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Abstract

Cooperative game theory considers simple games and influence games as es-
sential classes of games. A simple game can be viewed as a model of voting
systems in which a single alternative, such as a bill or an amendment, is pitted
against the status quo. An influence game is a cooperative game in which a
team of players (or coalition) succeeds if it is able to convince sufficiently many
agents to participate in a task. Furthermore, influence decision models allow
to represent discrete system dynamics as graphs whose nodes are activated ac-
cording to an influence spread model. It let us to depth in the social network
analysis. All these concepts are applied to a wide variety of disciplines, such
as social sciences, economics, marketing, cognitive sciences, political science,
biology, computer science, among others. In this survey, we present different
advances in these topics, joint work with M. Serna.

These advances include representations of simple games, the definition of
influence games, and how to characterize different problems on influence games
(measures, values, properties and problems for particular cases with respect
to both the spread of influence and the structure of the graph). Moreover,
we also present equivalent models to the simple games, the computation of
satisfaction and power in collective decision-making models, and the definition
of new centrality measures used for social network analysis. In addition, several
interesting computational complexity results have been found.
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1. Introduction

Game theory can be defined as the study of mathematical models of strate-
gic interaction between rational decision-makers. The first known discussion
of game theory occurred in a letter written by Charles Waldegrave, an active
Jacobite, and uncle to James Waldegrave, a British diplomat, in 1713 [1, 2].
However, modern game theory was developed extensively in the 1950s with the
idea regarding the existence of mixed-strategy equilibria in two-person zero-sum
games and its proof by John von Neumann. Von Neumann’s original proof used
the Brouwer fixed-point theorem on continuous mappings into compact convex
sets, which became a standard method in game theory and mathematical eco-
nomics. His paper, Mathematical Foundations of Quantum Mechanics (1932),
was followed by the 1944 book [3], co-written with Oskar Morgenstern, which
considered cooperative games. A cooperative game is a mathematical struc-
ture formed by a set of players, coalition, that can achieve a common benefit,
enforcing a cooperative behavior.

From the beginning, game theory has been growing interest among scientifics
of a lot of disciplines. Today, it has applications in all fields as mathematics,
computer science and social sciences. Game theory also applies to a wide range
of behavioral relations, and is now an umbrella term for the science of decision-
making models. This survey presents some advances, joint work with M. Serna,
that goes from cooperative simple games to social networks.

In the last quarter of a century five related works with the analysis of the
game theory has receibed the Nobel Memorial Prize in Economic Sciences. First,
John F. Nash, Reinhard Selten and John Harsanyi were awarded for their pi-
oneering analysis of equilibria in the theory of non-cooperative games (1994).
Second, Thomas Schelling worked on dynamic models, early examples of evo-
lutionary game theory. At the same time, Robert Aumann contributed to the
equilibrium school. He introduced an equilibrium coarsening, correlated equilib-
rium, and developed an extensive formal analysis of the assumption of common
knowledge and of its consequences. Both, T. Schelling and R. Aumann, won the
award (2005). Leonid Hurwicz, together with Eric Maskin and Roger Myerson,
were also honored for having laid the foundations of mechanism design theory
(2007). Myerson’s contributions included the notion of proper equilibrium, and
an important graduate text about game theory and analysis of conflict. For its
part, Hurwicz also introduced and formalized the concept of incentive compat-
ibility. On the other hand, Alvin E. Roth and Lloyd S. Shapley introduced the
theory of stable allocations and the practice of market design (2012). The fifth
graceful was the game theorist Jean Tirole for his analysis of market power and
regulation (2014).

All results presented here can be divided in four parts or sections. Sec-
tion 2 introduces both some forms of representations for simple games [4] and
the advances in simple games. Complexity results also appear in this section.
Third section introduces a new viewpoint of simple games based on the influ-
ence spread phenomenon, the influence games. This section also characterizes
different problems on these influence games (measures, values, properties and



other related problems). Section 4 considers different models based on collective
decision-making processes. It also studies the satisfaction and the power of an
actor in these models, as well as particular models. Next section considers new
centrality measures applied to social networks. Indeed, it provides two lines of
inquiry. The first line dealts with power indices of simple games used as cen-
trality measures. The second line introduces new centrality measures based on
the influence spread on graphs.
Finally, some conclusions are supplied in this survey.

