
A survey on the Distributed Computing stack

Cristian Ramon-Cortesa,∗, Pol Alvareza, Francesc Lordana, Javier Alvareza,
Jorge Ejarquea, Rosa M. Badiaa

aBarcelona Supercomputing Center (BSC), Barcelona, Spain

Abstract

In this paper, we review the background and the state of the art of the

Distributed Computing software stack. We aim to provide the readers with a

comprehensive overview of this area by supplying a detailed big-picture of the

latest technologies. First, we introduce the general background of Distributed

Computing and propose a layered top-bottom classification of the latest avail-

able software. Next, we focus on each abstraction layer, i.e. Application Devel-

opment (including Task-based Workflows, Dataflows, and Graph Processing),

Platform (including Data Sharing and Resource Management), Communica-

tion (including Remote Invocation, Message Passing, and Message Queuing),

and Infrastructure (including Batch and Interactive systems). For each layer,

we give a general background, discuss its technical challenges, review the latest

programming languages, programming models, frameworks, libraries, and tools,

and provide a summary table comparing the features of each alternative. Fi-

nally, we conclude this survey with a discussion of open problems and future

directions.

Keywords: Distributed Systems, Distributed Programming Models,

Distributed Computing, Cloud Computing, Task-based Workflows, Dataflows,

Graph Processing, Streaming, Data Sharing, Resource Management,

Infrastructure Managers

∗Corresponding author
Email addresses: cristian.ramoncortes@bsc.es (Cristian Ramon-Cortes),

pol.alvarez@bsc.es (Pol Alvarez), francesc.lordan@bsc.es (Francesc Lordan),
javier.alvarez@bsc.es (Javier Alvarez), jorge.ejarque@bsc.es (Jorge Ejarque),
rosa.m.badia@bsc.es (Rosa M. Badia)

Preprint submitted to Computer Science Review February 14, 2022

© 2021 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Contents
1 Introduction and Context 2

2 General Overview 4

3 Application Development 7

3.1 Task-based Workflows . 8

3.1.1 Taxonomy . 8

3.1.2 Analysis . 10

3.2 Dataflows . 12

3.2.1 Taxonomy . 13

3.2.2 Analysis . 14

3.3 Graph Processing . 16

3.3.1 Taxonomy . 16

3.3.2 Analysis . 18

4 Platform 19

4.1 Data Sharing . 20

4.1.1 Distributed Memory . 20

4.1.2 Distributed File Systems 23

4.1.3 Distributed Databases . 26

4.2 Resource Management . 29

4.2.1 Discovery and Coordination 30

4.2.2 Monitoring and Logging 33

5 Communication 37

5.1 Taxonomy . 39

5.2 Analysis . 40

6 Infrastructure 41

6.1 Batch systems . 42

6.1.1 Taxonomy . 42

6.1.2 Analysis . 43

6.2 Interactive systems . 44

6.2.1 Taxonomy . 45

6.2.2 Analysis . 46

7 Conclusion 47

1. Introduction and Context

Several years ago, the IT community shifted from sequential programming

to parallel programming [1] to fully exploit the computing resources of multi-

core processors. The current generation of software applications requires more

2

resources than those offered by a single computing node [2]. Thus, the com-5

munity has been forced to evolve again towards distributed computing, that is,

to obtain a larger amount of computing power by using several interconnected

machines [3]. However, one of the major issues that arise from both parallel and

distributed programming is that writing parallel code is not as easy as writing

sequential programs [4]. Frequently, experienced developers find it difficult to10

write efficient parallel code. In the line of “writing programs that scale with

increasing number of cores should be as easy as writing programs for sequential

computer” [5], several libraries, tools, frameworks, programming models, and

programming languages have emerged to help developers to handle the under-

lying infrastructure.15

Currently, the IT community requires parallelisation and distributed sys-

tems to handle large amounts of data [6, 7]. Towards this, Big-Data Analytics

(BDA) [8] appeared some years ago; allowing the community to store, check,

retrieve and transform enormous amounts of data in acceptable response times.

In addition, several programming models have also arisen that are completely20

different to the ones used by the High Performance Computing (HPC) commu-

nity. In the race towards Exascale Computing [9], the IT community has realised

that unifying HPC platforms and Big-Data (BD) Ecosystems is a must. Cur-

rently, these two ecosystems differ significantly at hardware and software level,

but “programming models and tools are perhaps the biggest points of diver-25

gence between the scientific-computing and Big-Data Ecosystems” [10]. In this

respect, “there is a clear desire on the part of a number of domain and computer

scientists to see a convergence between the two high-level types of computing

systems, software, and applications: Big Data Analytics and High Performance

Computing” [11].30

This paper reviews the state of the art of the Distributed Computing stack by

providing a comprehensive classification of the latest technologies. More specif-

ically, we propose a layered top-bottom classification that includes Application

Development (i.e., Task-based Workflows, Dataflows, and Graph Processing),

Platform (i.e., Data Sharing and Resource Management), Communication (i.e.,35

3

Remote Invocation, Message Passing, and Message Queuing), and Infrastructure

(i.e., Batch and Interactive systems). Furthermore, for each layer, we describe

the general background, discuss its technical challenges, provide a summary ta-

ble comparing the features of each alternative, review the latest software, and

analyse the key differences that can help readers when choosing the adequate40

software for their needs. The rest of the paper is structured as follows. Section 2

gives a general overview of the proposed taxonomy by defining each layer and

the interactions between them. Sections 3, 4, 5 and 6 explain in-depth each

layer and categorise the latest frameworks. Finally, Section 7 concludes the

paper and states some guidelines for future work.45

2. General Overview

The distinction between HPC and BDA software stacks has blurred during

the past years to develop Exascale applications. This research trend enables the

new generation of applications to combine HPC and BDA software depending

on their requirements. One of the major concerns when developing Exascale50

applications is the performance and the scalability of the chosen software stacks.

Since these applications often rely on huge all-in-one software stacks (due to its

feature richness and high abstraction), two major factors affect the performance

and the scalability: (i) the components themselves and (ii) the interactions

between them.55

This survey covers the latest software alternatives available in each abstrac-

tion layer so that application developers can evaluate and consider the different

alternatives for their applications. Although discussing the interactions between

the different layers can be as important as discussing the software alternatives

themselves, we believe that middleware developers should be in charge of these60

interactions; freeing application developers from this burden. Also, although

there are still open questions such as how the HPC stack (e.g., GPFS, SLURM,

MPI) and the Big Data stack (e.g., HDFS, YARN, TensorFlow) should borrow

and adapt the different components, relevant work has already been published

4

targeting the HPC and BDA convergence and their interactions. For instance, S.65

Cano-Lores et al. [12] establish a research road-map to build a platform suitable

for hybrid HPC and Big Data applications; thus reducing the gap between Big

Data application models and data-intensive HPC. Also, C. Hsu et al. [13] dis-

cuss the progress towards big data and HPC convergence; focusing on big data

systems and optimisations, novel techniques for big data analytics, sustainable70

architectures and applications.

Concerning the alternatives themselves, a large number of libraries, tools,

frameworks, programming models, and programming languages have appeared

to cover the BDA and HPC needs [14]. Certain contributions have gone one

step further by building complex software stacks to provide a high-level abstrac-75

tion for the development of distributed applications (such as Apache Spark [15],

Apache Storm [16], or TensorFlow [17]). From the point of view of the devel-

opers of distributed applications, this fact has led to the possibility of choosing

the most suitable software stack for the final application; fostering an (in)sane

competition between them that has finally exploited in an uncontrollable and80

uncountable number of possibilities.

In this sense, we consider that there is no clear source of information to

classify, describe, discuss, and review the wide variety of complex software stacks

that are currently available for developing distributed applications. J. Liu et

al. [18], K. Krauter et al. [3], and B. P. Rimal et al. [19] provide a partial85

but detailed survey on workflow managers, resource management, and cloud

computing, respectively. Also, C. K. Emani et al. [20] provide a general picture

about the Big Data software. In contrast, our survey describes and discusses

the whole distributed computing stack.

As depicted in Figure 1, we propose a top-bottom layered taxonomy to sort90

the latest software from the highest abstraction frameworks, programming mod-

els, and programming languages to the most specific tools, and libraries. Notice

that our proposed classification is designed to help developers to choose the

best option for developing their distributed applications, and thus, each layer is

based on answering the question What does the software abstract the application95

5

developer from? Moreover, we have also defined the interactions between the

different layers, and we have internally divided each layer by software purpose.

To provide a more extensive guide, we have also selected the key features and

elaborated comparison tables to compare the different options available in each

layer.100

Figure 1: Classification Layers based on the abstraction level

Following the previous figure from top to bottom, Distributed Applications

always require an Infrastructure (either batch or interactive systems) that can

be handled explicitly (right-most arrow) or by intermediate frameworks. We

categorise these frameworks into different layers depending on the level of ab-

straction that they can provide.105

The Application Development layer provides high-abstraction software that,

more or less transparently, handles the distributed computation, the data, and

the resources. These programming languages, programming models, or frame-

works are all-in-one solutions to develop Distributed Applications that, often,

rely on huge software stacks (built from software from below layers).110

6

On the other hand, Distributed Applications can also rely on Platform soft-

ware to orchestrate, communicate, and manage the Infrastructure. Since this ab-

straction layer includes Data Sharing and Resource Management, the users must

take care of distributing the computation among the available resources but do

not need to deal with resource allocation and deallocation, fault-tolerance, data115

transfers, or distributed processes coordination.

Finally, Distributed Applications might only use Communication libraries or

protocols to ease the communication between distributed processes. However,

there is no abstraction at this level, and users need to deal with all the parallel

and distributed challenges directly.120

3. Application Development

The distributed computing premise is simple: solving a large problem with

an enormous amount of computations as fast as possible by dividing it into

smaller problems, dealing with them parallelly and distributedly, and gathering

the results back. However, its implementation is not that simple because it125

can either lead to significant speed-ups or overheads due to the distributed

computing challenges. These challenges range from the Resource Management

to the Data Distribution, going through the Coordination and the Monitoring

of the different distributed components.

In this sense, the community increasingly prefers to rely on high-abstraction130

frameworks to focus only on the application development by using any program-

ming language, programming model or framework that fully abstracts the user

from the distributed computing challenges; either by relying on other state of

the art software, or by handling them explicitly. Moreover, these frameworks

are expected to be easy to install, configure, and use so that they can be rapidly135

adapted to any application.

Representing the highest layer of the software stack and providing an almost

ready-to-use option to implement distributed applications are the crucial points

of the success of the Application Development software. However, they are also

7

the worst black spots at the technical level since high-abstraction can only be140

achieved by building huge software stacks or extensive frameworks that are,

in both cases, hard to maintain. Also, ready-to-use tools require automatic

configurations that must support heterogeneous underlying platforms that are

continuously upgraded.

Figure 2: Application Development Layer

As shown in Figure 2, we have divided this layer into three categories de-145

pending on the software purpose. Next subsections provide further information

about each category and its latest software.

3.1. Task-based Workflows

The software targeting Task-based Workflows allows the users to define

pieces of code to be remotely executed as tasks and dependencies between tasks150

to combine them together into workflows. The main common feature in this

family of software is that the principal working unit is the task.

3.1.1. Taxonomy

Table 1 presents our taxonomy of the surveyed task-based frameworks, where

the different frameworks have been categorised in 3 main categories: program-155

ming, task-flow definition and runtime features. Regarding the programming

category, we can classify tools by the programming interfaces as Graphical User

Interface (G in the table), Command Line Interface (C), receipt file (R), anno-

tations or pragmas (P), programming API (A), or programming language (L);

as well as the supported language such as Java (J), Scala (S), Python (P), C++160

(C), Visual C (V), R (R), Pearl (L), Bash (B), XML (X), JSON (N), YAML

(Y), and OCaml (O).

8

Software Features

Prog. Definition Runtime Execution

In
t
e
r
fa

c
e

L
a
n
g
u
a
g
e

M
o
d
e
l

D
e
p
e
n
d
e
n
c
y

D
e
fi
n
it
io

n

T
a
s
k

T
y
p
e
s

D
y
n
a
m

ic

N
e
s
t
e
d

S
t
r
e
a
m

S
u
p
p
o
r
t

P
a
r
a
ll
e
l
E
x
e
c
u
t
io

n

L
o
a
d

B
a
la

n
c
in

g

C
o
n
fi
g
u
r
a
b
le

S
c
h
e
d
u
li
n
g

P
e
r
fo

r
m

a
n
c
e

A
n
a
ly

s
is

S
u
p
p
o
r
t
e
d

E
n
v
ir
o
n
.

E
la

s
t
ic

it
y

C
h
e
c
k
p
o
in

t
in

g

F
a
u
lt

t
o
le

r
a
n
c
e

S
e
c
u
r
it
y

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

Airflow [21] GA P D E A ? - - ? - - O Cs,Cd A - Rs ? ? 1

Aneka [22] G V B / A - - - ? ? - O Cs,Cd A - Rs,F ? ? 8

Askalon [23] GR / D I A - - ? ? ? Cs A A Rp,Rs - - 8

AUTOSUBMIT [24] R B D E U - - - ? - OP Cs - ? 3

Celery [25] PA P D I A ? ? - ? O Cs A - - ? ? 5

CIEL [26] LA JO D I A ? ? ? ? ? - - Cs - - L,Rs,F - - 5

COMPSs [27] PA JPC D I A ? - - ? ? ? OP All A - Rs - ? 1

Copernicus [28] R PX D E P - - - ? O Cs - AM Rs,F ? ? 2

Crunch [29] CA J D I A ? - ? ? ? 1

Dask [30] GA P D I A ? ? ? ? ? ? OP Cs - - Rs,F ? ? 5

EcFlow [31] CAG PB D I A - - - ? - All - - Rs,F ? ? 1

FireWorks [32] R PNY D E A ? ? - ? - - OP Cs - - Rs - ? 5

Galaxy [33] G / D E S - - - ? - / / - - ? ? 7

Google MapReduce [34] A C S I U - - - ? ? - - Cs - - Rp,Rs,F - - 8

Jolie [35] L / B / S - - - ? - / - All - - - - ? 4

Kepler [36] G / D E A - ? - - - / - / / - - - ? 5

Netflix Conductor [37] R N D I S ? ? - ? - OP / / ? 1

Pegasus [38] RA JPL D E A ? ? - ? ? ? OP All A L,Rs - ? 1

Spark [15] CA JSPR D I A ? ? ? ? ? ? O All A - All ? ? 1

Swift [39] L / D I A - ? OP Cs - A Rs - ? 1

T
a
s
k
-b

a
s
e
d

W
o
r
k
fl
o
w
s

Taverna [40] G / D E S - ? ? ? - / OP / / - Rs,F ? ? 4

Legend: ? Available - Not available / Not Applicable

Table 1: Task-based Workflows software classified into the Application Development layer

Regarding the task-flow definition, the main distinction is made between the

supported patterns: bag of tasks (B in the table), skeleton (S), or DAG (D).

We have also considered whether the users must explicitly (E) or implicitly (I)165

define the task dependencies and classified the supported task types into only

pre-defined methods (P), only services (S), only user defined methods (U), or any

(A). Other interesting properties in the task-flows definition are the support for

workflows that can vary during the application’s execution (dynamic workflows),

for nested executions, and for data streams.170

When focusing on the application execution, the main difference is the frame-

work’s capability of executing task in parallel or not. However, we have also

distinguished more advanced features such as load balancing techniques, the

support for customisable scheduling policies built-in tools for the application’s

9

execution analysis - online (O) or post-mortem (P) -, the capability of managing175

heterogeneous infrastructures - clusters(Cs), clouds(Cd), and containers (Ct)-

and the resource elasticity during the application’s execution time, categorising

this feature into automatic (A) or manual (M).

Other interesting features for advanced users might be fault tolerance mech-

anisms and security. For this purpose, we have also distinguished those frame-180

works that provide any kind of checkpointing - automatic (A) or manual (M)

-, those that provide fault tolerance mechanisms such as lineage (L) (i.e., the

ability to re-generate a lost or corrupt data by executing again the chain of

operations that was used to generate it), replication(Rp), re-submission(Rs) or

fail-over(F), and those that provide any kind of security mechanism.185

Finally, we consider that the framework’s availability is a high-priority issue

for application developers. Thus, we indicate whether the framework is actively

maintained (active developments registered during the past year) and its license

following the next nomenclature: (1 in the table) Apache 2.0 [41], (2) GNU

GPL2 [42], (3) GNU GPL3 [43], (4) GNU LGPL2 [44], (5) BSD [45], (6) MIT190

License [46], (7) other public open source software licenses (e.g., Academic Free

License v3 [47], Mozilla Public License 2 [48], Eclipse Public License v1.0 [49]),

and (8) custom private license or patent.

3.1.2. Analysis

The main classification of tasks-based workflow can be done by the workflow195

definition category specially by the supported workflow model. Some frame-

works, like Aneka or Jolie, require application users to create tasks and add

them to a bag explicitly. The tasks inside the bag are then selected to be exe-

cuted by the model with equal probability. In this sense, the main drawback of

using a Bag of Tasks is that users need to handle data dependencies between200

tasks before introducing a new task to the bag.

Other frameworks restrict the workflow to a predefined parallelism pattern

(Skeleton programming), such as MapReduce [34]. In this kind of models, pro-

grammers only need to specify a set of methods that compose the predefined

10

workflow. In contrast to the previous approach, skeleton models do handle data205

dependencies between tasks, but the users’ application is pigeonholed into the

predefined parallelism pattern.

Finally, other models go one step further by generalising the Skeleton model

and allowing users to define Directed Acyclic Graph (DAG) of tasks. In this

approach, applications are represented as DAGs, where tasks are represented210

by vertices, and data dependencies are represented by edges. In contrast with

Skeleton models, DAG models allow application users to describe any kind of

workflow with any custom operation. The main difference within this group

of frameworks is about the way that user have to define dependencies between

tasks. On the one hand, some models require to explicitly define the workflow215

by means of a Graphical User Interface (such as Taverna, Kepler or Galaxy), a

Command Line Interface (such as Copernicus), a receipt file (such as Askalon,

AUTOSUBMIT, Fireworks, or Netflix Conductor) or a language API (such as

Pegasus, Apache Airflow, or ecFlow). This methodology allows users to specif-

ically control the dependencies between the different stages and have a clear220

overview of how the framework executes their application but makes tedious to

design complex, large workflows. On the other hand, there are programming

models and languages that opt to automatically infer the workflow from the

user code, e.g., Spark, COMPSs, Dask, Apache Crunch, Celery, and Swift. This

workflow definition allows users to develop applications in an almost sequential225

manner, without explicitly handling the tasks spawned, and reducing the pro-

gramming complexity to almost zero. However, the main disadvantage is that

the users do not know beforehand how the framework will execute their applica-

tion (for example, how many tasks will be created in a specific call). From our

point of view, the frameworks using explicit task dependency definition are more230

suitable for small applications while frameworks using implicit task dependency

definition are better for large and complex application workflows.

