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Abstract

Scheduling is essentially a decision-making process that enables resource sharing among a number of activ-
ities by determining their execution order on the set of available resources. The emergence of distributed
systems brought new challenges on scheduling in computer systems, including clusters, grids, and more re-
cently clouds. On the other hand, the plethora of research makes it hard for both newcomers researchers to
understand the relationship among different scheduling problems and strategies proposed in the literature,
which hampers the identification of new and relevant research avenues. In this paper we introduce a classifi-
cation of the scheduling problem in distributed systems by presenting a taxonomy that incorporates recent
developments, especially those in cloud computing. We review the scheduling literature to corroborate the
taxonomy and analyze the interest in different branches of the proposed taxonomy. Finally, we identify
relevant future directions in scheduling for distributed systems.
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1. Introduction

The scheduling problem arises in countless areas, and it evolves over time along with industry and
technology [1]. With the development of computers, scheduling in computer processors received great
attention [2, 3], being the most common objective the minimization of task completion times, also known
as makespan. Besides some peculiarities, the basic principles remained the same as in scheduling activities
among machines in production. In supercomputers, multiprocessor scheduling considers several parallel
processors with the same capacity. In addition, the data source is considered to be centralized and connected
by a high speed channel between processors, in a way that activities (or jobs) can exchange messages quickly.

More recently, computer networks allowed clusters of homogeneous computers to act as a multiprocessor
computer with distributed data sources. However, when compared to supercomputers, clusters initially
had a slow communication channel between processors, which made data exchange among processors more
expensive. The scheduling of jobs in computing clusters led to another branch of research: the scheduling in
distributed computer systems. With improvements in computer networks, the connection among computing
nodes in clusters became faster. On the other hand, new applications demanded more and more bandwidth,
storing and exchanging massive volumes of data. Multimedia and e-Science are examples of applications
that handle large data sets nowadays, putting in evidence the importance of communications to improve
performance and support quality of service offering in distributed systems.

Grid computing emerged in the late 90’s as a heterogeneous collaborative distributed system [4] evolved
from homogeneous distributed computing platforms. Grids are shared systems that enclose potentially any
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computing device connected to a network, from workstations to clusters. Computing grids are infrastructures
that enable resource sharing by establishing use policies as well as security rules, which compose the so called
Virtual Organizations (VOs) [4].

Cloud computing offers computing resources, often virtualized, as services to the users, hiding technical
aspects regarding resource management [5]. Therefore, clusters and grids can be part of datacenters in
the cloud computing infrastructure, demanding new optimization objectives and variables common in green
computing [6] and utility computing [7].

Kwok and Ahmad stated in 1999 [3] that considering heterogeneous platforms was a challenging direction
to extend scheduling algorithms. As a consequence of the popularization of these platforms in grid and cloud
computing, novel scheduling concepts appeared in the iterature [8, 9, 10, 11, 12]. While on the one hand
fundamental scheduling aspects remain unchanged, on the other hand different optimization objectives
ballooned the scheduling literature in the past decade. Such swell in the field brought so much information
that it became challenging the recognition of the exact contribution of new results results. Since challenges
in scheduling still exist, Smith argues in [13] that scheduling is not a fully solved problem, he stated that
“Scheduling techniques that properly account for uncertainty, enable controlled solution change, and support
efficient negotiation and refinement of constraints are crucial prerequisites, and the need to operate in the
context of multiple self-interested agents is a given.”. This statement matches certain characteristics in
virtualization and service in cloud computing, as we shall describe in the upcoming sections.

In a nutshell, this paper has three main contributions:

1. Propose a taxonomy for scheduling in distributed systems and introduce a taxonomy extension to
cover cloud computing schedulers.

2. Classify the literature in the proposed taxonomy;

3. Identify relevant future directions for scheduling in distributed systems.

Due to its wide application, there exist a variety of approaches to the scheduling problem. This paper
presents directives for scheduling researchers to identify and classify their work, as well as to provide them
with an overview of existing approaches associated to their research by presenting a broad view of the
scheduling problem in distributed systems as well as introducing existing works. We first introduce the
problem of scheduling in distributed systems, covering advances in scheduling in cluster and grid computing.
Then, an overview of the proposed taxonomy is presented, followed by the state-of-the-art in each branch
of the taxonomy tree. After that, we focus on cloud computing and detail similarities and differences of
scheduling in clouds with scheduling in previously existing distributed systems. We introduce a taxonomy
of scheduling in cloud computing, extending the pre-cloud taxonomy. Finally, we discuss research challenges
that were inherited from grid and cluster computing by the cloud computing paradigm, as well as new
problems to be tackled.

This paper is organized as follows. Section 2 discusses previous work that have addressed reviews and
surveys of scheduling in distributed computing. Section 3 introduces basic concepts to define scheduling
problem. Section 4 briefly introduces the whole taxonomy discussed in this paper, highlighting branches
that were introduced to cover scheduling in cloud computing. Section 5 presents a taxonomy of schedulers
previously to the advent of cloud computing (pre-cloud taxonomy). Section 6 discusses and classifies the
scheduling taxonomy in cloud computing (cloud taxonomy). Section 7 reviews the cloud computing schedul-
ing literature according to the proposed taxonomy. Future directions in scheduling for distributed systems
are discussed in Section 8, and Section 9 presents the concluding remarks.

2. Related Work

In computer science, with the constant networking and middleware development, scheduling in dis-
tributed processing systems is one of the topics which has gained attention in the last two decades. Casavant
and Kuhl [14] present a taxonomy of scheduling in general purpose distributed systems. The classification
presented by the authors include local and global, static and dynamic, distributed and non-distributed, co-
operative and non-cooperative scheduling, as well as some approaches to solve the problem, such as optimal
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and sub-optimal, heuristic, and approximate. This presented classification is complete in some sense, and
it is still valid nowadays. However the current state of distributed systems indeed demands the addition of
new branches in this taxonomy.

Kwok and Ahmad [3] survey static scheduling algorithms for allocating tasks connected as directed task
graphs (DAGs) into multiprocessors. The authors presented a simplified taxonomy for approaches to the
problem, as well as the description and classification of 27 scheduling algorithms. The DAG scheduling
algorithms for multiprocessors have been adapted for scheduling in distributed systems, incorporating in-
trinsic characteristics of such systems for an enhanced performance. Therefore, Kwok and Ahmad presented
static scheduling algorithms for multiprocessors, which are also applicable to distributed systems, and their
classification. In this paper we review extensions of those algorithms as well as the their classification by in-
cluding heterogeneous systems, dynamic scheduling algorithms, scheduling algorithms in modern distributed
environments, and new scheduling techniques.

In the last decades, after Kwok and Ahmad’s work, other surveys and taxonomies for solutions to the
scheduling problem for parallel systems have been developed. Most of these works focus on heterogeneous
distributed systems [15], which Ahmad and Kwok considered as one of the most challenging directions to
follow [3].

Job scheduling strategies for grid computing are evaluated by Hamscher et al. in [11]. The authors present
common scheduling structures, such as centralized, decentralized, and hierarchical. Within each scheduling
structure, they present and evaluate 4 processor selection strategies and three scheduling algorithms, namely
First-Come-First-Serve (FCFS), Random, and Backfill. After this work, many dynamic scheduling strategies
were developed to tackle with the grid dynamicity.

As Feitelson et al. claim in their scheduling review [16], parallel job scheduling reviews are needed in
a regular basis. The purpose of their short review was to introduce clusters and grids into the parallel job
scheduling literature. Indeed, the authors present an introduction to job scheduling in grids, highlighting
differences between a parallel computer and the grid. They point out cross-domain load balancing and
co-allocations as two main concerns when scheduling in grids. In our work, we introduce a classification
of schedulers in distributed systems that comprises a more extensive view of grid computing algorithms.
Moreover, we highlight new requirements for the cloud computing emergent paradigm as well as its differences
to grid computing.

Wieczorek et al. [17] present a taxonomy in the scheduling problem for workflows considering multiple
criteria optimization in grid computing environments. The authors separate the multi-criteria scheduling
taxonomy in 5 facets, namely scheduling process, scheduling criteria, resource model, task model, and work-
flow model, each facet describing the problem from a different point of view. These facets are expanded to
classify existing works in a smaller granularity, pointing out where current research can be expanded and
the work in each facet.

We highlight two conclusions achieved by the authors in [17] which are touched by contributions given
by our survey: (i) “grid workflow scheduling problem is still not fully addressed by existing work”; and
(ii) “there are almost no workflow scheduling approaches which are based on an adaptive cost model for
criteria”. As a contribution to (i), in this survey we expand the general distributed system scheduling to
comprise it. As a contribution to (ii), we include scheduling taxonomies for utility grids and cloud computing
environments.