2. Simple games

Game theory arises in the first half of the 20th century from the need to
study formally situations of conflict and cooperation between intelligent rational
decision-makers [5]. It is closely related with other disciplines such as decision
theory, voting theory, social choice theory, logic and threshold logic, circuit
complexity, computational complexity theory, artificial intelligence, geometry,
linear programming, Sperner theory, order theory, agent systems, social network
analysis, etc. [6, 7, 8]

From the beginning, a relevant branch of game theory has been cooperative
game theory [9]. A cooperative game is a mathematical structure formed by a set
of players that by forming coalitions can achieve a common benefit, enforcing a
cooperative behavior [3, 10, 11, 12, 13, 14]. A well known subclass of cooperative
games is the class of simples games [3], also called simple coalitional games, in
which the benefit that a coalition may have is always binary, i.e., a coalition
may be winning or losing, depending on whether the players in the coalition are
able to benefit themselves from the game by achieving together some goal.

The preface of [6] starts saying ”Few structures in mathematics arise in more
contexts and lend themselves to more diverse interpretations than do hypergraphs
or simple games”. In fact, simple games are closely related with other math-
ematical and computational structures, such as self-dual hypergraphs, Sperner
families, antichains, monotone Boolean functions, free distributive lattices, mono-
tone collective decision making systems and multi-agent systems, among oth-
ers [6, 7, 8]. This motivated us, joint with M. Serna, to study different forms
of representation for simple games, and those for some of their subfamilies like
regular games and weighted games. In the same vein, we also provided bounds
on the computational resources needed to transform a game from one form of
representation to another one. We finally presented the problem of enumerating
the fundamental families of coalitions of a simple game.

In particular, we studied several forms of representation for simple games [4]
based on the set of coalitions, binary trees, partially condensed binary trees,
and binary decision diagrams. Moreover, regular games (simple games where a
desirability relation among players is considered) [15, 16, 17] were also studied
under the form of representation based on the so-called set of shift-minimal
winning coalitions, and in fully condensed binary trees. Another important
subclass of simple games is the subclass of weighted (simple) games [18, 19]
where each player has assigned a weight (e.g. a rational or a natural number),



and a coalition is winning if and only if the sum of the weights of players of
this coalition is more or equal than a fixed real number called the quota of
the game. Thus, a weighted game can be represented by a very compact form
of representation, which is just a vector that contains the quota of the game,
followed by the weights of each player.

Despite the fact that weighted games are a strict subclass of simple games, it
is known that every simple game can be expressed as an intersection or a union
of a finite number of weighted games. The result for intersection (dimension
concept) was first shown for hypergraphs [20], and then expressed for simple
games [21, 6]. After that, the result for union (codimension concept) was also
introduced for simple games [22]. A simple game is said to be of dimension
(codimension) k if and only if it can be represented as the intersection (union)
of exactly k weighted games, but not as the intersection (union) of (k — 1)
weighted games. It is known that given k weighted games, to decide whether
the dimension of their intersection exactly equals k is NP-hard [23]. In this
vein, some complexity results on simple games appear in [24]. In particular,
this paper analyzes the complexity of changing the representation form of a
simple game, the complexity of some properties on simple games (strongness,
properness, weightedness, homogeneousness, decisiveness and majorityness) and
natural succinct representations of simple games by means of Boolean formulas.

A generalization of games constructed through binary operators is the family
of boolean weighted games introduced in [25]. A boolean weighted game is
defined by a propositional logic formula and a finite collection of weighted games.
The boolean formula determines the requirements for a coalition to be winning
in the described game. When considering only monotone formulas, boolean
weighted games provide another representation of simple games. Thus, a simple
game can be represented in vector-weighted representation form by a set of
weighted games.

On the other hand, we have also presented an extended concept of dimen-
sionality of simple games in [26].

3. Influence games

One of the main results obtained together with M. Serna has been to estab-
lish a relationship between the influence spread phenomenon coming from social
network analysis and the binary decision-making in voting systems [27]. This
can be done through the definition of influence games, a new form of represen-
tation of simple games based on the so-called influence graph and an influence
spread process through that graph.

