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Abstract

Subspace clustering is an important unsupervised clustering approach. It is based on the as-
sumption that the high-dimensional data points are approximately distributed around several low-
dimensional linear subspaces. The majority of the prominent subspace clustering algorithms rely on
the representation of the data points as linear combinations of other data points, which is known
as a self-expressive representation. To overcome the restrictive linearity assumption, numerous
nonlinear approaches were proposed to extend successful subspace clustering approaches to data
on a union of nonlinear manifolds. In this comparative study, we provide a comprehensive overview
of nonlinear subspace clustering approaches proposed in the last decade. We introduce a new tax-
onomy to classify the state-of-the-art approaches into three categories, namely locality preserving,
kernel based, and neural network based. The major representative algorithms within each category
are extensively compared on carefully designed synthetic and real-world data sets. The detailed
analysis of these approaches unfolds potential research directions and unsolved challenges in this
field.

Keywords: subspace clustering, nonlinear subspace clustering, manifold clustering, Laplacain
regularization, Kernel learning, unsupervised deep learning, neural networks

1 Introduction

Understanding and processing high-dimensional data is a key component of numerous applications in
many domains including machine learning, signal processing and computer vision. However, analyzing
high-dimensional data using classical data mining algorithms is not only challenging due to computa-
tional costs but it can also easily lead to the well-known problem of the curse of dimensionality [8].
Luckily, in most of applications, the data often have fewer degrees of freedom than the ambient di-
mension and they can be approximately represented by a small number of features; see [106, 105].
This led to the development of a vast variety of algorithms for the long-standing problem of extracting
latent structures from high-dimensional data; see for example [109] and references therein.

The main focus of the majority of these algorithms is to fit a single low-dimensional linear subspace
to the data, with principal component analysis (PCA) being the most well-known pioneer algorithm in
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this area [46]. However, the data often belongs to multiple categories with different intrinsic structures,
and modeling the data using only one low-dimensional subspace might be too restrictive [108]. In
fact, in many applications, the data is better represented by multiple subspaces. Representing the
data using a union of multiple subspaces gave rise to linear subspace clustering [15, 9]; see [107] for a
survey paper.

Definition 1 (Linear subspace clustering (linear SC)). Let X ∈ Rd×n be the input high-dimensional
data, with d-dimensional data points as its columns. Suppose the data points are distributed around c
unknown linear subspaces S1, S2, . . . , Sc with intrinsic dimensions d1, d2, . . . , dc, respectively, such that
di � d for all i ∈ {1, . . . , c}. The problem of subspace clustering is defined as segmenting the data
points based on their corresponding subspaces and estimating the parameters of each subspace.

In the literature, linear SC is usually referred to as SC but, to avoid any confusion, we refer to it
as linear SC in this survey. Linear SC is a clustering framework where the data points are grouped
together based on the underlying subspaces they belong to. In other words, the similarity between the
data points is measured by how well they fit within a low-dimensional linear subspace. Modeling data
with multiple subspaces has many applications in image and signal processing. In fact, data points
are often collected from multiple classes/categories, and extracting latent low-dimensional structures
within each class/category results in more meaningful and more compressed representations. For
example, given a collection of facial images taken with variations in the lightening, cluserting these
images according to the person they represent can be modeled as a linear SC problem. In fact, under
the Lambertian surface assumption, facial images of a single individual under different illumination
conditions lie on a roughly nine-dimensional subspace which has far less effective dimensions than the
original ambient space (usually an image consists of thousands of pixels) [4]. Hence, facial images of
various people under different lightening conditions can be approximated by multiple low-dimensional
subspaces. Other notable examples of data that can be approximated by multiple low-dimensional
subspaces include segmenting trajectories of moving objects in a video [100], clustering images of
hand-written digits [32], and partitioning sequences of video frames into semantic parts [109].

Driven by this wide range of applications, many efficient algorithms for linear SC have been de-
veloped. These algorithms are divided into four categories [107, 21]: (i) iterative, (ii) statistical,
(iii) algebraic, and (iv) spectral clustering based approaches. Let us briefly describe these four cate-
gories:

(i) Iterative approaches were among the first ones for linear SC [9, 36, 104]. Inspired by iterative
refinement in centroid-based clustering, such as k-means, two steps are carried out alternatively:
assigning each data point to the closest subspace, and updating the parameters of each subspace
based on the points assigned to it (e.g., using the truncated singular value decomposition). How-
ever, iterative approaches are sensitive to initialization and parameters such as the dimensions
and the number of subspaces (these are usually not available in most applications).

(ii) Statistical approaches [99, 28], which suffer from the same drawbacks as iterative ones, usually
assume that the distribution of the data within each subspace is Gaussian, and hence the linear
SC problem is mapped into the iterative problem of fitting a mixture of Gaussian distribution
to the data using expectation maximization.

(iii) Some approaches use algebraic matrix factorization to perform the data segmentation [16, 47].
These approaches are not only sensitive to noise but are also based on the assumption that the
underlying subspaces are independent. In related algebraic-geometric approaches [108, 103], the
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association of the data points to the subspaces are revealed by fitting a polynomial to the data.
These approaches are computationally expensive and sensitive to noise.

(iv) Spectral clustering based algorithms are the most popular and successful linear SC approaches.
They have received significant attention over the last decade. These approaches are based on
recent advances in sparse and low-rank representation [39, 118, 146]. They first learn a directed
weighted graph representing the interaction between the data points, and then apply spectral
clustering to segment this graph; see Section 2 for more details.

Even though linear SC approaches have achieved impressive performances in several applications,
the global linearity assumption is somewhat strong. Assuming that the data points lie close to multiple
linear subspaces is limiting and might be violated in some applications. In order to extend the
applicability of linear SC in real-world problems, there has been numerous attempts to generalize
linear SC for data lying on the union of nonlinear subspaces or manifolds. This is the main topic of
this survey paper.

Our contributions The main contributions of this paper are summarized as follows:

• We propose a new taxonomy to classify nonlinear SC algorithms, divided them into three cate-
gories: (1) locality preserving, (2) kernel based, and (3) neural network based

• We provide a comprehensive overview of these nonlinear SC algorithms.

• We numerically analyze and compare the representative algorithms in each category. This sur-
vey can be considered as a guiding tutorial for understanding and developing nonlinear SC
algorithms.

Outline of the survey The rest of the paper is organized as follows. Since spectral clustering
based linear SC algorithms are at the core of the majority of existing nonlinear SC methods, we briefly
introduce and review the most important ones in Section 2. Section 3 provides a detailed overview of
nonlinear SC methods, based on our new taxonomy that divides them into three categories. Section 4
discusses the computational cost of these methods, while Section 5 provides a numerical comparison
of the main representative methods on synthetic and real-world data sets. In Section 6, we discuss the
existing challenges in dealing with nonlinear structures in data, and future research directions. We
conclude the paper in Section 7.

2 Linear subspace clustering based on spectral clustering

Among the wide variety of linear SC approaches, the current state-of-the-art algorithms are based on
spectral clustering. As illustrated in Figure 1, these algorithms follow a two-step strategy:

• In the first step, an affinity matrix is constructed: each vertex in the corresponding graph
corresponds to a data point while edges connect similar data points.

• In the second step, spectral clustering is applied on the affinity matrix to segment the data
points.

In the next two sections, we describe these two steps in more details.
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Figure 1: The overall procedure of linear SC approaches based on spectral clustering. In the first step
of these approaches, an affinity graph representing the input data is constructed, which is sometimes
post-processed to improve the quality of the representation (e.g., using sparsification). In the second
step, a spectral clustering algorithm is applied to obtain the clusters.

2.1 Building the affinity matrix

The first and undoubtedly main step of linear SC algorithms based on spectral clustering is to build an
affinity matrix. The affinity matrix should reveal the pairwise similarities between the data points, that
is, the data points from the same cluster/subspace should be highly connected with high similarities,
as opposed to points from different subspaces. The construction of this affinity matrix is typically
carried out using a self-expressive representation; this is discussed in Section 2.1.1. It is sometimes
followed by a post-processing step to polish the obtained pairwise similarities; this is discussed in
Section 2.1.2.

Remark 1. Building the affinity matrix is not only useful for clustering. It can be used in other
contexts where it is useful to model the input data as a graph by capturing pairwise relationships
between the data points [14]. In other words, this first step of spectral based SC approaches is also
used in other applications that model and analyze the structure within the data [87].

2.1.1 Self-expressive representation

Constructing a pairwise affinity matrix that reflects the multiple subspace structure of the data points
is the main challenge in the linear SC algorithms based on spectral clustering. The affinity matrix
is often constructed by exploiting the self-expressiveness property of the data points. This property,
which is known as collaborative representation in the sparse representation literature [141], is based
on the fact that each data point can be represented as a linear combination of other data points in
the same subspace. Mathematically, for all i ∈ {1, . . . , n},

X(:, i) = XC(:, i) with C(i, i) = 0, (1)

where C ∈ Rn×n is the coefficient matrix, C(i, i) is the i-th diagonal entry of C, and X(:, i) is the
i-th column of X. The condition C(i, i) = 0 for all i ∈ {1, . . . ., n} eliminates the trivial solution of
expressing each point by itself. However, there are typically infinitely many solutions to (1) and many
of them might not be subspace preserving, that is, all data point might not be expressed using a linear
combination of data points belonging only to the same subspace. Let us formally define this concept.
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Definition 2 (Subspace preserving representation). Given the data matrix X ∈ Rd×n drawn from the
union of c subspaces S1, S2, . . . , Sc, let C ∈ Rn×n be the coefficient matrix corresponding to the output
of a linear SC algorithm based on self-expressiveness; see (1). The matrix C is subspace preserving
if for any data point X(:, i) ∈ S`, C(i, j) = 0 for all j such that X(:, j) 6∈ S`. In other words, for all
i ∈ {1, . . . , n}, the nonzero elements in C(:, i) only correspond to data points from the same subspace
as X(:, i).

To fulfill the goal of linear SC and reveal the association of each data point to the underlying
subspace, the coefficient matrix should be (approximately) subspace preserving. Hence, to ensure
that the obtained coefficient matrix is subspace preserving, several regularizations on the coefficient
matrix are used in the literature, including sparsity [21] and low-rankness [59]. In general, the linear
SC problem based on self-expressiveness is formulated as follows:

min
C∈Rn×n,E∈Rd×n

f(C) + λg(E) (2)

such that X = XC + E and diag(C) = 0,

where f is a regularization function for the coefficient matrix (see below), E ∈ Rd×n models the noise,
g is a regularization function for modeling the noise (for example the `1 norm for sparse gross noise, or
the Frobenius norm for Gaussian noise), and diag(C) is the vector containing the diagonal entries of C.
The conditions under which the obtained coefficient matrix is subspace preserving strongly depends on
the regularization function f . Table 1 summarizes the most common regularization functions and the
theoretical conditions for the corresponding coefficient matrix to be subspace preserving. In this table
|| · ||0, || · ||1, || · ||∗ and || · ||2F indicate the `0 norm (the number of nonzero entries), the component-wise
`1 norm (the sum of the absolute value of the matrix entries), the nuclear norm (the sum of singular
values), and the squared Frobenius norm (the sum of the squares of the matrix entries), respectively.

Effect of regularization on subspace preserving representations The difficulty of linear SC
depends on several factors, these include the arrangement of the subspaces, the separation between
subspaces, the distribution of the data points within each subspace, the number of points per subspace,
and the noise level. There are three main arrangements of subspaces which play a key role in identifying
the subspace recovery conditions: independent, disjoint, and intersecting (or overlapping) subspaces.
These arrangements are defined as follows:

Definition 3 (Independent subspaces). A collection of c subspaces S1, . . . , Sc are said to be indepen-
dent if dim(⊕ci=1Si) =

∑c
i=1 dim(Si), where ⊕ denotes the direct sum between subspaces, and dim(S)

is the dimension of S.

Definition 4 (Disjoint subspaces). A collection of c subspaces are disjoint if dim(Si⊕Sj) = dim(Si)+
dim(Sj) and Si ∩ Sj = {0} for all i 6= j.

Definition 5 (Intersecting subspaces). A collection of c subspaces are intersecting/overlapping if
1 ≤ dim(Si ∩ Sj) < min{dim(Si),dim(Sj)} for some i 6= j.

Independent subspaces (orthogonal subspaces being a special case) are the easiest to separate, and
hence most regularizations are guaranteed to be subspace preserving in this case, at least in noiseless
conditions; see Table 1. An example is two distinct lines in a plane.

Clustering data from disjoint subspaces is a more challenging scenario. An example are three
distinct lines in a plane. Sparsity regularization based on the `0 and `1 norms is the only one proven
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Table 1: Major linear SC models based on spectral clustering. They differ in the regularization
function f used for the coefficient matrix C in (2), and guarantee to provide a subspace preserving
representation under different conditions.

Method
Regularization

Function f
Available subspace

preserving guarantees

Sparse Subspace Clustering
(SSC) [21]

||C||1
independent, disjoint and intersecting
subspaces in noiseless and noisy cases

`0-induced Sparse Subspace
Clustering (`0-SSC) [128]

||C||0
all arrangements of noiseless distinct
subspaces

Low Rank Representation
(LRR) [59]

||C||∗ noiseless independent subspaces

Least Square Regression
(LSR) [66]

||C||2F noiseless independent subspaces

Multi-Subspace Representation
(MSR) [69]

||C||1 + λ||C||∗ Not available

Subspace Segmentation via QP
(SSQP) [115]

||C>C||1 noiseless orthogonal subspaces

Correlation Adaptive Subspace
Segmentation (CASS) [64]

∑
j ||X diag

(
C(:, j)

)
||∗ noiseless independent subspaces

Elastic Net Subspace
Clustering (ENSC) [134]

||C||1 + λ||C||2F
independent and disjoint subspaces for
the noiseless case with strong depen-
dency on the value of the parameter λ

to be subspace preserving, under some conditions; see Table 1. These conditions depend on the
separation between the subspaces and the distribution of the data points within each subspace. With
sufficiently separated subspaces and well-spread data points (not skewed towards a specific direction),
sparsity regularization is guaranteed to provide subspace preserving coefficients in noiseless and noisy
cases. For detailed theoretical discussions on this topic, we refer the interested reader to [21, 116].

Intersecting/overlapping subspaces is the most general subspace arrangement for which there is
no particular assumption on the subspaces, and any two subspaces can have a nontrivial intersec-
tion [116, 95]. Note that data points belonging to the intersection of two subspaces lead to non-unique
membership assignments. Similar to disjoint subspaces, sparsity is the only regularization that is
proven to be effective for clustering intersecting subspaces. Two distinct two-dimensional planes in
three dimensions is an example of intersecting subspaces.

The two most widely used algorithms for self-expressive based linear SC are the following:

• Sparse Subspace Clustering (SSC) [21] uses the component-wise `1 norm, that is, ||C||1 =∑
i,j |Ci,j |, as a convex surrogate of the `0 norm to enhance the sparsity of C,

• Low-Rank Representation (LRR) [59] uses the nuclear norm, that is, ||C||∗ =
∑

i σi(C) where
σi(C) is the ith singular value of C, to promote C to have low rank.