Another important feature to distinguish task-based framework is the sup-

ported task types, most of the frameworks support user-defined (U) or any type

(A) of tasks except Copernicus which is developed for pre-defined methods and235

11

Galaxy, Jolie, Netflix Conductor, and Taverna which are developed for services.

Regarding programming, some frameworks include support for several lan-

guages (e.g., CIEL, COMPSs, Copernicus, EcFlow, FireWorks, Pegasus, and

Spark), but the rest of them only supports a single language. Hence, applica-

tion developers should consider the application’s language before selecting the240

appropriate framework. Also, it is worth mentioning that CIEL uses a custom

language (Skywriting) but also provides APIs for Java and OCaml.

Finally, we are surprised by the lack of support for advanced workflow fea-

tures (i.e., dynamic and nested workflows, and support for streams) and new

infrastructures (mainly the cloud and containers). Although the software might245

still be evolving, modern applications require complex workflow features and

elasticity mechanisms to automatically handle the application’s resource usage

(i.e., by managing the available computing resources). In this same line, we also

believe that many frameworks have been designed for cluster infrastructures;

which explains the lack of security mechanisms (i.e., secure communication,250

data encryption or user authentication). In terms of fault tolerance, while re-

submission and fail-over are common techniques among all the different software,

only a few of them include checkpointing (Askalon, Copernicus, Pegasus, and

Swift) or lineage (CIEL, Pegasus, and Spark). We know that fault tolerance

comes up with a non-negligible performance degradation but, since application255

runs are lasting longer and longer, we believe that this is a key feature when

selecting the appropriate framework.

3.2. Dataflows

Similarly to Task-based Workflows, Dataflows allow the application de-

velopers to define pieces of code to be remotely executed as tasks; however,260

Dataflows build on Data Flow Graphs (DFG) rather than Task Dependency

Graphs (TDG). On the one hand, TDGs define a task completion relation be-

tween tasks so that the only information travelling among the graph nodes is

the task completion status and, thus, tasks need to share the data in a graph-

independent way. On the other hand, Dataflows assume that tasks are persistent265

12

executions with state that continuously receive/produce data values (streams)

and, therefore, tasks are treated as stages or transformations that data must go

through to achieve the destination. DFGs define the data path: the nodes rep-

resent stateful tasks processing the data transmitted through the graph edges.

Closely following this definition, there are platforms that are specifically270

built for Dataflows such as TensorFlow [17]. However, this approach is also

used for stream processing, real-time processing and reactive programming which,

for the case, are basically subsets of each other. Thus, in stream processing

words, a Dataflow is a sequence of data values (stream) where we apply a series

of operations (kernel functions) to each element of the stream in a pipelined275

fashion.

3.2.1. Taxonomy

Table 2 presents our taxonomy of the surveyed Dataflow frameworks. Re-

garding the programmability of the frameworks, we consider the same aspects

as with the task-based workflows; however, some new programming languages280

– Go (G), Clojure (L), and JRuby (R) – appear on the table.

Software Features

Prog. Definition Execution Runtime

In
t
e
r
fa

c
e

L
a
n
g
u
a
g
e

P
r
im

it
iv

e

M
u
lt
i-
s
u
b
s
c
r
ib

e
r

O
r
d
e
r
e
d

W
in

d
o
w

B
u
ff
e
r
in

g

D
r
o
p

M
e
s
s
a
g
e
s

B
a
c
k

P
r
e
s
s
u
r
e

D
e
li
v
e
r
y

P
a
t
t
e
r
n

S
t
a
t
e
fu

l
O

p
e
r
a
t
io

n
s

P
r
o
c
e
s
s

U
n
it

L
o
a
d

B
a
la

n
c
in

g

P
e
r
fo

r
m

a
n
c
e

A
n
a
ly

s
is

S
u
p
p
o
r
t
e
d

E
n
v
ir
o
n
.

E
la

s
t
ic

it
y

C
h
e
c
k
p
o
in

t
in

g

F
a
u
lt
-t

o
le

r
a
n
c
e

S
e
c
u
r
it
y

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

Apex [50] CA J T ? ? S ? - - LME ? M ? OP Cs - A Rs, F ? - 1

Beam [51] CA JPG B ? - TS ? ? - LME ? MO - Cs - - Rs, F ? 1

Cascading [52] CA J T - - O Cs - M - ? 1

Gearpump [53] GCA J K ? ? T - - - LE O OP Cs - A Rs, F ? 1

Hazelcast jet [54] CA J T ? ? TS ? ? ? L O ? - Cs,Cd ? - Rs, F - ? 1

Heron [55] GCA JSP T ? ? TS ? ? LME ? O - OP Cs - - Rs, F ? 1

IBM Streams [56] GA T ? LE - O OP Cd - A F ? 8

Netflix Mantis [57] GCA J S ? ? ? ? ? MO OP Cs,Cd ? - Rs, F ? 8

Samza [58] CA J M ? ? TS ? ? ? LE ? O - - Cs - A Rs, F - ? 1

Spark Streaming [59] CA JSP D ? - TS ? - LME ? M ? OP Cs - A Rs, F ? ? 1

Storm [16] CA JSLR T ? - TS ? ? - LM ? O M OP Cs,Ct ? A Rs, F ? ? 1

D
a
t
a
fl
o
w
s

TensorFlow [17] GCA JPC R ? E ? M ? OP Cs - M Rs, F - ? 1

Legend: ? Available - Not available / Not Applicable

Table 2: Dataflows software classified into the Application Development layer

13

Concerning application developers, we consider the main distinction between

frameworks relies on the dataflow definition. To this purpose, we distinguish

the stream primitive between message (M in the table), tuple (T), bolt (B),

DStream (D), source (S), task (K), and tensor (R). We also distinguish be-285

tween single-subscriber and multi-subscriber models, and between ordered and

unordered streams. We have also categorised the windowing support between

time window (T) and size window (S) for those frameworks that allow to pro-

cess a group of stream entries that fall within a window based on timers or

data sizes. Furthermore, we have categorised the delivery pattern into at-least-290

once (L), at-most-once (M), and exactly-once (E) for those frameworks that

ensure that messages are never lost, never replicated or both. We have also

distinguished more advanced features such as support for stateful operations,

or workload management mechanisms such as buffering, message dropping, and

back pressure.295

Regarding the execution of the dataflow, we have considered most of the

features in the previous case (see Section 3.1.1 for further details) and we dis-

tinguish the processing unit between one-record-at-a-time (O) or micro-batch

(M).

3.2.2. Analysis300

Although Task-based Workflows target any type of computation, stream

processing has become increasingly prevalent for processing social media and

sensor devices data. A large majority of the software – Apache Samza, Apache

Storm, Twitter Heron, IBM Streams, Netflix Mantis, Cascading, or Apache

Beam – has been explicitly developed for stream processing, what is reflected305

in a one-record-at-a-time (O in the table) process model. Conversely, other

already-existing frameworks have evolved to include stream processing while

maintaining the functionalities of the rest of their framework through the micro-

batching technique (e.g., Apex, TensorFlow, Spark Streaming) or moving out

from the databases environment into in-memory computation (e.g., Hazelcast).310

Regarding the programming of streaming frameworks, all alternatives use

14

a programming API (A in the table) combined with a supporting easy-to-use

Graphical User Interface (G) or Command Line Interface (C). Generally, the

offered interfaces are more modern, attractive, and accessible than the ones

offered by frameworks targeting Task-based Workflows, probably because the315

Dataflow software is newer.

A narrow minority of such frameworks offer support for several languages

(e.g., Beam, Heron, Spark Streaming, Storm, and TensorFlow). As we stated

for software targeting Task-based Workflows, we consider that the application

developers should consider the application’s language before selecting the ap-320

propriate framework.

We observe that almost every framework has its own primitive, being the

tuple (T in the table) the most commonly used. Although this may not be a

problem when developing applications, it hardens the portability of applications

between frameworks. Regarding the stream definition, all the frameworks are325

multi-subscriber (except Cascading), allow the users to configure time and size

windows (except Apex and Gearpump), and include buffering techniques (except

Gearpump). Although all frameworks support the at-least-once delivery pattern

(except TensorFlow), there is a significant variety when supporting the at-most-

once, and exactly-once delivery patterns. We believe that this is a key feature330

to classify frameworks that application developers should consider to select the

appropriate one. Most of the frameworks include stateful operations (except

IBM Streams); however, only a few of them support other advanced techniques

such as ordered streams (Apex, Gearpump, Hazelcast jet, Heron, and Samza),

message dropping (Beam, Hazelcast jet, Netflix Mantis, Samza, and Storm) or335

back pressure (Hazelcast jet, Heron, Netflix Mantis, and Samza).

We are surprised by the lack of support for new infrastructures – almost

none includes elasticity mechanisms– and security mechanisms. On the other

hand, regarding fault tolerance, we are gratefully surprised to notice that the

Dataflow frameworks are largely better than Task-based workflows.340

Finally, as with task-based frameworks, we observe that most of the frame-

works (except IBM Streams, and Netflix Mantis) are available through different

15

public open licenses and are supported by large user communities.

3.3. Graph Processing

Many people may think about Big Data as a huge amount of unstructured345

data. However, nothing could be further from the truth, as data always presents

some sort of structure or relationship. Based on these relationships, there are

many representation schemes suited to handle different types of data. Within

these representations, Graphs (also known as Networks) are ubiquitous to rep-

resent business models, event chains, relationships, etc. The proof is that many350

tech-giants such as Google, Facebook, LinkedIn, and PayPal are currently using

graph databases. Within this context, Graph Processing emerges as the way

to process such databases by keeping the vertices and edges on the machine

that performs the computation and reducing the communication to only control

messages.355

It is obvious that many general-purpose task-based and Dataflow frame-

works (e.g., MapReduce, Microsoft Dryad, Pegasus, COMPSs, Apache Spark,

or Storm) are capable of managing graph databases. However, general-purpose

frameworks are essentially functional, which forces the application developer to

express a graph algorithm as a chain of functions (e.g., a chained MapReduce)360

that requires passing the entire state of the graph from one stage to the next (in-

creasing the serialisation and the communication between computational nodes).

Moreover, coordinating the steps of the chain adds a programming complexity

that is avoided by Graph Processing frameworks (e.g., Pregel’s iteration over

super-steps). In this section, we focus on specialised distributed graph process-365

ing frameworks that are tuned for this kind of computations and provide specific

tools to application developers to work with graph processing.

3.3.1. Taxonomy

Table 3 presents our taxonomy of the surveyed Graph Processing frame-

works. As with Dataflow frameworks, we classify the frameworks according to370

16

Software Features

Prog. Definition Execution Runtime

In
t
e
r
fa

c
e

L
a
n
g
u
a
g
e

M
o
d
e
l

F
lo

w
T
y
p
e

C
u
t

T
y
p
e

S
y
n
c
/
A
s
y
n
c

D
y
n
a
m

ic

N
e
s
t
e
d

L
o
a
d

B
a
la

n
c
in

g

S
u
p
p
o
r
t
e
d

E
n
v
ir
o
n
.

E
la

s
t
ic

it
y

C
h
e
c
k
p
o
in

t
in

g

F
a
u
lt
-t

o
le

r
a
n
c
e

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

Apache Hama [60] AC J VMD P E S - - - Cs, Cd - A - 1

CombBLAS KDT [61, 62, 63] A P M P V S - - - Cs - - - - 5

Distributed R [64] AC R M P E S - ? Cs - A - - 2

Giraph [65] A J V P E S ? Cs - M Rs,F ? 1

GoFFish [66, 67] AC J G L E A - - Cs, Cd - - - 8

GraphX [68, 69] AC J G P V S - ? ? Cs, Cd - A F ? 1

Graph Engine (Trinity) [70, 71, 72] AG C G B / B - ? Cs, Cd ? A F ? 6

GPS [73, 74] AC J V P E S ? ? Cs - A - 5

Imitator [75, 76] AC V P E S - - Cs, Cd - - Rs,F 1

Parallel BGL [77, 78] A C GI E B - - - Cs - - - - 8

PowerGraph [79] A C V B V B - - Cs - A - - 1

PowerLyra [80, 81] A C V L V S - - - Cs, Cd - A - - 1

Pregel [82] A J V P E S ? - Cs - A - 8

Pregelix [83, 84] A J V P E S ? - - Cs - A F - 1

Presto [85] AC R M P E S - ? Cs - A - 8

Seraph [86] A V P S ? - - Cs, Cd - A Rs ?

STAPL Graph Lib [87, 88] A C GVI L E B ? - - Cs - - - ?

Titan Hadoop (Faunus) [89] AC G V P E S ? ? Cs - - Rs,F ? 1

G
r
a
p
h

P
r
o
c
e
s
s
in

g

Turi Create (Distributed GraphLab) [90, 91] A P V B E B - - - Cs - A - ? 5

Legend: ? Available - Not available / Not Applicable

Table 3: Graph Processing software classified into the Application Development layer

the programmability features presented in Section 3.1.1; however, in this case,

the new programming languages are R (R), and Gremlin (G).

As noticed by N. Doekemeijer et al. [92], one of the main differences between

frameworks is the graph model which can be categorised into DAG (D in the

table), matrix (M), vertex-centric (V), graph-centric (G), and visitor models375

(I). We have also categorised the flow type - between push (P), pull (L), and

both (B) -, and the cut type - between edge (E), and vertex (V) -. Moreover,

we have evaluated if the frameworks are synchronous (S), asynchronous (A) or

both (B); and whether they support (or not) dynamicity and nesting in their

computations.380

When focusing on resource management, fault tolerance mechanisms, active

maintenance, and licensing, we have considered the same features than in the

previous cases (see Section 3.1.1 for further details). In contrast with the previ-

ous cases, we have not included security features because none of the analysed

17

frameworks provide them. To the best of our knowledge, this is because the385

frameworks are mainly cluster-based and delegate security to the underlying

storage (usually, a specific Graph Database).

3.3.2. Analysis

The basis of Graph Analytics is the Bulk Synchronous Parallel model [93].

The high-level organisation of BSP programs consists of a sequence of iterations,390

called super-steps. During a super-step, the framework parallelly invokes a user-

defined function for each vertex (or edge). The user-defined function itself can

modify the vertex (or edge) state, send messages to any other vertex (or edge)

that will be received during the next super-step, receive messages from other

vertexes (or edges) that were sent in the previous super-step, or even modify the395

graph’s topology. Also, all the vertexes (or edges) can vote to halt; terminating

when a consensus is reached.

Demonstrating the interest for Graph Analytics, Google’s Pregel, its open-

source version Apache Giraph, and Microsoft’s Graph Engine (previously known

as Trinity) have adopted the BSP model as its major technology. On its own,400

GraphLab has developed several frameworks during the past years; such as

PowerGraph or PowerLyra. Its attempts have finally evolved into Turi Create,

which is based on Distributed GraphLab. Finally, many open-source projects

also focus on efficiently processing large graphs; such as Apache Hama and

Apache Spark’s GraphX.405

There does not seem to be a consensus on the Graph Definition neither re-

garding the computational model, the cut and flow types nor the synchronicity

of the execution. The vertex-centric model (V in the table) is the most popu-

lar because it easily distributes graph. However, it is difficult to estimate the

performance degradation of this computational model when executing arbitrary410

algorithms since the efficient implementation is still up to the user. To our be-

lief, the other differences are due to the fact that the optimal parameters also

vary from application to application, so frameworks try to cover the maximum

features as possible and let the application developers select the optimal ones.

18

In contrast to general-purpose Task-based Workflows and Dataflows, Graph415

Processing software has neither invested nor in updating neither its interfaces

nor its platform technologies. None of the proposed frameworks (except Mi-

crosoft’s Graph Engine) has a GUI to develop, monitor, or analyse the appli-

cation; less than half of them support cloud technologies and none of them

supports containers or dynamic elasticity. Conversely, they are strongly con-420

cerned about fault tolerance mechanisms and automatic checkpointing.

Finally, as general-purpose frameworks, we observe that most of the software

(except GoFFish, Pregel, and Presto) are available through different public open

licenses.

4. Platform425

Instead of providing an all-in-one distributed computing solution, software

within the Platform layer focuses on easing the application development by

resolving a single computing challenge. Although this may seem much more

straightforward than Application Development frameworks, it actually trans-

lates in highly customisable tools and frameworks that provide a single solution430

for many underlying infrastructures. Moreover, this type of software no longer

targets simple high-end application developers, but application developers with

high knowledge about their underlying infrastructure and/or about the data

structures of their application.

The combination of these two facts leads to Platform tools and frameworks435

with highly customisable features and huge configuration files that allow appli-

cation users to fine-tune them for their specific application requirements. Thus,

Platform software is also hard to maintain because of the variability of the

existing and the new underlying technologies.

As shown in Figure 3, we have divided this layer into two categories depend-440

ing on the abstraction target, i.e., data sharing and resource management. Next

subsections delve into the latest software within each.

19

Figure 3: Platform Layer

4.1. Data Sharing

When running parallel applications, sharing data among execution threads

is already a nightmare. The users need to care about the data consistency445

to ensure that each process retrieves the correct value of the data, and that

every process is aware of the data updates. This may seem trivial, but most

of the accesses require synchronisation between processes which finally leads to

noticeable slowdowns if not treated correctly.

When running distributed applications, we do not only need to handle data450

consistency but also data transfers. Since data must be sent through networks,

transfers must be correctly scheduled to avoid harming the performance. There

is a large number of algorithms, patterns, and solutions for efficient data trans-

fers and synchronisations but this section does not intend to cover such aspects

but rather the models that help users to share data between the processes of455

their application.

For this purpose, we have categorised the models considering the different

ways of sharing data among distributed processes. Next subsections provide

further information about models developed to share memory, files, and data

structures.460

4.1.1. Distributed Memory

Distributed memory architectures are formed by a set of processors with its

memory and some sort of interconnection between them. Since each processor

has its own private memory and communicates with others to retrieve remote

data, the network topology impacts directly on the system’s performance.465

20

4.1.1.1. Taxonomy.

Table 4 presents our taxonomy of the surveyed distributed memory ap-

proaches. First, we have categorised the view model into global (G) and frag-

mented (F) since global view models focus on the whole system and fragmented470

view models are programmed at process level. Next, we have categorised the

memory model into Partitioned Global Address Space (PGAS) [112], Asyn-

chronous PGAS (APGAS) [113], and GASPI [114, 115, 116]. On the one

hand, PGAS models provide a simpler, shared memory-like programming model,

where the address space is partitioned, and the programmer has control over475

the data layout. However, PGAS models lack asynchrony since they focus on

homogeneous execution contexts and the single program multiple data thread-

ing model. On the contrary, Asynchronous PGAS (APGAS) [113] program-

ming models provide mechanisms for asynchronous execution while following

the PGAS memory model. Specifically, they allow creating a computational480

unit that can run in parallel with the main program (called activity) and return

immediately. Regarding the model, we have also categorised its language into

C (C), C++ (C++), Fortran (F), Java (J) or custom (?), indicated whether

Software Features

Model Architecture F. T.