Besides specific reviews of the scheduling literature, some other general surveys include scheduling tax-
onomies and classification. In [18], Yu and Buyya classify workflow management systems for grid computing.
The presented classification includes some taxonomy branches that have influence in schedulers, such as the
workflow structure (DAG or non-DAG), workflow QoS constraints, and information retrieval coordination.
Regarding the scheduling itself, the classification includes system architecture, decision making, planning
scheme, strategies, and performance estimation [18]. In this paper we cover this classification and further
expand it to a more general view of the scheduling problem, comprising independent tasks and recent ad-
vances in distributed systems, such as cloud computing. Venugopal et al. review the literature on data
grids in [19]. Concerning scheduling in such systems, the authors present a brief taxonomy that includes
classifications regarding application model, scope, data replication, utility function, and locality [19].

In the last decade, cloud computing taxonomies started to appear. In [20], Hilley describes a bunch of
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existing services that provide cloud computing infrastructures, classifying them inside a proposed taxonomy.
Oliveira et al. [21] classify the cloud computing paradigm regarding many aspects, such as architecture,
pricing, privacy, and technology used. Other recent review papers in the scheduling literature have focused on
specificities of scheduling, as for example meta-heuristics [22], scheduling techniques [23], workflow costs [24],
virtual machines [25], workflows in clouds [26], evolutionary approaches, [27]. In this paper we introduce
more general cloud computing classification aspects that affect the development of scheduling algorithms,
which are not addressed by those papers.

Scheduling has been a focus of research with the high attention given by the community to grid comput-
ing in the last decade and to cloud computing in the last few years. With this, algorithms and techniques
were freely developed, aggregating new concepts from the service oriented computing and aspects from
the constantly changing distributed systems environments. As shown in this section, many advances were
achieved in the last decades. Also, excellent reviews which unify topics surveyed in this paper exist, how-
ever, updates are necessary in subtopics such as grid and cloud computing. In this work, we classify new
developments in the scheduling field in what concerns the distributed computing systems evolution, aiming
at fitting topics developed in the last decade and future directions. This paper brings an organized overview
of the scheduling problem advancements in distributed computer systems, serving as a reference for the
development of algorithms for cloud computing and the upcoming distributed computing paradigms.

3. Basic Concepts

The definition of the scheduling problem given by Pinedo in [1] is as follows:

“Scheduling is a decision-making process that is used on a regular basis in many manufacturing and
services industries. It deals with the allocation of resources to tasks over given time periods and its goal is
to optimize one or more objectives.”

There exist many other definitions to the general scheduling problem in the literature [28]. The scheduling
problem is NP-Complete, although there exist polynomial time solutions for few scenarios [1].

In a distributed system, the scheduler has the role of choosing in which computational resource each task
(or job) will execute, therefore distributing jobs to be executed concurrently. The execution time of each
job, and consequently the completion time of all jobs, is intrinsic to the generated schedule. The scheduler
organizes jobs in resources queues usually following an objective function. The most common objective
found in the distributed systems literature is minimize the completion time, or makespan, achieved by
proper allocation of tasks in the available resources. Common objective functions are examined in more
details in Section 5.5.

3.1. Scheduling Model

Here we describe a scheduling model that is the basis to the scheduling problems in distributed systems,
as previously modeled in [29]. Consider a distributed system composed of a set of computational resources
R = {r1, r2, ..., rk}, with associated processing capacities pri ∈ R

+, connected by network links. Each
resource ri has a set of links Li = {li,1, li,2, ..., li,m}, 1 ≤ m ≤ k, where li,j ∈ R

+ is the available bandwidth
in the link between resources ri and rj , with li,i = ∞. Let A = {a1, a2, ..., an} be the set of application jobs
submitted by users and to be executed in R. The scheduler is responsible for assigning a sequencing of jobs
in A onto the resources in R according to one or more objectives.

According to the well-known, general scheduling problem description by Pinedo [1], the scheduling prob-
lem is commonly described as a triplet α | β | γ. The α field, with a single entry, is a description of the
execution environment. The β field can have from zero to multiple entries, and it describes what is the
processing to be done. Lastly, the γ field entry is the description of the objective to be optimized. In this
paper we are mainly interested in discussing the scheduling problem for two different α’s [1]:

1. α = Pm: Identical machines in parallel. Execution environment is composed of m identical machines
in parallel, as usually found in a cluster computing infrastructure.

4



2. α = Rm: Unrelated machines in parallel. There are m different machines in parallel, and machine
i executes job j at speed vi,j , as in a grid or cloud computing infrastructure. Note that, given two
application jobs a1 and a2 and two computational resources r1 and r2, va1,r1 > va2,r1 6=⇒ va1,r2 >

va2,r2 .

As utility computing becomes more popular, we propose the introduction of a new field to the represen-
tation of the scheduling problem: α | β | γ | µ, where the µ field describes the charging models adopted
in the system. For example, µ can be an hourly-based charge, an auction system, per-transaction charge,
data-access charge, and so on. This is well-suited to the cloud computing paradigm, in which many different
computing services can be offered with a variety of charging models, as well as for the upcoming utility-based
computing and networking infrastructures.

3.2. System Organization

In distributed systems, the overall system organization may have influence in the scheduler scope. This
organization can be a result of the infra-structure architecture or existing policies and access controls.
Regarding the system management organization, it can be classified in three categories: centralized, decen-
tralized, and hierarchical (Figure 1).

In a centralized management, the distributed system has a central entity that has information about
the whole system and is responsible for managing its resources and jobs execution. On the other hand, a
decentralized management is accomplished through distributed algorithms that manage the system without
a central entity. In such systems, management roles may be distributed over resources in the system [30].
Scheduling in a decentralized system is made by more than one scheduler, where each scheduler has infor-
mation about part of the system and may exchange information with other schedulers to make decisions
in a cooperative way. A decentralized non-cooperative distributed system considers that each scheduler
is responsible for achieving its own objectives, regardless the objectives of other schedulers. A hierarchi-
cal system structures the management in a tree-like structure. Therefore, machines at a given level can
communicate with machines at a level immediately above or below it in the hierarchy [30]. With this, the
distributed system management is shared, with entities that are higher in the hierarchy taking high-level
decisions (e.g., in which WAN a job will execute), while entities at the bottom make the low-level decisions
(e.g., in which machine a job will be executed).

Note that the centralized architecture can be seen as a specific case of the decentralized model where
only one scheduler exists. In addition, algorithms for the centralized architecture can independently execute
in each scheduler of a decentralized (or hierarchical) system. In this case, a scheduler component could
be responsible for the communication among different schedulers to arrange jobs execution within different
boundaries. A more detailed view of distributed systems organization can be found in [19].

4. Taxonomy overview

This section introduces the taxonomy presented in this paper without discussing details. Figure 3 presents
the full taxonomy, where each branch up to the third level presents a short text notation, which can be
extended to deeper branches in the taxonomy, and that is used later in this paper to classify the current
literature.

The taxonomy brings a classification according to different factors derived from schedulers developed for
distributed systems that existed before the advent of cloud computing, which we call pre-cloud schedulers,
and those developed for cloud computing infrastructures, the cloud schedulers. For pre-cloud schedulers,
taxonomy branches are the scheduler organization , as discussed in the previous section, input, frequency,
target, application, optimization , and output . For cloud schedulers, we update the taxonomy (branches
in red in Figure 3) to reflect characteristics that were introduced to address cloud computing scheduling,
namely branches about monetary costs and virtual machines under the input branch, clouds under
the target branch, virtualized application models, scheduler objective, and location . Detailed discussion
on each branch of the taxonomy is presented in the upcoming sections.
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(a) Centralized infrastructure. (b) Decentralized infrastructure.

(c) Hierarchical infrastructure.

Figure 1: Architectural organization of distributed systems and schedulers.

Figure 2: Taxonomy for schedulers organization in distributed systems.
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Figure 3: Overview of the proposed taxonomy. A short text notation is shown below branches up to the third level, which can
be extended to deeper branches in the taxonomy.



5. Pre-cloud scheduling taxonomy

5.1. Input Classification

The information available to the scheduler drives the decision making process. This input information is
subject to variations in accuracy and semantics (different characteristics influencing the scheduling process),
as shown in Figure 4.

Figure 4: Input taxonomy.

5.1.1. Input Accuracy

The scheduling algorithm may expect the input data to be precise, uncertain, or stochastic. When the
input data is considered to be precise, the algorithm is developed to work better within conditions in which
both the input data about jobs and about resources reflect the real execution behavior. Input data is
said to be stochastic when it is expected to follow some generalized probability distribution. If the input
data is assumed to be uncertain, the algorithm can make use of mechanisms to deal with different kinds
of uncertainty, including application demands and resources availability uncertainty. Schedulers commonly
assume that application communication and computation costs are known. Therefore, we consider that
application specification can present uncertainty regarding its communication and computation (processing)
demands, and also other demands as further possible application requirements (memory, storage, etc.). The
input accuracy taxonomy is shown in Figure 5.