SSC is the pioneer work in this context, and has strong theoretical guarantees in noisy and noiseless
cases for independent, disjoint and intersecting subspaces [21, 95, 96, 136]. LRR has shown competing
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results with SSC. However, its behavior in noisy and disjoint subspaces is still not well understood
theoretically1 [117].

Remark 2 (Oversegmentation). Accurate SC not only depends on subspace preserving representations
but also on the connectivity of data points within the same subspace. Even though sparsity regular-
ization has strong theoretical guarantees compared to other regularizations, it not only emphasizes the
sparsity of between-cluster connections, but also the sparsity of the inner-cluster connections. Hence, it
is possible that the data points from the same subspace form multiple connected components [73], which
leads to the creation of more clusters than necessary, that is, oversegmentation. The connectivity issue
is less apparent in other regularizations as they inherently promote denser representations.

2.1.2 Post-Processing

In order to enhance the quality of the coefficient matrix C, several post-processing strategies exist. The
goal of these approaches is to decrease the number of wrong between-subspaces connections and/or
strengthening the within-subspaces connections. Even though there is no generally accepted strategy
in the literature, a few common post-processing methods are as follows:

1. Normalizing the columns of the coefficient matrix as C(:, j) ← C(:, j)/||C(:, j)||∞ where || · ||∞
is the infinity norm [21]. This can be helpful when some data points have drastically different
norms compared to other data points.

2. Applying a hard thresholding operator on each column of the coefficient matrix by keeping only
the k largest entries in absolute value [84]. This post-processing is based on the property of
Intra-subspace Projection Dominance (IPD) which states that the entries corresponding to data
points in the same subspace are larger (in absolute value) than the ones corresponding to data
points in different subspaces.

3. Performing an ad-hoc post-processing strategy using multiple steps. First, a percentage of the
top entries in each column of the coefficient matrix are preserved. Next the shape interaction
matrix method [15] is applied to remove the noise; it consists in a low-rank approximation of C
based on the skinny singular value decomposition. Finally each entry is raised to some power
larger than one (the value 4 is the often used) in order to intensify the dominant connections.
This strategy depends on several parameters with no explicit theoretical justification. However,
it is widely used in nonlinear SC approaches based on neural networks [41, 42].

4. Finding good neighbors which correspond to the key connections in the coefficient matrix [125].
This approach is based on three parameters: k > q > p. First, only the k largest coefficients are
kept for each data point. Then, only a subset of these k connections is preserved based on the
notion of good neighbors. A good neighbor is defined as a data point with at least p (usually
p = 1) common data points inside the k largest connections. The q good neighbors of each data
point with the largest coefficients form the final selected subset. A disadvantage of this approach
is that it depends on parameters which are difficult to tune. (Note that using q = k and p = 0
reduces to the second post-processing approach described above.)

1Although the nuclear norm is a convex surrogate of the rank, it has different subspace preserving properties; see [66,
Example 1] for a numerical example. This is in contrast to the strong theoretical guarantees of the `0 norm regularizations
and its corresponding convex surrogate, the `1 norm; see Table 1.

7



2.2 Spectral clustering using the coefficient matrix

After obtaining the coefficient matrix C using (2), the next step is to infer the clusters using spectral
clustering [94, 75]; see [110] for a tutorial. In fact, the entries in the coefficient matrix C can be
interpreted as the links between the data points: C(i, j) 6= 0 means that the data point j is used
for expressing data point i, and hence it is likely that the data points i and j belong to the same
subspace. Therefore, the coefficient matrix C corresponds to a directed graph structure G = (V,E)
where the nodes of the graph (V ) are the data points and the weights of the edges (E) are determined
by the entries in C. Using this interpretation, the problem of linear SC is mapped into the problem of
segmenting the graph G. The symmetric adjacency matrix A is constructed as |C|+ |C|T and then the
celebrated algorithm of spectral clustering is applied on the affinity matrix A to partition the graph.

An important advantage of spectral based approaches is that they do not need to know the di-
mensions ({di}ci=1) of the subspaces. Moreover, by utilizing spectral clustering, they can estimate the
number of clusters by analyzing the spectrum of the Laplacian matrix corresponding to the adjacency
matrix A [110]. Furthermore, robustness of spectral clustering to small perturbations is advantageous
for correct clustering especially with unavoidable slight violation of subspace preservation in the coef-
ficient matrix for real-world noisy cases [116].

Linear SC based on exploiting the self-expressive property initiated an extensive amount of research
in various directions. Several extensions of self-expressive based SC approaches have been proposed
in the past decade to overcome notable challenges such as scalability [72, 11, 2, 133], improving
robustness [34, 65], multi-view data clustering [23, 52], and the ability to deal with missing data [54].
However, a crucial limit to linear SC is the linearity assumption. In the next section, we review the
approaches that were proposed to segment data points that are drawn from nonlinear manifolds.

3 Nonlinear subspace clustering

Linear SC algorithms often fail in dealing with data belonging to several nonlinear manifolds. This is
expected since these approaches only consider the global linear relationship between data points. For
nonlinear manifolds, the local relationship between data points plays a more important role, as we will
explain later in this section. But first, let us define the problem of nonlinear subspace clustering [20].

Definition 6 (Nonlinear subspace clustering (nonlinear SC)). Let X ∈ Rd×n be the input data.
Suppose the data points lie on c manifolds M1,M2, . . . ,Mc with intrinsic dimensions2 d1, d2, . . . , dc
such that di � d for all i ∈ {1, . . . , c}. The problem of nonlinear SC is defined as segmenting the data
points based on their corresponding manifolds and obtaining a low-dimensional embedding of the data
points within each manifold.

Nonlinear SC is also referred to as manifold clustering in the literature [20]. We mainly use the
nonlinear SC term to emphasize that this survey focuses on the nonlinear approaches that extend the
concepts in linear SC for data on nonlinear manifolds. Nonlinear SC approaches can be divided into
three main categories:

1. locality preserving: they exploit the local geometric structure of the manifold to bridge the gap
between thinking globally, that is, using the global information from the whole data set, and
fitting locally, that is, using spatial local information around each point.

2A manifold has dimension d if every data point has a neighborhood homeomorphic to the Euclidean space in Rd.
For example, a circle is a one-dimensional manifold as the neighborhood of each point is locally a segment [18].
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2. kernel based: they use implicit but predefined nonlinear mappings to transfer the data into a
space where the linearity assumption is more likely to be satisfied.

3. neural network based: they use the recent advances in structured neural networks to learn a
nonlinear mapping of the data that respects the union of linear SC structure.

Figure 2 illustrates these three categories, along with several subcategories. In the following three
sections, the major approaches within each category are presented.

Nonlinear Subspace 
Clustering

 

Nonlinear Subspace 
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Locality Preserving
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Figure 2: Categorization of nonlinear SC approaches.

3.1 Locality preserving nonlinear subspace clustering

A major disadvantage of linear SC approaches is that they are not faithful to the data structure in the
high-dimensional space. In particular, the self-expressiveness property does not guarantee that the
nearby points in the ambient space have similar representations in the latent coefficient space [114],
that is, a small value of ‖X(:, i)−X(:, j)‖ does not imply that ‖C(:, i)−W (:, j)‖ is small. However,
preserving the local configuration of the nearest neighbors of each point in the original ambient space
is essential in being faithful to the data structure in nonlinear manifolds [90]. In order to reflect the
local structures, there are three major categories: graph Laplacian regularization, avoiding cannot
links, and tangent space approximation.

In fact, the root of these approaches comes from the single manifold learning algorithms based
on preserving locality relationships among data points [91, 90, 6]. Inspired by these classical algo-
rithms, two assumptions are needed for these approaches to work (although they are not always stated
explicitly):

(i) the underlying manifolds are smooth, and
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(ii) the manifolds are well-sampled, that is, there are sufficiently many data points sampled in the
neighborhood of each data point.

Subsequently, these two assumptions imply that that each data point and the nearby points on the
same manifold lie approximately on a local linear patch3. Hence, the nonlinear structure of the
manifolds can be captured by the local linear reconstruction of the data points. Let us now present
the approaches within each of the three categories in the following sections.

3.1.1 Graph Laplacian regularization

The methods in this category exploit the local structure of the data to construct the matrix C. To do
so, a pairwise local similarity matrix S ∈ Rn×n is first constructed from the data points. The matrix S
is symmetric, and its (i, j)-th entry measures how similar or close the data points X(:, i) and X(:, j)
are in the ambient space. The entries of S are computed in different ways, including the following:

1. Binary k-nearest neighbors (K-NN): S(i, j) is equal to one if i is among the k nearest neighbor
of j, or vice versa [37], that is,

S(i, j) =

{
1 if X(:, j) ∈ Nk(X(:, i)) or X(:, i) ∈ Nk(X(:, j)),

0 otherwise,

where Nk(x) computes the k nearest samples of the data point x.

2. Continuous similarity functions: the value S(i, j) is computed using various similarity functions,
such as Gaussain kernels [129, 67, 139] given by

S(i, j) = e
−||X(:,i)−X(:,j)||22

σ2 ,

where σ is a parameter. Other data dependent similarity functions such as the geodesic distance
for data on Grassmann manifolds can also be used [112].

3. Weighted K-NN is a combiantion of the two strategies described above [60]:

S(i, j) =

{
sim(X(:, i), X(:, j)) X(:, j) ∈ Nk(X(:, i)) or X(:, i) ∈ Nk(X(:, j)),

0 otherwise,

where sim
(
x, y
)

is a similarity function, such as Gaussian kernels, between two input vectors x
and y.

For a recent comprehensive overview of similarity and neighborhood construction algorithms, we refer
the interested reader to [85].

Once the matrix S is constructed, the following regularizer for C is constructed using this local
similarity information:

L(C) =
1

2

∑
i,j

||C(:, i)− C(:, j)||22 S(i, j). (3)

3In single manifold learning, it is proven that under the smoothness and well-sampled assumptions, for a d-dimensional
manifold, each data point along with its 2d neighbors define an approximately linear patch of the manifold [91].

10



Let the Laplacian matrix L ∈ Rn×n corresponding to S be defined as L = D − S where D is the
diagonal matrix with Dii =

∑
j S(i, j) for all i. The function (3) can be rewritten as:

L(C) =
1

2

∑
i,j

||C(:, i)− C(:, j)||2F S(i, j) =
∑
i

C(:, i)>C(:, i)Dii −
∑
i,j

C(:, i)>C(:, j)S(i, j) (4)

= tr(CDC>)− tr(CSC>) = tr(CLC>),

where tr(·) denotes the trace of a matrix. This regularizer L(C) is known as the Graph Laplacian or
manifold regularization. It is used within existing global linear SC optimization problems, that is, it
is added in the objective function of the optimization problem (2) with a proper penalty parameter.
Manifold regularization promotes a grouping effect, which is defined as follows.

Definition 7 (Grouping Effect [37]). Given the input data matrix X ∈ Rd×n, let C ∈ Rn×n be the
obtained coefficient matrix corresponding to X by an SC approach. The matrix C has the grouping
effect if ||C(:, i)−C(:, j)||2 goes to zero as X(:, i) and X(:, j) get closer, that is, as ||X(:, i)−X(:, j)||2
goes to zero.

Intuitively, the grouping effect encourages locally similar points (that is, pairs of points whose
corresponding value in S is large) to have similar coefficient representations.

The grouping effect of Graph Laplacian regularizers generates graphs that better represent the
structure of the data and hence are better connected [37]. This might benefit SC approaches based
on self-expressiveness as they use spectral clustering for the final step [110]. Note that the Graph
Laplacian regularization is based on the assumption that the representation coefficient vector corre-
sponding to each sample, that is, C(:, i) for each i = 1, ..., n, is changing smoothly on each manifold [7].
Hence, nearby data points in the ambient space have similar coefficient vectors. This regularization
also implicitly assumes that the data points from different clusters are not likely to be near each other
and that sufficiently many data points are sampled from each manifold.

Graph Laplacian regularization can be used exclusively with the reconstruction error, ||X−XC||2F ,
as in the Smooth Representation (SMR) algorithm [37]. SMR solves the following optimizatin problem:

min
C

λ||X −XC||2F + tr(CLC>).

Note that SMR does not enforce diag(C) = 0 explicitly, because the regularization tr(CLC>) prevents
the identity matrix to be an optimal solution, for λ sufficiently large, since the identity matrix C = I
satisfies ‖C(:, i)− C(:, j)‖2 = 1 for all i 6= j.

It is proven that Graph Laplacian regularization of the coefficient matrix leads to subspace pre-
serving coefficients for noiseless linear independent subspaces [37]. Graph Laplacian regularization can
be used in combination with other coefficient regularizations such as the `1 norm [129], or the nuclear
norm [60, 131]. In particular, using the `1 norm along with Graph Laplacian regularization leads
to the algorithm referred to as Laplacian Regularized `1-SSC (LR`1-SSC) which solves the following
optimization problem [129]:

min
C
||C||1 +

λ1

2
||X −XC||2F + λ2 tr(CLC>) such that diag(C) = 0.

However, as we will see in the numerical experiments in Section 5, promoting the smoothness of the
representation over the manifold might not be sufficient to recover the complex nonlinear structures.
Moreover, these methods are rather sensitive to the choice of the similarity function used to construct
the pairwise local similarity matrix S.
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3.1.2 Avoiding cannot-links

Instead of encouraging locally nearby points to have similar coefficient representations, as presented
in the previous section, one could encourage the entries of C corresponding to faraway points to have
small/zero values. In other words, data points should not use faraway points in their representation,
which we refer to as avoiding cannot-links. The name “cannot-links” is borrowed from the graph
learning and spectral clustering literature to indicate the pairwise constraints on the links that are
encouraged/enforced to be avoided [68, 119].

Avoiding cannot-links attracted less attention compared to the Graph Laplacian regularization
methods. Generally, the cannot-links refer to graph links/coefficients corresponding to distant points
that are specified based on a dissimilarity criterion. There are two strategies to integrate pairwise
cannot-links constraints:

1. Explicit elimination of faraway samples: A simple approach to prevent cannot-links is to explic-
itly add them as proper constraints in the optimization problem; for example, in [155], Zhuang
et al. use the following constraint: for all j,

C(i, j) = 0 for all X(:, i) /∈ Nk
(
X(:, j)

)
.

A similar approach was proposed for linear SSC [31]. Instead of additional explicit constraints
on the entries of the coefficient matrix, the self-expressiveness term is modified such that each
sample is represented by the locally nearby data points.

2. Implicit penalizing of distant pairwise connections: Cannot-links information can be added as a
weighted penalty term. For example, in [148], the following regularization term was proposed:∑

i,j

||X(:, i)−X(:, j)||22 |C(i, j)|.