V
ie

w
M

o
d
e
l

M
e
m

o
r
y

M
o
d
e
l

L
a
n
g
u
a
g
e

R
D

M
A

E
x
t
e
r
n
a
l
in

t
e
r
o
p
e
r
a
b
il
it
y

S
t
r
o
n
g

T
y
p
e
s

O
b
je

c
t
-O

r
ie

n
t
e
d

A
u
t
o
m

a
t
ic

D
T

D
is
t
r
ib

u
t
io

n

R
e
d
u
c
t
io

n
O

p
e
r
a
t
io

n
s

N
o
d
e

F
a
il
u
r
e

D
a
t
a

F
a
il
u
r
e

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

(Berkeley) Unified Parallel C [94, 95, 96] F PGAS C ? / - - - ? - - ? 5

Chapel [97, 98] G PGAS ? ? ? ? ? ? - ? - ? 1

DASH [99, 100] F PGAS C++ ? / ? ? - ? ? 5

Fortress [101] G PGAS ? - ? ? ? ? - - - 5

(GNU) Co-Array Fortran [102] F PGAS F ? / ? - ? - - - - 3

GPI-2 [103] F GASPI C++ ? / ? ? - - ? ? 3

OpenSHMEM [104, 105] F PGAS C,F ? / ? - - - - - ? 5

Titanium [106, 107, 108] F PGAS J ? / ? ? - ? ? 8D
is
t
r
ib

u
t
e
d

M
e
m

o
r
y

X-10 [109, 110, 111] G APGAS ? ? ? ? ? ? - ? 7

Legend: ? Available - Not available / Not Applicable

Table 4: Distributed Memory software classified into Data Sharing box at the Platform layer

21

the software supports Remote Direct Memory Access (RDMA [117]), and in-

dicated whether the systems can operate with external frameworks. This last485

point is particularly interesting to decouple the application language and the

distributed-memory-solution language.

Regarding the architecture, we have evaluated which systems are object-

oriented. Moreover, we have focused on how the systems treat data; distin-

guishing if they can support strong data types, automatically distribute strong490

data types, and support reduce operations. Also, regarding fault tolerance, we

have evaluated whether the systems can tolerate node or data failures.

Finally, we have also included the maintenance and license considering the

same features than in the previous cases (see Section 3.1.1 for further details).

4.1.1.2. Analysis.495

First, we have selected Berkeley UPC and GNU CAF as reference implemen-

tations of the Unified Parallel C (UPC) and Co-Array Fortran (CAF) models,

respectively.

Second, there seems to be a de-facto standard regarding the model since500

most of the surveyed alternatives are PGAS with fragmented view (F in the

table) and RDMA support. UPC, CAF, and OpenSHMEM are built on top of

GASNet [118, 119]; a language-independent networking middleware that pro-

vides network-independent, high-performance communication primitives includ-

ing Remote Memory Access (RMA) and Active Messages (AM). On the other505

hand, global view models are very limited since Chapel and Frotress are the

only PGAS alternatives, and X-10 is the only APGAS alternative. Also, these

three alternatives options force applications to use a custom language although

Chapel and X-10 provide support for external interoperability. Similarly, GPI-2

is the only GASPI model and provides a fragmented view model.510

Finally, all the solutions seem quite poor concerning the advanced features

and fault tolerance since only Chapel and X-10 provide mechanisms for node fail-

ures, and GPI-2 provides mechanisms for data failures. Moreover, we must high-

light that all the programming models (except Titanium) are available through

22

different public open licenses.515

4.1.2. Distributed File Systems

Distributed File Systems are used to share files partly or as a whole on differ-

ent nodes via a computer network. Generally, files are shared transparently, and

its locations are managed by the system so that the users are not aware of where

the files are really stored. Their main goal is to allow IO scale proportionally520

to the number of servers.

4.1.2.1. Taxonomy.

Table 5 presents our taxonomy of the surveyed distributed file systems. First

of all, we have focused on the system’s architecture. We have distinguished525

between POSIX and non-POSIX compliant systems. Although the majority

Software Features

Architecture Redundancy F. Tolerance Security

P
O

S
IX

C
o
m

p
li
a
n
c
y

M
o
d
e
l

L
o
g
ic

S
t
o
r
a
g
e

S
c
a
le

D
a
t
a

R
e
p
li
c
a
t
io

n

M
e
t
a
-d

a
t
a

R
e
p
li
c
a
t
io

n

E
r
a
s
u
r
e

C
o
d
e
s

N
o
d
e

F
a
il
u
r
e

M
a
s
t
e
r

F
a
il
u
r
e

D
a
t
a

In
t
e
g
r
it
y

E
n
c
r
y
p
t
io

n
in

T
r
a
n
s
it

E
n
c
r
y
p
t
io

n
a
t

R
e
s
t

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

BeeGFS [120, 121] ? DC F ? ? ? - - / - - - ? 2

CephFS [122] ? D FBO ? ? ? ? ? ? - - ? 4

DataPlow SFS [123] ? D F ? ? / ? / ? - - 8

GekkoFS [124, 125] ? C F ? - ? - - - - ? 6

Gluster FS [126, 127] ? DC F ? ? / - ? / ? ? - ? 3

Google FS (GFS) [128] - O ? ? ? ? ? - ? 8

Hadoop FS [129] - D F ? ? - - ? - ? - - ?

IBM GPFS [130] ? C B ? ? ? ? ? / ? - ? ? 8

Inifinit [131] ? DC FBO ? ? ? - ? / ? ? ? - 8

LizardFS [132] ? D F ? ? ? - ? ? - - ? 3

Lustre [133] ? D F ? - ? - ? ? - - - ? 2

Microsoft Cluster Shared Volumes (CSV) [134] ? F ? ? ? ? - 8

MooseFS [135] ? D F ? ? ? - ? ? ? - - ? 2

Panasas ActiveScale File System [136, 137] ? D F ? ? ? ? ? ? ? 8

PVFS2 (OrangeFS) [138, 139] ? D O - ? ? - ? ? - - - 4

Red Hat Global File System2 [140, 141] ? DC B ? ? ? ? ? / - - ? ? 2

SGI CXFS [142] ? D F ? ? ? - ? ? ? - - 8

D
is
t
r
ib

u
t
e
d

F
il
e

S
y
s
t
e
m

s

XtreemFS [143] ? D FO ? ? ? - ? ? ? - ? 5

Legend: ? Available - Not available / Not Applicable

Table 5: Distributed File Systems software classified into Data Sharing box at the Platform

layer

23

are POSIX compliant to benefit from its uniform programming interfaces and

its portability among a large family of Unix derivative operating systems, some

alternatives trade-off some POSIX requirements for performance.

Next, the model represents the way the different servers and clients are530

arranged in a storage system and has a direct impact on the infrastructure’s

performance, scalability, redundancy, and fault tolerance. Centralised (C) sys-

tems store both the data and the meta-data on a single server, thus having a

simple design but a single-point of failure. Distributed (D) storage systems fol-

low a master-slave paradigm to distribute the data blocks between the different535

storage servers, thus having a more complex infrastructure but bigger capac-

ity, scalability, and resiliency. On the other hand, decentralised (DC) systems

distribute the data, meta-data, and requests between all the nodes that have

the particularity of being equally unprivileged. Notice that the master-slave

paradigm can suffer bottlenecks, single-point of failures, performance degrada-540

tions, and cascading effects when having too many requests to process. The

resulting systems are usually better in performance and scalability but notice-

ably more complex.

Next, we have categorised the way distributed file systems store data. Ob-

ject (O) storages are often used for storing application-specific data. File (F)545

storages represent data in files organised in folders. Block (B) storages manage

data as blocks within a virtual raw partition that can be individually controlled

and formatted. Regarding the system’s architecture, we have also evaluated

whether the systems can dynamically scale the storage capacity over time with-

out interruption.550

We have also evaluated redundancy in terms of replication and erasure codes.

Replicating data and meta-data ensures that the system can keep operating even

if some data has been lost (e.g., because of a server failure or data corruption).

On the other hand, erasure codes store some additional symbols of each data

block to eventually help error-correcting corrupted blocks. Regarding fault tol-555

erance, we have evaluated whether the systems can tolerate node and master

failures and data integrity. In this context, node failures means that the system

24

can tolerate nodes going down and re-accepting new ones without rebooting.

Also, data integrity means that the system can tolerate invalid data on a node

that will be automatically erased or updated when required.560

Furthermore, regarding security, we have evaluated whether the systems can

encrypt the data in transit (between clients and servers) or at rest (once stored

on a server). Although many systems do not encrypt data at all because it

is usually stored in private clusters, this could be a key-point for applications

containing sensitive data.565

Finally, we have also included the maintenance and license considering the

same features as in the previous cases (see Section 3.1.1 for further details).

4.1.2.2. Analysis.

When talking about data, users usually value stability over speed and tend to570

choose file-systems supported by the credit of big companies such as IBM GPFS,

Google GFS, Hadoop FS, Red Hat GFS2, Microsoft CSV, DataPlow SFS, or

SGI CXFS. However, there are many other solutions that differ significantly

in cost, performance, stability, and implementation. Although these solutions

might be harder to set up, diagnose, and repair, they also have a large and575

active community. For instance, Gluster FS, CephFS, and Lustre are three

open-source options with a proven good performance. Panasas ActiveScale File

System (PanFS) is a young commercial solution based on the CMU NASD

research. MooseFS is designed similarly to Google GFS, Lustre or CephFS with

multiple meta-servers and multiple chunk servers. LizardFS was released as580

a fork of MooseFS and is now an independent project. XtreemFS is also an

open-source project based on a distributed architecture using the paxos model.

BeeGFS has a similar architecture to Lustre although it has a single meta-data

server and it is not really an open-source project. PVFS2 (Orange FS) is a

growing project that provides an easy to configure solution but still lacks a585

solid community. Finally, GekkoFS is a highly-scalable burst buffer file system

specifically optimised for data-intensive HPC applications.

Analysing the alternatives in-depth, the majority of distributed file systems

25

are POSIX compliant to benefit from its uniform programming interfaces and

its portability. Only Google GFS, and Hadoop FS have trade-off some POSIX590

requirements for performance. Regarding the model, Distributed models are

the most common because of the trade-off between scalability and complexity.

However, Red Hat GFS2, Inifinit, Gluster FS, and BeeGFS are based on the

decentralised model, and GPFS still uses the centralised approach. On the other

hand, regarding the system logic, object storages are only useful for application-595

oriented systems such as Google FS, OrangeFS, and, optionally, XtreemFS. File

storages seem to be the best option, or at least the most common one, although

Red Hat GFS2, IBM GPFS, and, optionally, CephFS, and Infinit use Block

storage.

The taxonomy also identifies the ability to dynamically scale storage, to600

replicate data, and to recover from node failures as the most important industry

requirements. Similarly, most of the systems provide some sort of redundancy,

and fault tolerance but do not provide security since distributed file systems are

commonly used in clusters with restricted access.

Finally, notice that only half of the options are open-source although the605

vast majority requires a paid plan to obtain the necessary support for instal-

lation, customisation, and maintenance. Since users cannot freely try different

distributed file systems, we recommend to make a preliminary effort to iden-

tify the requirements and gather information about the suitable systems before

choosing the right option.610

4.1.3. Distributed Databases

Many databases have evolved to distributed APIs because the data has grown

enough to not fit within a single node and because many compute nodes require

to access data concurrently. In general terms, distributed databases store data

among several data nodes and accept queries from different processes, ensuring615

persistence, consistency, coherency, and, in some cases, replication, and fault

tolerance.

26

4.1.3.1. Taxonomy.

Table 6 presents our taxonomy of the surveyed distributed databases. From620

the users’ point of view, the key differences rely on the database model and the

data scheme. Hence, the first column categorises the database model between

document (D in the table), key-value (K), wide column (C), graph (G), object

(O), and tabular (T). The second column details whether it is SQL or NoSQL,

the third column distinguishes whether the data scheme is free (F) or fixed625

(D), and the fourth column categorises the implementation language: Java (J),

Python (P), Erlang (E), Scala (S), C, or C++.

Regarding the data types, all the options support storing basic types. Thus,

we have only distinguished advanced features such as support for complex types,

foreign keys, and in-memory structures. Regarding built-in data operations, we630

have evaluated whether the software includes (or not) support for server-side

operations; differentiating when possible between the supported programming

Software Features

General Data Storage Ops. F. T. Query Support

M
o
d
e
l

S
Q

L
/
N
o
S
Q

L

F
r
e
e
/
F
ix

e
d

S
c
h
e
m

e

L
a
n
g
u
a
g
e

C
o
m

p
le

x
T
y
p
e
s

F
o
r
e
ig

n
K

e
y
s

In
-m

e
m

o
r
y

s
t
r
u
c
t
u
r
e
s

S
e
r
v
e
r
-s

id
e

T
r
ig

g
e
r
s

R
e
p
li
c
a
t
io

n

P
a
r
t
it
io

n
in

g

F
u
ll

S
e
a
r
c
h

S
e
c
o
n
d
a
r
y

In
d
e
x
e
s

M
a
p
R
e
d
u
c
e

A
t
o
m

ic
O

p
e
r
a
t
io

n
s

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

Amazon DynamoDB [144] D,K - F ? - - - ? C S ? ? - ? 8

Cassandra [145] C - F J ? - - - ? C S ? ? ? ? ? 1

CouchDB [146, 147] D - F E - - - ? ? M,S S ? - ? ? 1

DataClay [148, 149] O - F J ? - ? ? - C - ? - ? ? ? 5

Hazelcast IMDG [150] K - F J ? - ? ? ? C ? ? ? ? ? ? 1

Hbase [151, 152] C - F J - - - ? ? C S ? - ? ? 1

Hecuba [153, 154, 155] O,C - F P ? - ? - ? C S ? ? ? ? ? 1

Intersystems Cache [156] K,O,R - ? ? ? ? ? S - ? ? - - 8

JanusGraph [157] (prev. Titan [158]) G - D J ? ? ? ? C ? ? ? ? ? 1

Memcached [159] K - F C - - - - - - ? - - ? 5

MongoDB [160, 161] D - F C++ ? - ? JS - S S ? ? ? ? 7

MySQL [162, 163] T ? D C,C++ ? ? ? ? ? S,M - ? ? - ? ? 2

OrientDB [164, 165] D,G,K F J ? ? J,JS ? M S ? ? - ? 1

RAMCloud [166, 167] K - F C++ - - ? - - ? - ? - ? - 7

Redis [168, 169] K - F C ? - ? L - S,M S ? ? - ? ? 5

Riak [170] K - F E - - - JS,E ? C S ? ? ? ? 1

D
is
t
r
ib

u
t
e
d

D
a
t
a
b
a
s
e
s

Virtuoso [171] T ? D C ? ? ? ? ? S,M ? ? ? ? ? ? 2

Legend: ? Available - Not available / Not Applicable

Table 6: Distributed Databases software classified into Data Sharing box at the Platform layer

27

languages: LUA (L), JavaScript (JS), Java (J), or Erlang (E). Also, we have

detailed whether the software supports triggers or not.

Regarding fault tolerance, we have evaluated whether the systems provide635

replication from one database server to one or more database servers (S in the

table), with multiple concurrent masters (M) that allow data to be updated by

any member of the group, or with a custom replication scheme (C). Also, we

have evaluated the support for any kind of partitioning (? in the table), sharding

(horizontal partitioning with some enhancements, S in the table), or none (-).640

Regarding queries, we have analysed whether the different systems have

built-in support for full search, secondary indexes, map-reduce operations, and

atomic operations.

Finally, we have also included the maintenance and license considering the

same features than in the previous cases (see Section 3.1.1 for further details).645

4.1.3.2. Analysis.

The data model is the most distinguishing characteristic of a database since

it describes how the data is stored inside the database. Some options, such as

MySQL or Virtuoso, use the traditional tabular structure (SQL and SQL-Like650

databases); relying on an established and well-known standard, and a large set

of mature tools to work with. The key feature of SQL databases is the atom-

icity of operations; meaning that when an operation involving several entries is

executed, either all the results are updated on the database (commit), or none

of them is modified (roll-back).655

On the other hand, NoSQL databases offer a more flexible data scheme. As

shown in the taxonomy, the lack of preference regarding data model portrays

the flexibility required by the applications. For instance, the most popular

schemes are key-value (e.g., Memcached, RAMCloud, Redis, Riak), document

(e.g., Amazon DynamoDB, MongoDB, CouchDB), wide column (e.g., Cassan-660

dra, HBase), graph (e.g., JanusGraph, the open-sourced version of Titan after

its decommission), or object (e.g., DataClay, Hecuba). Also, we highlight that

NoSQL databases are increasingly used in big data applications due to its sim-

28

pler design and better horizontal scaling, although they can compromise data

consistency (many of them do not provide atomicity) and lack of an established665

standard.

More in-depth, while complex types, and storage operations are widely sup-

ported, only a few options support foreign keys (i.e., Intersystems Cache, Janus-

Graph, OrientDB, SQL and Virtuoso). Similarly, providing master-slave replica-

tion is the most common approach, since handling multiple concurrent masters670

requires a complicated architecture and might lead to huge overheads. More-

over, sharding is the preferred method to partition and distribute data across

multiple machines and keep the horizontal and vertical scalability.

Furthermore, as previously stated, one of the major issues when using NoSQL

databases is handling atomicity. Notice that only 3 NoSQL databases (i.e., Cas-675

sandra, Hazelcast IMDG, and Redis) provide support for atomic operations.

Similarly, Hecuba and dataClay guarantee atomic object accesses. Regarding

the rest of the options, the users can only rely on eventual consistency where

changes are eventually propagated to all nodes and queries might return out-

dated data or might not return updated data immediately. Apart from atomic680

operations, almost all the databases provide support full search queries and

secondary indexes, and half of them provide built-in support for map-reduce

operations.

Finally, most of the software (except Amazon DynamoDB and Intersystems

Cache) are available through different public open licenses; which allows devel-685

opers to try different possibilities before choosing the right database for their

application. However, in many cases, extended features and product support

are provided through paid licenses.

4.2. Resource Management

Resource management is the other big distributed computing challenge at690

platform level. When executing distributed applications, we must allocate, ini-

tialise, coordinate, and deallocate the computing resources. Although the only

requirement is to initialise the computing resources at the start of the execu-

29

tion and terminate them at the end of the execution, some frameworks provide

elasticity mechanisms to dynamically allocate and deallocate resources at ex-695

ecution time. Also, during the application’s execution, resources need to be

coordinated and monitored so that the framework (and the users) can decide

where to submit the computation jobs.

Since the Resource Management comprises several aspects, next subsections

provide further information about Discovery and Coordination, and Monitoring700

and Logging.

4.2.1. Discovery and Coordination

Avoiding configuration conflicts becomes more and more handy as appli-

cations grow in terms of the number of resources and services. If this were

not complicated enough, automatic scaling to optimise the use of the resources705

makes it even harder. Hence, software aiming at resource discovery and coor-

dination need to transparently discover, configure, and coordinate the different

resources and services of the system. Due to the heterogeneity of the current

deployments, these frameworks are typically huge; with several connectors to

handle machines and services in different computing infrastructures (see Sec-710

tion 6 for more details about infrastructure managers).