Figure 5: Input accuracy taxonomy.

Derbal presents in [31] an entropy-based quantification of input data uncertainty regarding resources
performance. Batista and Fonseca deal with both application and resource availability uncertainties in [32].
Examples of studies in stochastic scheduling are Schopf [33] and earlier by Pinedo [34]. Precise input data
is commonly found in the literature, such as in works by Topcuoglu et al. [8] and Kwok et al. [3].

5.1.2. Input Semantics

The input data semantics taxonomy (Figure 6) classifies the meaning of the information provided to the
scheduling algorithm. This information is used by the scheduler to perform the decision making following
pre-defined objectives. The semantics of the input data can be related to resources, jobs, or users. Informa-
tion about resources are divided into software and hardware. Hardware information commonly comprises
processor, memory, and bandwidth. The quantity and performance of processors are usually considered as
input data. Within the software branch below resources, applications, services, and libraries available on
each resource can be provided to the scheduler.

A job may have hardware and software requirements. Therefore, the scheduler can match software and
hardware requirements from jobs with the available hardware and software on each resource. A job may also
have a deadline, that is, a maximum completion time. An important information used by the scheduler is
the computation cost of a job, which influences the decision on where it will be executed. Another important
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information for coupled jobs are their dependencies costs, which influences where dependent jobs should be
placed in order to minimize their data transmission times or any other objective.

The user who submits a job may have a budget to follow. This information is usual when the target
system is a utility grid or a cloud and the scheduler must use it to check if a given schedule obeys this
user’s constraint. Another information regarding users is their behavior. This can be useful in a shared
system (such as grids), in which the scheduler may use information about which applications are most often
executed by a user A, therefore estimating how long they take to run and how much CPU they consume.
For example, a scheduler may expect that a job from user A running for 30 minutes is about to finish, since
user A jobs usually do not take longer than half an hour.

Figure 6: Input semantics taxonomy.

The execution time of a job is, in general, highly dependent on the processor on which it runs. Because
of that, scheduling algorithms usually consider the processing capacities as an important, and often deter-
minant, characteristic when deciding where each job will execute. Research assuming that the scheduler
has information about resources bandwidth, memory, and processors quantity and performance, as well as
jobs computation and communication costs, is very common [35, 36, 37, 38, 39]. Information about software
installed in the resources is also considered in works where jobs have software restrictions [40]. Ramamrithan
et al. present a set of heuristics to schedule jobs with deadlines and resources requirements in [41]. Chaves et
al. present an integer programming formulation for scheduling grid applications with software requirements
in [42]. In [39], den Bossche et al. deal with the problem of scheduling deadline-constrained workloads, thus
considering jobs deadlines as input data. Yu and Buyya in [12] consider the user’s budget when scheduling
workflows in grids. In [43], Fox and Gannon overviews contributions on workflow in grid systems. In [44],
Gomes and Costa analyze desktop users’ application behavior in opportunistic grids, extracting the local
application CPU usage to predict bursts durations, creating profiles to be used in scheduling decisions.

5.2. Frequency

The scheduling frequency is associated to how many times the scheduler is executed within a period of
time. In a general scope, the scheduling algorithm can be classified as offline or online. An online algorithm
assumes that its input is a data sequence of unknown size, handling parts of the data without having the
whole input at the start of its execution. Therefore, an online scheduling algorithm does not know the entire
set of jobs being scheduled at a given time (or even the whole set of resources where the jobs will execute).
Rather, it schedules a job without information about the next incoming jobs. Thus, the decision maker
becomes aware of the existence of a job only when the job is released and presented to it [1]. An online
scheduling algorithm can be aided by some information about the input stream, such as which probability
distribution the input should follow. On the other hand, in the more common paradigm of offline scheduling,
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the information regarding all jobs is known a priori. Note that the online paradigm can have an intersection
with the offline paradigm if arriving jobs are grouped into sets before they are scheduled, in a batch-mode
scheduling [45].

In another branch, offline scheduling can be classified as static or dynamic. Static schedulers perform
scheduling at compile time. This means that the scheduling algorithm decision making is accomplished
using information available before any job is sent to the resources execution queues [3], and no interference
is made until the end of the application execution. Conversely, a dynamic scheduler uses information which is
updated during jobs execution, thus having an up-to-date prospect of the system as a whole. To do this, the
dynamic scheduler dispatches a set of jobs to execution and observes the behavior of the system, gathering
information to schedule the next set of jobs. This information gathering is usually done when a resource
becomes idle [9]. As extensions from these two general classifications, semi-static (also called hybrid [45])
and adaptive approaches exist as well [38, 10]. In a semi-static approach, an initial mapping is done and
re-mappings are performed when necessary. This rescheduling can be done periodically or after observing
some event, such as resource performance changes during execution or application input data changes [38].
Adaptive approaches alter the dynamicity according to the observed behavior of the system, therefore being
able to act as a highly dynamic algorithm, which updates the system information frequently, or even as an
almost static one. The taxonomy regarding the scheduling frequency is presented in Figure 7.

Figure 7: Taxonomy according to the scheduling frequency.

Offline algorithms are most commonly found in the literature than online algorithms. Examples of well-
known static offline scheduling algorithms are the Heterogeneous Earliest Finish Time (HEFT) [8] and the
Dynamic Critical Path (DCP) [2]. A semi-static algorithm with periodic rescheduling is presented by Kwok
et al. in [38]. Lucchese et al. present a semi-static algorithm with event-driven rescheduling in [9]. A
round-based adaptive dynamic algorithm is presented by Bittencourt and Madeira in [10]. Maheswaran
et al. present non-adaptive dynamic approaches in [45], as well as online scheduling algorithms. Other
examples of online algorithms include [46, 47, 48].

5.3. Target System

The target system for a scheduler is associated to the computational architecture of the system where the
scheduled jobs will run. Therefore, another factor that has influence on a scheduler design is information
about the target system to make decisions. Two main characteristics considered during scheduling are
the resources processing capacity and link bandwidth value interconnecting the processing resources. Our
classification regarding the target system is shown in Figure 8.

Although multiprocessing system may be apart from the distributed systems definition since they are
shared memory systems, the study of scheduling algorithms for multiprocessors contributes to distributed
systems in two aspects: (i) algorithms for multiprocessing systems can be adapted to work in distributed
systems architectures; and (ii) multiprocessing systems may be part of distributed systems such as clusters,
grids, or clouds. Scheduling targeting multiprocessing systems can be split in homogeneous multiprocessing
or heterogeneous multiprocessing. Studies in unbounded homogeneous multiprocessing systems are common,
such as the analysis made by Papadimitriou and Yannakakis in [49]. The so called unbounded schedulers
assume that the number of processors is always greater than the number of tasks being scheduled, and this
kind of algorithm had previously been classified as unbounded number of clusters (UNC) [3]. Conversely,
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Figure 8: Taxonomy according to the target system.

scheduling algorithms considering bounded homogeneous multiprocessors, previously classified as bounded
number of processors (BNP) [3], do not make such assumption. Examples include the Modified Critical Path
(MCP) and the Earliest Task First (ETF). Heterogeneous multiprocessing systems were less explored in the
past than its homogeneous counterpart.

Considering the scheduling in distributed systems, i.e., with no shared memory, our classification com-
prises both homogeneous and heterogeneous systems. Works in homogeneous distributed systems generally
consider them as computing clusters with identical machines interconnected by a homogeneous network.
Chang and Oldham present models for dynamic task allocation in distributed homogeneous systems in [50].
A study on scheduling of parallel jobs in homogeneous distributed systems is presented by Karatza and Hilzes
in [37]. Hagras and Janeček present an algorithm called critical nodes parent trees (CNPT) [36]. Large ho-
mogeneous datacenters gave momentum to scheduling in homogeneous systems [51], including compositions
of systems such as in multicluster grids [52].

Scheduling in heterogeneous distributed systems received substantial attention after the popularization
of grid computing and, more recently, the cloud computing paradigms. Buyya et al. present the Nimrod-
G [53], which is a system for resource management and scheduling for grids. In addition, various simulators
were developed to aid algorithms evaluation. Among the most cited ones are GridSim [54], developed by
Buyya and Manzur, and the SimGrid [55], developed by Casanova.

Grid computing originally started as an opportunistic computing community-based platform for parallel
processing. Heymann et al. proposed an algorithm for adaptive scheduling of master-worker applications in
opportunistic grids [56]. Another work that considers opportunistic grids is presented by Dutot in [57]. An
architecture for scheduling in opportunistic grids was developed by Netto et al. [58].

Grids evolved from desktop-based cycle-stealing mechanisms to more powerful processing platforms com-
posed of shared heterogeneous beowulfs and clusters. Concerning those non-opportunistic grids, Boeres et
al. [59] study the integration of static and dynamic algorithms for heterogeneous distributed systems, pre-
senting experiments using hybrid (or semi-static) algorithms. Casanova et al. presented heuristics for the
scheduling of parameter sweep applications in grids [60]. He et al. described a min-min heuristic for task
scheduling in grids [61].