This term is similar to (3). However, for any two faraway data points X(:, i) and X(:, j), the
corresponding C(i, j) is encouraged to be small while this is not the case for graph Laplacian
regularization (for which S(i, j) will be close to zero). In other words, in graph Laplacian
regularization, the nearby samples are encouraged to have similar coefficient representation but
there is no explicit penalty on the coefficient representations corresponding to faraway data
points. In fact, graph Laplacian regularization tend to produce dense coefficient matrices (see
the numerical results in Section 5.1), hence do not have the disadvantage of oversegmentation
that avoiding cannot-links may have [2].

A similar idea was presented in [149], together with non-negativity constraint on the coefficient
matrix C. Another penalty term to penalize “non-local” connectivities was proposed in [12],
namely

∑
i,j e

dist(X(:,i),X(:,j))2
C2
i,j , where dist is a normalized distance metric.

Avoiding non-local data points in self-expression might be intuitively similar to encouraging spatially
close connections, as with the Graph Laplacian regularization. However, they lack the grouping effect
of Graph Laplacian regularizations.

3.1.3 Tangent space approximation

The approaches in this category rely on the estimation of the local tangent space for each data point,
by fitting an affine subspace in the neighborhood of each data point. A simple strategy to approximate
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such tangent spaces is to consider a fixed predefined number of nearest neighbors for each sample, and
approximate the tangent space by fitting an affine subspace to the data point and its neighbors. The
crucial question is how to define the neighborhood of each data point in order to balance two goals:
large enough to capture the local geometry of the manifolds, and small enough to avoid data points
from other manifolds/clusters so as to preserve the curvature information of the underlying manifold.

Despite the fact that choosing a fixed value for neighborhood size with no prior knowledge is
challenging, Deng et al. [19] proposed a multi-manifold embedding approach based on the angles
between approximated tangent spaces using a fixed neighborhood size. In particular, they assumed
that if two data points belong to the same manifold, the angle between their corresponding tangent
space is small whereas the angle is large if they belong to different manifolds. In contrast to estimating
tangent space using fixed neighborhood size, a different strategy is to allow the size of the neighborhood
to be arbitrary. This can be achieved via sparse representations in order to estimate the neighboring
samples and simultaneously calculate the contribution weight of each neighborhood sample. These
weights would be helpful to reflect the clustering information as well. In this section, we focus on this
particularly effective strategy.

Sparsity based tangent estimation for manifold clustering In order to obtain the neighbor-
hood of each point, Elhamifar and Vidal [20] assumed that the tangent space of the manifold it belongs
to can be approximated by the low-dimensional affine subspace constructed using a few neighboring
points from the same manifold. Based on this assumption, they proposed an approach dubbed Sparse
Manifold Clustering and Embedding (SMCE). It relies on two main principles, sparsity and locality,
to estimate the tangent spaces.

For an illustration of the main idea behind SMCE, consider the example in Figure 3, showing two
clusters of samples (gray circles) and their underlying manifolds. Suppose we want to approximate the
tangent space for the sample x1. Based on the principle of sparsity, the sparsest affine representation
for the sample x1 should contain two other distinct samples and among all possible combinations of
two samples, x1 is close to the affine span of {x2, x7} and {x2, x3}. To avoid representing x1 using
the affine subspace containing x7, which belongs to the other manifold, the locality principle comes
into effect to favor the affine span of x2 and x3. However, it should be noted that locality alone is
not helpful to avoid representing x1 using the points {x4, x5, x6} which are spatially close to x1. This
example illustrates the necessity of both sparsity and locality in the approximation of local tangent
spaces using the samples from the same manifold.

More precisely, SMCE works as follows. To construct the tangent space to X(:, i), the normalized
sample differences is first constructed as follows:

Ui =

[
X(:, 1)−X(:, i)

||X(:, 1)−X(:, i)||2
, . . . ,

X(:, i−1)−X(:, i)

||X(:, i−1)−X(:, i)||2
,

X(:, i+1)−X(:, i)

||X(:, i+1)−X(:, i)||2
, . . . ,

X(:, n)−X(:, i)

||X(:, n)−X(:, i)||2

]
.

Based on these directions, the affine subspace Fi is represented using

Fi =
{
X(:, i) + Uici | e>ci = 1, ci ∈ Rn−1

}
,

where e is the all-one vector. The goal is to estimate parameters of the local subspace Fi such
that it has minimal distance to the unknown target tangent space. Hence, the coefficients ci in the
linear combination are calculated such that the distance between X(:, i) and the affine subspace Fi is
minimized:

min
ci
||X(:, i)−

(
X(:, i) + Uici

)
|| = min

ci
||Uici||.
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Figure 3: Illustration of the necessity of sparsity and locality in manifold clustering. Local affine
directions through sample x1, that is, x2 − x1, . . . , x7 − x1 are shown with arrows. The dotted circle
is the smallest ball centered at x1 and containing x2 and x3 from the same manifold. Sparsity helps
to avoid approximating the tangent space by close samples such as x4, x5 and x6. Locality excludes
the use of x7 which belongs to the other cluster. The tangent space computed by SMCE is F1.

However, this formulation does not guarantee that the data points are expressed using locally nearby
points from the same manifold. To estimate the tangent space using few nearby samples, SMCE
optimizes the following problem for each point X(:, i):

min
ci
||Qici||1 +

λ

2
||Uici||22 such that e>ci = 1, (5)

where Qi ∈ R(n−1)×(n−1) is called the proximity inducing matrix. The matrix Qi is a positive-definite
diagonal matrix. The entries of Qi are defined by normalized `2 distance between each data point
X(:, j) and X(:, i) for j 6= i, that is,

Qi(j, j) =
||X(:, j)−X(:, i)||2∑
t6=i ||X(:, t)−X(:, i)||2

.

Hence the diagonal entries of Qi that correspond to closer samples to X(:, i) have smaller values,
allowing the corresponding entries of ci to be larger. In contrast, the diagonal entries of Qi which
correspond to farther samples have larger values, hence favoring smaller values of ci. The nonzero
entries of the vector ci indicate the points that are estimated to be on the same manifold as X(:, i).
Finally, the coefficient matrix C is constructed as follows: C(i, i) = 0 for all i, and

C(i, j) =

ci(j)
||X(:,j)−X(:,i)||2∑
t6=i

ci(t)
||X(:,t)−X(:,i)||2

for j 6= i. (6)

Applying spectral clustering on the corresponding symmetrized affinity matrix of C reveals the final
manifold clustering assignments.

A very similar approach to SMCE was presented in [144]. However, the authors enforced local-
ity and sparsity in separate steps. First a sparse representation of the data points using the affine
directions is computed (without the proximity inducing matrix), and then the obtained sparse repre-
sentation is weighted using the spatial locality information.
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3.2 Kernel based non-linear subspace clustering

Kernel methods are commonly used to identify nonlinear structures and relationships among data
points. They map the data from the input space X to the reproducing kernel Hilbert space H where
the points might be better represented for a specific task. In nonlinear SC, the goal is to map the
data points through a nonlinear transformation such that the linearity assumption is better satisfied;
see Figure 4 for a simple illustration. However, instead of explicitly using a nonlinear function, Kernel

ɸ   

Figure 4: Using implicit nonlinear transformations φ in kernel based approaches, the data is mapped
to a space which might be more suitable for linear subspace clustering.

methods rely on the kernel trick to implicitly apply the nonlinear transformation. The kernel trick
represents the data through pairwise similarity functions. It avoids the often computationally expen-
sive nonlinear transformations (feature maps), that is, the explicit computation of the coordinates of
the transformed data points in the feature space. Using this trick, only the inner products between
all pairs of transformed data points in the feature space are computed.

Let φ : X → H be the explicit nonlinear feature map. The kernel function k : X × X → R
for x, y ∈ Rd is defined as: k(x, y) =

〈
φ(x), φ(y)

〉
, where

〈
., .
〉

is the inner product. The matrix
KXX ∈ Rn×n is a positive semidefinite matrix, known as the Gram matrix, whose entries are defined
as:

KXX(i, j) = k(X(:, i), X(:, j)) =
〈
φ(X(:, i)), φ(X(:, j))

〉
. (7)

Using the kernel function, the explicit representation for the nonlinear transformation φ is no longer
needed.

In this section, we provide an overview of existing nonlinear SC based on kernel methods. These
approaches can be divided into two categories: single kernel and multiple kernels, and are presented
in the next two sections.

3.2.1 Using a single kernel

Patel et al. [79] proposed a kernelized SC approach by using the kernel trick in the (affine) sparse
SC formulation. Their algorithm, dubbed Kernelized Sparse Subspace Clustering (KSSC), solves the
following optimization problem

min
C
||C||1 +

λ

2
||Φ(X)− Φ(X)C||2F such that diag(C) = 0, C>e = e, (8)
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where Φ(X) = [φ(X(:, 1)), φ(X(:, 2)), . . . , φ(X(:, n))]. The kernel trick can be used to avoid computing
Φ(X) explicitly, using

||Φ(X)− Φ(X)C||2F = tr
(

Φ(X)>Φ(X)
)
− 2 tr

(
Φ(X)>Φ(X)C

)
+ tr

(
C>Φ(X)>Φ(X)C

)
= tr

(
KXX − 2KXXC + C>KXXC

)
, (9)

where the kernel KXX is given in (7). As for SSC, the authors used sparse regularization for the
coefficient matrix. Finally, (8) can be reformulated as follows

min
C
||C||1 +

λ

2
tr
(
KXX − 2KXXC + C>KXXC

)
such that diag(C) = 0, C>e = e. (10)

In order to reduce the computational cost of calculating the coefficient matrix for high-dimensional
data, the same authors [78] extended KSSC to combine dimensionality reduction and kernelized SC. To
this end, their approach learns the implicit mapping of the data onto a high-dimensional feature space
using the kernel method, and then projecting onto a low-dimensional space via a linear projection.

The ease of use of the kernel trick in the self-expressive based linear SC initiated the development
of other nonlinear SC algorithms with additional regularizations, motivated by different purposes.
These algorithms include for example the kernelized multi-view SC approaches from [138, 121]. Re-
cently Kang et al. [48] proposed additional structure preserving regularization for KSSC in order to
minimize the inconsistency between inner products of the transferred data, Φ(X), and inner products
for reconstructed transferred data, Φ(X)C.

However, the traditional challenges of kernel methods are still present for kernel based SC. The
two main challenges are:

1. Using the Frobenius norm to compute the representation error facilitates the use of the kernel
trick; see (9). However, the Frobenius norm implicitly assumes that the noise follows a Gaussian
distribution. How can the kernel trick be applied on non-Gaussian noise models including, e.g.,
gross corruptions and outliers?

2. With no prior knowledge, how can we select an appropriate kernel function and its parameters?

In the rest of this section, we review the few approaches that tried to tackle these challenging limita-
tions.

Robust kernelized nonlinear SC To improve the robustness, Xiao et al. [120] adopted the `2,1
norm to replace the Frobenius norm in the kernelized LRR algorithm. The `2,1 norm of the matrix
E ∈ Rd×n is defined as

||E||2,1 =
n∑
i=1

||E(:, i)||2 =
n∑
i=1

√
E(:, i)>E(:, i).

This norm, which enhances column-wise sparsity, models sample-specific outliers assuming that a
fraction of the data points are corrupted. Based on this norm, robust nonlinear LRR solves the
following optimization problem:

min
C
||C||∗ + λ||Φ(X)− Φ(X)C||2,1. (11)
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Defining P = I − C ∈ Rn×n, (11) can be reformulated as

min
P,C
||C||∗ + λ

n∑
i=1

√
P (:, i)>Φ(X)>Φ(X)P (:, i), (12)

which allows to use the kernel trick. To the best of our knowledge, no kernelized SC algorithm is
proposed for other robust noise measurement norms such as the component-wise `1 norm.

Adaptive kernel learning All the aforementioned methods (and in fact, the majority of kernel
based algorithms) make use of standard predefined kernel functions, such as Gaussian RBF kernels

k(x, y) = exp
(
− ||x−y||

2
2

2σ2

)
, and polynomial kernels k(x, y) =

(
x>y + a

)b
. However, due to lack of a

criterion for measuring the quality of a kernel function, selecting a proper kernel function is challenging.
In the context of SC, a good kernel should result in a union of linear subspaces in the implicit embedded
space. Following this intuition, Ji et al. [40] presented a kernel SC approach where they explicitly
enforced the feature map Φ(X) to be of low rank and self-expressive:

min
C
||Φ(X)||∗ + λ||C||1 such that Φ(X) = Φ(X)C, diag(C) = 0, C>e = e.

However, this formulation has two limitations: (i) applying the kernel trick on the first term of
the objective function is not straightforward, and (ii) the lack of constraints on the kernel leads to
trivial solutions such as mapping all data points to zero. In order to overcome these issues, the
authors exploited the symmetric positive definiteness of the kernel gram matrix K, which implies that
K = B>B for some square matrix B, while

||Φ(X)||∗ = ||B||∗ for all B such that K = B>B. (13)

Moreover, they restricted the unknown kernel matrix to be close (but not identical) to a predefined
kernel matrix (such as Gaussian RBF or polynomial kernels) to avoid trivial solutions:

min
C,B,Φ

||B||∗ + λ1||C||1 +
λ2

2
||Φ(X)− Φ(X)C||2F + λ3||KG −B>B||2F , (14)

such that C>e = e, diag(C) = 0, Φ(X)>Φ(X) = B>B,

where KG ∈ Rn×n is the predefined kernel matrix. Using the kernel trick (9) and substituting
Φ(X)>Φ(X) by B>B, they solved this problem using ADMM. This formulation ensures that the
transformed data points in the latent feature space are low-rank while an adaptive kernel function
is used. The optimization problem (14) was further extended in [122] by regularizing the mapped
features Φ(X) using the weighted Schatten p-norm as a tighter nonconvex surrogate for the rank and
using correntropy for more robust measurement of the difference between the predefined kernel KG and
the estimated kernel BB>. The same idea was used in the robust nonlinear multi-view SC approach
in [145].