4.2.1.1. Taxonomy.

Table 7 presents our taxonomy for the resource discovery and coordination

software. There are already many online comparisons about reference soft-715

ware [181, 182, 183], however, our taxonomy includes other alternatives and

provides an homogeneous comparison between all of them. Since not all the

frameworks provide a complete solution, the first three columns indicate whether

the software can be used (or not) for resource discovery, coordination, and con-

figuration, respectively. This information is particularly relevant to pre-select720

the software that meet the users’ requirements.

Next, we analyse the systems’ model in-depth. The client language indi-

cates whether the users must use an API (A in the table) or and SDK (S).

30

Software Features

Purpose Model Protocols F.T. Security

D
is
c
o
v
e
r
y

C
o
o
r
d
in

a
t
io

n

C
o
n
fi
g
u
r
a
t
io

n

C
li
e
n
t

L
a
n
g
u
a
g
e

S
e
r
v
e
r

L
a
n
g
u
a
g
e

S
y
s
t
e
m

A
r
c
h
it
e
c
t
u
r
e

D
a
t
a

A
r
c
h
it
e
c
t
u
r
e

M
u
lt
ip

le
D

C

C
o
n
s
it
e
n
c
y

C
o
n
s
e
n
s
u
s

H
e
a
lt
h

C
h
e
c
k

E
n
c
r
y
p
t
io

n

A
u
t
h
e
n
t
ic

a
t
io

n

A
C
L

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

Consul [172] ? ? ? A Go C KV ? W,S,E R G ? ? ? ? 7

doozerd [173] ?- ? ? A Go C KV - S P H - ? - - 6

etcd [174] ?- ? ? A Go C KV - S R H ? ? - ? 1

Eureka [175] ? - - S Java C / ?- W / H ? ? - 1

Google Chubby [176, 177] - ? ? S C++ C F - S P K ? 8

Serf [178] ? - ? S Go D / ? E / G ? ? ? ? 7

D
.
a
n
d

C
.

Zookeeper [179, 180] ?- ? ? S Java C KV - S M K ? ? ? ? 1

Legend: ? Available - Not available / Not Applicable

Table 7: Discovery and Coordination software classified into Resource Management box at

the Platform layer

While APIs do not require any deployment, SDKs must be built on the client

machines; providing a more complete environment but adding an extra com-725

plexity in its deployment. Also, we have categorised the systems’ architecture

between client-server (C) and distributed (D) because it can have a direct im-

pact on the consistency and the scalability. Similarly, we have categorised how

the data is stored into key-value (KV) or file-like (F). Finally, we have evaluated

the capability of the systems to handle multiple infrastructures.730

Regarding the protocols, we have categorised the level of consistency into

weak (W), strong (S), and eventual (E). While weak consistency only ensures

that the accesses to synchronisation variables are seen in the same order and

that the set of accesses between two synchronisation points is the same in ev-

ery process, strong consistency ensures that all accesses are seen by all parallel735

processes in the same order. However, strong consistency comes with a high

cost in terms of performance. On the other hand, eventual consistency focuses

on high availability, only guaranteeing that, if no new updates are made, all

accesses will eventually return the last updated value. Furthermore, we have

indicated the consensus algorithm into Raft (R), majority (M), and Paxos (P).740

Notice that consensus in a distributed system means agreeing on one result

among a group of unreliable participants. Such consensus can be achieved by

31

a simple majority, although more complex algorithms can provide higher reli-

ability and performance. For instance, Paxos [184] is a widely used family of

consensus algorithms that make various trade-offs between assumptions about745

the processors, participants, and messages in a given system. On the other

hand, Raft [185] is developed as a more understandable alternative to Paxos

with equivalent performance and fault-tolerant guarantees.

Regarding fault tolerance, we have evaluated the resource health check mech-

anisms in each system. Heartbeat (H in the table) ensures that a shared resource750

is present at most in one place. Keepalive (K) ensures that a shared IP address

is present in at least one place. More complex algorithms also exist, like Gos-

sip [186], that spreads the information among the system in a manner similar to

the spread of a rumour among office workers or a virus in a biological community.

Regarding security, we have indicated the capability of the systems to en-755

crypt communicated data, authenticate users, and define Access Control Lists

(ACL).

Finally, we have also included the maintenance and license considering the

same features than in the previous cases (see Section 3.1.1 for further details).

4.2.1.2. Analysis.760

In general terms, all the resource discovery and coordination tools are based

on similar principles and architecture since they require a quorum to operate,

implement some level of consistency, and rely on some sort of key-value store.

Consul, etcd, and Zookeeper are the reference software that provide a complete765

solution. On the one hand, Consul is a strongly consistent data store built for

service discovery that is the only alternative providing built-in mechanisms for

service discovery (the other options are annotated with ?- in the table since

they implement service discovery but not as a built-in mechanism). On the

other hand, etcd is a simple yet powerful key-value store accessible through770

HTTP that provides features for hierarchical configuration and service discov-

ery. Also, ZooKeeper is one of the most mature options providing robustness

and feature richness, but being more complex to build and setup. Finally, re-

32

garding the rest of the surveyed alternatives, doozerd also provides a complete

solution while Google Chubby does not provide service discovery, and Eureka775

and Serf provide built-in mechanisms for service discovery but are not designed

for resource coordination and configuration.

More in-depth, most of the solutions use client-server architecture, provide

data encryption, and feature some kind of authentication. However, there is no

clear consensus regarding the client language since client APIs provide simple780

deployments and SDKs provide more complete environments. Furthermore, we

highlight the lack of support for multiple data centres (only provided by Consul

and Serf) and we believe that software within this layer will evolve to support

the heterogeneity of the current applications and deployments.

Also, strong consistency is the most used consistency level, although Eu-785

reka implements only weak consistency, Serf implements only eventual Consis-

tency, and Consul allows users to choose the consistency level (strong, weak,

or eventual). There is much more heterogeneity regarding the consensus al-

gorithm, where Consul and etcd opt for modern raft-based algorithms, and

doozerd and Google Chubby for more traditional paxos-based algorithms. On790

its own, ZooKeeper relies on a simple majority algorithm. Similarly, regard-

ing fault tolerance, while Consul and Serf use the Gossip algorithm (they are

maintained by the same company), Google Chubby and Zookeeper rely on the

Keepalive mechanism and the rest use heartbeats.

Finally, we must highlight that all frameworks (except Google Chubby) are795

available through different public open licenses.

4.2.2. Monitoring and Logging

Due to the increasing size of systems, networks and infrastructure, it is no

longer viable to monitor the status of all the resources manually. Instead, many

solutions arise to monitor a system and/or collect and analyse its logs. This800

section includes software designed only for resource monitoring, software de-

signed to collect and analyse data, and full-stack frameworks that offer resource

monitoring, log analytics, and interfaces to visualise the data.

33

4.2.2.1. Taxonomy.

805

Table 8 presents our taxonomy of the surveyed monitoring and logging soft-

ware. Many comparisons are available for monitoring tools [215, 216] but neither

compare all the features, nor all the software that we are comparing in this tax-

onomy. Also, many online comparisons have been made between ELK, Splunk,

and Graylog [217], Nagios and Zabbix [218], and Fluend and Logstash [219]. Al-810

though we have included many of this information in our taxonomy, the readers

may find more in-depth details since they are only reviewing 2 or 3 alternatives.

In our taxonomy, we first describe the architecture of each system, detailing

the implementation language: Java (J in the table), C, C++, Python (P),

Software Features

Architecture Monitored Elements Capabilities Security

L
a
n
g
u
a
g
e

D
a
t
a
b
a
s
e

W
e
b

In
t
e
r
fa

c
e

A
p
p
li
c
a
t
io

n

N
o
d
e

N
e
t
w
o
r
k

C
lo

u
d

C
o
n
t
a
in

e
r

D
a
t
a
b
a
s
e

A
u
t
o
m

a
t
ic

D
is
c
o
v
e
r
y

A
g
e
n
t

M
o
n
it
o
r
in

g

A
g
e
n
t
le

s
s

M
o
n
it
o
r
in

g

C
u
s
t
o
m

M
e
t
r
ic

s

A
le

r
t
s

C
u
s
t
o
m

/
A
g
g
r
e
g
a
t
e
d

G
r
a
p
h
s

D
a
t
a

E
n
c
r
y
p
t
io

n

A
u
t
h
e
n
t
ic

a
t
io

n

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

DataDog [187] M ? ? ? ? ? ? ? ? ? - ? ? ? - ? ? 8

Dynatrace [188, 189] J M ? ? ? ? ? ? ? ? ? - ? ? ? - ? ? 8

ELK Stack (Elastic) [190] J M ? ? ? ? ? ? ? ? ? - ? ? ? ? ? ? 1

Graylog [191] J ? ? ? ? ? ? ? ? ? ? ? - ? ? 3

LogRhythm [192, 193] ? ? ? ? ? ? - - / / / ? ? ? - ? ? 8

Nagios [194, 195] C M ? ? ? ? ? ? ? ? ? ? ? ? ? - ? ? 2

New Relic [196] M ? ? ? ? ? ? ? ? ? - ? ? ? - ? ? 8

Solarwinds APM Suite [197] ? ? ? ? ? ? ? ? - ? ? ? ? ? ? ? 8

A
ll

Splunk [198, 199] C++,P O ? ? ? ? ? ? ? ? ? - ? ? ? - ? ? 1

Ganglia [200, 201] C - ? - ? ? ? - ? ? - ? - ? - ? - 5

Icinga 2 [202] C++ ? ? ? ? ? ? - - - ? - ? ? ? - ? ? 2

Pandora FMS [203] JS M ? ? ? ? ? ? ? ? ? - ? ? ? - ? ? 2

Sensu [204] Go ? ? ? ? ? ? - ? ? - ? ? ? - ? ? 6

Zabbix [205, 206] C M ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2M
o
n
it
o
r
in

g

Zenoss [207, 208] M ? ? ? ? ? ? ? ? - ? ? ? ? - ? ? 2

Collectd [209] C M,F - ? ? ? - - ? - ? - ? ? / - ? ? 6

Fluentd [210] R M ? ? ? ? ? ? - - ? - ? ? - - - ? 1

Flume [211, 212] J - - ? ? ? - - - - ? - ? - / - - ? 1

Prometheus [213] Go F ? ? ? ? ? ? ? ? ? - ? ? ? - - ? 1

D
.
C
o
ll
e
c
t
o
r
s

Scribe [214] C++ F - ? ? ? - - - - ? - ? - / - - - 1

Legend: ? Available - Not available / Not Applicable

Table 8: Monitoring and Logging software classified into Resource Management box at the

Platform layer

34

JavaScript(JS), Go, or Ruby (R). The next column describes how the data is815

stored, distinguishing systems that use a single database (?), many databases

(M), a file system (F), can optionally use a database (O), or none (-). Also, we

indicate whether the system has a web interface or not.

Second, we indicate which elements can be monitored or log-collected by each

system; differentiating applications, machines and devices (nodes), networks,820

clouds, containers, and databases. Also, our taxonomy details the capabilities

of each solution. For instance, we differentiate between agent and agentless

monitoring. On the one hand, agent monitoring deploys a specifically designed

software to gather, analyse, and process data on each host; providing insight

information but locking the users to a specific platform (thus, increasing the825

cost of migration to new platforms without loosing the in-depth data). On the

other hand, agentless monitoring relies on hardware and software integrated

built-in features to centrally collect, manage, and monitor information without

requiring any additional software running on the hosts. Apart from the agent

and agentless monitoring, the capabilities also include automatic discovery, and830

the definition of custom metrics, alerts, and aggregated graphs.

Third, regarding security, we have indicated the capability of the systems to

encrypt stored data and authenticate users (e.g., LDAP). Notice that we do not

evaluate the encrypted communications since all the alternatives are capable of

using SSL.835

Finally, we have also included the maintenance and license considering the

same features than in the previous cases (see Section 3.1.1 for further details).

4.2.2.2. Analysis.

In general terms, data collectors seem to be more basic tools since they do840

not implement neither web interfaces, nor support for clouds, containers, and

databases, nor data encryption, nor authentication. Data collectors are designed

to collect (and analyse) the data from various components of the system at

application, device, or network level, and are often used to retrieve the logs from

the different parts of the system so that they can be used to check the system’s845

35

security, run forensics, or just to monitor their status. Although discontinued in

2014 for better integration with the Hadoop ecosystem, Facebook Scribe is still

a reference for aggregating log data streamed in real-time from many servers.

since it was designed to be scalable, and network and resource fault-tolerant.

Also, Fluentd collects and analyses event and application logs, allowing the users850

to homogenise them. Similarly, Apache Flume is designed to collect, aggregate,

and move large amounts of log data efficiently, and it is based on a simple

architecture with many fail-over and recovery mechanisms.

On the other hand, resource monitoring software provides more or less the

same features as full-stack software. Resource monitoring software is built to855

monitor the activity, capacity, and health of any resource within a system, both

on-premise and in the cloud. Typically, the implementations are low-level and

light-weight, with many optimisations to minimise the data transfers and the

monitoring overhead. Zabbix stands up as a reference software; providing high

scalability, native agents in many platforms, auto-discovery, and configurable860

alerts. Also, Ganglia is a monitoring tool designed for high-performance com-

puting systems, clusters and networks.

Full-stack frameworks provide resource monitoring and log collection, ag-

gregation, and analytics as long as intuitive interfaces to visualise the gathered

data. Dynatrace, DataDog, and New Relic lead the race [220], while the ELK865

stack (Elastic [221], Logstash [222, 223], and Kibana [224]) is becoming increas-

ingly popular due to its simplicity yet robust log analysis. However, Nagios,

and Splunk are still the state of the art references, providing a feature-rich and

robust ecosystem.

More in-depth, all the alternatives provide monitoring/logging capabilities870

for applications (except Ganglia), nodes, and network. Collectd, Flume, and

Scribe are the only ones not supporting clouds, and LogRythm, Icinga 2, Col-

lectd, Flume, and Scribe do not support containers. Also, only half of the

surveyed software supports monitoring/logging databases. Regarding the capa-

bilities, software based in agents is definitely the top choice. Only Solarwinds875

APM Suite and Zenoss work exclusively with agentless monitoring, while Nagios

36

and Zabbix allow agent and agentless monitoring for different kind of services.

Many alternatives also provide automatic discovery, custom metrics, and alerts.

Finally, while all the surveyed alternatives for resource monitoring and data

collection are available through different public open licenses, only half of the880

full-stack frameworks are. For instance, LogRythm, Solarwinds APM Suite,

DataDog, Dynatrace, and New Relic use private licenses and require paid plans.

However, many of them offer complete guides, tutorials, and live demonstrations

that can help the users to match their needs to a suitable option.

5. Communication885

In the Communication layer, we consider any framework, library, tool, pro-

tocol or pattern that eases the communication between distributed processes.

Its only purpose is to abstract the users from the infrastructure itself and the

network protocols by providing a higher-level API to send and receive messages

among computing resources. This layer is built directly on top of the infras-890

tructure and, thus, models are typically low-level.

The main technical challenge of this layer is to maintain efficiency while

providing a high enough abstraction so that users do not find themselves fighting

against TCP or UDP protocols. Considering that this kind of models aim at

advanced users, the proposals must be easy to fine-tune to obtain the expected895

behaviour without much performance loss.

Figure 4: Communication Layer

As shown in Figure 4, the Communication layer contains all the middle-

ware which handles the information exchange in distributed environments. We

consider two main paradigms: Remote Invocation and Message-Oriented. In

Remote Invocation (RI), models allow the users to make program calls from900

one node to another via network. We distinguish between Remote Procedure

37

Call (RPC) and Remote Method Invocation (RMI) when the invocation is a

function or an object method, respectively. First implementations date back to

early 1980s, but their popularity fell, first, with TCP/IP and, then again, when

HTTP became the de-facto standard for communication. The tight coupling,905

single language requirement, and synchronous nature of RI communications

were replaced by inter-operable, loosely coupled asynchronous methods such as

REST for HTTP. However, the Java RMI implementation is still around, and

a new batch of modern RPC models have appeared. The new RPC models

are language-agnostic and high-performant; mainly due to improvements in the910

serialisation/communication process (such as protocol buffers [225]), and in the

synchronisation (thanks to the use of futures and promises). Google’s gRPC

is the most well-known framework and it is widely used in micro-services or

performance-critical environments like TensorFlow (which uses it for distributed

executions).915

We can distinguish two paradigms inside the Message-Oriented group: Mes-

sage Passing Interface (MPI), and Message Queueing (MQ). These paradigms

are mostly aligned with HPC and Big Data fields. On the one hand, MPI

was born from the need to standardise the proprietary protocols developed for

high-speed interconnection networks (used in HPC clusters and supercomput-920

ers). MPI attempt to incur in minimal overhead, so their level of abstraction

is quite low (barely above sockets). They do not provide any fault tolerance

mechanism because failures (such as crashed processes or failed communica-

tions) are assumed to be fatal. On the other hand, MQ are based on inserting

messages into queues and use some kind of middleware or broker to handle the925

queues. Also, in contrast to MPI, these queues offer intermediate storage to not

require either the sender or receiver to be active during the transmission. They

are loosely-coupled in time, persistent, and asynchronous, so they are normally

fault-tolerant. The well-known publish-subscribe pattern is a kind of MQ where

the messages are grouped by topic. In this model, applications publish mes-930

sages to a given topic, and all applications subscribed to that topic receive the

messages (instead of delivering it to a single receiver like in message queuing).

38

5.1. Taxonomy

The number of communication solutions is vast, and it is increasing to fit

the myriad of different requirements of various environments and use cases.935

For this survey, we have chosen what we believe are the most representatives

frameworks for the Distributed Computing area. Our selection is based on

availability (open source), usage (measured by web presence and continuous

releases), and relevance (projects using it).

Software Features

Type of Communication Fault Tolerance Security
P
a
r
a
d
ig

m

T
r
a
n
s
ie

n
t
/
P
e
r
s
is
t
e
n
t

S
y
n
c
/
A
s
y
n
c

G
r
o
u
p

s
u
p
p
o
r
t

C
h
e
c
k
p
o
in

t
in

g

R
e
p
li
c
a
t
io

n

R
e
s
u
b
m

is
s
io

n

F
a
il
o
v
e
r

S
e
c
u
r
e

C
o
m

m
.

D
a
t
a

E
n
c
r
y
p
t
io

n

A
P
I
L
a
n
g
u
a
g
e

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

ActiveMQ [226, 227] MQ P A - - ? ? ? ? ? CJP(5) ? 1

AKKA Actors + Streams [228, 229, 230] MP P A,S ? ? ? ? ? ? ? J(1) ? 1

Apache Qpid [231] MQ P A,S ? - ? ? ? ? ? CJP(4) - 1

Cap’n Proto [232] RI T A,S - - - - - ? ? CJP(5) ? 6

Flink [233] MQ T A,S - ? - - ? ? ? JP(2) ? 1

gRPC [234] RI T A,S - - - - ? ? ? CJP(6) ? 1

Java RMI [235] RI T S - - - - - ? ? JP(2) 8

Jgroups [236] MP T,P A,S ? - ? ? ? ? ? J(0) ? 1

Kafka [237, 238] MQ T A - ? ? ? ? ? CJP(14) ? 1

OpenMPI [239] MP T A,S ? - - - - - - CP(2) ? 5

RabbitMQ [240] MQ P A - - ? ? ? ? ? CJP(19) ? 1

Spread Toolkit [241] MP P A,S ? - ? ? ? - - CJP(3) ? 8

Thrift [242] RI T A,S - - - - ? ? ? CJP(11) ? 1

C
o
m

m
u
n
ic

a
t
io

n

ZeroMQ [243] MQ T,P A,S ? - ? ? ? - - CJP(17) ? 4

Legend: ? Available - Not available / Not Applicable

Table 9: Software classified into the Communication layer

Table 9 presents our communications’ taxonomy. The features related to the940

type of communication are based on the ones listed in [244]. Moreover, to the

type of communication features, we also consider fault tolerance, security, and

general features such as the API language and licensing.