An influence graph is a tuple (G,w, f), where G = (V, E) is a weighted,
labeled and directed graph (without loops). As usual V' is the set of vertices
or agents, F is the set of edges and w : E — N is a weight function. Finally,
f:V — Nis a labeling function that quantifies how influenceable each agent is.
An agent i € V has influence over another agent j € V if and only if (3,j) € E.
Tt also includes the family of unweighted influence graphs (G, f) in which every
edge has weight 1.



Given an influence graph (G, w, f) and an initial activation set X C V, the
spread of influence of X is the set F(X) C V which is formed by the agents
activated through an iterative process. Originally, this influence spread process
was determined by the linear threshold model [28, 29] as follows. We denote
F}.(X) the set of nodes activated at step k. Initially, at step 0, only the vertices
in X are activated, that is Fp(X) = X. The set of vertices activated at step
i > 0 consists of all vertices for which the total weight of the edges connecting
them to nodes in F;_1(X) meets or exceeds their labels, i.e.,

F(X)=FA(X)UdveV] ¥  w(wu)> f(v)
iy

The process stops when no additional activation occurs. The final set of acti-
vated nodes is denoted by F(X).

Figure 1 shows the spread of influence F(X) in an unweighted influence
graph (G, f) for the initial activation X = {2,3}. In the first step we obtain
Fi(X) =1{2,3,6,7}, and in the second step (the last one) we obtain F(X) =
Fy(z) ={2,3,4,6,7}.
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Figure 1: Spread of influence on an influence graph, represented by coloring of nodes from the
initial activation X = {2,3}.

An influence game is given by a tuple (G, w, f,q, N) where (G, w, f) is an
influence graph, ¢ is an integer quota, 0 < ¢ < |V|+ 1, and N C V is the set of
players that can belong to the initial activation. X C N is a successful team if
and only if |F(X)| > ¢, otherwise X is an unsuccessful team. It is also possible
to consider the family of unweighted influence games for the cases in which the
corresponding influence graph is unweighted. In such a case, the influence game
can be denoted by (G, f, ¢, N).

Consider the influence graph described in Figure 1. It is easy to check
that the influence game (G, f, 4, {1,2,3}) is equivalent to the simple game with
players 1, 2 and 3, and with just two winning coalitions, {2,3} and {1,2,3}. In
fact, note that the influence spread process is monotone, in the same way than



simple games, i.e., each superset of a winning coalition is also a winning coalition,
and each subset of a losing coalition is also a losing coalition. This allowed us to
prove that every influence game has an associated simple game, and that every
simple game can be represented by an influence game [27]. Moreover, every
simple game represented by its (minimal) winning coalitions can be converted
in an unweighted influence game in polynomial time. Furthermore, given any
weighted game represented by its weighted representation form, then it can
be converted in an influence game in polynomial time, and in an unweighted
influence game in pseudo-polynomial time [27].

We have also characterized the computational complexity of various prob-
lems on influence games. On the one hand, we studied measures like the length
(the minimum size of a successful team) and the width (the maximum size of a
unsuccessful team); values like Shapley-Shubik and Banzhaf, and properties of
games (proper, strong, decisive), teams (blocking, swing) and players (dummy,
passer, vetoer, dictator, critical, symmetric, blocking, critical, symmetric). We
also studied when two influence games are isomorphic or equivalent. On the
other hand, we also analyzed those problems for some particular extremal cases,
showing tighter complexity characterizations and even some polynomial-time al-
gorithms. The extremal cases include, for instance, some restrictions over the
label function (e.g., maximum and minimum influence) and some restrictions
over the influence graph topology [30].

4. Collective decision-making models

Decision theory is the study of the decision-making processes carried out
from the agents’ choices. It is an interdisciplinary topic closely related to the
field of game theory [31], with applications in economy, mathematics, cognitive
science, political science, social sciences, computer science, among others [32].
Meanwhile, social choice theory blends elements of welfare economics and voting
theory to focus on those cases in which agents are social individuals or actors
capable of reaching agreements and making decisions collectively [33].

A collective decision-making model (in what follows we will simply say “de-
cision model”) considers the initial individual choices of the actors. Then, the
model includes a procedure (usually based on social influence) through which
these initial choices can change, generating the final decisions of the actors.
Finally, the global decision of the system is determined through a collective de-
cision function that applies some voting rule (e.g. simple majority) to the final
decisions of the actor.