After the maturing of the computational grid, the cloud computing emerged as a new computing paradigm
in distributed systems. The cloud branches in the taxonomy are discussed in Section 6.

5.4. Application

Application characteristics, as the target system, also have major influence in the development of schedul-
ing algorithms. Therefore, it is worthwhile classifying the application models considered in the scheduling
literature. Our proposed scheduling classification scheme according to the application to be scheduled is
shown in Figure 9. In the most general classification, we separate the application model in tasks or services.
A task is a self-contained job that carries its own executable code. A task may also carry the necessary
input data for its execution (or a reference to its location). A service is a job which is actually an invocation
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to executable code that is available through an interface on the computational resource [62]. Therefore, a
service call carries information about parameters and may also carry information on input data.

Both tasks and services can be classified as dependent or independent. Independent tasks or services
perform no communication, while the dependent ones present communication dependencies among them.
Independent tasks can be either standalone or bag of tasks (BoT). While a standalone task has no relation
to other tasks arriving to the scheduler, as the ones studied in [45], tasks within a bag of tasks have
similarities among them. An example of a class of BoT are the parameter sweep applications, where the
same task is executed many times with different input parameters. Casanova et al. present algorithms for
the scheduling of parameter sweep applications in [60]. Dependent tasks can be modeled as directed acyclic
graphs (DAGs), in which nodes represent tasks and arcs represent communication dependencies among tasks.
In our classification we separate DAGs into two classes: static DAGs and dynamic DAGs. Static DAGs have
all their tasks run during their execution, such the ones scheduled by the algorithm presented by Zhao and
Sakellariou [63]. On the other hand, dynamic DAGs may change during the execution: conditional tasks
may not be run or new tasks may be added to the graph as a result of iterations in the DAG definition [64].
Dynamic DAGs can also be modeled as Petri nets [18].

The service oriented computing (SOC) paradigm has expanded more recently. The same classes definition
applied for tasks can be applied for services. However, we do not separate services in standalone or bag of
services, since those terms are not used when dealing with service scheduling. When regarding to dependent
services, which are also commonly modeled as DAGs, we call them workflows. This term is now widely used
when referring a set of dependent services and scientific applications to be scheduled in grids or clouds, as
well as it is more ample and may include cycles.

Figure 9: Taxonomy according to the application model.

5.5. Objective Function Optimization

A scheduler can optimize different objectives when scheduling applications and their jobs in distributed
systems. The minimization of the makespan is the most common optimization objective found in the
scheduling literature [1]. In [65], Dong and Akl classify the objective functions in either resource centric or
application centric. Although this classification indeed reflects some aspects of the scheduling objectives,
we prefer to approach this taxonomy in a different way because some objective functions cannot be said
either resource centric or application centric. For example, minimizing data movement [66] can be thought
as centered on both the resources pool and the application itself.

We separate the scheduler objective function optimization in distributed systems into three branches:
single criterium, bi-criteria, and multi-criteria, as shown in Figure 10.

Single criterium scheduling algorithms try to find a schedule that optimizes one criterium. In this class
of scheduling algorithms, it is possible to identify the most common objectives: minimize execution time
[8], minimize communication [66], maximize throughput [67], maximize load balancing [68], and maximize
utilization [69]. Bi- and multi-criteria algorithms focus on finding the best schedule following two or more
(often conflicting) objectives. Optimizing more than one objective often leads to tradeoffs with no clear
distinction among possible solutions to reach a single optimal solution. With no solution that is better than
all the others, the algorithm must actually generate a set of solutions that are non-dominated, meaning that
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Figure 10: Taxonomy according to the optimization of the objective function.

for any solution in this set, there is no other solution that can improve one objective without worsening
another. The Pareto front is a set composed of non-dominated solutions.

It is common to trade-off between two objectives in scheduling, yielding bi-criteria scheduling algorithms
that optimize, for example, reliability and execution time [70], workflow bi-criteria optimization [71], ro-
bustness and makespan [72], service instantiation costs and makespan [73], execution time and costs [74],
and resources utilization and makespan [75]. Multi-criteria scheduling also frequently involves optimizing
execution time along with a set of other criteria [17].

Optimization techniques. Classification and evaluation of scheduling techniques in distributed systems have
been addressed before in the literature [14, 3, 11]. The näıve approach to perform the scheduling is to try
all possible combinations and return the best one. This is feasible only if the size of the input instance
(e.g. amount of tasks and/or dependencies and amount of computational resources) is sufficiently small,
since there exist an exponential number of combinations and, consequently, large instances are unfeasible
within a reasonable wall time. That is why scheduling is often approached by using sub-optimal techniques,
such as heuristics [76] and meta-heuristics [35], as well as combinatorial optimization methods [77] and
approximation algorithms [78].

5.6. Output

A scheduling algorithm produces a schedule can be either is exact or imprecise, depending on the expected
input. When the produced schedule is exact, it is a consequence of an exact input data, thus producing
a final schedule that will be fully obeyed. On the other hand, if the schedule produced is assumed to be
imprecise, the algorithm should make assumptions to deal with stochastic and uncertain input data, which
includes application demands and resources availability imprecisely specified or estimated. The scheduling
output taxonomy is shown in Figure 11.

Figure 11: Taxonomy according to the scheduling output.

Many scheduling algorithms consider that the produced schedule is exact, as a result of the input data
to be precise [3, 8, 60]. Some algorithms assume that other mechanisms are responsible for improving
the scheduling quality if the input data is not accurate (or imprecise). Such mechanisms include reactive
rescheduling, as in dynamic or semi-static scheduling approaches. Note that the imprecisions can result
from user specification or performance measurement/prediction systems, such as in [44].

6. Scheduling in Cloud Computing

Hitherto we described characteristics of the scheduling problem and target distributed systems in general.
Although the presented overview is broad, the concepts are directly applicable to specific computer systems.
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Henceforth, we specialize this broader view to the cloud computing paradigm. In this section, we present
how the scheduling problem in cloud computing has been developed, and discuss scheduling peculiarities
and major challenges in cloud computing. Moreover, we extend some aspects of the proposed taxonomy to
incorporate cloud computing characteristics and present how to tackle with schedulers objectives in clouds.

Scheduling algorithms and their associate performance are strongly influenced by the input data and
specific characteristics of the target system. As different service models implemented in cloud computing
have specific objectives, the design of new scheduling algorithms is a clear need to produce efficient services.
Actually, it is common that conflicting objectives can be part of a single optimization goal.

6.1. Cloud computing service models

In the cloud computing model, users are not aware of the specific technology employed to enable service
provision. Such abstraction results in the provision of services over the Internet which are dynamic and
scalable [79]. The cloud computing business model allows clients to extend their computing platforms by
leasing virtualized computational resources offered as services by cloud computing providers through the
Internet. This resource leasing provides elasticity to the client computational power by running software or
development platforms, or by leasing virtualized hardware. Cloud computing has three canonical models:
software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). Other
service models encountered in the literature are often specialization or combination of these three models.

The IaaS is a popular model from a resource management perspective, thus scheduling in such systems
has received great attention in the research community [39, 80, 81]. In a nutshell, IaaS is a cloud computing
model where virtual servers are made accessible to clients through the Internet. In terms of access policy,
an IaaS can be public, private, or hybrid. A public IaaS offers servers in a pay-per-use basis, while a private
IaaS can be seen as a virtualized and more user-transparent cluster. As a combination of these two, a
hybrid IaaS comprises both public and private IaaS clouds, offering private resources that can be expanded
with paid public cloud resources, realizing the so-called elasticity [29]. Another model considered in the
literature is the Community Cloud, being a composition of private clouds sharing their resources through
their administrative borders. To cover these types of clouds, an extension of the target system taxonomy is
shown in Figure 12.

Clearly, the classification of cloud access in public, private, hybrid, or community can be extended
for PaaS and SaaS. In special, community clouds inherit from grid computing many challenges related
to administrative aspects of access control that are discussed in a multi-cloud framework [82]. In our
classification, we put these types of cloud access explicitly under IaaS since it is at the infrastructure level
that the resource sharing effectively occurs.

Figure 12: Cloud extension of the taxonomy according to the target system.

6.2. Client and provider perspectives

Cloud management, which includes scheduling, must deal with two different perspectives: one from the
cloud client and the other from de cloud provider. Cloud clients demand quality of service and low prices,
while cloud providers focus on offering QoS and making profit. The development of algorithms for each
perspective requires different approaches to achieve such different optimization objectives.
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Figure 13(a) illustrates the client perspective, in which users have access to a private or in-organization
task/service submission interface. The management system is responsible for gathering and storing infor-
mation about available clouds, as well as their services and prices. In this perspective, clients can utilize
services from a private cloud (if available) and/or from multiple public clouds, which is consistent with the
taxonomy shown in Figure 12. In what concerns the scheduler, it must deal with the trade-off between
quality of service and price, which depends on users requirements and objectives.