First, we define the principal type of communication implemented. For the

communication paradigm, we differentiate between Remote Invocation (RI in945

the table), Message Passing (MP), and Message Queuing (MQ). Next, the com-

munication can either be transient (T), where the messages are not stored and

thus, the sender and receiver to be active at the transmission time, or persistent

39

(P), where messages are stored making the communication time-decoupled.

Depending on whether sending a message is blocking or not, the communica-950

tion can either be asynchronous (A), or synchronous (S). For the sake of clarity,

in this classification, we do not differentiate if synchronous communications are

when the middleware receives the request, when the message has been delivered,

or when the message has been processed. Also, notice that, nowadays, almost

all communication solutions offer both synchronous and asynchronous modes.955

Furthermore, we indicate whether there is support for group communica-

tion or not. We consider group communications to have the following features:

messages are sent to group IDs (no need to know actual recipients), messages

are delivered to all group members, and the middleware is the responsible for

maintaining group memberships.960

Depending on the environment, fault tolerance and security might be im-

portant concerns. As in previous sections, regarding fault tolerance, we analyse

whether the software offers checkpointing, replication, re-submission, and fail-

over (recovering after partial errors). Regarding security, we indicate whether

the systems support secure communications and data encryption.965

Finally, we also provide some information about the languages supported

and the license. Since some solutions offer bindings for a large number of lan-

guages, we indicate support for Java (J), Python (P), and C++ (C), and, in

the cases where more languages are supported, we indicate how many more

are supported with a number in parenthesis. The software maintenance and970

license is categorised considering the same options than in the previous layers

(see Section 3.1.1 for further details).

5.2. Analysis

Generally, RI and MP paradigms are transient, while MQ supports both

transient and persistent communications because having a middleware allows975

to store (or not) the messages upon delivery easily. More in-depth, all the

considered RI paradigms are transient, requiring both sender and receiver to

be alive at the same time. The MP paradigms are split between MPI transient

40

communications and the persistent ones which have some kind of middleware

(e.g., Jgroups, Spread, and AKKA). Finally, the MQ are inherently persistent980

as they are saved into a queue. However, systems designed for stream processing

(such as Kafka or Flink) only store the data long enough to be processed; which

led us to consider them as transient. Nevertheless, users can choose to save the

data quite easily with different methods like high retention periods (Kafka) or

checkpoints (Flink).985

Regarding synchronous communication, RI solutions were synchronous by

nature. However, this has changed with modern RI solutions such as gRPC and

Thrift. Also, the MPI standard incorporates methods for asynchronous support.

Generally, HPC-oriented communications (like MPI) do not offer neither

fault tolerance nor security because they typically run in closed, secure envi-990

ronments. On the other hand, MQ are used in more unreliable environments,

and thus, provide different mechanisms to handle failures and security. Most

transient-communication solutions do not offer fault tolerance because the com-

munication is expected to fail if the message can not be delivered (as in MPI).

On the other hand, most persistent-communications frameworks (like MQ-based995

models) are robust to failure because they have a middleware that can keep track

of failed submissions.

6. Infrastructure

When we talk about infrastructure, we no longer talk about computing nodes

themselves but about the infrastructure software that is capable of managing1000

clusters, clouds, virtual machines or containers. As shown in Figure 5, there is

a clear division between software developed to administrate and manage batch

systems (such as supercomputers), and software developed for interactive sys-

tems (such as cloud platforms or container providers). Next subsections provide

further information about both approaches by defining, comparing, and cate-1005

gorising the latest software.

41

Figure 5: Infrastructure Layer

6.1. Batch systems

Batch systems are in charge of scheduling jobs that can run without user

interaction, require a fixed amount of resources, and have a hard timeout among

the resources they manage. Since these systems are typically for HPC facilities1010

(i.e., supercomputers), they are designed to administrate a fixed number of com-

putational resources with homogeneous capabilities. To support modern HPC

facilities with heterogeneous resources, batch systems can include constraints or

queue configurations. Also, in an attempt to make the HPC infrastructure more

flexible, some alternatives include job elasticity to vary the amount of resources1015

assigned to a job at execution time.

6.1.1. Taxonomy

Table 10 presents our taxonomy for the batch systems. First, we describe

their architecture, detailing whether the implementation language is Java (J in

Software Features

Architecture Configuration Limits F.T. Security

L
a
n
g
u
a
g
e

O
S

F
il
e

S
y
s
t
e
m

H
e
t
e
r
.

R
e
s
o
u
r
c
e
s

J
o
b

p
r
io

r
it
y

G
r
o
u
p

p
r
io

r
it
y

M
a
x
.

n
o
d
e
s

M
a
x
.

jo
b
s

J
o
b

C
h
e
c
k
p
o
in

t
in

g

A
u
t
h
e
n
t
ic

a
t
io

n

E
n
c
r
y
p
t
io

n

M
a
in

t
a
in

e
r

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

Enduro/X [245] C,C++ U P ? - - ? OS M Maximax Ltd ? 2

GridEngine [246] C W,U A ? ? ? 10k 300k ? M ? Univa ? 8

Hadoop Yarn [247, 248] J W,U H ? ? - 10k 500k M ? Apache SF ? 1

HT Condor [249, 250] C++ W,U N ? ? ? 10k 100k ? M M UW-Madison ? 1

IBM Spectrum LSF [251] C,C++ W,U A ? ? ? 9k 4M ? M ? IBM ? 8

OpenLava [252] C,C++ L N ? ? ? ? OS - Teraproc - 2

PBS Pro [253, 254] C,P W,L P ? ? ? 50k 1M ? OS - Altair ? 2

SLURM [255, 256] C U A ? ? ? 120k 100k ? M - SchedMD ? 2

B
a
t
c
h

s
y
s
t
e
m

s

Torque [257] C U A ? ? ? ? OS - Adaptive Computing ? 8

Legend: ? Available - Not available / Not Applicable

Table 10: Batch systems classified into the Infrastructure layer

42

the table), Python (P), C++, or C. We also differentiate between the supported1020

underlying operating systems - Windows (W), Linux (L), or Unix-Like (U) - and

file systems - NFS (N), Posix (P), HDFS (H), or Any (A) -.

Next, we point out configurable features that system administrators might

require; such as support for heterogeneous resources, job priority, and group

priority. Also, we provide information about the system limits; stating the1025

maximum number of nodes and jobs that each system has proven to work with.

Regarding fault tolerance, we indicate the support for job checkpointing.

Also, regarding security, we categorise the user authentication between operat-

ing system (OS) and many (M), and the stored data encryption between many

(M), Yes (?) or None (-).1030

Finally, we have included the maintainer since batch systems are critical for

the software stack. Thus, reliability and support from the maintainer might

be critical when choosing between the different options. Moreover, we indicate

whether the software is under active development and its license considering the

same options than in the previous layers (see Section 3.1.1 for further details).1035

6.1.2. Analysis

Although every system has its own set of user commands, they all provide

more or less the same functionalities to the end-user; the only exception be-

ing some advanced features such as environment copy, project allocations, or

generic resources. Hence, choosing long-term well-supported software is a key1040

points when looking for a batch system. For instance, SLURM is a free and

open-source job scheduler used on about the 60% of the TOP500 supercomput-

ers. IBM Spectrum LSF, Torque, and PBS are also widely used options with

constant updates and support. Also, HT Condor and Hadoop Yarn are spe-

cialised alternatives (e.g., scavenging resources from unused nodes or managing1045

Hadoop clusters) with active user communities.

However, system administrators will find significant differences between sys-

tems. Regarding the OS support, all the alternatives are available for Unix-Like

systems. Moreover, GirdEngine, Hadoop Yarn, HT Condor, IBM Spectrum

43

LSF, and PBS Pro also support Windows nodes. As expected, notice that all1050

the alternatives work with NFS or POSIX file systems expect Hadoop Yarn

that relies on HDFS. On the other hand, regarding the configuration options

and fault tolerance, all the systems support heterogeneous resources, job pri-

ority (except Enduro/X), group priority (except Enduro/X and Hadoop Yarn),

and job checkpointing (except Hadoop Yarn). Finally, regarding security, all1055

the systems support user authentication through different methods. Although

batch systems are usually installed in secure clusters, Enduro/X, GridEngine,

Hadoop Yarn, HT Condor, and IBM Spectrum LSF provide data encryption.

Related to the relevance of choosing long-term well-supported software, our

taxonomy includes the tested limits. SLURM is the only system that has been1060

proven to work with more than 100k nodes. PBS Pro has been tested with 50k

nodes, and GridEngine, Hadoop Yarn, HT Condor and IBM Spectrum LSF are

far behind with around 10k nodes. On the other hand, IBM Spectrum LSF and

PBS Pro are the only systems that have been proven to handle more than 1

million jobs. Next, Hadoop Yarn has been tested with 500k jobs, Grid Engine1065

with 300k jobs, and HT Condor and SLURM with 100k jobs. Unluckily, we

have not been able to find reliable information regarding the limit of nodes nor

the limit of jobs for Enduro/X, OpenLava, or Torque.

Finally, all the alternatives except GridEngine and Torque are available

through different public open licenses. However, the maintainers offer paid plans1070

for installation and support that are highly recommended for large clusters.

6.2. Interactive systems

In contrast to batch systems, interactive systems are designed for on-demand

availability of computing and storage resources; freeing the user from directly

managing them. Since these systems are designed for clouds and container1075

platforms, they are required to (1) integrate and free resources from the system,

and (2) dynamically adapt the resources assigned to a running job to fulfil its

requirements. Typically, these systems handle heterogeneous resources in one

or many data centres from one or many organisations.

44

6.2.1. Taxonomy1080

Previous work has been published around interactive systems that already

analyses many of the features of our taxonomy and discusses some of the alterna-

tives. For instance, [273] provides an in-depth comparison about OpenStack and

OpenNebula. Also, the principal investigator and the chief architect discuss the

OpenNebula project in [274]. Furthermore, there are online comparisons about1085

Kubernetes and Docker Swarm [275], or Kubernetes and Mesos [276] that were

useful when retrieving information for our taxonomy.

Table 11 presents our taxonomy of the surveyed interactive systems. The

first two columns classify whether the different technologies work with virtual-

machines or containers. Next column defines the supported virtualisation for-1090

mats; distinguishing between raw (R in the table), compressed (C), Docker (D)

or Appc (A). Also, we indicate the number of available hypervisors (e.g., KVM,

Xen, Qemu, vSphere, Hyper-V, bare-metal) and the implementation language,

differentiating between Java (J), Go (G), Python (P), C (C), and C++ (C++).

Regarding the user interaction, we define the different interfaces for each1095

system: web (W), client (C), REST (R), EC2 (E), and HTTP (H). Moreover,

we also include the language of the available libraries distinguishing between

Java (J), Python (P), Ruby (R), Go (G), and C++.

Software Features

Virtualisation Code Interaction Elasticity Mgmt. Application

V
M

C
o
n
t
a
in

e
r

F
o
r
m

a
t

H
y
p
e
r
v
is
o
r

L
a
n
g
u
a
g
e

In
t
e
r
fa

c
e

L
ib

r
a
r
ie

s

A
u
t
o
m

a
t
ic

S
c
a
li
n
g

B
u
r
s
t
in

g

S
c
a
la

b
il
it
y

A
c
c
o
u
n
t
in

g

U
s
e
r

q
u
o
t
a
s

L
o
a
d

B
a
la

n
c
in

g

O
b
je

c
t

S
t
o
r
a
g
e

L
iv

e
M

ig
r
a
t
io

n

R
o
ll
in

g
U
p
d
a
t
e

S
e
lf
-h

e
a
li
n
g

R
o
ll
b
a
c
k
s

A
c
t
iv

e
ly

M
a
in

t
a
in

e
d

L
ic

e
n
s
e

CloudStack [258, 259] ? - R,C 7 J W,R,E - ? - ? ? ? - ? - - - ? 1

Docker Swarm [260, 261] - ? D - G C,H G,P - - 1kn - - ? - - ? ? - ? 1

Eucalyptus [262, 263] ? - R 1 J,C W,C,E - ? - - ? ? ? ? - - - - 3

Kubernetes [264, 265] - ? D - G W,C,R G,P ? - 5kn - ? ? - ? ? ? ?- ? 1

Mesos [266, 267] - ? D,A - C++ W,H J,C++ ? - 50kn - ? - - - ? ? - ? 1

OpenNebula [268, 269] ? - R,C 3 C++ W,C,R R,J ? ? ? ? - - ? - - - ? 1

OpenStack [270, 271] ? ? R,C 6 P W,C,R P ? - 120kc ? ? ? ? ? - - - ? 1In
t
e
r
a
c
t
iv

e
s
y
s
.

RedHat OpenShift [272] - ? D - G R,C,W - ? ? 1kn - ? ? - ? ? ? ? ? 1

Legend: ? Available - Not available / Not Applicable

Table 11: Interactive systems classified into the Infrastructure layer

45

Regarding the elasticity, we indicate whether the systems support automatic

scaling and bursting. Also, we indicate the maximum number of nodes or cores1100

that the system has proven to manage. Furthermore, we indicate whether the

systems provide accounting and user quotas since these might be interesting

features for system administrators. Similarly, we indicate whether the systems

support load balancing, object storage, live migration, rolling updates, self-

healing techniques, and rollbacks. Finally, we detail the maintenance and license1105

considering the same options than in the previous layers (see Section 3.1.1 for

further details).

6.2.2. Analysis

OpenStack and OpenNebula are the reference software for managing cloud

computing infrastructures based on virtual machines. Both solutions are de-1110

ployed as Infrastructure as a Service (IaaS), supporting multiple, heterogeneous,

and distributed data centres and offering private, public, and hybrid clouds. Al-

though both are free and open-source, OpenStack is the only option to handle

virtual machines and containers simultaneously. We highlight that all the sur-

veyed alternatives using virtual machines have support for raw and compressed1115

formats through different hypervisors except Eucalyptus.

On the other hand, Docker is the reference container technology offering

Platform as a Service (PaaS) products that rely on the OS-level virtualisation

to deliver software in packages (also known as containers). While Docker Swarm

is the native mode to manage clusters of Docker Engines, Kubernetes is an1120

open-source container-orchestration system to provide automatic deployment

and scaling of applications running with containers in a cluster.

More in-depth, regardless of the virtualisation, the systems offer many in-

terfaces; the most common ones being client, REST, or web interfaces. Also,

regarding elasticity, all the alternatives except Docker Swarm provide automatic1125

scaling. However, only OpenNebula and RedHat OpenShift provide cloud burst-

ing. Furthermore, regarding user management, all the surveyed systems (except

Docker Swarm) provide user quotas, but only Apache CloudStack, OpenNebula,

46

and OpenStack provide user accounting. Also, regarding application features,

most of the systems provide load balancing and live migration. On the other1130

hand, rolling updates, self-healing, and rollbacks are more common in container

platforms than virtual machine platforms. Also, Kubernetes and RedHat Open-

Shift are the richest options; providing all the application management features

except Object storage.

Finally, we must highlight that all the alternatives are available through1135

different public open licenses. However, it is recommended to check the paid

plans offered by the maintainers for large clusters and continuous support.

7. Conclusion

This paper proposes a layered top-bottom classification of the distributed

computing software based on the abstraction level. For each layer, we define1140

the general background, discuss its technical challenges, and build a taxon-

omy to easily analyse the latest programming languages, programming models,

frameworks, libraries, and tools. In total, we review more than 150 different

technologies; classifying them considering their core business, although many

alternatives can offer functionalities from other layers.1145

As shown in Figure 6, on the very top of our classification, we define the

Application Development layer that includes high-level abstraction frameworks

that provide all-in-one solutions to develop distributed applications. Often,

they rely on huge stacks and are continuously upgraded to support the systems’

heterogeneity. Considering their purpose, the different alternatives are classified1150

into Task-based Workflows, Dataflows, and Graph Processing frameworks.

Next, the Platform layer includes less general solutions that resolve a sin-

gle computing challenge: data sharing or resource management. The different

alternatives include high-end tools and frameworks that provide a single and

homogeneous solution for many underlying infrastructures.1155

The third layer of our classification is Communication. The software within

this layer eases the communication between distributed processes (including Re-

47

Figure 6: Complete software classification

mote Invocation, Message Passing, and Message Queuing) and its only purpose

is to abstract the users from the infrastructure itself and the network proto-

cols by providing a higher-level API to communicate data values and control1160

messages among resources.

Finally, on the bottom of our classification, the Infrastructure layer man-

ages clusters, clouds, virtual machines or containers. The software within this

layer is classified into batch and interactive systems to differentiate between

systems in charge of scheduling jobs with hard timeouts among a fixed set of1165

resources (such as supercomputers), and systems designed for on-demand avail-

ability of computing and storage resources (such as cloud platforms or container

providers).

Declaration of competing interest

The authors declare that they have no known competing financial interests or1170

personal relationships that could have appeared to influence the work reported

in this paper.

48

Acknowledgement

This work is partly supported by the Spanish Ministry of Science, Innovation,

and Universities through the Severo Ochoa Program (SEV-2015-0493) and the1175

TIN2015-65316-P project. It is also supported by the Generalitat de Catalunya

under contracts 2014-SGR-1051 and 2014-SGR-1272. Cristian Ramon-Cortes

pre-doctoral contract is financed by the Spanish Ministry of Science, Innovation,

and Universities under the contract BES-2016-076791.

References1180

[1] K. Asanovic, et al., The landscape of parallel computing research: A view

from berkeley, Technical Report UCB/EECS-2006-183 2.

[2] I. Foster, C. Kesselman, The Grid 2: Blueprint for a new computing

infrastructure, Elsevier, 2003.

[3] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of grid1185

resource management systems for distributed computing, Software: Prac-

tice and Experience 32 (2) (2002) 135–164.

[4] V. Kumar, et al., Introduction to parallel computing: design and analysis

of algorithms, Vol. 400, Benjamin/Cummings Redwood City, 1994.

[5] K. Asanovic, et al., A view of the Parallel Computing Landscape, Com-1190

munications of the ACM 52 (10) (2009) 56–67.

[6] S. Kaisler, et al., Big Data: Issues and Challenges Moving Forward, in:

46th Hawaii International Conference on System Sciences, IEEE, 2013,

pp. 995–1004.