We noted that a decision model can be associated with an influence game [34].
Given an influence game, an initial activation can represent the set of actors
whose initial choices coincide. Then, through the influence spread process we
obtain the final decision of the actors. Finally, the quota determines if the
coalition is winning or losing, which is the global decision of the system.

A simple but expressive class of decision models is the one of opinion leader-
follower (OLF) models [35]. These models are based on a two-step decision



process [36, 37]. Here the actors are classified into opinion leaders (L), follow-
ers (F), and independent actors (I). The only accepted influence relationships
range from opinion leaders to followers, forming a bipartite digraph. The initial
decision of the opinion leaders and the independent actors never change, but
the final decision of each follower may change if the opinion leaders pointing
to it choose differently from she/he. Finally, the global decision is obtained by
simple majority rule.

For the same graph structure of the OLF models, we defined a generalized
opinion leader-follower (qOLF) represented by an influence game (G, f,q, N)
where N = LU T and the labeling function f is defined as

f(i)—{ [r-0-(i)] if i€F

1 if ieLUI

where 67 () is the in-degree of 7 (i.e., the number of opinion leaders pointing to
the follower ¢) and r € [0,1] € Q is the rational number of active opinion leaders
necessary to active (i.e., change the opinion of) the followers. In an OLF model,
n = |V(G)| must be odd, r € [3,1] and ¢ = 24+ [35].

Although the gOLF models are more expressive than OLF's, their topological
structure is still very restrictive. Therefore, we defined a much more general
decision model. A non-oblivious influence model is like a gOLF model but
applied on any influence graph. Here opinion leaders becomes actors who can
influence others and are not influenced by anyone, while followers are actors who
do not influence anyone and are influenced by others. As in the gOLF model,
here the initial decision of the followers is taken into consideration when a tie
arises in the global decision. Analogously, an oblivious influence model is like a
non-oblivious influence model but where the initial decision of the followers is
not taken into account, so that it is replaced by a negative initial decision.

(%5 8 G?Cg.

Figure 2: Influence graph.

In general, from an initial decision vector, oblivious and non-oblivious mod-
els give us different final decision vectors. Let (G, f,q = 5,N = {1,2,3}) be
an influence game, where (G, f) is the influence graph described by Figure 2.
Consider the initial decision vector z = (1,0,1,0,0,0,0). For the oblivious case,
we have that |F({1,3} N N)| = |{1,3,4,6,7}| > g. Thus, the final decision is
1. For the non-oblivious case, we have the leaders (players 1, 2 and 3) have the
final decision as the initial decision. On the other hand, players 4 and 7 will
keep the final decision equal to 1, but players 5 and 6 will keep it equal to 0.
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Figure 3: Inclusion relationship between subfamilies of collective decision-making models.

So, the final decision vector z = (1,0,1,1,0,0,1) verifies |z| < g, i.e., the final
decision for the non-oblivious case is 0.

We know that the oblivious and non-oblivious models coincide when there are
no tiebreak problems. Therefore, not all OLF and gOLF models are oblivious.
However, if we restrict us to gOLF models with r = % and an odd number
of actors pointing to every follower, then we obtain a subfamily (the so called
0dd-gOLF models) of models that are both oblivious and non-oblivious [34]. A
diagram of all the decision models seen so far is shown in Figure 3.

Given a decision model, it is relevant to study the effects that collective
decision-making can have on the actors. The satisfaction of an actor is the
number of initial decisions for which the final collective decision coincides with
the initial decision of the actor. Furthermore, the power of an actor is the
number of initial decision for which the collective decision changes when the
actor changes its initial decision [35]. We found that computing the satisfaction
is equivalent to computing the Rae index [34], which is a classical power index
applied to anonymous games [38] and simple games [39]. Moreover, we also
proved that the power of an actor is equal to the double of its Banzhaf value,
and that the satisfaction and power are closely related, in such a way that
computing both measures has the same computational complexity for all the
decision models considered above [40].