However, these approaches suffer from two limitations: (i) they still need a predefined kernel
matrix, KG, and (ii) assuming that a “good” kernel leads to a low-rank embedding of the data points
is rather strong for data on multiple manifolds. In particular, there is no guarantee that learning a low-
rank kernel corresponds to an implicit nonlinear transformation that preserves sufficient separability
between the data points from different manifolds. In other words, a low-rank kernel (even with the
additional self-expressiveness structure) does not necessary lead to a well separated embedding of the
data points.
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3.2.2 Using multiple kernels

Even though kernel methods are considered principled approaches to provide non-linearity in linear
models, they rely on selecting and tuning a kernel. In many (unsupervised) applications, with no
prior knowledge, this is a challenging problem. Multiple Kernel Learning (MKL) methods overshadow

this issue, by learning a consensus kernel K from a set of predefined candidate kernels {K(i)
G }ki=1,

where k is the number of given kernels. The sought kernel K is regularized towards the predefined

candidate kernels via a penalty function h
(
K, {K(i)

G }ki=1, w
)

which is added as a penalty term in the

objective function. The vector w ∈ Rk+ contains the weights/importance of the predefined kernels.
This regularization function is typically defined in two ways:

1. Centroid-based MKL [49] encourages the consensus kernel K to be close to every predefined
kernel by minimizing

h
(
K, {K(i)

G }
k
i=1, w

)
=

k∑
i=1

w(i)
∥∥∥K −K(i)

G

∥∥∥2

F
. (15)

2. Linear combination MKL [89] encourages the consensus kernel to be approximately a convex
combination of the predefined kernels:

h
(
K, {K(i)

G }
k
i=1, w

)
=

∥∥∥∥∥K −
k∑
i=1

w(i)K(i)
G

∥∥∥∥∥
2

F

where w ≥ 0,
k∑
i=1

w(i) = 1. (16)

The main difference between MKL based approaches is the enforced property for the ideal consensus
kernel, using different regularizations. This relates to the criteria used to define the “goodness” of the
consensus kernel, and the two most widely used ones promote

• a block-diagonal coefficient matrix, or

• a low-rank consensus kernel.

Let us discuss these two strategies in the next two paragraphs.

MKL encouraging a block-diagonal representation A criterion for quantifying the quality of
the unknown consensus kernel is based on the assumption that it should encourage a block diagonal
representation for the coefficient matrix (up to permutation), where each block corresponds to a
different manifold. In fact, the coefficient matrix C is block diagonal, up to permutation, if and only
if the subspace preserving property holds (see Definition 2).

A common approach to promote a block-diagonal representation is to use a proper regularizer for
the coefficient matrix. Let us define the Laplacian matrix L associated to C as L = diag(Ae)−A where
A = |C|+ |C|> is the affinity matrix corresponding to C. Then, minimizing the sum of the c smallest
eigenvalues of L, that is,

∑c
i=1 σi(L) where σi(L) is the i-th smallest eigenvalue of L, promotes C to

be block diagonal. In fact, the multiplicity of the zero eigenvalue of the Laplacian matrix is equal to
the number of connected components in the graph corresponding to the matrix C [110]. Using the Ky
Fan theorem, Lu et al [62] write this nonconvex regularizer into a convex counterpart.
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As one of the first approaches presented for MKL based nonlinear SC, Kang et al. [49] proposed the
Self-weighted Multiple Kernel Learning (SMKL) algorithm. SMKL combines the multi-kernel learning
formulation in (15) with the block-diagonal regularizer in the kernelized LSR formulation [66]4:

min
C,K

||Φ(X)− Φ(X)C||2F + λ1||C||2F︸ ︷︷ ︸
kernel based LSR self-expressiveness

+λ2

∑k

i=1
w(i)||K −K(i)

G ||
2
F︸ ︷︷ ︸

Multiple kernel learning

+λ3

∑c

i=1
σi(L)︸ ︷︷ ︸

block-diagonal

, (17)

such that C ≥ 0, C = C>, K = Φ(X)>Φ(X) and L = diag(Ce)− C,

where the kernel trick can be easily applied on the first term in the objective function; see (9). An
iterative alternative optimization approach was used to solve (17). In each iteration, the entries of the
weight vector w are updated adaptively during the optimization process using

w(i) =
1

2||K −K(i)
G ||2F

.

However, in our implementations, we noticed that it might prevent convergence, because the parameter
w in (17) is modified at each iteration. Moreover, with no constraint on the summation of the weights,
they tend to have very small values.

Remark 3 (Nonnegativity). The nonnegativity and symmetry constraints in (17) make the coefficient
matrix C a valid affinity matrix [62], with L = diag(Ce) − C being the corresponding Laplacian
matrix. However, with the nonnegativity constraint on the entries of the matrix C, the optimal solution
may not be subspace preserving for the “extreme points” within the subspaces (since they are not
contained within the conical hull of points from the same subspace). As discussed for affine SC in
[56], the spectral clustering step is however likely to generate correct clusters. This is justified by
the “collaborative effect” phenomenon which states that the coefficient representation corresponding to
non-extreme points can “pull” the extreme points toward the data points corresponding to the same
subspace, and hence make the spectral clustering robust to the wrong connections. However, this
depends on the strength of the within subspace connectivity of non-extreme data points and the number
of the extreme data points.

Similar formulations were presented in [124, 147, 88]. In these approaches, the update of w was
performed using variations of the Correntropy Induced Metric (CIM) for measuring the distance

between entries of the kernels, that is, w(i) = CIM(K,K(i)
G ). The CIM between two matrices X ∈

RN×N and Y ∈ RN×N is defined as CIM(X,Y ) = 1− 1
N2

∑N
i=1

∑N
j=1G(X(i, j)−Y (i, j)) where G(x) =

exp(−x2/2σ2), and is known to be a more robust distance metric compared to the Frobenius norm [65],
and hence might lead to a more accurate weighting assignment. In particular, [124] used the mere
block-diagonal regularizer and eliminated the Frobenius norm regularizer for the coefficient matrix.
This is motivated by the fact that block-diagonal regularizer is proven to be subspace preserving for
independent subspaces (similar to the Frobenius norm) [63]. The same idea was used for multi-view
nonlinear SC based on MKL in [147]. Ren et al. [88] introduced an additional regularization to learn
the affinity and coefficient matrices simultaneously.

MKL encouraging a low-rank consensus kernel Although the data might be nonlinear in the
original ambient space, the linear subspace structure should be present in the implicit embedding

4LSR is a linear SC algorithm that regularizes the coefficient matrix C with the Frobenius norm; see Table 1.
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space. Hence a proper kernel should implicitly lead to a low-rank embedded data. Based on this
intuition, Kang et al. [51], proposed Low-rank Kernel learning for Graph matrix (LKG) that learns
a low-rank consensus kernel from a weighted linear combination of the given kernels by solving the
following optimization problem:

min
C,K,w

1

2
||Φ(X)− Φ(X)C||2F + λ1f(C)︸ ︷︷ ︸

kernel based self-expressiveness

+λ2||K −
∑k

i=1
w(i)K(i)

G ||
2
F︸ ︷︷ ︸

Multiple kernel learning

+ λ3 ||K||∗︸ ︷︷ ︸
low-rank kernel

, (18)

such that C ≥ 0, K = Φ(X)>Φ(X) ≥ 0, w ≥ 0,
k∑
i=1

w(i) = 1.

However, [89] explained that minimizing ||K||∗ does not necessarily lead to a low-rank transformed
data in the implicit feature space, that is, a small value for ||Φ(X)||∗. In fact, we have

||K||∗ = tr
√
K>K = tr

(
Φ(X)>Φ(X)

)
= ||Φ(X)||2F .

Hence, using the observation in (13), and defining an auxiliary square matrix B such that K = B>B,
they enforced the low-rankness of Φ(X) by minimizing the nuclear norm of B [89].

3.3 Neural network based nonlinear SC

Neural networks have emerged as a very powerful representation learning framework and have drawn
substantial attention due to many successful applications in different fields. The past four years have
witnessed an increasing number of papers which tried to merge the representational power of neural
networks with classical linear SC algorithms to deal with data from nonlinear manifolds. In a nutshell,
the main motivation of neural networks based SC approaches is to overcome the fundamental limitation
of kernel based alternatives, by learning the proper embedding of the data from the data. Geometrically,
as for Kernel-based approaches, this proper embedding should ideally have a union of linear subspaces
structure where classic linear self-expressiveness leads to subspace preserving representations. These
algorithms can be partitioned into three main categories (see also Table 2, page 9):

1. Neural network based feature learning that extract nonlinear features from the data using
neural networks as a preprocessing step for linear SC algorithms,

2. Self-expressive latent representation learning that enforce explicitly the neural network
to learn self-expressive latent representation either by changing the architecture or the objective
function, and

3. Deep adversarial SC that uses generative adversarial networks to perform nonlinear SC.

In the next three sections, we describe these three categories.

3.3.1 Neural network based feature learning

Early attempts for employing neural network for nonlinear SC were mainly limited to providing bet-
ter, that is, more discriminative, features (representations) for the data points. In fact, several
SC papers in the literature (including linear and nonlinear methodologies) still rely on manually-
designed/handcrafted features, such as Local Binary Patterns (LBP) [77], Histogram of Oriented
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Gradients (HOG) [17], and Scale-Invariant Feature Transform (SIFT) [61], for satisfactory results on
real-world data sets. However, there is no theoretical justification on how any of these handcrafted
features might affect the geometric structure of the data lying on multiple (nonlinear) subspaces.
From the perspective of unsupervised feature learning, features extracted by neural networks have an
important advantage over traditional handcrafted features: they are specifically learned from the data.

The focus of neural network based approaches for SC is to learn proper representations/features
from the data points for the specific task of SC. The main shared characteristic of these approaches
is that they treat feature learning and clustering as separate tasks, which is suboptimal. They are di-
vided into two main subcategories: (i) transforming the unsupervised problem into a (self)-supervised
problem, and (ii) using the connectivity information from the output of a classical linear SC algorithm
as prior knowledge. Let us discuss, in the next paragraphs, the approaches within each category in
detail.

Self-supervised subspace clustering The success of supervised feature learning in neural net-
works inspired a few works to map the unsupervised SC task to a (self-)supervised problem. To do so,
the clustering output of a linear SC algorithm can be used as labels to provide supervision [92, 150].
However, these labels are highly unreliable as they are obtained by applying algorithms based on the
linearity assumption. There are two strategies to exploit the information from these noisy labels to
train a network:

• Use the concept of “confident learning”: a confidence weight is assigned to each data point
quantifying its likeliness of having the correct label [76]. The highly confident samples and their
corresponding labels can be used to train a neural network in a supervised fashion. Sekmen et
al. [92] used the criterion of the distance of the samples to the obtained subspaces from a linear
SC algorithm to choose highly confident data points for the supervision. However, there are
serious drawbacks to this approach. The weighting procedure based on the criterion of distance
to the estimated subspaces using linear algorithms is not reliable for nonlinear data. Moreover,
selecting the highly confident labels depends on the value of a threshold which is not easy to
set with no prior knowledge. However, we would like to emphasize that confident learning is
an emerging topic in robust deep learning given noisy labels with significant theoretical and
numerical advances over the past couple of years [43, 70]. However, how to select the “confident
samples” and use them for nonlinear manifold clustering task requires more in-depth study.

• Increase the number of clusters incrementally: To reduce the effect of wrong labels, Zhou et
al. [150] suggested an iterative approach. Specifically, at the first iteration, the linear SSC algo-
rithm is applied on the (raw) input data and the spectral clustering is applied on the coefficient
matrix to segment the data in two clusters. A neural network is trained with the obtained
labels (clusters) for a binary classification problem. In the following iterations, the features from
the previously trained network are used as input data to the SSC and the number of clusters
to segment the corresponding graph (in the spectral clustering step) is increased by one. The
network parameters are updated using the obtained labels as a supervised classification prob-
lem. This iterative process continues until the number of clusters reaches the desired predefined
number. However, there is no theoretical evidence or justification that this strategy can improve
the robustness to the erroneous output of linear SC algorithms.

Linear based connectivity as prior knowledge Another strategy to leverage linear SC algo-
rithms as a prior information is to use the coefficient matrix to guide the geometric structure of the
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embedded data points in the latent space of neural networks.
As the pioneer algorithm, Peng et al. [81, 83] proposed a structured autoencoder, dubbed StructAE,

where self-expressiveness of the latent representations is incorporated in the loss function of the net-
work. StructAE relies on a previously computed coefficient matrix C by a classical linear SC algo-
rithm. The authors suggested the use of SSC and LSR, leading to StructAE-L1 and StructAE-L2
respectively5. Chen et al. [13] used LRR instead to construct the matrix C. Given C, consider an
autoencoder with M fully-connected hidden layers, where the first M/2 layers indicate the encoder
and the last M/2 layers indicate the decoder. We denote Θ the parameters of the network, that is, the
weights and biases of each layer. Let us also denote the compact latent representation of the encoder
output as ZΘ(:, i) for the input data X(:, i), and, the reconstructed data, which is the output of the
decoder, by X̃Θ. They both depend on the parameters Θ.

The optimization problem is defined as follows

min
Θ

1

2
||X − X̃Θ||2F +

λ1

2
||ZΘ − ZΘC||2F +

λ2

2
||Θ||2F , (19)

where the first term is the reconstruction error of the autoencoder, the second term enforces the
latent representation Z to respect the multiple subspace structure encoded by the matrix C, and
the third term is regularizing the parameters of the network to avoid overfitting. The coefficient
matrix C contains prior information on the global structure of the data, because it is obtained by
minimizing ||X−XC||2F , via a linear SC approach, containing the information of all data points using
self-expressiveness. The clustering membership is obtained by clustering the latent representation
Z using algorithms such as k-means or by applying a linear SC algorithm such as SSC and LSR.
The main motivation of StructAE is to integrate the individual and global structures together, and
encourage the autoencoder to learn features/latent representation respecting the geometric structure
provided by the coefficient matrix. However, the matrix C is obtained by a linear SC based on a
global linearity assumption. Hence the performance tends to significantly depend on how well the
linearity assumption is satisfied.

3.3.2 Self-expressive latent representation learning

Separating the two modules of representation/feature learning and (subspace) clustering assignment
typically leads to suboptimal results. To overcome this limitation, a group of approaches explicitly
include the self-expressiveness term in the network loss function. These approaches are based on the
intuition that minimizing self-expressiveness in the embedded space encourages the neural network
to learn the appropriate embedding for the task of SC. In general, the optimization problem of these
networks has the following form:

min
C,Θ

1

2
||ZΘ − ZΘC||2F + λ1f(C) + λ2h(X,ZΘ, C) such that ZΘ = Φe(X,Θ) and diag(C) = 0,

(20)

where Φe and Θ denote the network embedding and parameters, respectively. The embedding of the
network, which is denoted by ZΘ, is encouraged to have a union of linear subspaces structure by
explicitly minmizing the self-expressive representation term. As in the rest of the paper, f(C) is the
regularization on the coefficient matrix. The extra regularization h(X,ZΘ, C) plays a critical role in

5Recall that SSC and LSR use the `1 and `2 norms for regularization of the columns of the coefficient matrix,
respectively; see Section 2.1.1.
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removing trivial solutions and specifying the properties of the nonlinear mapping and the embedding
space. In particular, looking for self-expressiveness in the transformed space is not sufficient. There
exists infinite nonlinear transformations that can lead to small/zero self-expressive error, that is,
||ZΘ − ZΘC||F ≈ 0. Hence, the main difference between these approaches lies on the regularization
function h that reduces the possible nonlinear mappings space and forms the geometric structure of
the data embedding. There are mainly four choices for h in the literature:

1. Instant normalization [82] promotes the norm of the embedded data points in the latent space to
be close to 1 using the regularization 1

2

∑n
i=1 ||ZΘ(:, i)>ZΘ(:, i) − 1||22. This avoids an arbitrary

scaling factor in the embedding space.