[7] S. Sagiroglu, D. Sinanc, Big data: A review, in: International Conference1195

on Collaboration Technologies and Systems (CTS), IEEE, 2013, pp. 42–

47.

49

[8] P. Russom, et al., Big data analytics, TDWI best practices report, fourth

quarter 19.

[9] J. Dongarra, et al., The international Exascale Software Project roadmap,1200

The International Journal of High Performance Computing Applications

25 (1) (2011) 3–60.

[10] D. A. Reed, J. Dongarra, Exascale Computing and Big Data, Commun.

ACM 58 (7) (2015) 5668.

[11] E. Deelman, Big Data Analytics and High Performance Computing Con-1205

vergence Through Workflows and Virtualization (2016).

[12] S. Cano-Lores, F. Isaila, J. Carretero, Data-Aware Support for Hybrid

HPC and Big Data Applications, in: 2017 17th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017, pp.

719–722.1210

[13] C. Hsu, G. Fox, G. Min, S. Sharma, Advances in big data programming,

system software and HPC convergence, The Journal of Supercomputing

75 (2019) 489–493. doi:10.1007/s11227-018-2706-x.

[14] G. Fox, et al., Big Data, Simulations and HPC Convergence, in: T. Rabl,

et al. (Eds.), Big Data Benchmarking, Springer, Cham, 2016, pp. 3–17.1215

[15] M. Zaharia, et al., Spark: Cluster computing with working sets., HotCloud

10 (10-10) (2010) 95.

[16] A. Toshniwal, et al., Storm@ twitter, in: Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, ACM, 2014,

pp. 147–156.1220

[17] M. Abadi, et al., Tensorflow: Large-scale machine learning on heteroge-

neous distributed systems, in: arXiv preprint:1603.04467, arXiv, 2016, pp.

1–19.

50

http://dx.doi.org/10.1007/s11227-018-2706-x

[18] J. Liu, et al., A Survey of Data-Intensive Scientific Workflow Management,

Journal of Grid Computing 13 (4) (2015) 457–493.1225

[19] B. P. Rimal, E. Choi, I. Lumb, A Taxonomy and Survey of Cloud Com-

puting Systems, in: 2009 Fifth International Joint Conference on INC,

IMS and IDC, 2009, pp. 44–51.

[20] C. Kacfah Emani, N. Cullot, C. Nicolle, Understandable Big Data: A

survey, Computer Science Review 17 (2015) 70–81.1230

[21] The Apache Software Foundation, Apache Airflow, http://airflow.

apache.org, accessed 2 October 2019 (2019).

[22] C. Vecchiola, X. Chu, R. Buyya, Aneka: A software platform for .NET-

based cloud computing, High Speed and Large Scale Scientific Computing

18 (2009) 267–295.1235

[23] T. Fahringer, et al., Askalon: A grid application development and com-

puting environment, in: Proceedings of the 6th IEEE/ACM International

Workshop on Grid Computing, IEEE, 2005, pp. 122–131.

[24] D. Manubens-Gil, et al., Seamless management of ensemble climate pre-

diction experiments on HPC platforms, in: 2016 International Conference1240

on High Performance Computing Simulation (HPCS), 2016, pp. 895–900.

[25] Ask Solem, Celery, http://www.celeryproject.org, accessed 2 October

2019 (2019).

[26] D. G. Murray, et al., CIEL: a universal execution engine for distributed

data-flow computing, in: Proceedings of the 8th ACM/USENIX Sympo-1245

sium on Networked Systems Design and Implementation, 2011, pp. 113–

126.

[27] Barcelona Supercomputing Center (BSC), COMP Superscalar

(COMPSs), https://compss.bsc.es, accessed 2 October 2019 (2019).

51

http://airflow.apache.org
http://airflow.apache.org
http://airflow.apache.org
http://www.celeryproject.org
https://compss.bsc.es

[28] S. Pronk, et al., Copernicus: A new paradigm for parallel adaptive molec-1250

ular dynamics, in: Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, ACM, 2011,

pp. 60:1–60:10.

[29] The Apache Software Foundation, Apache Crunch, https://crunch.

apache.org, accessed 2 October 2019 (2013).1255

[30] NumFOCUS, Dask: Library for dynamic task scheduling, http://dask.

pydata.org, accessed 2 October 2019 (2019).

[31] ECMWF, EcFlow, https://confluence.ecmwf.int/display/ECFLOW,

accessed 2 October 2019 (2019).

[32] J. Anubhav, et al., FireWorks: a dynamic workflow system designed for1260

high-throughput applications, Concurrency and computation: practice

and experience 27.

[33] E. Afgan, et al., The galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2016 update, in: Nucleic acids research,

2016, p. gkw343.1265

[34] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large

Clusters, in: Proc. of the 6th Conf. on Symposium on Operating Systems

Design and Implementation - Volume 6, OSDI’04, USENIX Association,

USA, 2004, p. 10.

[35] F. Montesi, et al., Jolie: a Java orchestration language interpreter engine,1270

Electronic Notes in Theoretical Computer Science 181 (2007) 19–33.

[36] I. Altintas, et al., Kepler: an extensible system for design and execution

of scientific workflows, in: Proceedings. 16th International Conference on

Scientific and Statistical Database Management, IEEE, 2004, pp. 423–424.

[37] Netflix, Netflix Conductor, https://netflix.github.io/conductor, ac-1275

cessed 2 October 2019 (2019).

52

https://crunch.apache.org
https://crunch.apache.org
https://crunch.apache.org
http://dask.pydata.org
http://dask.pydata.org
http://dask.pydata.org
https://confluence.ecmwf.int/display/ECFLOW
https://netflix.github.io/conductor

[38] E. Deelman, et al., Pegasus, a workflow management system for science

automation, Future Generation Computer Systems 46 (2015) 17–35.

[39] M. Wilde, et al., Swift: A language for distributed parallel scripting,

Parallel Computing 37(9) (2011) 633–652.1280

[40] D. Hull, et al., Taverna: a tool for building and running workflows of

services, Nucleic Acids Research 34 (Web Server issue) (2006) W729–

W732.

[41] The Apache Software Foundation, Apache License, version 2.0, https:

//www.apache.org/licenses/LICENSE-2.0, accessed 2 October 20191285

(2019).

[42] Free Software Foundation (FSF), GNU General Public License, version

2, https://www.gnu.org/licenses/old-licenses/gpl-2.0.html, ac-

cessed 2 October 2019 (2017).

[43] Free Software Foundation (FSF), GNU General Public License, version 3,1290

https://www.gnu.org/licenses/gpl-3.0.en.html, accessed 2 October

2019 (2016).

[44] Free Software Foundation (FSF), GNU Lesser General Public License,

version 2.1, https://www.gnu.org/licenses/old-licenses/lgpl-2.

1.html, accessed 2 October 2019 (2018).1295

[45] The Linux Information Project, BSD License, http://www.linfo.org/

bsdlicense, accessed 2 October 2019 (2005).

[46] Opensource.org, MIT License, https://opensource.org/licenses/MIT,

accessed 2 October 2019 (2019).

[47] Opensource.org, Academic Free License version 3.0, https:1300

//opensource.org/licenses/AFL-3.0, accessed 2 October 2019

(2005).

53

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.linfo.org/bsdlicense
http://www.linfo.org/bsdlicense
http://www.linfo.org/bsdlicense
https://opensource.org/licenses/MIT
https://opensource.org/licenses/AFL-3.0
https://opensource.org/licenses/AFL-3.0
https://opensource.org/licenses/AFL-3.0

[48] Mozilla Foundation, Mozilla Public License Version 2.0, https://www.

mozilla.org/en-US/MPL/2.0, accessed 2 October 2019 (2019).

[49] Eclipse Foundation Inc., Eclipse Public License v1.0, https://www.1305

eclipse.org/legal/epl-v10.html, accessed 2 October 2019 (2019).

[50] The Apache Software Foundation, Apache Apex, https://apex.apache.

org, accessed 2 October 2019 (2019).

[51] The Apache Software Foundation, Apache Beam, https://beam.apache.

org, accessed 2 October 2019 (2019).1310

[52] Cascading Maintainers, Cascading, http://www.cascading.org, ac-

cessed 2 October 2019 (2018).

[53] The Apache Software Foundation, Apache Gearpump, https://

gearpump.apache.org, accessed 2 October 2019 (2019).

[54] Hazelcast Inc., Hazelcast Jet, https://jet.hazelcast.org, accessed 21315

October 2019 (2019).

[55] S. Kulkarni, et al., Twitter heron: Stream processing at scale, in: Proceed-

ings of the 2015 ACM SIGMOD International Conference on Management

of Data, ACM, 2015, pp. 239–250.

[56] M. Hirzel, et al., IBM streams processing language: Analyzing big data in1320

motion, IBM Journal of Research and Development 57 (3/4) (2013) 7–11.

[57] B. Schmaus, et al., Netflix Blog: Stream processing

with Mantis, https://medium.com/netflix-techblog/

stream-processing-with-mantis-78af913f51a6, accessed 2 Octo-

ber 2019 (2016).1325

[58] The Apache Software Foundation, Apache Samza, http://samza.

apache.org, accessed 2 October 2019 (2019).

54

https://www.mozilla.org/en-US/MPL/2.0
https://www.mozilla.org/en-US/MPL/2.0
https://www.mozilla.org/en-US/MPL/2.0
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
https://apex.apache.org
https://apex.apache.org
https://apex.apache.org
https://beam.apache.org
https://beam.apache.org
https://beam.apache.org
http://www.cascading.org
https://gearpump.apache.org
https://gearpump.apache.org
https://gearpump.apache.org
https://jet.hazelcast.org
https://medium.com/netflix-techblog/stream-processing-with-mantis-78af913f51a6
https://medium.com/netflix-techblog/stream-processing-with-mantis-78af913f51a6
https://medium.com/netflix-techblog/stream-processing-with-mantis-78af913f51a6
http://samza.apache.org
http://samza.apache.org
http://samza.apache.org

[59] M. Zaharia, et al., Discretized Streams: An Efficient and Fault-Tolerant

Model for Stream Processing on Large Clusters, HotCloud 12 (2012) 10–

16.1330

[60] The Apache Software Foundation, Apache Hama, https://hama.apache.

org, accessed 2 October 2019 (2016).

[61] A. Buluç, J. R. Gilbert, The Combinatorial BLAS: Design, implemen-

tation, and applications, The International Journal of High Performance

Computing Applications 25 (4) (2011) 496–509.1335

[62] A. Azad, A. Buluç, J. R. Gilbert, Combinatorial BLAS (Comb-

BLAS), https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/

index.html, accessed 2 October 2019 (2018).

[63] V. Amelkin, A. Buluç, J. R. Gilbert, Knowledge Discovery Toolbox

(KDT), http://kdt.sourceforge.net, accessed 2 October 2019 (2013).1340

[64] Micro Focus, Distributed R, https://marketplace.microfocus.com/

vertica/content/distributed-r, accessed 2 October 2019 (2019).

[65] The Apache Software Foundation, Giraph, http://giraph.apache.org,

accessed 2 October 2019 (2019).

[66] Y. Simmhan, et al., GoFFish: A Sub-graph Centric Framework for Large-1345

Scale Graph Analytics, in: Euro-Par 2014 Parallel Processing, Springer,

2014, pp. 451–462.

[67] DREAM:Lab, GoFFish, http://dream-lab.cds.iisc.ac.in/

projects/goffish, accessed 2 October 2019 (2017).

[68] R. S. Xin, et al., Graphx: A resilient distributed graph system on spark, in:1350

First International Workshop on Graph Data Management Experiences

and Systems, ACM, 2013, pp. 1–6.

[69] The Apache Software Foundation, Apache Spark - GraphX, https://

spark.apache.org/graphx, accessed 2 October 2019 (2018).

55

https://hama.apache.org
https://hama.apache.org
https://hama.apache.org
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/index.html
http://kdt.sourceforge.net
https://marketplace.microfocus.com/vertica/content/distributed-r
https://marketplace.microfocus.com/vertica/content/distributed-r
https://marketplace.microfocus.com/vertica/content/distributed-r
http://giraph.apache.org
http://dream-lab.cds.iisc.ac.in/projects/goffish
http://dream-lab.cds.iisc.ac.in/projects/goffish
http://dream-lab.cds.iisc.ac.in/projects/goffish
https://spark.apache.org/graphx
https://spark.apache.org/graphx
https://spark.apache.org/graphx

[70] B. Shao, H. Wang, Y. Li, Trinity: A distributed graph engine on a memory1355

cloud, in: Proceedings of the 2013 ACM SIGMOD International Confer-

ence on Management of Data, ACM, 2013, pp. 505–516.

[71] Microsoft, Microsoft Trinity Project, https://www.microsoft.com/

en-us/research/project/trinity, accessed 2 October 2019 (2019).

[72] Microsoft, Graph Engine, https://www.graphengine.io, accessed 2 Oc-1360

tober 2019 (2017).

[73] S. Salihoglu, J. Widom, GPS: a graph processing system, in: Proceedings

of the 25th International Conference on Scientific and Statistical Database

Management, ACM, 2013, pp. 1–12.

[74] J. Widom, GPS: Graph Processing System, http://infolab.stanford.1365

edu/gps, accessed 2 October 2019 (2014).

[75] P. Wang, et al., Replication-based fault-tolerance for large-scale graph

processing, in: 2014 44th Annual IEEE/IFIP Int. Conf. on Dependable

Systems and Networks (DSN), IEEE, 2014, pp. 562–573.

[76] Shanghai Jiao Tong University, Imitator, http://ipads.se.sjtu.edu.1370

cn/projects/imitator.html, accessed 2 October 2019 (2014).

[77] D. Gregor, A. Lumsdaine, The parallel BGL: A generic library for dis-

tributed graph computations, Parallel Object-Oriented Scientific Com-

puting (POOSC) 2 (2005) 1–18.

[78] N. Edmonds, D. Gregor, A. Lumsdaine, Parallel Boost Graph Library,1375

http://www.boost.org/doc/libs/1_53_0/libs/graph_parallel/

doc/html/index.html, accessed 2 October 2019 (2009).

[79] J. E. Gonzalez, et al., PowerGraph: Distributed Graph-Parallel Com-

putation on Natural Graphs, in: Presented as part of the 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 12),1380

USENIX, 2012, pp. 17–30.

56

https://www.microsoft.com/en-us/research/project/trinity
https://www.microsoft.com/en-us/research/project/trinity
https://www.microsoft.com/en-us/research/project/trinity
https://www.graphengine.io
http://infolab.stanford.edu/gps
http://infolab.stanford.edu/gps
http://infolab.stanford.edu/gps
http://ipads.se.sjtu.edu.cn/projects/imitator.html
http://ipads.se.sjtu.edu.cn/projects/imitator.html
http://ipads.se.sjtu.edu.cn/projects/imitator.html
http://www.boost.org/doc/libs/1_53_0/libs/graph_parallel/doc/html/index.html
http://www.boost.org/doc/libs/1_53_0/libs/graph_parallel/doc/html/index.html
http://www.boost.org/doc/libs/1_53_0/libs/graph_parallel/doc/html/index.html

[80] R. Chen, et al., PowerLyra: Differentiated Graph Computation and Par-

titioning on Skewed Graphs, in: Proceedings of the Tenth European Con-

ference on Computer Systems, ACM, 2015, pp. 1:1–1:15.

[81] R. Chen, PowerLyra, http://ipads.se.sjtu.edu.cn/projects/1385

powerlyra.html, accessed 2 October 2019 (2013).

[82] G. Malewicz, et al., Pregel: a system for large-scale graph processing,

in: Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, ACM, 2010, pp. 135–146.

[83] Y. Bu, et al., Pregelix: Big(Ger) Graph Analytics on a Dataflow Engine,1390

Proc. VLDB Endow. 8 (2) (2014) 161–172.

[84] Pregelix Team, Pregelix, http://pregelix.ics.uci.edu, accessed 2 Oc-

tober 2019 (2014).

[85] S. Venkataraman, et al., Presto: Distributed Machine Learning and Graph

Processing with Sparse Matrices, in: Proceedings of the 8th ACM Euro-1395

pean Conference on Computer Systems (EuroSys 2013), ACM, 2013, pp.

197–210.

[86] J. Xue, et al., Processing concurrent graph analytics with decoupled com-

putation model, IEEE Transactions on Computers 66 (5) (2017) 876–890.

[87] M. Zandifar, et al., The STAPL skeleton framework, in: International1400

Workshop on Languages and Compilers for Parallel Computing, Springer,

2014, pp. 176–190.

[88] Parasol Laboratory, STAPL: Standard Template Adaptive Parallel

Library (Parasol), https://parasol.tamu.edu/groups/rwergergroup/

research/stapl, accessed 2 October 2019 (2017).1405

[89] DataStax Inc., Titan Hadoop (Faunus), https://github.com/

thinkaurelius/faunus, accessed 2 October 2019 (2015).

57

http://ipads.se.sjtu.edu.cn/projects/powerlyra.html
http://ipads.se.sjtu.edu.cn/projects/powerlyra.html
http://ipads.se.sjtu.edu.cn/projects/powerlyra.html
http://pregelix.ics.uci.edu
https://parasol.tamu.edu/groups/rwergergroup/research/stapl
https://parasol.tamu.edu/groups/rwergergroup/research/stapl
https://parasol.tamu.edu/groups/rwergergroup/research/stapl
https://github.com/thinkaurelius/faunus
https://github.com/thinkaurelius/faunus
https://github.com/thinkaurelius/faunus

[90] Y. Low, et al., Distributed GraphLab: a framework for machine learning

and data mining in the cloud, Proceedings of the VLDB Endowment 5 (8)

(2012) 716–727.1410

[91] Turi, Turi Create, https://turi.com, accessed 2 October 2019 (2018).

[92] N. Doekemeijer, A. L. Varbanescu, A survey of parallel graph processing

frameworks, Tech. rep., Technical Report PDS-2014-003. Delft University

of Technology (2014).

[93] L. G. Valiant, A Bridging Model for Parallel Computation, Commun.1415

ACM 33 (8) (1990) 103–111.

[94] T. El-Ghazawi, et al., Unified Parallel C, http://upc.gwu.edu, accessed

2 October 2019 (2005).

[95] U. Consortium, UPC Language Specifications V1.2, Tech. rep., UPC Con-

sortium (5 2005). doi:10.2172/862127.1420

[96] C. Coarfa, et al., An evaluation of global address space languages: co-

array fortran and unified parallel C, in: Proceedings of the tenth ACM

SIGPLAN symposium on Principles and practice of parallel programming,

ACM, 2005, pp. 36–47.

[97] B. L. Chamberlain, D. Callahan, H. P. Zima, Parallel Programmability1425

and the Chapel Language, The International Journal of High Performance

Computing Applications 21 (3) (2007) 291–312.

[98] CRAY, The Chapel Parallel Programming Language, https://

chapel-lang.org, accessed 2 October 2019 (2019).

