. Some connections between nonuniform and uniform

complexity classes. In Proceedings of the 12th ACM Symposium on Theory

of Computing, pages 302–309. ACM Press, April 1980. An extended ver-

sion has also appeared as: Turing machines that take advice, L’Enseignement
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