The provider perspective is illustrated in Figure 13(b). The service interface can be located in the cloud
provider or in a client broker, usually offered as a portal, a set of tools or as an API (application programming
interface). Based on the client/application requirements defined in the SLAs, the cloud provider must decide
the best resource configurations to be used according to its profitability principles1. Depending on the service
level offered by the provider interface (IaaS, PaaS, SaaS), the scheduler will cope with different inputs for
the decision-making. In the case of an IaaS provider, the scheduler is responsible for allocating virtual
machine requests on the physical substrate. In the case of SaaS or PaaS provider, the scheduler allocates
client applications and/or application requests to the virtualized computing resources.
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(b) Provider perspective.

Figure 13: Client and provider perspectives in cloud computing.

A third perspective, illustrated in Figure 14, combines both client and provider perspectives, in which a
public cloud provider makes use of other public clouds to provide services to its clients. In this perspective,
two SLA layers exist: one between the provider and its clients, and one between the provider and the other
cloud providers. In this scenario, different terms can exist at each SLA level, which must be translated from
one layer into QoS requirements at the other layer so the scheduler can allocate client requests. Therefore,
both client and provider perspectives co-exist, and the scheduler must make decisions on how to get the best
QoS according to the current demand, but also should focus on profitability when acting as a client from
other public clouds. Figure 15 presents a taxonomy for the scheduler location in the cloud.

6.3. Scheduler “Feedstock”

A fundamental difference between clouds and previous distributed systems is the wide adoption of virtu-
alization to offer computing resources to the users. To achieve efficient server consolidation, VM allocation
(or placement) must be performed, i.e., a scheduling decision that is different from the application schedul-
ing. In this section, we denominate scheduler feedstock as the type of computer software being considered
by the scheduler: virtual machines or applications. Thus, when developing schedulers for cloud computing,

1As a market-oriented business, the provider can focus on different strategies, from strong confidence relations with its
clients to lower level services. The discussion on business/market strategies is very complex and is out of the scope of this
paper.
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Figure 15: Taxonomy in clouds according to the scheduler location.



we must specify if the scheduler is a VM scheduler or an application scheduler. These two different resource
allocation facets in clouds have implications that were not present in grids and clusters. Based on this, we
derive a new branch in the the application model taxonomy in Figure 16(a) (previously shown in Figure
9). Moreover, we extend the input semantics taxonomy (previously shown in Figure 6) to cover input data
about virtualized environments. The new branch of the input semantics is shown in Figure 16(b).

(a) Application model. (b) Input semantics.

Figure 16: Application model and input semantics taxonomy extensions for cloud computing.

The VM scheduler needs information on the resource requirements of the VMs being allocated, namely
security constraints and hardware requirements (CPU performance and number of cores, amount of RAM,
etc.). Another relevant information for the scheduler is the charging model of the VMs. The charging
model have implications in the expected duration of the allocation and also in its preemption rules [83]. For
example, Amazon EC2 spot instances can be interrupted by the provider without prior notice, while doing
that for on-demand instances would mean an SLA violation from the provider. Taking this information into
account can help the VM scheduler to properly place VMs onto the physical machines.

To deal with the users requests, an application scheduler is necessary when the scheduler is located in
the cloud client, as shown in Figure 13(a). This scheduler decides on which VMs the applications will run.
If the VMs are already deployed and running, the application can be sent for execution. Otherwise, the
private cloud and/or the public clouds that will be used to run the application must deploy new virtual
machines according to the application scheduler output. Thus, the virtual machine scheduler present in the
cloud (Figure 13(b)) must be invoked to decide on which physical machine the new VM(s) will be placed.
After that, all VMs can be switched on and then the application components can run.

When considering IaaS providers, one important aspect that is made clear from the two scenarios in
Figures 13(a) and 13(b) is that application and VM schedulers information exchange is limited. The ap-
plication scheduler can ask for a certain amount of VMs with a set of characteristics to the VM scheduler,
and no further information is exchanged. In other words, the VM scheduler has no specific information
about the application(s) that will run on those VMs. As a consequence, the resulting VM scheduling in
the physical resources can, in practice, lead to low resource utilization even if all physical resources in a
machine are currently allocated to virtual machines. However, if we consider, for instance, a two or more
SLA layers scenario with an SaaS or PaaS provider (Figure 14), the application scheduler and the private
cloud VM scheduler are under the same administrative domain. Therefore, information about the computing
demands of the application being scheduled can serve as input to the VM scheduler to improve allocation.
By considering the application demands and the VM requirements altogether, the VM scheduler can, for
example, allocate a VM that have low CPU utilization and high I/O demands in the same physical machine
of a VM with high CPU utilization and low I/O demands, avoiding bottlenecks that could impair quality
of service, as well as maximizing hardware utilization.
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6.4. Scheduler objectives

In clouds, the objectives pursued by a scheduling algorithm often depend on where the scheduler is
running. Different approaches and algorithms must be implemented to achieve these objectives in a variety
of scenarios. Each scheduling approach, according to the scheduler location, takes as input information
of diverse granularity and semantics. In order to reach an objective, the scheduler must optimize one or
more criteria following an objective function (see Figure 10). Thus, a single objective can be pursued by an
algorithm which optimizes one criterium, but can be one among multiple objectives to optimize (multiple
criteria). The proposed taxonomy for scheduler objectives in clouds is presented in Figure 17. Its details
are discussed in the next sections.

Figure 17: Taxonomy in clouds according to the scheduler objectives.

6.4.1. Providers

Cloud providers must supply its clients with virtualized computing resources according to a service level
agreement. In the case of IaaS providers, it receives VM requests from its clients and must schedule them on
the underlying physical machines following the resource requirements of these VMs, such as amount of pro-
cessing cores, performance, disk space and speed, networking requirements, and so on. The virtual machine
placement decided by the scheduler will have direct impact in the datacenter utilization and VM performance
observed by the clients. Therefore, a scheduler at this level is concerned with minimizing datacenter costs
subject to VM specifications in the SLAs established with the clients. From the input semantics for clouds
(Figure 16(b)), we observe that this SLA can include security and hardware requirements, characteristics of
the charging model to be followed, and application demands.

To minimize datacenter costs, cloud providers can rely on algorithms that, for instance, minimize the
amount of active machines. This can be achieved by scheduling VMs on the minimum possible amount of
physical machines as soon as the desired (or ensured by SLA contracts) quality of service is maintained.
However, as the clients want elasticity, the number of running VMs changes over time, increasing with new
VM requests and decreasing when clients turn their VMs off. This leads to allocations where hardware
is underutilized, whereas virtual machine migration can remediate this situation. Thus, the scheduling
frequency (Figure 7) of VMs in the datacenter must consider how volatile the VM requests are. For instance,
a periodic rescheduling or event-driven rescheduling can be utilized to maintain a high hardware utilization.

One way of minimizing running costs is through profiling running virtual machines on-the-fly, aiming at
discovering the VMs resource usage patterns. This can lead to a better reallocation of virtual machines,
avoiding to collocate virtual machines that will potentially create bottlenecks in the underlying hardware.
For example, two I/O intensive virtual machines could be placed in different physical hardware, while
two VMs that have strong communication relations could be placed in the same physical machine. The VM
characterization problem is yet a challenge that can be addressed through hardware and software monitoring
in order to find use patterns, and the development of new algorithms should consider such patterns to
avoid overload is desirable. However, privacy and security concerns must be taken into consideration when
monitoring VMs.
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We identified two main objectives from schedulers located in cloud providers: maximize profit and
maximize quality of service. Profit maximization can be achieved by adopting more specific scheduling
objectives, such as minimizing the datacenter running costs and minimizing the tasks execution costs.
Consolidation can be utilized for both objectives: cloud providers can adopt energy-aware resource allocation
policies to minimize datacenter running costs, or they can follow a consolidation objective function that
focuses on minimizing the amount of cloud resources (rented from other providers as well) necessary to run
a set of tasks.

Energy consumption has attracted attention from the resource allocation community in cloud data
centres [84, 85, 86, 87] as part of the so-calledGreen Computing concept [6]. Energy-aware resource allocation
commonly takes the form of a VM placement optimization in IaaS data centers, where the VM allocation
is determined by quality of service requirements (usually defined in an SLA with the cloud client) and
consolidation of VMs into the physical machines available. Therefore, consolidation helps in reducing the
amount of machines powered on, and thus resource allocation collaborates to reduce power consumption.
Energy-aware allocation can also take into account power consumption of network devices, aiming at placing
VMs closer to data sources to reduce network traffic [86].