[99] K. Fürlinger, T. Fuchs, R. Kowalewski, DASH: a C++ PGAS li-1430

brary for distributed data structures and parallel algorithms, in: 2016

IEEE 18th International Conference on High Performance Computing

and Communications; IEEE 14th International Conference on Smart

58

https://turi.com
http://upc.gwu.edu
http://dx.doi.org/10.2172/862127
https://chapel-lang.org
https://chapel-lang.org
https://chapel-lang.org

City; IEEE 2nd International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), Ieee, 2016, pp. 983–990.1435

[100] Dash Team, DASH, http://www.dash-project.org, accessed 2 October

2019 (2018).

[101] E. Allen, et al., The Fortress language specification, Sun Microsystems

139 (140) (2005) 116.

[102] R. W. Numrich, J. Reid, Co-array Fortran for Parallel Programming,1440

SIGPLAN Fortran Forum 17 (2) (1998) 1–31.

[103] GPI-2, GPI-2: Programming Next Generation Supercomputers, http:

//www.gpi-site.com, accessed 2 October 2019 (2019).

[104] B. Chapman, et al., Introducing OpenSHMEM: SHMEM for the PGAS

Community, in: Proceedings of the Fourth Conference on Partitioned1445

Global Address Space Programming Model, Association for Computing

Machinery, 2010, pp. 1–3.

[105] Silicon Graphics International Corp., OpenSHMEM, http://www.

openshmem.org, accessed 12 February 2020 (2019).

[106] K. Yelick, et al., Titanium: a high-performance Java dialect, Concurrency1450

and Computation: Practice and Experience 10 (11-13) (1998) 825–836.

[107] P. N. Hilfinger, et al., Titanium language reference manual (2006).

[108] Computer Science Division, University of California at Berkeley, Ti-

tanium, http://titanium.cs.berkeley.edu, accessed 2 October 2019

(2014).1455

[109] P. Charles, et al., X10: An Object-oriented Approach to Non-uniform

Cluster Computing, SIGPLAN Not. 40 (10) (2005) 519–538.

[110] V. Saraswat, et al., X10 Language Specification - Version 2.6.2 (2019).

59

http://www.dash-project.org
http://www.gpi-site.com
http://www.gpi-site.com
http://www.gpi-site.com
http://www.openshmem.org
http://www.openshmem.org
http://www.openshmem.org
http://titanium.cs.berkeley.edu

[111] IBM, The X10 Parallel Programming Language, http://x10-lang.org,

accessed 2 October 2019 (2018).1460

[112] PGAS org, PGAS: Partitioned Global Address Space, http://www.pgas.

org, accessed 2 October 2019 (2016).

[113] O. Tardieu, The apgas library: Resilient parallel and distributed program-

ming in java 8, in: Proceedings of the ACM SIGPLAN Workshop on X10,

X10 2015, ACM, 2015, pp. 25–26.1465

[114] J. Breitbart, M. Schmidtobreick, V. Heuveline, Evaluation of the Global

Address Space Programming Interface (GASPI), in: 2014 IEEE Interna-

tional Parallel Distributed Processing Symposium Workshops, 2014, pp.

717–726.

[115] GASPI-Forum, GASPI: Global Address Space Programming Interface,1470

http://www.gaspi.de, accessed 2 October 2019 (2019).

[116] T. Alrutz, et al., GASPI – A Partitioned Global Address Space Program-

ming Interface, in: Facing the Multicore-Challenge III: Aspects of New

Paradigms and Technologies in Parallel Computing, Springer, 2013, pp.

135–136.1475

[117] Mellanox Technologies, What is RDMA?, https://community.

mellanox.com/s/article/what-is-rdma-x, accessed 12 February

2020 (2019).

[118] D. Bonachea, P. H. Hargrove, GASNet-EX: A High-Performance, Portable

Communication Library for Exascale, in: International Workshop on Lan-1480

guages and Compilers for Parallel Computing, Springer, 2018, pp. 138–

158.

[119] Berkeley Lab., GASNet, https://gasnet.lbl.gov, accessed 12 February

2020 (2020).

60

http://x10-lang.org
http://www.pgas.org
http://www.pgas.org
http://www.pgas.org
http://www.gaspi.de
https://community.mellanox.com/s/article/what-is-rdma-x
https://community.mellanox.com/s/article/what-is-rdma-x
https://community.mellanox.com/s/article/what-is-rdma-x
https://gasnet.lbl.gov

[120] J. Heichler, An introduction to BeeGFS, Tech. rep., BeeGFS (2014).1485

URL https://www.beegfs.io/docs/whitepapers/Introduction_to_

BeeGFS_by_ThinkParQ.pdf

[121] ThinkParQ and Fraunhofer, BeeGFS, https://www.beegfs.io, accessed

2 October 2019 (2019).

[122] S. A. Weil, et al., Ceph: A Scalable, High-performance Distributed File1490

System, in: Proceedings of the 7th Symposium on Operating Systems

Design and Implementation, OSDI’06, USENIX Association, USA, 2006,

p. 307320.

[123] DataPlow Inc., DataPlow Nasan File System, http://www.dataplow.

com/Products.htm#Nasan, accessed 2 October 2019 (2019).1495

[124] M.-A. Vef, et al., GekkoFS - A temporary distributed file system for HPC

applications, in: 2018 IEEE International Conference on Cluster Comput-

ing (CLUSTER), IEEE, 2018, pp. 319–324.

[125] NGIO project. BSC in collaboration with JGU, GekkoFS, https://

github.com/NGIOproject/GekkoFS, accessed 22 May 2020 (2020).1500

[126] E. B. Boyer, M. C. Broomfield, T. A. Perrotti, Glusterfs one storage

server to rule them all, Tech. rep., Los Alamos National Lab.(LANL),

Los Alamos, NM (United States) (2012).

URL https://www.osti.gov/biblio/1048672

[127] A. Davies, A. Orsaria, Scale out with GlusterFS, Linux J. 2013 (235).1505

[128] S. Ghemawat, H. Gobioff, S. Leung, The Google File System, SIGOPS

Oper. Syst. Rev. 37 (5) (2003) 29–43.

[129] K. Shvachko, et al., The hadoop distributed file system, in: 2010 IEEE

26th symposium on Mass storage systems and technologies (MSST),

IEEE, 2010, pp. 1–10.1510

61

https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io
http://www.dataplow.com/Products.htm#Nasan
http://www.dataplow.com/Products.htm#Nasan
http://www.dataplow.com/Products.htm#Nasan
https://github.com/NGIOproject/GekkoFS
https://github.com/NGIOproject/GekkoFS
https://github.com/NGIOproject/GekkoFS
https://www.osti.gov/biblio/1048672
https://www.osti.gov/biblio/1048672
https://www.osti.gov/biblio/1048672
https://www.osti.gov/biblio/1048672

[130] F. Schmuck, R. Haskin, GPFS: A Shared-Disk File System for Large Com-

puting Clusters, in: Proceedings of the 1st USENIX Conference on File

and Storage Technologies, FAST’02, USENIX Association, USA, 2002,

p. 16.

[131] Infinit International Inc., Infinit Storage Platform, https://infinit.sh/1515

reference, accessed 2 October 2019 (2015).

[132] LizardFS Inc., LizardFS, https://lizardfs.com, accessed 2 October

2019 (2019).

[133] S. Faibish, et al., Lustre File System, uS Patent 9,779,108 (3 2017).

[134] A. D’amato, et al., Cluster shared volumes, uS Patent 7,840,730 (11 2010).1520

[135] Core Technology Sp. z o.o., MooseFS, https://moosefs.com, accessed 2

October 2019 (2019).

[136] D. Nagle, D. Serenyi, A. Matthews, The Panasas ActiveScale Storage

Cluster: Delivering Scalable High Bandwidth Storage, in: Proceedings of

the 2004 ACM/IEEE Conference on Supercomputing, IEEE, 2004, pp.1525

53–.

[137] P. Inc, Panasas ActiveStor Architecture Overview, Tech. rep., White

paper (2017).

URL http://performance.panasas.com/

wp-architecture-hp-thanks.html1530

[138] P. H. Carns, et al., PVFS: A parallel file system for Linux clusters, in:

Proceedings of the 4th Annual Linux Showcase and Conference – Volume

4, ALS’00, USENIX Association, 2000, pp. 28–29.

[139] OrangeFS.org, The OrangeFS Project, http://www.orangefs.org, ac-

cessed 2 October 2019 (2018).1535

[140] S. Whitehouse, The GFS2 filesystem, in: Proceedings of the Linux Sym-

posium, Citeseer, 2007, pp. 253–259.

62

https://infinit.sh/reference
https://infinit.sh/reference
https://infinit.sh/reference
https://lizardfs.com
https://moosefs.com
http://performance.panasas.com/wp-architecture-hp-thanks.html
http://performance.panasas.com/wp-architecture-hp-thanks.html
http://performance.panasas.com/wp-architecture-hp-thanks.html
http://performance.panasas.com/wp-architecture-hp-thanks.html
http://www.orangefs.org

[141] R. Inc., Red Hat Global File System, Tech. rep., RedHat (2004).

URL https://listman.redhat.com/whitepapers/rha/gfs/GFS_

INS0032US.pdf1540

[142] L. Shepard, E. Eppe, SGI R© InfiniteStorage Shared Filesystem CXFS:

A High-Performance, Multi-OS Filesystem from SGI, Tech. rep., White

paper 2691 (2003).

URL https://jarrang.com/client/sgi/storage/

StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/1545

SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf

[143] J. Stender, M. Berlin, A. Reinefeld, XtreemFS: A file system for the cloud,

in: Data intensive storage services for cloud environments, IGI Global,

2013, pp. 267–285.

[144] Amazon Web Services Inc., DynamoDB, https://aws.amazon.com/es/1550

dynamodb, accessed 4 December 2019 (2019).

[145] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage

system, ACM SIGOPS Operating Systems Review 44 (2) (2010) 35–40.

[146] J. C. Anderson, J. Lehnardt, N. Slater, CouchDB: the definitive guide,

O’Reilly Media Inc., 2010.1555

[147] The Apache Software Foundation, Apache CouchDB, https://couchdb.

apache.org, accessed 4 December 2019 (2019).

[148] J. Mart́ı, et al., Dataclay: A distributed data store for effective inter-player

data sharing, Journal of Systems and Software 131 (2017) 129–145.

[149] Barcelona Supercomputing Center (BSC), dataClay, https:1560

//www.bsc.es/research-and-development/software-and-apps/

software-list/dataclay, accessed 4 December 2019 (2019).

[150] Hazelcast Inc., Hazelcast IMDG, https://hazelcast.com/products/

imdg, accessed 4 December 2019 (2019).

63

https://listman.redhat.com/whitepapers/rha/gfs/GFS_INS0032US.pdf
https://listman.redhat.com/whitepapers/rha/gfs/GFS_INS0032US.pdf
https://listman.redhat.com/whitepapers/rha/gfs/GFS_INS0032US.pdf
https://listman.redhat.com/whitepapers/rha/gfs/GFS_INS0032US.pdf
https://jarrang.com/client/sgi/storage/StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf
https://jarrang.com/client/sgi/storage/StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf
https://jarrang.com/client/sgi/storage/StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf
https://jarrang.com/client/sgi/storage/StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf
https://jarrang.com/client/sgi/storage/StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf
https://jarrang.com/client/sgi/storage/StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf
https://jarrang.com/client/sgi/storage/StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf
https://jarrang.com/client/sgi/storage/StorageCD/Collateral/DataSheets/GeneralAndWhitepapers/SGIInfiniteStorageSharedFilesystemCXFSwhitepaper.pdf
https://aws.amazon.com/es/dynamodb
https://aws.amazon.com/es/dynamodb
https://aws.amazon.com/es/dynamodb
https://couchdb.apache.org
https://couchdb.apache.org
https://couchdb.apache.org
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://hazelcast.com/products/imdg
https://hazelcast.com/products/imdg
https://hazelcast.com/products/imdg

[151] M. N. Vora, Hadoop-HBase for large-scale data, in: Proceedings of 20111565

International Conference on Computer Science and Network Technology,

Vol. 1, IEEE, 2011, pp. 601–605.

[152] The Apache Software Foundation, Apache HBase, https://hbase.

apache.org, accessed 4 December 2019 (2019).

[153] G. Alomar, Y. Becerra, J. Torres, Hecuba: Nosql made easy, in: BSC1570

Doctoral Symposium (2nd: 2015: Barcelona), Barcelona Supercomputing

Center, 2015, pp. 136–137.

[154] E. Tejedor, et al., PyCOMPSs: Parallel computational workflows in

Python, The International Journal of High Performance Computing Ap-

plications (IJHPCA) 31 (1) (2017) 66–82.1575

[155] Barcelona Supercomputing Center (BSC), Hecuba, https://github.

com/bsc-dd/hecuba, accessed 4 December 2019 (2019).

[156] InterSystems Corporation, Intersystems Cache, https://www.

intersystems.com/products/cache, accessed 4 December 2019 (2019).

[157] JanusGraph Authors, JanusGraph, https://janusgraph.org, accessed1580

4 December 2019 (2019).

[158] Thinkaurelius, Titan: Distributed Graph Database, http://titan.

thinkaurelius.com, accessed 11 May 2020 (2015).

[159] Dormando, Memcached, https://memcached.org, accessed 4 December

2019 (2018).1585

[160] K. Banker, MongoDB in action, Manning Publications Co., 2011.

[161] MongoDB Inc., MongoDB: The most popular database for modern apps,

https://www.mongodb.com, accessed 4 December 2019 (2019).

[162] S. Suehring, MySQL bible, John Wiley & Sons Inc., 2002.

64

https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://github.com/bsc-dd/hecuba
https://github.com/bsc-dd/hecuba
https://github.com/bsc-dd/hecuba
https://www.intersystems.com/products/cache
https://www.intersystems.com/products/cache
https://www.intersystems.com/products/cache
https://janusgraph.org
http://titan.thinkaurelius.com
http://titan.thinkaurelius.com
http://titan.thinkaurelius.com
https://memcached.org
https://www.mongodb.com

[163] Oracle Corporation, MySQL, https://www.mysql.com, accessed 4 De-1590

cember 2019 (2019).

[164] C. Tesoriero, Getting Started with OrientDB, Packt Publishing Ltd, 2013.

[165] Callidus Software Inc., OrientDB: The database designed for the modern

world, https://orientdb.com, accessed 4 December 2019 (2019).

[166] J. Ousterhout, et al., The case for RAMClouds: scalable high-performance1595

storage entirely in DRAM, ACM SIGOPS Operating Systems Review

43 (4) (2010) 92–105.

[167] J. Ousterhout, RAMCloud Project, https://ramcloud.atlassian.net/

wiki/spaces/RAM/overview, accessed 22 May 2020 (2019).

[168] T. Macedo, F. Oliveira, Redis Cookbook: Practical Techniques for Fast1600

Data Manipulation, O’Reilly Media Inc., 2011.

[169] RedisLabs, Redis, https://redis.io, accessed 4 December 2019 (2019).

[170] Basho Technologies, Riak, https://riak.com/riak, accessed 4 December

2019 (2019).

[171] OpenLink Software, Virtuoso: Data-driven agility without compromise,1605

https://virtuoso.openlinksw.com, accessed 4 December 2019 (2019).

[172] HashiCorp, Consul, https://www.consul.io, accessed 4 December 2019

(2019).

[173] K. Rarick, Introducing Doozerd, https://xph.us/2011/04/13/

introducing-doozer.html, accessed 4 December 2019 (2011).1610

[174] The etcd authors, etcd: A distributed, reliable key-value store for the

most critical data of a distributed system, https://etcd.io, accessed 4

December 2019 (2019).

[175] Netflix, Netflix Eureka - GitHub repository, https://github.com/

Netflix/eureka, accessed 4 December 2019 (2019).1615

65

https://www.mysql.com
https://orientdb.com
https://ramcloud.atlassian.net/wiki/spaces/RAM/overview
https://ramcloud.atlassian.net/wiki/spaces/RAM/overview
https://ramcloud.atlassian.net/wiki/spaces/RAM/overview
https://redis.io
https://riak.com/riak
https://virtuoso.openlinksw.com
https://www.consul.io
https://xph.us/2011/04/13/introducing-doozer.html
https://xph.us/2011/04/13/introducing-doozer.html
https://xph.us/2011/04/13/introducing-doozer.html
https://etcd.io
https://github.com/Netflix/eureka
https://github.com/Netflix/eureka
https://github.com/Netflix/eureka

[176] M. Burrows, The chubby lock service for loosely-coupled distributed sys-

tems, in: Proceedings of the 7th symposium on Operating systems design

and implementation, USENIX Association, 2006, pp. 335–350.

[177] Ameya, Chubby: A lock service for distributed coordination, In

https://medium.com/coinmonks/chubby-a-centralized-lock-servi1620

ce-for-distributed-applications-390571273052, accessed 4 Decem-

ber 2019 (2018).

[178] HashiCorp, Serf, https://www.serf.io, accessed 4 December 2019

(2019).

[179] P. Hunt, et al., ZooKeeper: Wait-free Coordination for Internet-scale Sys-1625

tems, in: USENIX annual technical conference, Vol. 8, Boston, MA, USA,

2010, pp. 1–14.

[180] The Apache Software Foundation, Apache ZooKeeper, https://

zookeeper.apache.org, accessed 4 December 2019 (2019).

[181] HashiCorp, Serf vs. ZooKeeper, doozerd, etcd, https://www.serf.io/1630

intro/vs-zookeeper.html, accessed 4 December 2019 (2019).

[182] I. Glushkov, Comparing ZooKeeper and Consul, https://es.

slideshare.net/IvanGlushkov/zookeeper-vs-consul-41882991,

accessed 4 December 2019 (2014).

[183] Farcic, V., Service Discovery: Zookeeper vs etcd vs Con-1635

sul, https://technologyconversations.com/2015/09/08/

service-discovery-zookeeper-vs-etcd-vs-consul, accessed 4

December 2019 (2015).

[184] L. Lamport, et al., Paxos made simple, ACM Sigact News 32 (4) (2001)

18–25.1640

[185] D. Ongaro, J. Ousterhout, In search of an understandable consensus al-

gorithm, in: 2014 USENIX Annual Technical Conference (USENIX ATC

14), 2014, pp. 305–319.

66

https://medium.com/coinmonks/chubby-a-centralized-lock-servi
ce-for-distributed-applications-390571273052
https://www.serf.io
https://zookeeper.apache.org
https://zookeeper.apache.org
https://zookeeper.apache.org
https://www.serf.io/intro/vs-zookeeper.html
https://www.serf.io/intro/vs-zookeeper.html
https://www.serf.io/intro/vs-zookeeper.html
https://es.slideshare.net/IvanGlushkov/zookeeper-vs-consul-41882991
https://es.slideshare.net/IvanGlushkov/zookeeper-vs-consul-41882991
https://es.slideshare.net/IvanGlushkov/zookeeper-vs-consul-41882991
https://technologyconversations.com/2015/09/08/service-discovery-zookeeper-vs-etcd-vs-consul
https://technologyconversations.com/2015/09/08/service-discovery-zookeeper-vs-etcd-vs-consul
https://technologyconversations.com/2015/09/08/service-discovery-zookeeper-vs-etcd-vs-consul

[186] K. Birman, The promise, and limitations, of gossip protocols, ACM

SIGOPS Operating Systems Review 41 (5) (2007) 8–13.1645

[187] Datadog, Datadog: Cloud Monitoring as a Service, https://www.

datadoghq.com, accessed 4 December 2019 (2019).