We proved that computing the satisfaction and the power for odd-gOLF
models is #P-hard, and hence computing both measures is #P-hard for both
oblivious and non-oblivious influence models [34, 41]. Moreover, their com-
putation is #P-hard for (oblivious and/or non-oblivious) unanimous majority
influence models, which are decision models with symmetrical digraphs (i.e.,



undirected graphs), labels f(i) = 6 (i) for the followers (i.e., to change the
initial choice of each follower i, unanimity between all the actors pointing to 4
is required) and simple majority rule for the global decision.

Although computing satisfaction and power is hard even for very restricted
influence models, we have defined subfamilies for which the computation be-
comes polynomial. That is the case of (oblivious and/or non-oblivious) strong
hierarchical influence models and star influence models. The topological struc-
ture of both models allows to represent organizational situations in which besides
independent actors, followers and opinion leaders, an additional type of actors,
namely the mediators, can also be recognized to intermediate between opinion
leaders and followers [34, 41].

5. Centrality in social network analysis

The collective decision-making processes seen in Section 4 are usually used
to study networks with a relatively small number of actors. However, the in-
fluence spread phenomenon of influence games can also be used to understand
the dynamics of large social networks. The influence spread on social networks
is a well known phenomenon that has been applied in viral marketing, infor-
mation propagation, search strategies, expertise recommendation, community
systems, management, percolation theory, among others [42]. Therefore, it is
quite natural to study social networks as influence graphs, where an influence
spread model is explicitly used.

In social network analysis, we have focused on studying the centrality on
social networks, one of the most studied problems in the discipline. A central-
ity measure allows to rank the different actors of a network according to their
relevance (i.e., influence, popularity, activity, etc.), assigning each one a numer-
ical value dependent on several quantifiable factors. The most known centrality
measures were formally defined in the 1970s [43], although the problem comes
at least since the 1940s [44]. These classical measures have to do, for each actor,
with their number of neighbors (degree), the sum of their shortest paths to all
other actors in the network (closeness), and the number of existing paths that
pass through the actor (betweenness). Many centrality measures are based on
the PageRank, which is based in turn on the eigenvector centrality [45]. Nowa-
days, there are hundreds of different centrality measures, that differ in their
computing techniques as well as in their application context [46].

Our first contribution in the area was to apply the classic power indices
of simple game theory as centrality measures for social networks [47]. The
underlying idea is simple. Briefly speaking, the power indices are measures
used to rank the different players of a game according to their ability to form
winning coalitions. Hence, power indices can be used as centrality measures for
simple games represented as graphs. Although this idea is not new [48], our
model of influence games (which is as expressive as the whole family of simple
games [27]) allowed us to apply power indices on any social network represented
as an influence graph with an associated quota. Given the large number of
existing power indices (Banzhaf index, Shapley-Shubik index, Deegan-Packel



index, Holler index, Coleman indices, Johnston index, Chow parameters, among
others [49]), this result considerably increases the variety of existing centrality
measures.

Power indices have continued to be used as centrality measures [50]. In
addition, we also proposed as centrality measure the satisfaction measure men-
tioned in Section 4 [47]. Of course, the power measure also works. In general,
any measure that behaves like a function f: V — Q, with V' a set of players or
actors, can be applied as a centrality measure. However, as we have already said,
there are hundreds of centrality measures, so the problem is not to define new
measures, but to propose useful and functional measures that provide relevant
information for different case studies. Thus, let (G, w, f,q, N) be an influence
game (for simplicity we can assume N = V'), we proposed the effort centrality
Cr(i) = (f(V) — Effort(s))/f(V) as a centrality measure created specifically
for influence games, where Effort(i) = min{f(X) | |[F(X U {i})| > ¢} is the
(minimum) effort required by the network to choose a winning coalition that
contains actor 7 [47].

All the previous centrality measures (power indices, satisfaction, power and
effort) are useful and descriptive for influence games with a small number of
nodes. However, they are not useful for social networks with many actors. In-
deed, we have already shown that the computation of power indices, satisfaction
and power in influence games is #P-hard [27, 34, 41]. Besides, to compute the
effort centrality it is necessary to make exhaustive searches between the 2!V pos-
sible coalitions. On the contrary, all the classic centrality measures are efficient,
so they can be used on social networks with thousands of actors.