2. Locality preservation [153] captures the local structure of data through Graph Laplacian reg-
ularization, similarly as done in Section 3.1.1. This regularization is defined as 1

2 tr(CLC>),
where L is the Laplacian matrix defined from a similarity matrix over the data points X.

3. Autoencoder reconstruction loss [42] is based on an autoencoder architecture and uses a decoder
network to reconstruct the original data from the self-expressive representation, that is, ZΘC.
More precisely, the regularization is defined as ||X − X̃Θ||2F where X̃Θ = Φd(ZC,Θ), and Φd

represents the decoding mapping which depends on the parameters Θ. This regularization that
minimizes the reconstruction error of the input matrix ensures that the self-expressive based
embedding preserves sufficient information to recover the original data.

4. Restricted transformations [71] is based on learning stacked linear transformations through mul-
tiple layers that are connected via non-negativity constraints inspired by the rectified linear unit
(ReLu) that sets negative values to zero after each layer [30, 25]. Specifically, Maggu et al. [71]
proposed a three layered transformation for SC, solving the following optimization problem:

min
Θ={Ti}3i=1,C

||T3T2T1X − ZΘ||2F︸ ︷︷ ︸
deep transformed data: ZΘ ≈ Φe(X, {Ti}3i=1)

+ λ1||ZΘ − ZΘC||2F + f(C)︸ ︷︷ ︸
self-expressiveness in latent space

(21)

+ λ2

3∑
i=1

(
||Ti||2F − logdetTi

)
,︸ ︷︷ ︸

avoid trivial transformations

such that T2T1X ≥ 0 and T1X ≥ 0︸ ︷︷ ︸
nonnegative representations

,

where {Ti}3i=1 are the linear transformations such that the dimension of each layer output is
reduced. To avoid trivial or degenerate solutions (Ti → 0 or Ti →∞), the linear transformation
corresponding to each layer is penalized by minimizing the Frobenius norm minus the logarithm
of the determinant of the transformation matrices. Note that the non-negativity constraints are
inspired by the ReLU activation but they are inherently different.

Undoubtedly, the deep SC approaches based on autoencoder regularization are the most popular.
A large number of algorithms have been proposed using this regularization. In the rest of this section,
we focus on these approaches.

Autoencoder regularized deep subspace clustering The autoencoder based feature extraction
for SC was first proposed as the Cascade Subspace Clustering (CSC) algorithm in [80]. In a nutshell,
CSC first learns compact features by pretraining a simple autoencoder, and then discards the decoder
part. Afterwards, it fine-tunes the parameters of the encoder with a novel loss function based on
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the invariance of distribution property. The invariance of distribution is based on the assumption
that the conditional distribution of any data point given the cluster centers is invariant to different
distance metrics. The conditional distribution for each data point is a c-dimensional vector providing
a probability that is related to the closeness between the given data point and the centroids of the c
clusters, so that the data point has a higher probability to be assigned to a closer cluster. The closeness
is measured by different metrics such as the Euclidean and cosine similarity metrics. The invariance of
distribution uses the KL-divergence to minimize the discrepancy among different distributions defined
by different closeness measures. After updating the encoder parameters and the cluster centroids in
the fine-tuning step, each data point is assigned to the cluster with the closest centroid. Nevertheless,
it is not clear how minimizing the discrepancy among different distributions benefits the SC or affects
the geometric structure of the data from multiple manifolds. Moreover, CSC only uses the autoencoder
network for the initialization of the parameters of the encoder.

The idea of explicitly merging self-expressiveness in autoencoder networks for SC was first brought
to light in the framework of Deep Subspace Clustering network (DSC-Net) [42]. DSC-Net is the
pioneer work to identify that the linear combination in the collaborative representation corresponds
to a layer of fully connected neurons without non-linear activations and biases. This layer, dubbed
the self-expressive layer, is added between the encoder and decoder of a standard autoencoder. The
parameters (weights) of this layer can be interpreted as the coefficient matrix C. The authors promoted
the use of convolutional autoencoders as the backbone architecture, reasoning that they can be trained
easier compared to the classical fully connected autoencoders as they have less parameters. This has
been recently proved theoretically in [57]. Let Θ denote the parameters of the encoder and the decoder.
The self-expressiveness in the latent space, that is, ZΘ ≈ ZΘC, is a linear layer located between the
encoder and decoder, as illustrated in Figure 5. In particular, all the input data X, as a single
large batch, is fed into the encoder to obtain the embedded data ZΘ, where ZΘ(:, i) corresponds to
the data point X(:, i). The self-expressive representation of the latent data ZΘ is calculated using
the subsequent linear layer. The decoder reconstructs each data point in the input batch from the
columns of ZΘC. In order to seek a tradeoff between the reconstruction and self-expression errors,
DSC-Net solves the following optimization problem:

min
Θ,C

1

2
||X − X̃Θ||2F +

λ1

2
||ZΘ − ZΘC||2F + λ2||C||pp, (22)

such that diag(C) = 0,

where || · ||p is the component-wise `p norm that regularizes the coefficient matrix C (that is, the
weights of the fully connected layer). Two different regularizations were considered in [42], namely
p = 1, 2, leading to DSC-Net-L1 and DSC-Net-L2 networks, respectively. The network is trained in
two steps: (i) pretraining which includes initialization of the autoencoder without the self-expressive
layer, and (ii) fine-tuning which includes training the whole network including the self-expressive layer.
Once the network is trained, the weights C of the self-expressive layer are clustered using spectral
clustering, as in linear SC.

Recent extensions of self-expressive autoencoders DSC-Net initiated many extensions that
aim to integrate the representational power of neural networks with self-expressive SC algorithms.
Among noticeable extensions, there are two approaches that attempt to unify the self-expressive
autoencoders with the concept of self-supervision/self-training. The Self-Supervised Convolutional
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Figure 5: Illustration of autoencoder based subspace clustering using fully connected linear self-
expressive layer in DSC-Net [42]. Two layers of convolutional encoder and two layers of deconvolutional
layers are shown for the decoder. All the input data are used as a large single batch for minimizing
the loss function and training the autoencoder.

Subspace Clustering Network (S2ConvSCN) [140] combines DSC-Net with a classification convolu-
tional module (for feature learning) and a spectral clustering module (for self-supervision) into a joint
framework. This framework uses the (noisy) clustering labels of the spectral clustering module to
supervise the training of the feature learning network and the self-expressive coefficient learning. The
idea of collaborative learning between the classification module and the self-expressive layer was reused
in [143], but using the concept of confidence learning. In contrast to S2ConvSCN, the model in [143]
supervises the training without the use of the computationally expensive spectral clustering. In par-
ticular, two affinity matrices are constructed to supervise the training by selecting highly confident
sample pairs: (i) the affinity matrix of a binary classifier module based on a convolutional network,
which indicates whether two data points belong to the same cluster or not, and (ii) the affinity matrix
corresponding to the weights of the self-expressiveness layer. Nonetheless, selecting confident samples
depends on thresholding parameters which are hard to tune in an unsupervised setting.

Other notable extensions include the following. Sparse and low-rank regularized DSC (SLR-
DSC) [154] regularizes the coefficient matrix using the nuclear and Frobenius norms. An adaptation of
DSC-Net for multi-modal data was presented in [1]. Zhou et al. [151] added a distribution consistent
loss term to keep the consistency between two distributions of the original data and the embedded
representation (the output of the encoder). Inspired by human cognition, Jiang et al. [45] aggregated
a self-paced learning framework [44] with the DSC-Net loss function to encourage the network to learn
“easier” samples at first. Easier samples are defined as the ones with a small value of the reconstruc-
tion and of the self-expressive representation errors. However, similar to many self-paced frameworks,
it is very sensitive to thresholding parameters [27]. Instead of focusing on the learned features from
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the output of the encoder, Kheirandish et al. [53] proposed a multi-level representation of DSC-Net
(MLRDSC) which combines low-level information from the initial layers with high-level information
from the deeper layers.

3.3.3 Deep adversarial subspace clustering

So far we have reviewed deep SC approaches that are based on a discriminative supervised neural
network (such as those for self-supervised feature learning) and autoencoder architectures. There are
a few approaches that rely on Generative Adversarial Networks (GANs) [26]. GANs are composed of
two modules, a generator and a discriminator. The generator module produces new “fake” samples
by learning to map from a latent space (often based on random uniform or Gaussian distributions) to
the unknown desired distribution of the samples from the given data set. The goal of the generator
is to produce samples that follow the true distribution of the data points as closely as possible. On
the other hand, the goal of the discriminator is to distinguish the generated fake samples from the
“real” samples of the data set. These two modules are trained through a minimax game such that the
success of each module is the loss of the other one. GANs are often difficult to train and this explains
the fewer number of works that combines GANs with SC.

The first SC algorithm that adopted the GAN architecture is Deep Adversarial Subspace Clustering
(DASC) [152]. In order to match the goal of SC, DASC modifies the generator and discriminator
modules based on well-known linear subspace properties:

• DASC generator. The generator has two main components: a self-expressive autoencoder (simi-
lar to DSC-Net, with the encoder and decoder network parameters denoted by Θ) and a sampling
layer for producing fake data for each estimated subspace. The generator first uses a deep self-
expressive auto-encoder to transform the data X into the latent variable ZΘ such that they are
encouraged to be located in a union of linear subspaces. Thereafter, spectral clustering is applied
on the weights from the self-expressive layer (C) to obtain the clustering assignment. The gen-

erator produces new “fake” samples {Z̄(i)
Θ }ci=1 by sampling from the estimated subspaces using

property of linear subspaces: linearly combining samples within a subspace generates a sample
from the same subspace. To this end, the fake samples are generated by random linear combina-
tion of the samples within each cluster (the weights of the combinations are chosen uniformly at
random in [0, 1]). Apart from the fake data generation process, the definition of the “real” data
is also noticeably different from the classic GAN for which the real data is the given data set.

In DASC, the real data {Z̃(i)
Θ }ci=1 are a predefined fraction of the samples within each estimated

cluster that have a small projection residual onto the learned subspaces by the discriminator.
Mathematically, the generator solves

min
C,Θ

1

c

c∑
i=1

1

ni

ni∑
j=1

||Z̄(i)
Θ (:, j)− UiU>i Z̄

(i)
Θ (:, j)||22︸ ︷︷ ︸

sum of projection residual of fake data from each subspace

(23)

+ λ1||X − X̃Θ||2F︸ ︷︷ ︸
reconstruction loss of autoencoder

+ λ2||ZΘ − ZΘC||2F + λ3||C||2F ,︸ ︷︷ ︸
LSR based self-expressiveness in embedded space

where Θ and X̃Θ denote the parameters of the network and the reconstructed data in the
autoencoder, respectively, and ni is the number of fake samples for the ith subspace/cluster.
The matrices Ui (i = 1, . . . , c) are the learned bases for each subspace in the discriminator.
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In fact, the first term in (23) is the sum of projection residuals of the fake data for all of the
estimated subspaces. The generator tries to “fool” the discriminator by producing (embedded)
samples that are very close to the estimated subspaces by the discriminator.

• DASC discriminator. The discriminator is parametrized by the basis vectors of each subspace
of the nonlinear transformed data (Z). The basis vectors of each subspace/cluster are learned
such that the projection residual loss function for the real data is smaller compared to the fake
ones. The discriminator solves

min
{Ui}ci=1

1

c

c∑
i=1

1

ni

ni∑
j=1

(
||Z̃(i)

Θ (:, j)− UiU>i Z̃
(i)
Θ (:, j)||22︸ ︷︷ ︸

projection residual of real data

+
[
ε− ||Z̄(i)

Θ (:, j)− UiU>i Z̄
(i)
Θ (:, j)||22︸ ︷︷ ︸

projection residual of fake data

]
+

)

(24)

+ λ1

c∑
i=1

||U>i Ui − I||2F︸ ︷︷ ︸
approximately orthonormal bases

+ λ2

∑
i 6=j
||U>i Uj ||2F ,︸ ︷︷ ︸

separibility of subspaces

where
[
x
]
+

= max(x, 0). The first term in (24) ensures that the discriminator learns the bases
such that they fit the intrinsic subspace of each cluster for the real data. The second term is
the adversarial goal of the discriminator compared to the generator. This term ensures that
the learned bases of the discriminator produce sufficiently large residuals for the generated fake
data.

Subsequently, the generator and discriminator are trained such that the generator is encouraged to
produce fake data close to the subspaces learned by the discriminator which leads to higher clustering
quality.

However, DASC completely ignores the distribution of the input data X and merely focuses on
the latent embedded data Z. Recently, Yu et al. [137] proposed two extensions to DASC. In the first
approach, an additional adversarial learning is utilized to model the distributions of the input data
along with the adversarial learning for the corresponding latent representations (similar to DASC). In
the second approach, inspired by the self-supervised SC approach in [143], the adversarial learning in
the latent space is replaced by a self-supervised module to encourage the (autoencoder) network to
learn discriminative embedding (features) for each subspace.

Remark 4. Instead of using GANs to enhance SC, one could also use linear SC to overcome challenges
of classical GANs, such as the “mode-collapse” issue [5], that is, the lack of sample variety in the
generator’s output. For example, Liang et al. [58] suggested to use a clustering module based on linear
SC to exploit subspaces within the latent representation of the data. The clustering output is used
by the generator to produce samples conditioned on their corresponding subspace to promote diverse
sample generation from all latent subspaces.

4 Computational cost of nonlinear SC algorithms

Despite the nice theoretical properties of self-expressive representations [95, 21] and their practical
efficiency, expressing the data points using other data points from the data set can be computationally
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inefficient. In fact, the computational complexity for computing the coefficient matrix in the major
linear SC algorithms is either quadratic or cubic in the number of data points [86], and hence using
them for medium and large scale data sets is computationally prohibitive. To address the scalability
issue, several approaches were proposed which either limit the self-expression over a smaller size
dictionary rather than the whole data [2, 101, 11, 133] or propose specific solvers (such as the greedy
OMP [135] or using proximal gradient descent framework [86]).

Remark 5. In addition to the high computational complexity of calculating the self-expressive repre-
sentation (the first step of most nonlinear SC algorithms), the spectral clustering step has in general a
computational cost of O(n3) as well [38]. However, structures in the affinity matrix such as sparsity
can reduce the computational time significantly [11]. Moreover, there exists fast approximation algo-
rithms for spectral clustering [123, 102, 38]. Hence, the main focus of scalable extensions of linear SC
was to provide faster and more efficient approaches to (approximately) compute the coefficient matrix.