Clouds offering platform (PaaS) and software (SaaS) as services need a computational infrastructure to
host the platform and run the software services. These cloud providers can own the whole infrastructure
or they can rely on IaaS providers to achieve elasticity, shrinking their infrastructure and reducing costs
whenever possible. In this scenario, the SaaS or PaaS provider composes a hybrid cloud to run services
offered to its clients, therefore resulting in two SLA layers. As in other businesses, different strategies can be
used by the SaaS/PaaS provider to attract clients, such as improved service quality with higher charges or
cheap services with lower service quality. The scheduling algorithm must work with different optimization
functions depending on the desired strategy. For example, if the cloud provider wants to offer a better
service, the scheduler may focus on the maximization of pre-established quality criteria of the underlying
IaaS providers. On the other hand, the cloud provider can focus on reducing its running costs, where a
cost-oriented scheduler could be used to minimize the budget when renting IaaS resources according to client
SLAs. As a consequence, PaaS and SaaS providers can follow the objectives minimize execution costs and
maximize user QoS, as shown in Figure 17.

Clearly, some of the objectives described here can overlap with each other. How and when to combine
such objectives, as well as algorithms for such combinations, are still challenges to be addressed. An even
more challenging objective to be considered by a scheduler is the minimization of maintenance and personnel
costs, which involves man-hour costs and expected lifetime of datacenter components.

6.4.2. Clients

The final cloud client can be a user that utilizes exclusively either private or public cloud resources,
or a user that composes a hybrid cloud to run his/her applications. In both cases, the scheduler objective
should be to reduce costs while receiving a satisfactory QoS according to the user/applications requirements.
Client QoS in clouds is often measured in terms of response time, performance, and availability, but other
requirements regarding resources configuration can also be part of the SLA contract. As in other market
niches, scheduling from client perspective usually involves a trade-off between budget and quality (QoS
parameters).

From the client perspective, research has been focused in two main objectives: maximize QoS (often
minimize the makespan) and minimize the monetary costs involved when using the public cloud. These
objectives can be pursued separately, when only one of them matters for the scheduling, or together, when
both objectives are related. One example is the minimization of the monetary costs but at the same time
respecting a maximum makespan for the workload.

When we consider the client as the owner of a private cloud, scheduling objectives can have similarities
with the scheduling from the provider perspective in the sense that the number of active physical resources
should be minimized, avoiding unnecessary monetary costs. However, scheduling in the private cloud is
mainly focused on performance metrics instead of profitability. This leads to the development of multi-
criteria approaches to deal with the scheduling in hybrid clouds, which needs to address both private cloud
objectives and cost minimization to compose the hybrid cloud.
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7. Literature review on scheduling in clouds

This section presents a literature review of the scheduling problem in cloud computing. We followed a
simple search protocol using online indexing systems2. Searches were performed for each year, from 2010
to 2016, using the filtering tools available in the indexing online systems. Variations of the terms cloud
computing and scheduling were appended to the proposed taxonomy branch names to find relevant work
for the taxonomy branch problems. For example, to search papers on scheduling for SaaS, the search
term scheduling cloud SaaS was used. Results were collected and manually filtered to remove manuscripts
from other areas (e.g. Physics/weather or works focused on e-Science applications, not in the scheduling
problem). Most relevant papers were then selected having as criteria the focus of the text (should be focused
on scheduling), venue relevance, and/or number of citations, resulting in a list of 18 papers published in
2010, 14 in 2011, 12 in 2012, 16 in 2013, 30 in 2014, and 11 in 2015, and 13 in 2016, totalling 114 selected
research papers we considered relevant to the scheduling problem in cloud computing systems.

Selected papers were classified according to the taxonomy proposed in this paper, considering both the
cloud (Section 6) and pre-cloud (Section 5) taxonomy branches. This detailed classification is shown in
Tables 1, 2, 3, and 4, where column titles are the short text notations introduced in the full taxonomy
overview in the beginning of this paper (Figure 3). In these tables, a filled circle means the research paper
listed in the row is relevant to the branch listed in that column. A filled circle does not necessarily mean the
work in that row explicitly mentions the branch keyword, but states that the branch is somehow considered
by that research. These tables aim at helping readers to find unexplored branches and combinations of
topics that lack research, but also help in finding relevant related work that can be used as comparison
and/or extensions to the readers research.

From Tables 1, 2, 3, and 4, we highlight the following conclusions based on the classification resulted
from the proposed taxonomy:

Organization. the scheduling problem is commonly approached from a centralized perspective, where a
central scheduler has information about the system as a whole.

Input Accuracy. In the input accuracy taxonomy, most scheduling work assumes data input is accurate,
while only a few papers consider stochastic or uncertain inputs. Between 2014 and 2016, works considering
uncertainty in the input data received more attention than in previous years.

Input Semantics. pre-cloud semantics of the input data highlights the established assumption that sched-
ulers often consider as input information about the computing resources as well as about the jobs to be run.
Information about the user is less common, with a few works considering budget, for instance.

Frequency. The most common scheduling frequency for algorithms is offline/static. A few works study
online schedulers, and some works study semi-static or dynamic schedulers.

Application. Regarding the application model considered by the scheduler in the pre-cloud taxonomy, most
works focus on tasks, both dependent and independent. However, a good amount of research is also dedicated
to services, with most of them focusing on workflows (dependent services).

Optimization. Scheduling research in computing, for a long time, focused on a single criteria, often makespan.
In this review of recent literature, cloud computing scheduling brought the focus to bi- and multi-criteria
scheduling approaches, where costs and resource utilization play an important role.

Output. As a consequence of the common assumption that input data is precise, the scheduler output is
more commonly considered to be also exact, with imprecise outputs receiving a little bit more attention in
the last years.

2Google Scholar, IEEExplore, ACM Digital Library, Scopus

20



Table 1: Reviewed research articles from 2014 to 2016 classified considering the cloud branches of the proposed taxonomy.
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2016

Abdullahi, M. et al. [88] ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Bryk, P. et al. [89] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦

Deldari, A et al. [90] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Gupta, I. et al. [91] ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • •

He, T-Q. et al. [92] ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ •

Juarez, E. et al. [93] ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦

Kliazovich, D. et al. [94] ◦ ◦ • • • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ •

Liu, L. et al [95] ◦ ◦ • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Maheshwari, K. et al. [96] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Omezzine, E. et al. [97] ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦

Sedaghat2016, M. et al [98] ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦

Tchernykh, A. et al. [99] ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦

Zhang, R. et al. [100] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ •

2015

Amalarethinam and Beena [101] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Bijon, K. et al. [102] ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Genez, T. et al. [103] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Hoenisch, P. et al. [104] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Huang, D. et al. [105] ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ • ◦

Lee, Y. C. et al [106] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

Lin, X. et al. [107] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦

Malawski, M. et al. [108] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ •

Panda and Jana [109] ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Sahni and Vidyarthi [110] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Vieira, C. et al. [111] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

2014

Bellavista, P. et al. [112] ◦ ◦ • • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Calheiros and Buyya [113] ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Di, S. et al. [114] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ •

Duan, R. et al. [115] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ ◦

Fr̂ıncu, M. E[116] ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦

Kang, S. [117] ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ •

Genez, T. et al. [118] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Genez, T. et al. [119] ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦

Kune, R. et al. [120] ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ •

Lin, W et al. [121] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦

Liu, Z. et al. [122] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Maguluri and Srikant [123] ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦

Poola, D. et al. [124] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ •

Poola, D. et al. [125] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦

Raju, R. et al. [126] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦

Rodriguez and Buyya [80] ◦ ◦ • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Sandhu and Sood [127] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦

Shie, M-R. et al. [128] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ •

Somasundaram and
Govindarajan [129] ◦ ◦ • • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ •

Tchernykh, A et al. [87] ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦

Tsai, C-W. et al. [130] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ •

Vieira, C. et al. [131] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Wang, X. et al. [86] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦

Wu, C-M. et al. [85] ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Wu, L. et al. [132] ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦

Xiang, X. et al. [133] ◦ ◦ • • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦

Zhang, C et al. [134] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦

Zhang, F. et al. [135] ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Zhu, X. et al. [136] ◦ ◦ • • ◦ ◦ • ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦

Zuo, X. et al. [137] ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦
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Table 2: Reviewed research articles from 2014 to 2016 classified considering the pre-cloud branches of the proposed taxonomy.