The above brings us to our second contribution in this area, namely the
definition of efficient centrality measures for social networks represented as in-
fluence graphs [42]. The Linear Threshold Rank (LTR) of an actor i is defined
as LTR(i) = |F({i}Uneighbors(z))|/n, where neighbors(i) are all the actors con-
nected with ¢ by some edge, and F' is the spread of influence process following
the linear threshold model. This measure can be computed in polynomial time,
since F' can be computed in polynomial time [27]. We do not use other influ-
ence spread models like the independent cascade model, because they depend
on randomness and therefore each execution can lead to different results. The
LTR measure represents how much an actor can spread his influence within the
network, investing resources outside the formal network to be able to convince
his immediate neighbors.

This new centrality measure was applied in both directed and undirected
social networks of hundreds of thousands of nodes, and compared with other
centrality measures based on influence criteria, such as the Katz centrality, the
PageRank, and the Independent Cascade Rank (ICR). We proved that the cor-
relation between these measures is low, so that their criteria are different, and
thus they can be used in a complementary way to obtain different results. More-
over, the actor rankings provided by the LTR and the ICR measures presented
the highest standard deviations, and of both, the first one returned the larger
number of different values. Therefore, the LTR measure was shown to be ca-
pable for ranking actors in a more distinguishable way [42]. Furthermore, a
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generalization of LTR measure was proposed in such a way the neighborhood
level was changed by neighbors(i,¢) = {j € V | dist(¢,j) < £}, where dist(i, j)
denotes the length of the shortest undirected path between nodes ¢ and j. It
was also shown that using neighbors at distance larger than 2, the rankings
distinguish better the influential actors [51].

Finally, our third contribution in the area has been the definition of a cen-
tralization measure for social networks represented as influence graphs. Unlike
centrality measures, the centralization measures aim to determine to what ex-
tent an entire network has a centralized structure. A well known example of
centralization measure is the Average Clustering Coefficient (ACC) [52], which
is the average of the local clustering coefficients of all the nodes in a network.
Analogously to the LTR measure, we defined the Linear Threshold Centraliza-
tion (LTC) of a network G as LTC(G) = |F(C(G))|/n where C(G) contains all
the actors that belong to the main core of the network. The idea behind this
measure is the following. As the actors outside the k-shell have a degree smaller
than the actors inside of it, then the first ones are more able to be influenced
by the second ones.

Like the LTR measure, the LTC measure can also be applied to social net-
works with hundreds of thousands of actors. This centralization measure was
compared to the ACC measure, concluding that both measures can be computed
in polynomial time and provide different information about the network.

Conclusions

There are several ways to represent simple games. Each form of represen-
tation opens new possibilities to understand the properties of games from the
context of cooperative game theory, but also the possibility of applying these
games in other contexts. The definition of influence games has opened a va-
riety of possible applications, e.g., in the study of collective decision-making
models, as well as in social network analysis. However, the foregoing has not
remained there. Recently, the influence graphs have even been applied to mul-
timodal learning analytics, specifically, to model collaborative work teams on
which cooperation, activity and ability to influence are measured [53].

With M. Serna we have worked together for a decade. Since then we have
been able to show several interesting results, although each result usually opens
new questions and problems. The open problems are many. Just to mention a
few, regarding computational complexity, it remains open to find the complexity
of the satisfaction and power for OLF models. Besides, it would be interesting
to study influence games under other influence spread models, such as the inde-
pendent cascade model. This could lead us to other applications more related to
complex systems with random phenomena, studies for example in neuroscience.
Finally, the LTR and LTC measures can be studied more thoroughly, in order
to better understand the importance of the spread of influence on the variation
of the centrality of the actors in dynamic social networks. Regarding the lat-
ter, currently we are working on a generalized LTR measure that explores the
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sensitivity of the original LTR, with respect to the distance of the neighbours
included in the initial activation set.

Regarding the latter, we conjecture that using neighborhoods at a greater
distance (that is, including not only immediate neighbors, but also actors achiev-
able through paths of a specific length) can generate more distinguishable rank-
ings, that is, with greater different results and a greater standard deviation.
However, if the distance of the neighborhoods is very high, then on the con-
trary, there is a risk that the initial activations already contain all the actors of
the network, which loses interest. Thus, the initial distance of the neighborhood
is a critical parameter to measure the centrality of an actor under the influence
spread phenomenon.
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