The computational burden of self-expressive representations is present in the majority of nonlinear
extensions reviewed in this survey as well. Representing data points using the whole data set, whether
it is in the ambient or in the (implicit) embedding space, typically has the computational cost of
O(n3) or O(dn2). Similar to linear SC, ADMM is the standard algorithm used for the majority of
the optimization problems. The major bottleneck is computing the n × n coefficient matrix which
often involves solving an n-by-n linear system for Kernel based and locality preserving approaches (in
the subcategories of tangent space approximation and avoiding cannot-links). Solving this problem in
each iteration of the ADMM framework has a computational complexity of O(n3), or O(dn2) using the
matrix inversion lemma (also known as Sherman-Morrison-Woodbury identity [35], see [86, Remark
1] for more details). Using the graph Laplacian regularizer, an additional bottleneck of computing a
pairwise similarity matrix in the ambient space is added (in O(dn2) operations), and, moreover, the
coefficient matrix should be computed by solving a Sylvester equation with the complexity of O(n3).
The high computational cost is also a very evident drawback of the self-expressive based autoencoders
in neural network approaches. In fact, the number of parameters of the fully-connected self-expressive
layer is O(n2). Computing the latent representation of the encoder has the time complexity of O(den

2)
where de is the dimension of the encoder output.

In addition to the time complexity, the memory requirement is often significant as well. Storing
(and clustering) an n×n coefficient matrix is usually restrictive, unless the coefficient matrix is sparse.
Computing and storing n × n (dense) Gram matrices increases the space complexity of kernel based
approaches further. This is even worse for MKL algorithms which update the kernel matrix at each
iteration of an ADMM based algorithm.

Scalable nonlinear SC approaches In contrast to linear SC, the scalability issue of nonlinear
alternatives has not yet been investigated much. To the best of our knowledge, the only scalable
algorithm in the category of locality preserving SC is an avoiding cannot-link approach [31] which uses
k nearby data points to represent each data point, with a computational cost of O(k2nd) operations.

With neural networks based SC approaches gaining increasing attention, some approaches tried to
tackle the computational bottleneck of DSC-Net, which is due to the self-expressive layer. Zhang et
al. [142] suggested to replace this layer with a more computationally effective module. Specifically, in-
stead of directly pursuing self-expressive representation in the latent space and constructing an affinity
matrix, an iterative linear SC algorithm, namely, the k-subspace clustering (k-SC) [36] was revisited.
The k-SC approach alternates between assigning the data to individual subspaces and estimating
the parameters of each subspace. However, as discussed in Section 1, a significant disadvantage of
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iterative linear SC approaches, including k-SC, is that they require the dimension of each subspace
to be known in advance. Instead of changing the architecture, Seo et al. [93] proposed an efficient
optimization framework for DSC-Net which uses a closed-form solution for deriving the weights of the
self-expressive layer using Lagrangian multipliers. However, not only the obtained accuracy is lower
than DSC-Net, but also the computational complexity is still quadratic in the number of samples.

5 Evaluation and numerical comparison

In this section, we investigate the properties and performances of major nonlinear SC approaches on
synthetic and real world data sets.

Selected Algorithms Among many nonlinear SC algorithms covered in this survey, eight major
methods are considered for a detailed comparison and evaluation. The selected algorithms within each
category are summarized in Table 2 and described as follows:

Table 2: Selected representative methods for numerical comparison

Category subcategory method characteristic year

graph laplacian regularization
SMR [37]

Graph Laplacian regularized
self-expressive representation

2014

Locality LR`1-SSC [129]
sparse Graph Laplacian regu-
larization

2014

preserving avoiding cannot-links KNN-SSC [155]
using local self-expressive dic-
tionary

2016

tangent space approximation SMCE [20]
tangent approximation using
adaptive neighborhood size

2011

Kernel-based
single kernel KSSC [79] kernelized SSC 2014

multiple kernels LKG [51]
MKL with low-rank consensus
kernel

2019

Neural-network
self-expressive latent represen-
tation learning

DSC-Net [42]
autoencoder with self-
expressive layer

2017

based
deep adversarial subspace clus-
tering

DASC [152]
combining adversarial learning
with LSR

2018

• Locality preserving based approaches:

– Smooth Representation (SMR) [37] is in the category of locality preserving SC based
on Laplacian regularization. The laplacian matrix in SMR is obtained from a binary K-NN
similarity matrix (with parameter k).

– Laplacian Regularized `1-SSC (LR`1-SSC) [129] is similar to SMR but with additional
sparse regularization. For a fair comparison, we use the same Laplacian matrix L as SMR.6,7

6In [129], Gaussian kernels are used for initializing the Laplacian matrix L. Then, at each iteration of the optimization
process, the Laplacian matrix L is updated using the coefficient matrix C from the previous iteration. For a fair
comparison, we use the same fixed Laplacian matrix based on binary K-NN, similar to SMR. Moreover, convergence of
such a scheme is not guaranteed.

7Optimizing the Laplacian regularized SC problem with additional non-differentiable regularizations (such as the `1

or nuclear norm) using ADMM involves solving Sylvester equations [130]. Some approaches in the literature mistakenly

29



– k-nearest neighbors based sparse subspace clustering (KNN-SSC) [155] is the
category of avoiding cannot-links. This approach uses only data points in the k-nearest
neighbors of samples as the dictionary for the self-expressive representation. We use the
efficient scalable implementation provided in [98].

– Sparse Manifold Clustering and Embedding (SMCE) [20] falls in the category of
Tangent space approximation. It is one of the early nonlinear extensions of SSC (by the
same authors) and the most notable tangent space nonlinear SC approach.

• Kernel based subspace clustering :

– Kernel Sparse Subspace Clustering (KSSC) [79] is the pioneer single kernel based
nonlinear SC approach based on sparsity regularization. We consider Gaussian (RBF)
kernel for the experiments. Note that KSSC with a linear kernel is equivalent to classical
linear SSC algorithm [79].

– Low-rank Kernel Learning for Graph matrix (LKG) [51] is a multiple kernels based
nonlinear SC approach. LKG learns a low-rank kernel from a group of predefined kernels,
solving the optimization problem (18); see Section 3.2.2. We follow the generic setting
introduced in [50] and consider 12 kernels: 7 Gaussian kernels defined, for i = 1, 2, . . . , 7,
as

K
(i)
G (x, y) = exp

−||x−y||22
tid

2
max , ti ∈ {0.01, 0.05, 0.1, 0.5, 1, 10, 50}

where dmax is the maximal distance between two data points, a linear kernel K
(8)
G (x, y) =

x>y, and 4 polynomial kernels of the form
(
a + x>y

)b
for all possible values of a ∈ {0, 1}

and b ∈ {2, 3}. Following the procedure in [50], all kernel matrices are normalized to have
values between 0 and 1.

• Neural networks based subspace clustering :

– Deep Subspace Clustering Network (DSC-Net) [42] is arguably the most notable
neural-network based nonlinear SC algorithm which introduced the self-expressive fully
connected layer in the autoencoder architecture. DSC-Net can be used with `1 and `2
regularizations for the columns of the coefficient matrix, leading to DSC-Net-L1 and DSC-
Net-L2 algorithms, respectively. For DSC-Net, we use both the convolutional autoencoder
version provided by the authors and a modified fully connected autoencoder version (with
tanh activation function) implemented by ourselves. The fully connected autoencoder is
used for synthetic data sets where the ambient dimension is small.

– Deep Adversarial Subspace Clustering (DASC) [152] is the main existing approach in
the literature for the combination of self-expressive linear SC with GANs; see Section 3.3.3.

Moreover, three linear SC algorithms are used as baselines: SSC, with both Frobenius norm and
`1 norm regularization for the error matrix (denoted by SSC-L2 and SSC-L1, respectively), and LRR
with `1 regularization for the reconstruction error.

derive linear systems instead of Sylvester equations (this error comes from the derivative of tr(CLC>), authors use 2LC
instead of 2CL). Hence, we use our own implementation for the experiments.
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The code for SMR8, SMCE9, KNN-SSC10, DSC-Net11 and DASC12 are available from the author’s
website. The rest of the algorithms, implemented by us, are available from https://sites.google.

com/site/nicolasgillis/code. The code contains the selected parameters for the algorithms for
each data set as well. The parameters of each algorithm are chosen following the recommendations of
the authors.

Quality Measures From the many possible metrics to quantify the performances of (subspace)
clustering algorithms, two main metrics are commonly used to evaluate the clustering performance:
the Accuracy (ACC) and the Normalized Mutual Information (NMI) [97]. Given the ground-truth
labels (clusters) ` ∈ {1, . . . , c}n and the obtained labels ˆ̀ ∈ {1, . . . , c}n by a clustering algorithm,
where c is the number of clusters, these metrics are defined as follows:

ACC = max
π, a permutation

∑n
i=1 1

(
`(i) = ˆ̀

π(i)
)

n
, and NMI =

I(`; ˆ̀)√
H(`)H(ˆ̀)

,

where 1(·) is the indicator function which returns one if the input condition is correct, ˆ̀
π is the

labelling obtained after permuting the c labels using π, I(·; ·) is the mutual information metric, and
H(·) is the entropy function. The values of ACC and NMI belong to the interval [0, 1]; a higher value
indicates a better clustering performance.

5.1 Synthetic data

The performances of the nonlinear SC approaches are compared on both linear and nonlinear synthetic
data sets. We believe that analyzing the properties of nonlinear approaches on carefully designed linear
data sets is helpful in understanding the characteristic of these approaches. In fact, linear subspaces
are special cases of nonlinear ones, and hence a nonlinear approach should work in linear scenarios.
For a fair comparison of the algorithms, no post-processing is performed on the coefficient matrices.
The obtained coefficient matrices are only symmetrized and then spectral clustering is applied.

Parameters For locality preserving approaches, namely, SMR, KNN-SSC and LR`1-SSC, the pa-
rameter k which indicates the number of nearest neighbors in the similarity matrix construction is set
to 10. For the linear synthetic datasets, we did not notice sensitivity to this parameter as long as it
is not below 10 (but as this value increases the computational time increases as well). The sensitivity
to the parameter k is more noticeable for the nonlinear datasets. We obtained similar results for
k ∈ [10, 15], while larger values for k leads to increasingly wrong connections. For KSSC, we tuned
the parameter σ of the RBF kernel from the set {0.01,0.05,0.1,0.5,1,2,5,10,20} for the best overall
accuracy and set it as 1 for linear synthetic datasets (we obtained similar result for σ = {0.5, 1, 2}),
and as 0.05 for the nonlinear datasets. The nonlinear datasets are more sensitive to the value of σ
which is due to the complex nonlinear structures in these datasets. In general KSSC shows significant
sensitivity to the parameters which is a common challenge of kernel based approaches. Moreover,
the proper value of σ depends on the regularization parameter which balances the trade-off between

8http://zero-lab-pku.github.io/publication/limingjie/cvpr14_smooth_representation_clustering/
9http://khoury.neu.edu/home/eelhami/codes.htm

10http://github.com/sjtrny/kssc
11http://github.com/panji530/Deep-subspace-clustering-networks/
12http://github.com/hyqneuron/dsc_gan
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sparsity and self-expressiveness. Sparser solutions are more sensitive to lower values of σ which might
lead to over-segmentation. In contrast, denser solutions are more sensitive to larger values of σ which
are prone to dense wrong connections. For DSC-Net, we consider three hidden layers for the encoder
with {10,8,4} units for the linear synthetic data sets (we obtained similar results as long as no layer has
less than 4 neurons), and {8,4,2} units for the nonlinear synthetic data sets. Increasing or decreasing
the number of hidden layers did not affect the results significantly. The encoder in DASC has two
hidden layers with {8,4} and {2,2} units for the synthetic linear and nonlinear data sets, respectively.
For a detailed report on the selected parameters for each approach, see Appendix B.

5.1.1 Linear subspace clustering

Two principal arrangements of subspaces are considered for the generation of linear synthetic data
sets: independent and disjoint. Intuitively, and theoretically [95], the separation between the subspaces
plays a critical role in recovery of the subspaces. Hence, for the two types of synthetic data sets, we
consider a semi-random data generation approach where the bases of the subspaces are carefully
determined with a parameter that controls the affinity between the subspaces. The data generation
model, which is inspired by the models in [95, 2], is explained in details in the Appendix A. In this
section, we compare the performance of nonlinear approaches for both synthetic independent and
disjoint subspaces.

First experiment: two independent subspaces Two linearly independent subspaces with in-
trinsic dimension two are first considered. We set N = 900 (with 450 points per subspace), di =
2 for i = 1, 2, and d = 20 (the ambient dimension is 20). The angle between the two subspaces is
controlled by the parameter θ ∈ {5, 10, 20, 30, 45, 60, 90}. For each value of θ, 10 sets of data points are
randomly generated to analyze the performance of the tested algorithms. Table 3 reports the average
and standard deviation of the accuracy depending on the different values of θ.

We observe the following:

• For a sufficiently small affinity between subspaces (more precisely, for θ ≥ 45), all of the ap-
proaches provide an almost perfect clustering (namely, the accuracy is above 98.97% in all cases).

• As guaranteed by the theory [79, 21, 37], SMR, SSC-L2 and LRR perform almost perfectly for
all cases of independent subspaces, and their performance is not affected by the affinity between
the subspaces. The performance of SSC-L1 was identical to SSC-L2. This is expected as the
data set is not contaminated by noise so that the data fitting term does not affect the result.

• Interestingly, LR`1-SSC, which integrates Laplacian regularization via the `1 norm, also leads
to subspace preserving coefficients for all values of θ although this is not (yet) theoretically
supported.

• KNN-SSC, which prevents connections between faraway data points, performs poorly for close
subspaces (namely, θ = 5, 10). However, we noticed that by increasing the number of nearest
numbers to more than 100, KNN-SSC leads to an almost perfect clustering result.

• SMCE and KSSC with RBF kernel are producing subspace preserving coefficients for θ suffi-
ciently large. This is expected, because SMCE relies on the proximity of data points for the
tangent space approximation, and KSSC with RBF kernel is dependent on the nearby samples
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Table 3: The average and standard deviation of the accuracy, in percent, of SC approaches on the two
independent linear subspaces separated by an angle θ.

θ = 5 10 20 30 45 60 90

SMCE
mean 51.17 50.56 98.45 99.72 99.94 99.94 99.95
std 1.14 0.52 0.50 0.25 0.07 0.05 0.05

SMR
mean 100 100 100 100 100 100 100
std 0 0 0 0 0 0 0

KSSC(RBF)
mean 51.25 51.85 99.84 99.96 99.97 99.97 100
std 0.71 0.99 0.13 0.05 0.04 0.04 0

LR`1-SSC
mean 99.88 99.97 100 100 100 100 99.98
std 0.09 0.04 0 0 0 0 0.03

LKG
mean 51.47 51.42 51.13 50.72 99.18 99.63 99.67
std 0.72 1.34 0.81 0.73 0.65 0.26 0.26

KNN-SSC
mean 51.60 51.44 98.26 99.35 99.85 99.86 99.82
std 0.97 0.81 0.63 0.38 0.16 0.08 0.17

DSC-Net-L2
mean 51.41 60.65 94.14 97.56 99.44 99.46 99.33
std 0.96 14.09 5.37 1.98 0.45 0.52 0.49

DSC-Net-L1
mean 51.33 50.84 83.82 96.11 98.97 99.51 99.57
std 1.06 0.91 8.68 6.03 0.76 0.25 0.34

DASC
mean 51.70 52.22 94.15 98.95 99.93 99.85 99.91
std 1.19 1.40 5.62 2.57 0.09 0.16 0.12

SSC-L2
mean 99.92 99.91 99.92 99.96 99.96 99.95 99.94
std 0.07 0.08 0.07 0.03 0.03 0.04 0.05

LRR
mean 100 100 100 100 100 100 100
std 0 0 0 0 0 0 0
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which is controlled by the parameter σ. Hence, the closer the subspaces get, the higher the
chance of wrong clusterings.