Pre-cloud taxonomy branches
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2016

Abdullahi, M. et al. [88] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Bryk, P. et al. [89] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Deldari, A et al. [90] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Gupta, I. et al. [91] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

He, T-Q. et al. [92] ◦ ◦ • ◦ ◦ • • • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Juarez, E. et al. [93] • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ •

Kliazovich, D. et al. [94] • ◦ ◦ • ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Liu, L. et al [95] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦

Maheshwari, K. et al. [96] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Omezzine, E. et al. [97] ◦ ◦ • ◦ ◦ • • • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Sedaghat2016, M. et al [98] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Tchernykh, A. et al. [99] • ◦ ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Zhang, R. et al. [100] • ◦ ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

2015

Amalarethinam and Beena [101] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ •

Bijon, K. [102] • ◦ ◦ ◦ ◦ • • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Genez, T. et al. [103] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦

Hoenisch, P. et al. [104] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ •

Huang, D. et al. [105] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Lee, Y. C. et al [106] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Lin, X. et al. [107] • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Malawski, M. et al. [108] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ •

Panda and Jana [109] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Sahni and Vidyarthi [110] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Vieira, C. et al. [111] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

2014

Bellavista, P. et al. [112] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Calheiros and Buyya [113] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Di, S. et al. [114] • ◦ ◦ • ◦ ◦ • • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ • ◦

Duan, R. et al. [115] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ •

Fr̂ıncu, M. E [116] • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ •

Kang, S. [117] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Genez, T. et al. [118] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦

Genez, T. et al. [119] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦

Kune, R. et al. [120] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Lin, W. et al. [121] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Liu, Z. et al. [122] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Maguluri and Srikant [123] • ◦ ◦ ◦ • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Poola, D. et al. [125] • ◦ ◦ • ◦ ◦ • • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦

Poola, D. et al.[124] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Raju, R. et al. [126] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Rodriguez and Buyya [80] • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦

Sandhu and Sood [127] ◦ ◦ • • ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦

Shie, M-R. et al. [128] ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦

Somasundaram and
Govindarajan [129] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Tchernykh, A. et al. [87] • ◦ ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦

Tsai, C-W. et al. [130] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Vieira, C. et al. [131] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Wang, X. et al. [86] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ •

Wu, C-M. et al. [85] • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Wu, L. et al. [132] • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ •

Xiang, X. et al. [133] ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Zhang, C. et al. [134] • ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦

Zhang, F. et al. [135] ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦

Zhu, X. et al. [136] • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Zuo, X. et al. [137] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ •
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Table 3: Reviewed research articles from 2010 to 2013 classified considering the cloud branches of the proposed taxonomy.

Cloud taxonomy branches
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2013

Abrishami, S. et al. [138] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Dhillon, J. S. et al. [139] ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Ergu, D. et al. [140] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦

Genez, T. et al [141] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Ghribi, C. et al [84] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Huang, Y. et al. [142] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Jain, N et al. [143] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦

Kessaci, Y. et al. [144] ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Lucas-Simarro, J. L. et al. [145] ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • • • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ •

Marcon, D. et al. [146] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦

Pereira, W. et al. [147] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ •

Rahman, M. et al. [148] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Shen, S. et al. [149] ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Takouna, I. et al. [150] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦

Van den Bossche, R. [151] ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Wu, Z. et al. [152] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

2012

Biran, O. et al. [153] ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ • ◦

Bessai, K. et al. [74] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • • ◦ ◦

Bittencourt, L. et al. [81] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Genez, T. et al. [77] ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • •

Huang, Q. et al. [154] ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Lee, Y. et al. [155] ◦ ◦ • • • ◦ ◦ • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •

Leitner, P. et al. [156] ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦

Li, J. et al. [157] ◦ ◦ • • ◦ • • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ •

Lingfang, Z. [158] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • • ◦ ◦

Moschakis and Karatza [159] ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Oliveira, D. et all [160] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Wang, W. et al [161] ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

2011

Bittencourt and Madeira [29] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Fr̂ıncu, M. et al. [162] ◦ ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •

Garg, S. et al. [163] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦

Jin, J. et al. [164] ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦

Juhnke, E. et al. [165] ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Lago, D. [166] ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Lee, G. et al [167] ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦

Li, C-C. et al. [168] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Li, W. et al. [169] ◦ ◦ ◦ ◦ • • ◦ • • ◦ ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ •

Mezmas, M. et al. [170] ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Prodan, R. et al. [171] ◦ ◦ • • ◦ ◦ ◦ • ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •

Van den Bossche, R. et al. [172] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ •

Vecchiola, C. et al. [173] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Wu, L. et al. [174] ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦

2010

Dörnemann, T. et al. [175] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ •

Fang, Y. et al. [176] ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦

Hu, J. et al [177] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Huang and Huang [178] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Li and Guo [179] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦

Li, J. et al. [180] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ •

Liu, K. et al. [181] ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ •

Liu, S. et al. [182] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •

Moon, J. H. et al. [183] ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦

Oprescu and Kielmann [184] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Pandey, S. et al. [35] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦

Salehi and Buyya [185] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Selvarani et al. [186] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦

Van den Bossche, R. et al. [39] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ •

Wei, G. et al. [187] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦

Wu, Z. et al. [188] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦

Zhang and Li [189] ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

Zhong, H. et al. [190] ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦
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Table 4: Reviewed research articles from 2010 to 2013 classified considering the pre-cloud branches of the proposed taxonomy.
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2013

Abrishami, S. et al. [138] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Dhillon, J. S. et al. [139] ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Ergu, D. et al. [140] • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Genez, T. et al. [141] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Ghribi, C. et al [84] • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Huang, Y. et al. [142] ◦ • ◦ ◦ ◦ • • • ◦ • • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ •

Jain, N. et al. [143] • ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Kessaci, Y. et al. [144] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •

Lucas-Simarro, J. L. et al. [145] • ◦ ◦ ◦ ◦ • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •

Marcon, D. et al. [146] • ◦ ◦ ◦ ◦ • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •

Pereira, W. et al. [147] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Rahman, M. et al. [148] • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ •

Shen, S. et al. [149] • ◦ ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Takouna, I. et al. [150] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦

Van den Bossche, R. [151] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Wu, Z. et al. [152] ◦ ◦ • ◦ ◦ • • • ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ •

2012

Biran, O. et al. [153] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Bessai, K. et al. [74] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Bittencourt, L. et al. [81] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Genez, T. et al. [77] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Huang, Q. et al. [154] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Lee, Y. et al. [155] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ •

Leitner, P. et al. [156] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Li, J. et al. [157] ◦ • ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ •

Lingfang, Z. [158] • ◦ ◦ ◦ ◦ • • • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Moschakis and Karatza [159] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Oliveira, D. et all [160] • ◦ ◦ • ◦ ◦ • • • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • • ◦

Wang, W. et al [161] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

2011

Bittencourt and Madeira [29] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Fr̂ıncu, M. et al. [162] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ •

Garg, S. et al. [163] ◦ • ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Jin, J. et al. [164] • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ •

Juhnke, E. et al. [165] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ •

Lago, D. [166] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Lee, G. et al [167] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ •

Li, C-C. et al. [168] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •

Li, W. et al. [169] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •

Mezmas, M. et al. [170] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Prodan, R. et al. [171] ◦ • ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ •

Van den Bossche, R. et al. [172] ◦ • ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Vecchiola, C. et al. [173] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ •

Wu, L. et al. [174] • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ •

2010

Dörnemann, T. et al. [175] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ •

Fang, Y. et al. [176] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Hu, J. et al [177] • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •

Huang and Huang [178] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ •

Li and Guo [179] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ •

Li, J. et al. [180] • ◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦

Liu, K. et al. [181] • ◦ ◦ ◦ ◦ • • • • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ •

Liu, S. et al. [182] • ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ •

Moon, J. H. et al. [183] • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ •

Oprescu and Kielmann [184] • ◦ ◦ • ◦ ◦ • • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦

Pandey, S. et al. [35] • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ •

Salehi and Buyya [185] • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ •

Selvarani et al. [186] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Van den Bossche, R. et al. [39] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Wei, G. et al. [187] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ •

Wu, Z. et al. [188] • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ •

Zhang and Li [189] • ◦ ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ •

Zhong et al. [190] • ◦ ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ •



Target. IaaS clouds are the most common target system considered by scheduling research in clouds. As
IaaS is often a basis of PaaS and SaaS, one could expect this focus on IaaS. On the other hand, PaaS and
SaaS also need higher-level schedulers that can better understand application requirements.

Location. Literature often considers the cloud client itself as the host of the scheduler, where information
about application and users are used to take the best scheduling decision. When the scheduler is assumed
to run in the provider, a broker is commonly the system assumed to be hosting its decision-making process
(and having an IaaS as the target system). IaaS clouds are also often considered as hosting the scheduler,
even though more recently authors considered it fewer times than in cloud computing’s earlier years.

Input Semantics Cloud. Many schedulers in cloud assume they have information about the VMs capacities,
specially processing and network. Also, as an important cloud aspect, monetary costs (mostly price) is also
a common input data for schedulers in cloud.

Objective. As many works consider the scheduler to be in the client, the objectives considered by the
scheduler optimization in cloud research take into account the client point of view: application execution
costs and applications QoS. Nevertheless, few works have also taken into account the provider’s point of
view by considering data-center and execution costs.