[188] F. Willnecker, A. Brunnert, W. Gottesheim, H. Krcmar, Using Dynatrace

Monitoring Data for Generating Performance Models of Java EE Applica-

tions, in: Proceedings of the 6th ACM/SPEC International Conference on1650

Performance Engineering, Association for Computing Machinery, 2015, p.

103104. doi:10.1145/2668930.2688061.

URL https://doi.org/10.1145/2668930.2688061

[189] Dynatrace, Dynatrace: The Leader in Cloud Monitoring, https://www.

dynatrace.com, accessed 21 May 2021 (2021).1655

[190] Elasticsearch B.V., ELK Stack: Elasticsearch, Logstash, Kibana, https:

//www.elastic.co/what-is/elk-stack, accessed 4 December 2019

(2019).

[191] Graylog, Graylog, https://www.graylog.org, accessed 4 December 2019

(2019).1660

[192] P. Villella, C. Petersen, Log collection, structuring and processing, uS

Patent 7,653,633 (jan 2010).

[193] LogRhythm Inc., LogRhythm: The Security Intelligence Company,

https://logrhythm.com, accessed 4 December 2019 (2019).

[194] W. Barth, Nagios: System and network monitoring, No Starch Press,1665

2008.

[195] Nagios Enterprises, LLC, Nagios - The Industry Standard In IT Infrastruc-

ture Monitoring, https://www.nagios.org, accessed 4 December 2019

(2019).

67

https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://doi.org/10.1145/2668930.2688061
https://doi.org/10.1145/2668930.2688061
https://doi.org/10.1145/2668930.2688061
https://doi.org/10.1145/2668930.2688061
https://doi.org/10.1145/2668930.2688061
http://dx.doi.org/10.1145/2668930.2688061
https://doi.org/10.1145/2668930.2688061
https://www.dynatrace.com
https://www.dynatrace.com
https://www.dynatrace.com
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack
https://www.graylog.org
https://logrhythm.com
https://www.nagios.org

[196] New Relic, New Relic, https://newrelic.com, accessed 21 May 20211670

(2021).

[197] Solarwinds, Log Management by Loggly, https://www.loggly.com, ac-

cessed 4 December 2019 (2019).

[198] D. Carasso, Exploring splunk, CITO Research New York, USA, 2012.

[199] Splunk Inc., Splunk: SIEM, AIOps, Application Management, Log Man-1675

agement, Machine Learning, and Compliance, https://www.splunk.com,

accessed 4 December 2019 (2019).

[200] M. L. Massie, B. N. Chun, D. E. Culler, The ganglia distributed monitor-

ing system: design, implementation, and experience, Parallel Computing

30 (7) (2004) 817–840.1680

[201] Ganglia Project, Ganglia Monitoring System, http://ganglia.info, ac-

cessed 2 October 2019 (2018).

[202] Icinga GmbH, Icinga, https://icinga.com, accessed 4 December 2019

(2019).

[203] Pandora FMS, Pandora FMS: The flexible monitoring software for large1685

business, https://pandorafms.com, accessed 4 December 2019 (2019).

[204] Sensu Inc., Sensu, https://sensu.io, accessed 4 December 2019 (2019).

[205] R. Olups, Zabbix Network Monitoring, Packt Publishing Ltd, 2016.

[206] Zabbix LLC., Zabbix: The Enterprise-Class Open Source Network Mon-

itoring Solution, https://www.zabbix.com, accessed 4 December 20191690

(2019).

[207] M. Badger, Zenoss core network and system monitoring, Packt Publishing

Ltd, 2008.

[208] Zenoss Inc., Zenoss: Intelligent Application and Service Monitoring +

AIOps, https://www.zenoss.com, accessed 4 December 2019 (2019).1695

68

https://newrelic.com
https://www.loggly.com
https://www.splunk.com
http://ganglia.info
https://icinga.com
https://pandorafms.com
https://sensu.io
https://www.zabbix.com
https://www.zenoss.com

[209] F. e. a. Forster, Collectd, https://collectd.org, accessed 4 December

2019 (2019).

[210] Fluentd Project, Fluentd: Open Source Data Collector and Unified

Logging Layer, https://www.fluentd.org, accessed 4 December 2019

(2019).1700

[211] S. Hoffman, Apache Flume: Distributed Log Collection for Hadoop, Packt

Publishing Ltd, 2013.

[212] The Apache Software Foundation, Apache Flume, https://flume.

apache.org, accessed 4 December 2019 (2019).

[213] Prometheus Authors, Prometheus: From metrics to insight, https://1705

prometheus.io, accessed 4 December 2019 (2019).

[214] Facebook, Scribe: Transporting petabytes per hour via a dis-

tributed, buffered queueing system, https://engineering.fb.com/

data-infrastructure/scribe, accessed 4 December 2019 (2019).

[215] Opentica, Open Source Monitoring Tools, http://opentica.com/en/1710

2016/02/02/open-source-monitoring-tools, accessed 4 December

2019 (2016).

[216] L. Kufel, Tools for distributed systems monitoring, Foundations of Com-

puting and Decision Sciences 41 (4) (2016) 237–260.

[217] R. Bhargava, Best of 2018: Log Monitoring and Analysis:1715

Comparing ELK, Splunk and Graylog, https://devops.com/

log-monitoring-and-analysis-comparing-elk-splunk-and-graylog,

accessed 4 December 2019 (2018).

[218] T. Keary, Nagios vs Zabbix Compared Which Is Better for Net-

work Monitoring?, https://www.comparitech.com/net-admin/1720

nagios-vs-zabbix, accessed 4 December 2019 (2018).

69

https://collectd.org
https://www.fluentd.org
https://flume.apache.org
https://flume.apache.org
https://flume.apache.org
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://engineering.fb.com/data-infrastructure/scribe
https://engineering.fb.com/data-infrastructure/scribe
https://engineering.fb.com/data-infrastructure/scribe
http://opentica.com/en/2016/02/02/open-source-monitoring-tools
http://opentica.com/en/2016/02/02/open-source-monitoring-tools
http://opentica.com/en/2016/02/02/open-source-monitoring-tools
https://devops.com/log-monitoring-and-analysis-comparing-elk-splunk-and-graylog
https://devops.com/log-monitoring-and-analysis-comparing-elk-splunk-and-graylog
https://devops.com/log-monitoring-and-analysis-comparing-elk-splunk-and-graylog
https://www.comparitech.com/net-admin/nagios-vs-zabbix
https://www.comparitech.com/net-admin/nagios-vs-zabbix
https://www.comparitech.com/net-admin/nagios-vs-zabbix

[219] N. Peri, Fluentd vs. Logstash: A Comparison of Log Collectors, https:

//logz.io/blog/fluentd-logstash, accessed 4 December 2019 (2015).

[220] Charley Rich, Federico De Silva, Gartner Magic

Quadrant for Application Performance Monitor-1725

ing, https://www.gartner.com/en/documents/3983892/

magic-quadrant-for-application-performance-monitoring, ac-

cessed 21 May 2021 (2020).

[221] Elasticsearch B.V., Elasticsearch: The Official Distributed Search and An-

alytics, https://www.elastic.co/products/elasticsearch, accessed 41730

December 2019 (2019).

[222] J. Turnbull, The Logstash Book, James Turnbull, 2013.

[223] Elasticsearch B.V., Logstash: Collect, Parse, Transform Logs, https://

www.elastic.co/products/logstash, accessed 4 December 2019 (2019).

[224] Elasticsearch B.V., Kibana: Explore, Visualize, Discover Data, https:1735

//www.elastic.co/products/kibana, accessed 4 December 2019 (2019).

[225] Google, Protocol Buffers, https://developers.google.com/

protocol-buffers, accessed 3 December 2019 (2019).

[226] B. Snyder, D. Bosnanac, R. Davies, ActiveMQ in action, Vol. 47, Manning

Greenwich Conn., 2011.1740

[227] The Apache Software Foundation, Apache ActiveMQ, https://

activemq.apache.org, accessed 3 December 2019 (2019).

[228] M. Gupta, Akka essentials, Packt Publishing Ltd, 2012.

[229] Lightbend Inc., AKKA Documentation - Classic Actors, https://doc.

akka.io/docs/akka/current/actors.html, accessed 3 December 20191745

(2019).

70

https://logz.io/blog/fluentd-logstash
https://logz.io/blog/fluentd-logstash
https://logz.io/blog/fluentd-logstash
https://www.gartner.com/en/documents/3983892/magic-quadrant-for-application-performance-monitoring
https://www.gartner.com/en/documents/3983892/magic-quadrant-for-application-performance-monitoring
https://www.gartner.com/en/documents/3983892/magic-quadrant-for-application-performance-monitoring
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://activemq.apache.org
https://activemq.apache.org
https://activemq.apache.org
https://doc.akka.io/docs/akka/current/actors.html
https://doc.akka.io/docs/akka/current/actors.html
https://doc.akka.io/docs/akka/current/actors.html

[230] Lightbend Inc., AKKA Documentation - Streams, https://doc.akka.

io/docs/akka/current/stream/index.html, accessed 3 December 2019

(2019).

[231] The Apache Software Foundation, Apache Qpid, https://qpid.apache.1750

org, accessed 3 December 2019 (2015).

[232] Sandstorm, Cap’n proto: Introduction, https://capnproto.org, ac-

cessed 3 December 2019 (2013).

[233] P. Carbone, et al., Apache flink: Stream and batch processing in a single

engine, Bulletin of the IEEE Computer Society Technical Committee on1755

Data Engineering 36 (4).

[234] gRPC, gRPC Motivation and Design Principles, https://grpc.io/blog/

principles, accessed 3 December 2019 (2015).

[235] Oracle, Java Remote Method Invocation Specification, https://docs.

oracle.com/javase/9/docs/specs/rmi, accessed 3 December 20191760

(2017).

[236] B. Ban, et al., JGroups, a toolkit for reliable multicast communication

(2002).

[237] J. Kreps, N. Narkhede, J. Rao, et al., Kafka: A distributed messaging

system for log processing, in: Proceedings of the NetDB, 2011, pp. 1–7.1765

[238] The Apache Software Foundation, Apache Kafka, https://kafka.

apache.org, accessed 3 December 2019 (2017).

[239] E. Gabriel, et al., Open MPI: Goals, concept, and design of a next

generation MPI implementation, in: European Parallel Virtual Ma-

chine/Message Passing Interface Users’ Group Meeting, Springer, 2004,1770

pp. 97–104.

[240] A. Videla, J. J. Williams, RabbitMQ in action: distributed messaging for

everyone, Manning, 2012.

71

https://doc.akka.io/docs/akka/current/stream/index.html
https://doc.akka.io/docs/akka/current/stream/index.html
https://doc.akka.io/docs/akka/current/stream/index.html
https://qpid.apache.org
https://qpid.apache.org
https://qpid.apache.org
https://capnproto.org
https://grpc.io/blog/principles
https://grpc.io/blog/principles
https://grpc.io/blog/principles
https://docs.oracle.com/javase/9/docs/specs/rmi
https://docs.oracle.com/javase/9/docs/specs/rmi
https://docs.oracle.com/javase/9/docs/specs/rmi
https://kafka.apache.org
https://kafka.apache.org
https://kafka.apache.org

[241] L. Spread Concepts, The spread toolkit (2006).

[242] A. Prunicki, Apache Thrift, Tech. rep., Object Computing, Inc. (2009).1775

[243] P. Hintjens, ZeroMQ: messaging for many applications, O’Reilly Media

Inc., 2013.

[244] A. S. Tanenbaum, M. Van Steen, Distributed systems: principles and

paradigms, Prentice-Hall, 2007.

[245] Mavimax, Enduro/X Middleware Platform for Distributed Transac-1780

tion Processing, https://www.endurox.org, accessed 3 December 2019

(2015).

[246] W. Gentzsch, Sun grid engine: Towards creating a compute power grid,

in: Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM

International Symposium on, IEEE, 2001, pp. 35–36.1785

[247] V. K. Vavilapalli, et al., Apache hadoop yarn: Yet another resource nego-

tiator, in: Proceedings of the 4th annual Symposium on Cloud Computing,

ACM, 2013, p. 5.

[248] The Apache Software Foundation, Apache Hadoop YARN,

https://hadoop.apache.org/docs/current/hadoop-yarn/1790

hadoop-yarn-site/YARN.html, accessed 3 December 2019 (2019).

[249] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice:

the Condor experience, Concurrency and computation: practice and ex-

perience 17 (2-4) (2005) 323–356.

[250] University of Wisconsin-Madison - Computer Sciences Department, HT-1795

Condor - High Troughput Computing, https://research.cs.wisc.edu/

htcondor, accessed 3 December 2019 (2019).

[251] IBM, IBM LSF, https://www.ibm.com/support/knowledgecenter/en/

SSETD4/product_welcome_platform_lsf.html, accessed 3 December

2019 (2016).1800

72

https://www.endurox.org
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://research.cs.wisc.edu/htcondor
https://research.cs.wisc.edu/htcondor
https://research.cs.wisc.edu/htcondor
https://www.ibm.com/support/knowledgecenter/en/SSETD4/product_welcome_platform_lsf.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4/product_welcome_platform_lsf.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4/product_welcome_platform_lsf.html

[252] P. Joshi, M. R. Babu, Openlava: An open source scheduler for high per-

formance computing, in: 2016 International Conference on Research Ad-

vances in Integrated Navigation Systems (RAINS), 2016, pp. 1–3.

[253] R. L. Henderson, Job scheduling under the portable batch system, in:

Workshop on Job Scheduling Strategies for Parallel Processing, Springer,1805

1995, pp. 279–294.

[254] Altair Engineering Inc., PBS Professional - Open Source Project, https:

//www.pbspro.org, accessed 3 December 2019 (2019).

[255] A. B. Yoo, M. A. Jette, M. Grondona, Slurm: Simple linux utility for

resource management, in: Workshop on Job Scheduling Strategies for1810

Parallel Processing, Springer, 2003, pp. 44–60.

[256] Slurm Team, Slurm Workload Manager, https://slurm.schedmd.com,

accessed 3 December 2019 (2019).

[257] Adaptive Computing Inc., TORQUE Resource Manager, https://www.

adaptivecomputing.com/products/torque, accessed 3 December 20191815

(2019).

[258] R. Kumar, et al., Apache cloudstack: Open source infrastructure as a

service cloud computing platform, Proceedings of the International Jour-

nal of advancement in Engineering technology, Management and Applied

Science 111 (2014) 116.1820

[259] The Apache Software Foundation, Apache CloudStack - Open Source

Cloud Computing, https://cloudstack.apache.org, accessed 3 Decem-

ber 2019 (2017).

[260] N. Naik, Building a virtual system of systems using docker swarm in

multiple clouds, in: 2016 IEEE International Symposium on Systems En-1825

gineering (ISSE), 2016, pp. 1–3.

73

https://www.pbspro.org
https://www.pbspro.org
https://www.pbspro.org
https://slurm.schedmd.com
https://www.adaptivecomputing.com/products/torque
https://www.adaptivecomputing.com/products/torque
https://www.adaptivecomputing.com/products/torque
https://cloudstack.apache.org

[261] Docker Inc., Swarm Mode Overview, https://docs.docker.com/

engine/swarm, accessed 3 December 2019 (2019).

[262] D. Nurmi, et al., The eucalyptus open-source cloud-computing system,

in: Proceedings of the 2009 9th IEEE/ACM International Symposium1830

on Cluster Computing and the Grid, IEEE Computer Society, 2009, pp.

124–131.

[263] Appscale Systems, Eucalyptus, https://www.eucalyptus.cloud, ac-

cessed 3 December 2019 (2018).

[264] K. Hightower, B. Burns, J. Beda, Kubernetes: up and running: dive into1835

the future of infrastructure, O’Reilly Media Inc., 2017.

[265] The Linux Foundation, Kubernetes, https://kubernetes.io, accessed 3

December 2019 (2019).

[266] B. Hindman, et al., Mesos: A platform for fine-grained resource sharing

in the data center, in: NSDI, Vol. 11, 2011, pp. 22–22.1840

[267] The Apache Software Foundation, Apache Mesos, http://mesos.

apache.org, accessed 3 December 2019 (2018).

[268] G. Toraldo, Opennebula 3 cloud computing, Packt Publishing Ltd, 2012.

[269] OpenNebula Project (OpenNebula.org), OpenNebula, https:

//opennebula.org, accessed 3 December 2019 (2019).1845

[270] O. Sefraoui, M. Aissaoui, M. Eleuldj, OpenStack: toward an open-source

solution for cloud computing, International Journal of Computer Appli-

cations 55 (3) (2012) 38–42.

[271] OpenStack Foundation, OpenStack, https://www.openstack.org, ac-

cessed 3 December 2019 (2019).1850

[272] Red Hat Inc., RedHat OpenShift, https://www.openshift.com, accessed

3 December 2019 (2019).

74

https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://docs.docker.com/engine/swarm
https://www.eucalyptus.cloud
https://kubernetes.io
http://mesos.apache.org
http://mesos.apache.org
http://mesos.apache.org
https://opennebula.org
https://opennebula.org
https://opennebula.org
https://www.openstack.org
https://www.openshift.com

[273] X. Wen, et al., Comparison of open-source cloud management platforms:

OpenStack and OpenNebula, in: 2012 9th International Conference on

Fuzzy Systems and Knowledge Discovery, 2012, pp. 2457–2461.1855

[274] D. Milojičić, I. M. Llorente, R. S. Montero, Opennebula: A cloud man-

agement tool, IEEE Internet Computing 15 (2) (2011) 11–14.

[275] Platform 9, Kubernetes and Docker Swarm Compared, https://

platform9.com/blog/kubernetes-docker-swarm-compared, accessed 3

December 2019 (2017).1860

[276] Platform 9, Kubernetes and Mesos Compared, https://platform9.com/

blog/compare-kubernetes-vs-mesos, accessed 3 December 2019 (2016).

75

https://platform9.com/blog/kubernetes-docker-swarm-compared
https://platform9.com/blog/kubernetes-docker-swarm-compared
https://platform9.com/blog/kubernetes-docker-swarm-compared
https://platform9.com/blog/compare-kubernetes-vs-mesos
https://platform9.com/blog/compare-kubernetes-vs-mesos
https://platform9.com/blog/compare-kubernetes-vs-mesos

	Introduction and Context
	General Overview
	Application Development
	Task-based Workflows
	Taxonomy
	Analysis

	Dataflows
	Taxonomy
	Analysis

	Graph Processing
	Taxonomy
	Analysis

	Platform
	Data Sharing
	Distributed Memory
	Distributed File Systems
	Distributed Databases

	Resource Management
	Discovery and Coordination
	Monitoring and Logging

	Communication
	Taxonomy
	Analysis

	Infrastructure
	Batch systems
	Taxonomy
	Analysis

	Interactive systems
	Taxonomy
	Analysis

	Conclusion