• The accuracy of DSC-Net increases with θ. Interestingly, DSC-Net based on `1 regularization
perform worse than with `2. The authors in [42] argued that this happens in practice because
`1 is non-differentiable at zero. However, we do believe this is related to optimizing the network
weights (including the coefficient matrix) using the default subgradient descent method of neural
networks. In practice, they usually produce non-sparse solutions compared to other optimiza-
tion methods such as proximal methods [3]. Generating non-sparse solutions is due to slow
convergence. Although spectral clustering is expected to be robust to weak wrong connections,
there is no guarantee that it is robust to the intermediate non-sparse solutions; in particular if
the solution contains many small non-zero entries with no dominant large entries.

• LKG has the worst performance, providing high accuracy only for θ ≥ 45. This shows that
multiple kernel learning might lead to worse performance compared to the single kernel based
alternatives.

Second experiment: three disjoint subspaces In the second noiseless experiment, samples are
generated from three linearly disjoint subspaces. In particular, we set N = 900 (with 300 data points
per subspace), di = 2 for i = 1, 2, 3, d = 20 and θ ∈ {5, 10, 20, 30, 45, 60} (note that we do not consider
θ = 90◦ because it leads to identical subspaces for the first and second basis); see Appendix A for
more details on the data generation model. The average and standard deviation of accuracy over 10
trials for 10 randomly generated subspaces are reported in Table 4.

We observe the following:

• Compared to the independent case, the accuracy of all nonlinear SC approaches decreases sig-
nificantly for θ sufficiently small (high affinity between subspaces). However, sparsity based
approaches, namely, SMCE, KSSC, LR`1-SSC, KNN-SSC and DSC-Net-L1 have the best per-
formances, especially for θ sufficiently large. This is inline with theoretical justifications for
sparse based linear SC algorithms, that is, SSC [95] and `0-SSC [128].

• As opposed to the first experiment with independent subspaces, the performance of SMR is
among the worse for disjoint subspaces. This is expected because SMR only considers the
grouping effect with no other regularization. Similar performance is observed for DSC-Net-L2
and DASC which are based on `2 regularization. This highlights the vital role of sparsity in
dealing with disjoint subspaces.

• Interestingly, KSSC with RBF kernel, KNN-SSC and SMCE perform slightly better than SSC-L2
and LR`1-SSC for θ = 30◦. This suggests that nonlinearity might lead to better representation
learning when subspaces are close (but with sufficient separability) as shown empirically in [79]
for KSSC.

Figure 6 displays the connectivity graphs of the three disjoint subspaces for θ = 45◦, for the 9
tested algorithms. The data points for three clusters are shown in red, blue and green. The first three
dimensions are considered for these plots. Note the dense and many wrong connections for SMR,
DSC-Net-L2 and DASC. There are many wrong weak connections in the graph of DSC-Net-L1 too,
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Table 4: The average and standard deviation of the accuracy, in percent, of SC algorithms on three
disjoint linear subspaces whose affinity is measured by the angle θ.

θ = 5 10 20 30 45 60

SMCE
mean 35.53 35.54 63.81 99.25 99.73 99.92
std 0.56 0.74 9.73 0.35 0.17 0.07

SMR
mean 67.61 67.22 66.97 66.93 67.70 35.70
std 0.54 2.96 2.81 3.10 1.11 1.02

KSSC(RBF)
mean 35.42 35.74 54.82 99.47 99.78 99.95
std 0.57 0.93 10.18 0.28 0.20 0.07

LR`1-SSC
mean 62.93 80.72 84.76 92.94 99.96 99.98
std 11.65 11.06 13.49 11.51 0.05 0

LKG
mean 35.72 35.30 35.86 37.23 97.50 99.03
std 0.94 0.70 1.02 1.52 0.90 0.68

KNN-SSC
mean 35.74 35.86 42.13 98.85 99.72 99.76
std 0.71 1.15 7.02 0.59 0.13 0.09

DSC-Net-L2
mean 39.50 54.58 62.88 64.73 60.93 38.35
std 6.60 6.05 3.62 1.85 4.65 2.25

DSC-Net-L1
mean 35.18 40.46 57.93 61.93 97.91 98.55
std 0.72 5.53 6.02 7.07 1.34 0.82

DASC
mean 35.94 59.42 65.45 65.61 67.44 37.03
std 0.87 5.06 4.28 3.91 1.20 1.45

SSC-L2
mean 60.95 83.15 82.77 92.84 99.76 99.84
std 11.12 10.40 13.94 11.41 0.18 0.13

LRR mean 67.63 67.22 66.97 66.92 67.70 35.75
std 0.55 2.96 2.81 3.09 1.11 1.07
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however, the stronger connections within subspaces overcome the weaker wrong ones, leading to an
almost correct clustering result (namely, 97.91%; see Table 4). Non-sparse solution of DSC-Net-L1 is
expected as subgradient descent based methods usually do not lead to sparse solutions in practice [3].

(a) SMCE (99.78%) (b) SMR (66.67%) (c) LR`1-SSC (99.89%)

(d) KNN-SSC (99.78%) (e) KSSC (RBF kernel) (100%) (f) LKG (99.22%)

(g) DSC-Net `1 (99.56%) (h) DSC-Net `2 (60.89%) (i) DASC (66.70%)

Figure 6: The connectivity graphs of nonlinear SC algorithms on three disjoint subspaces with θ = 45◦.
The accuracy of the displayed instances is indicated in brackets. The average accuracy over the 10
randomly generated instances can be found in Table 4.
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Conclusion for the linear subspace clustering experiments The majority of nonlinear SC
approaches have difficulties in segmenting the subspaces that are close to each other. This is specifically
evident for the cases with θ = 5, 10. This is expected since the majority of non-linear approaches have
the implicit assumption that the data points from different clusters are not spatially close to each
other. This behavior is expected to be present in clustering nonlinear subspaces as well, as we will see
in the next experiments.

5.1.2 Nonlinear subspace clustering

In this section, we analyze the nonlinear SC approaches on 4 well-known widely used nonlinear syn-
thetic data sets in 2 dimensions: two half-kernels, two spirals, four corners and two arcs. For each data
set, we sample 1000 total data points from the corresponding manifolds13. The data is normalized to
have values between 0 and 1. The obtained connectivity graphs and the corresponding segmentation
are shown in Figures 7, 8, 9 and 10. For each data set, the ground-truth clustering is shown and is
followed by the obtained connectivity graphs of the nonlinear approaches. The average and standard
deviation of clustering accuracy for 10 different sampling of the manifolds are reported in Table 5.

Table 5: The average and standard deviation of the accuracy, in percent, of SC approaches over 10
trials for nonlinear synthetic data sets. The best accuracy is indicated in bold, the second best is
underlined

SMCE SMR KSSC LRL`1-SSC LKG KNN-SSC DSC-Net DASC SSC-L2 LRR

Half-kernels
mean 100 63.06 100 68.88 62.60 99.99 58.23 64.38 70.87 62.00
std 0 2.05 0 1.10 2.96 0.03 4.08 8.58 2.08 2.20

Two Spirals
mean 98.68 64.64 100 51.05 68.02 98.99 55.58 60.66 63.98 64.84
std 1.69 1.54 0 0.61 6.23 2.28 3.16 4.53 2.16 2.29

Four Corners
mean 100 65.19 100 99.98 99.43 100 48.08 58.48 58.23 62.97
std 0 1.54 0 0.06 1.80 0 6.18 5.51 5.82 2.51

Two Arcs
mean 72.93 51.92 73.13 98.36 70.42 73.18 58.07 66.37 55.99 51.56
std 1.57 1.51 1.35 0.91 6.39 2.06 6.23 7.72 1.71 1.27

We observe that:

• Linear SC algorithms, SSC-L2 and LRR do not perform well on nonlinear data sets. Similar
result were obtained for SSC-L1, and hence we did not include them in Table 5.

• SMCE, KSSC with RBF kernel and KNN-SSC successfully produced sparse but well-connected
graph on the half-kernels and 4 corners data sets.

• For the two spirals data set, the performances of SMCE and KNN-SSC are not consistent over
the 10 different samplings of the manifolds. In particular, the inner ending points of the two
spirals might not have subspace preserving representation and the performance might depend
on the sampling process and the spectral clustering step.

13We used the code from https://www.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-generating-
artificial-datasets.
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• Both SMCE and KSSC fail to properly segment the two arcs data set. This is due to the
intersection of the two nonlinear manifolds. Hence, we can conclude that SMCE and KSSC might
not be successful in segmenting intersecting manifolds. Note that the rest of the connectivities
are correct and sparse, the failure comes from the confusion at the points close to the intersection.

• SMR is not successful in clustering nonlinear manifolds. The coefficient matrix corresponding
to SMR has many wrong connections. This suggests that, on top of the grouping property and
the locality preserving regularizations, sparsity also plays a critical role.

• LR`1-SSC is the only successful algorithm in clustering two arcs (although it produces many
wrong connections). This algorithm is also successful in clustering the four corners data set.
But as the nonlinearity increases (such as two spirals or half kernels), the clustering performance
decreases significantly.

• The two arcs data set (see Figure 10) is an example of two intersecting manifolds; they intersect
at (0.29,0.71). We have observed that if the two arcs intersect at (0,0) instead, then the clus-
tering accuracy of KNN-SSC and SMR reaches 100%. This observation does not hold for other
algorithms but this suggests that additional affinity constraints on the coefficient matrix might
lead to better results in some cases.

• Neural network based approaches, that is, DSC-Net and DASC, perform very poorly. The reason
is that their embedding acted as an almost identity mapping and merely rotated the input datta.
In other words, they failed to produce a meaningful embedding in the encoder output. This is
consistent with the results reported in [29].

5.2 Real-world data sets

In this section, we compare the performances of SC algorithms on three widely used real-world data
sets:

• Extended Yale B [24, 55]: The Extended Yale B data set contains 2,414 images of 38
individuals, taken under different illumination conditions. There are 64 frontal-face images,
each of the size 192× 168 pixels, per person. The images were downsampled to 48× 42 pixels,
similar to the general setting provided in [21]. Different number of clusters are considered to
analyze the performance with respect to the number of subspaces.

• Coil-20 [74]: Columbia Object Image Library contains 72 images from 20 objects. The im-
ages were taken from objects in different poses. The images are of size 128 × 128 pixels and
following [42], we downsampled them to 32× 32 pixels.

• MNIST test data set: The MNIST data set contains 70,000 images of 10 handwritten digits
where each image is of size 28-by-28 pixels. In particular, this data set includes training and
test sets of 60,000 and 10,000 images, respectively. Due to high computational complexity of the
majority of the nonlinear approaches (see Section 4), we only use the MNIST test data set for
the evaluation, which is a common practice for evaluating computationally expensive clustering
approaches [126, 127].
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(a) ground-truth (b) SMCE (100%) (c) SMR (61.80%) (d) LR`1-SSC (68.20%)

(e) KNN-SSC (100%) (f) KSSC (RBF) (100%) (g) LKG (61.50%)

Figure 7: Comparing the performance of nonlinear SC approaches on a half kernels synthetic data
set. The accuracy of the displayed instances is indicated in brackets. The average accuracy over the
10 randomly generated instances can be found in Table 5.

(a) ground-truth (b) SMCE (100.00%) (c) SMR (63.90%) (d) LR`1-SSC (51.00%)

(e) KNN-SSC (100%) (f) KSSC (RBF) (100%) (g) LKG (68.50%)

Figure 8: Comparing the performance of nonlinear SC approaches on a two spirals synthetic data set.
The accuracy of the displayed instances is indicated in brackets. The average accuracy over the 10
randomly generated instances can be found in Table 5.
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(a) ground-truth (b) SMCE (100%) (c) SMR (65.10%) (d) LR`1-SSC (100%)

(e) KNN-SSC (100%) (f) KSSC (RBF) (100%) (g) LKG (100%)

Figure 9: Comparing the performance of nonlinear SC approaches on a four corners synthetic data
set. The accuracy of the displayed instances is indicated in brackets. The average accuracy over the
10 randomly generated instances can be found in Table 5.

(a) ground-truth (b) SMCE (74.40%) (c) SMR (50.30%) (d) LR`1-SSC (98.80%)

(e) KNN-SSC (70.30%) (f) KSSC (RBF) (74.10%) (g) LKG (74.10%)

Figure 10: Comparing the performance of nonlinear SC approaches on a two arcs synthetic data set.
The accuracy of the displayed instances is indicated in brackets. The average accuracy over the 10
randomly generated instances can be found in Table 5.
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The parameters of each approach are set to the values introduced by the code of the original
papers (if the code is available). For the approaches that are implemented by us, the parameters are
tuned within the ranges proposed by the corresponding paper for the best result for each data set;
see Appendix B for selected parameters of each approach. The results (namely, the accuracy and the
NMI) on Extended Yale B for different number of subjects, COIL-20, and MNIST are summarized in
Tables 6, 7, and 8, respectively. The value of M indicates that the corresponding algorithm ran out of
16 GB memory, and the numbers indicated with * correspond to the algorithms that did not converge
within 6 hours.

We observe the following:

• On the Extended Yale B data set, SSC-L1 has the overall best performance. As the number
of subjects increases, the neural network based approaches, including DSC-Net-L2 and DASC,
have the overall second best performances. LKG has the worst performance, even worse than
KSSC with a single kernel.

• The high performance of SSC-L1 on Extended Yale B highlights the importance of modeling
noise and corruptions while clustering. Based on the experiments in [21] (see Section 7.2.1),
after removing the sparse noise by applying RPCA [10] on images from each cluster separately,
the clustering accuracy of SSC increases to 100%. This suggests that Extended Yale B can be
well modeled by linear subspaces after the noise is eliminated.

• On the COIL-20 data set, SMCE performs the best followed by KSSC. The neural-network based
approaches perform the worse. Note that, the high accuracy reported on their corresponding
papers heavily relies on the post-processing step rather than the obtained coefficient matrix by
the model [29].