Application Cloud. Virtual machines and containers were introduced recently, and schedulers in clouds can
consider them as the “application” to be scheduler. Only a few works have considered virtual machines or
containers scheduling, with most of them being dedicated to VM allocation in cloud data centers.

8. Future directions

Schedulers will need to keep evolving along with distributed systems to properly account new character-
istics that arise [13]. In this section we highlight scheduling challenges that still exist in current distributed
system, supporting them with information from the literature review above, as well as devise problems that
will be important to be addressed in the future of distributed systems. The discussion presented here is
supported by data presented as supplementary material for this article.

Input data. One of the main practical challenges that are present in job scheduling in computer systems is
regarding the quality of the input data. In practice, although some applications can reliably estimate job
execution time from past executions, for many other applications jobs running times are either unknown
or a rough estimation, leading to imprecision in the schedule results. In pre-cloud systems, this can result
in problems such as delayed application execution, increased makespan, deadline misses, among others. In
clouds, an additional direct consequence of such unhandled uncertainty is increased costs. Uncertainties
can be a result of no previous knowledge about jobs and resources, but also from resource contention when
concurrency is present. In the latter, network contention is of special importance when data dependencies
and data transfers exist among jobs of the same user or from users sharing the same infrastructure. Most
schedulers do not take resource contention into consideration, what can actually bring more uncertainties
to the application execution times. Schedulers that are robust to such uncertainties are necessary to avoid
the discussed pitfalls and to increase reliability on schedulers estimates.

QoS and QoE. Many schedulers take into account multiple criteria in the decision making. These criteria
are commonly associated with quality of service metrics, which in turn are associated with a higher level
requirement from the user. To allow a scheduler to autonomously adapt itself, it must understand those
higher level requirements, referred as quality of experience (QoE). This involves translating the user’s input
data (requirements) into lower quality of service levels that can be monitored and adapted according to the
user quality of experience. Currently, QoS is challenging for schedulers due to variable requirements from
different applications, and this challenge becomes even greater when QoS metrics observed are the same,
but a different perception of quality can come from different users for the same application.
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Edge/Fog computing. As cloud computing became more mature, the emergence of models to cover re-
quirements not fulfilled by clouds also evolved. One promising distributed system architecture evolution is
bringing computing capacity to the edges of the network to reduce latencies [191], as for example in Fog
Computing [192]. As computing capacity is moved closer to the user, but cloud computing do still exists to
provide larger capacity, a hierarchical system emerges, with each level having its constraints and capabilities.
For instance, in Fog Computing Cloudlets closer to the user can fulfil lower-latency requirements and locally
optimized decisions, while cloud computing keeps having its role as a centralized, high-capacity computing
facility. This hierarchical heterogeneous system introduces new variables to be considered by the schedulers,
with latency becoming a relevant optimization criterium.

Mobility. Mobile applications are more and more complex as smart devices become ubiquitous, with users
often carrying more than one (sometimes multiple with wearable computing) processing-capable, networked
devices. Such applications often rely on data storage and processing capacities from the cloud to provide
relevant functionalities to mobile users. In this context, mobile users have at a given time and location a
set of data and processing tasks that is a subset of all his/her needs. Edge computing, e.g. Fog Computing,
associated with mobility can be used to maintain these subsets closer to the user. This is desirable to reduce
network traffic and associated delays and latencies [193, 194]. To make this effective, resource allocation
and scheduling play an important role, and modelling the scheduling problem introducing time and mobility
variables is a challenge that arises. These models would have to consider user positioning and movement
predictions in order to be able to move data in advance and reduce user’s perception of latency in a variety
of mobility scenarios and edge resource availability.

Service levels. Schedulers are usually developed for specific service levels. The reviewed literature presents
an imbalance in studies for IaaS and other service levels, which suggests schedulers that can take advantage
of different service levels are yet to be developed. Moreover, studies to understand the relation between
costs and resource utilization at the different cloud service levels could help in reducing cloud costs from the
user perspective.

Charging models. Besides being service-level-specific, cloud offerings also bring a variety of charging models
with different charging intervals. Notwithstanding, most schedulers do not take the charging models into
account. Two traditional charging models for virtual machines are on-demand and reserved instances.
Auction-style instances with variable prices also exist. While some applications can have strict requirements
that better match with a charging model that offers a more reliable instance, other applications might
be prone to failures, where cheaper instances could be useful. A comprehensive scheduling model that
captures the relation between charging models, charging intervals, and pricing would help in establishing
lower execution costs within the applications QoS requirements.

IoT and BigData. Internet of Things and Big Data challenges are also relevant to scheduling in distributed
systems. With predictions on the number of devices connected to the Internet reaching 50-100 billion
[195], the amount of data produced, transferred, and processed will also increase unprecedentedly. Raw
data generated by the plethora of connected devices can be stored for further processing or future access,
or it can be processed before storage, being reduced to more condensed, meaningful data. The on-the-fly
processing of such stream of data is referred as stream processing or complex event processing. In this kind of
processing, incoming data passes through a set of operators to be filtered/aggregated and stored. The way
these operators are allocated to the available computing resources have impact in the delay observed between
when the data input has taken place and its resulting computation result is obtained. With billions of devices
data streams realizing a set of operations, the scale of the scheduling problem can make current decision-
making methods unfeasible. Developing fast, online scheduling that can handle big data is a challenging
issue that can impact the future of the Internet of Things. Online schedulers are much less common in the
past literature than offline schedulers, which makes the development of effective fast online scheduling even
more challenging.
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Robustness. Models that capture the relation between scheduling and resilience, specially for large applica-
tions, can reduce execution times and costs. Any changes in the execution of an application, such as changes
in application topology, resources configuration, software configuration, input data, or data sources can turn
a successful execution into a failure. An application scheduler that is able to capture failure occurrences
from a resilience model and avoid allocations that can potentially fail is a challenging research topic which
results can benefit the execution of large applications by avoiding interruption, and consequent waste of
money and time.

Online optimization. Most schedulers assume the sequence of jobs is known a-priori. Online scheduling
algorithms that capture many characteristics of tasks and systems (such offline schedulers do) are still a
challenge in distributed systems. One of the difficulties is that previously dispatched jobs might need to be
relocated in order to achieve the aim of a given objective function. Process migration can be costly and
complicated, but with the adoption of virtualization (VMs and containers), migration is feasible. Online
schedulers that include migration costs and the impact of migration in the running applications can bring
online schedulers to attention, with more comprehensive online schedulers becoming relevant.

VM placement. Clouds provide, through virtual machines, resource sharing among tenants. Although re-
source sharing through VMs promotes software isolation improves resource utilization, it does no guarantee
performance isolation. Virtual machine allocation, or virtual machine placement, algorithms that can avoid
performance interference among cloud stakeholders are a challenge because of lack of information or knowl-
edge about the applications users are going to deploy. Moreover, a trade-off between performance isolation
and cost is present: a guarantee of performance isolation can actually mean less users/applications per host,
reducing resource utilization and consequently increasing infrastructure costs. Application profiling can be
used to improve input information for the VM allocation algorithms, but care must be taken not to violate
users privacy.

Security and privacy. With the resource sharing and transparent data/processing offloading promoted by
virtualization, security and privacy are increasing concerns. As the user cannot control with whom his VM
will share the physical resources, the co-located VMs can potentially be owned by anyone around the globe.
Although security is a general concern on networked environments, resource allocation and scheduling can
take it into account to reduce risks according to application and users requirements. This introduces new
constraints to the scheduling problem, what can again result in poorer resource utilization and increased
costs.

9. Conclusion

The classification of scheduling solutions is challenging due to the large amount of literature as well as
the number of variations of the problem. These very same reasons make the identification of relevant topics
in the scheduling problem an important task to be regularly performed by both young and experienced
researchers in the field.

In this paper we review several aspects of the scheduling literature for distributed systems, and pro-
posed a taxonomy that encompasses the scheduler organization in the system, the scheduler input and
output data, the frequency the scheduler runs, the application model and target system, and the schedul-
ing objectives. The taxonomy is extended to include branches that appeared with the more recent cloud
computing paradigm, bringing new target system aspects, the utility perspectives in terms of target sys-
tem and scheduling objectives, as well as different application model resulted from the cloud virtualized
characteristic.

To corroborate the taxonomy, we reviewed a total of 114 papers from the scheduling literature, identifying
research according to the proposed taxonomy branches. This resulted in an analysis of the latest scheduling
research in distributed systems from a variety of aspects. As a result from the literature review, we also
discussed trends and challenges that can be focus of research in the upcoming years.
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The work of classifying scheduling research does not come to a foreseeable end. The need for classification
and survey of scheduling literature for distributed systems will remain in the future, especially considering
the internet of things, mobility, and big data resulting from the ever increasing number of connected devices,
as well as the continued existence of computing as a utility service.
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