• On the MNIST data set, KNN-SSC performs the best, followed closely by SSC-L2 and SMCE.
KSSC performs better than neural-network based approaches. The Laplacian regularized LR`1-
SSC did not converge within 6 hours of timelimit. This is due to the fact that the iterative
optimization process based on ADMM involves solving a Sylvester equation in each iteration
which is very time consuming compared to solving a linear system in the original SSC algorithm.
The same observation holds for LRR as well because of the computation of an SVD in each
iteration of ADMM. The multiple-kernel based approach of LKG ran out of 16 GB memory which
highlights the high computational cost of kernel approaches that rely on computing multiple
pair-wise dense Gram matrices.

6 Discussion, challenges and future directions of research

Following the extensive numerical comparisons, in this section, we discuss nonlinear SC algorithms
from different perspectives with an emphasis on the existing challenges and possible future research
directions.
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Table 6: Comparison of nonlinear SC algorithms on the Extended Yale B data set. The best value is
highlighted in bold, the second best is underlined.

Metric SMCE SMR LR`1-SSC KNN-SSC KSSC LKG DSC-L2 DASC SSC-L2 SSC-L1 LRR
2 subjects

ACC 100 95.31 99.22 100 88.28 50.78 92.97 93.75 99.22 100 83.59
NMI 100 73.06 94.18 100 54.12 0.01 64.77 66.27 94.18 100 48.39

3 subjects
ACC 55.21 59.89 79.69 58.85 61.45 34.37 60.94 86.45 88.02 99.47 59.37
NMI 35.21 39.06 58.33 35.98 44.52 0.02 47.22 67.04 69.33 97.55 38.26

5 subjects
ACC 60.00 63.12 84.37 49.68 64.06 24.37 65.93 89.06 89.06 99.37 50.93
NMI 54.79 53.04 76.73 38.06 56.87 1.26 58.49 77.99 80.72 97.99 41.37

10 subjects
ACC 51.56 62.34 64.22 57.19 44.06 21.25 69.68 73.75 54.06 91.25 61.87
NMI 50.98 63.61 64.38 57.63 43.51 14.64 67.89 70.66 53.74 87.97 62.91

20 subjects
ACC 57.66 71.48 46.56 58.05 47.65 18.43 71.79 71.87 66.17 87.03 70.31
NMI 60.61 74.35 51.42 67.02 52.08 20.25 74.05 75.15 69.30 85.99 72.58

38 subjects
ACC 55.02 73.56 46.01 52.09 50.29 18.54 69.32 74.38 65.21 73.06 69.86
NMI 62.76 77.74 52.62 63.46 59.56 27.41 74.41 77.90 69.92 77.20 73.89

Table 7: Comparison of nonlinear SC algorithms on the COIL20 data set. The best value is highlighted
in bold, the second best is underlined.

Metric SMCE SMR LR`1-SSC KNN-SSC KSSC LKG DSC-L2 DASC SSC-L2 SSC-L1 LRR
ACC 90.76 64.03 82.29 79.44 85.06 73.40 59.58 57.77 75.62 74.86 60.83
NMI 96.71 73.57 93.21 91.12 95.70 82.72 74.11 67.32 88.55 90.30 74.50

Table 8: Comparison of nonlinear SC algorithms on the MNIST data set. The best value is highlighted
in bold, the second best is underlined. The symbol M indicates that the algorithm ran out of 16 GB
memory.

Metric SMCE SMR LR`1-SSC KNN-SSC KSSC LKG DSC-L2 DASC SSC-L2 SSC-L1 LRR
ACC 68.77 54.64 55.08* 70.48 64.32 M 55.46 46.28 70.12 59.03 43.92*
NMI 73.06 54.97 62.26* 73.98 70.99 M 56.46 44.51 74.89 71.06 35.50*
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Table 9: Advantages and disadvantages of representative nonlinear SC approaches

Category Advantages Disadvantages

Locality preserving

• Convenient adaptation of classic
linear SC

• Interpretable and intuitive

• supporting both independent and
disjoint subspaces

• Dependent on the estimation of lo-
cality parameter

• Fixed locality estimation for all
data points

Kernel Based

• Based on classical mathematical
theory to implicitly transform data
into higher dimensions

• Easily applicable to the majority of
linear formulations via the kernel
trick

• Supporting both independent and
disjoint subspaces

• No guarantee that kernels lead to
implicit feature space suitable for
linear subspace clustering

• Difficulty in choosing the right ker-
nel(s)

• Difficulty in understanding and in-
terpreting results

• Memory inefficiency due to Gram
matrix

Neural-network Based

• Learning the nonlinear transforma-
tion based on the data

• High capacity for learning complex
data representations

• Ill-posed and might lead to trivial
embeddings

• No theoretical guarantees

• Memory inefficiency due to self-
expressiveness representation in la-
tent space

• Difficult optimization and no gen-
eral rule for selecting critical pa-
rameters such as the number of
epochs used for training

• Failure to cluster disjoint sub-
spaces
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6.1 Discussion on the performance of nonlinear SC algorithms

The main advantages and disadvantages of each category of nonlinear SC algorithms are summarized
in Table 9. Based on the experimental results, no nonlinear approach is completely superior to the
other nonlinear approaches.

Locality preserving approaches, which are based on the assumption that the manifolds are smooth
and well sampled, are intuitive while they can be easily designed by adapting the linear models;
see Section 3.1. However, many of the approaches in this category are sensitive to intersecting sub-
spaces, and they depend on locality estimation parameters (such as k in KNN based similarity matrix
construction approaches).

Kernel-based nonlinear approaches can be designed as direct extensions of linear models as well
(depending on the loss function, which is usually based on the Frobenius norm). However, there is no
guarantee that the corresponding feature space is more suitable for linear models. Moreover, with no
prior knowledge, choosing the right kernel and tuning its parameters is highly nontrivial. We noticed
that even though learning weighted combination of multiple kernels might be expected to reduce the
sensitivity to the kernel parameters, defining a proper criterion to adaptively choose the weights of
each kernel is not straightforward for all data sets and applications.

With the growing interest in neural network and their recent success in learning complex data
representations in many fields, deep SC methods have received considerable attention in the past few
years. These approaches tend to learn the kernel embedding function instead of using the existing
predefined kernels. However, Haeffele et al. [29] pointed out potential theoretical concerns for neural
network based nonlinear SC approaches that rely on autoencoder regularization. It is theoretically ar-
gued that the underlying model is ill-posed and encouraging the latent representation to have a union
of subspaces structure through the additional self-expressive loss term (or layer) is insufficient and leads
to degenerate and trivial embeddings of the data in many cases. The potential degenerate embeddings
is also noticed in deep k-means algorithm under the name of “scaling-down phenomenon” [22] where
it is possible to make the clustering loss (for SC, the self-expressive loss) arbitrarily small without
changing the reconstruction loss of the network. This problem can be avoided by several strategies
such as regularizing the network weights or the norm of the embedded data. However, even using
proper regularizations, the joint learning of embedding and self-expressive representation by autoen-
coder regularized nonlinear SC approaches can still lead to trivial data geometry in the embedding
space. These issues are pointed out from a theoretical perspective, under the assumption that the
auto-encoder is highly expressive. Intuitively, based on this assumption, the network can generate
many possible embeddings of the data in the latent space, ZΘ, while the decoder is still capable of
reconstructing the data accurately.

However, in practice and for both synthetic and real-world data sets, the performance of current
neural-network based nonlinear SC approaches is often inferior to other nonlinear approaches. In
fact, DSC-Net as the representative approach, strongly benefits from an ad-hoc post-processing step
to improve the quality of the obtained coefficient matrix (see the second introduced post-processing
step in Section 2.1.2). Our numerical experiments showed that DSC-Net does not necessarily lead
to subspace preserving representations in many cases including the data drawn from independent
subspaces. Hence, we believe that neural network based nonlinear SC through enforced self-expressive
representation in latent space does not impose significant constraints on the geometric arrangement of
the embedded points and appears to be not sufficient nor necessarily successful to recover the union
of latent linear subspace structure.
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6.2 Challenges and Future directions of research

Nonlinear subspace/manifold clustering is a challenging problem for which many approaches have been
proposed. However, many challenges remain, including the following:

• Sensitivity to parameters: SC is an unsupervised problem with no available labelling information.
The majority of algorithms discussed in this paper are found to be sensitive to their parameters.
However, with no prior knowledge, setting these parameters is highly nontrivial and tricky. This
is especially true for neural network based approaches that are very sensitive to the number of
epochs for the pre-training and fine-tuning steps. In our experimental results, we fine-tuned the
number of the epochs; however, we noticed that the performance can degrade significantly as
the number of epochs increases. Multiple kernel learning approaches are also sensitive to their
parameters; in particular to the lack of “good” criterion for choosing the weight of each Kernel.
Developing algorithms with less sensitivity to their parameters (and ideally parameter free) is a
general challenging research direction for unsupervised learning tasks.

• Scalabe algorithms: The majority of nonlinear SC based on self-expressiveness are computation-
ally expensive; see Section 4. Locality preserving algorithms are usually based on estimating a
local neighborhood graph which has at least the complexity of O(n2) and if the neighboorhood
graph is not sparse, the memory requirement would be huge too. Computing the Gram ma-
trix in kernel based approaches is another example of computational inefficiency. Except a few
works that address scalability issue in deep self-expressive based SC approaches, e.g., [93, 142],
nonlinear SC algorithms are not practical for data sets with more than 10,000 data points. Com-
puting and storing the n×n coefficient matrix C is specifically an important bottleneck in these
approaches.

• Theoretical guarantees: In contrast to linear SC algorithms whose theoretical aspects are well
studied and understood, nonlinear alternatives are mostly intuition driven. Except for the few
works in locality preserving nonlinear approaches (such as [37]), there is no clear theoretical
analysis on conditions for accurate subspace recovery for nonlinear subspaces. The lack of theo-
retical analysis is also evident in neural network based nonlinear SC approaches. Understanding
the black box of neural networks is in general an ongoing research direction and combining
these highly expressive models with SC based on mere intuition might result in trivial geometric
embeddings [29] (see also the discussion in Section 6.1). Hence, understanding and analyzing
nonlinear approaches from the theoretical standpoint can help avoiding ill-posed models that
might be intuitively appealing at first.

• Non-image data extensions: Almost all nonlinear SC approaches are evaluated on image data
sets such as images of faces, objects and handwritten digits. Investigating nonlinear structures
in other data formats is another interesting research direction. There are selective approaches
for subspace data on Grassmann manifolds such as [113, 111] or for symmetric positive definite
(SPD) matrices such as [132, 33], but the major focus in the past years has been on image data.

• Robustness: The majority of nonlinear SC approaches rely on the Frobenius norm to measure
the data fitting error, and hence are sensitive to gross corruptions such as occlusions, and the
presence of outliers. Improving the robustness in such scenarios is definitely an important
practical aspect.
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• Clustering data with intersecting manifolds: The results on the synthetic data sets highlighted
the difficulty for nonlinear SC approaches to cluster manifolds that are close to each other or
intersect. The closer the manifolds are, the more the locality preserving approaches are sensitive
to the locality controlling parameter, and similarly the kernel based approaches to the kernel
parameters. Moreover, learning discriminating features to disentangle the multiple manifolds
structure in the embedding space is harder for neural networks for data from closer manifolds.
Hence, a general challenging research direction is to develop approaches to capture internal
multiple manifold structures when they are spatially close in the ambient space.

7 Conclusion

In this paper, we presented a comprehensive overview of nonlinear subspace clustering (nonlinear SC)
approaches, our main focus being on algorithms based on self-expressiveness. In Section 3, we provided
a taxonomy for classifying nonlinear SC approaches into three broad categories: locality preserving,
kernel based, and neural network based approaches. The approaches within each category were further
divided into detailed subcategories and were thoroughly reviewed and summarized. In Section 4,
we briefly discussed the computational cost of these approaches. In Section 5, the representative
approaches within each (sub)-category were extensively compared on synthetic and real-world data
sets. Based on the obtained results, Section 6 discussed the advantages and disadvantages of the
different algorithms, and also elaborated on the current challenges for future research.
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A Synthetic data generation

In this section, we provide the detailed data generation process for independent and disjoint linear subspaces
used in Section 5.1.1.

We introduce a semi-random model for generating the linear synthetic data. In this model, the bases of the
subspaces are fixed, to control the angle between them, but the data points are generated at random from each
of the subspaces. The data generation model for independent and disjoint subspaces are as follows:

• Independent subspaces: In order to generate two independent subspaces with intrinsic dimension m
in a d-dimensional space (m < d) with controlled affinity between subspaces, the basis of the subspaces
are initially constructed in 2m-dimensional space as follows:

Û1 =

(
Im
0m

)
, Û2 =

(
cos(θ)Im
sin(θ)Im

)
,

where Im and 0m are the identity and zero m×m matrices and θ ∈ [0, π2 ]. The affinity between the two
subspaces is explicitly controlled by the parameter of θ. By decreasing the value of θ from π

2 to 0, the
affinity between the subspaces decreases and the subspace clustering task gets more challenging [95].

Let N be the total number of data points on all subspaces, with half of the data points on each subspace.
The data points within each subspace in 2m-dimensional space are randomly produced by setting linear
mixture weights at random using the Gaussian distribution and multiplying them by the initial bases (in
Matlab X̂i = Ûi ∗ randn(d,N/2) for i = 1, 2). Let X̂1 and X̂2 denote the 2m-dimensional data points
generated for each subspace. The 2m-dimensional data points are transferred to the final d-dimensional
space by multiplying them by orthogonal columns of random matrix P ∈ Rd×2m (in Matlab, P is generated
by orth(randn(d, 2m))):

Xi = P × X̂i, for i = 1, 2.

Note that, by increasing the dimension using the orthogonal matrix P , we keep the affinity between
subspaces in the initial 2m-dimensional space which is controlled by the parameter θ. It is a common
practice to normalize the data points to have unit `2 norm, however, since normalization ruins the
structure for affine and nonlinear subspaces, we do not normalize the data.

• Disjoint subspaces: For disjoint synthetic subspaces, we generate N samples from three subspaces (with
N/3 samples for each subspace) similar to the independent case. In particular, three initial subspaces
bases, with intrinsic dimension of m, are constructed in 2m-dimensional space as:

Û1 =

(
Im
0m

)
, Û2 =

(
cos(θ)Im
sin(θ)Im

)
, Û3 =

(
cos(θ)Im
− sin(θ)Im

)
.

Identical to the previous independent subspaces generation, the initial 2m-dimensional data points within
each subspace, that is, {X̂i}3i=1 are obtained by multiplying {Ûi}3i=1 by linear combinations produced from
Gaussian distribution with zero mean and standard deviation of 1. The dimension of the data points are
lifted to the final d-dimensional space by multiplying an orthogonal randomly generated matrix P .

B Parameter setting

In this section, the selected parameters for each approach is listed in details in Table 10 for SMCE, SMR,
LR`1-SSC, KNN-SSC, KSSC, LKG, SSC-L2, SSC-L1 and LRR; in Table 11 for DSC-Net and in Table 12 for
DASC.

The adaptive parameter selection in [21] is followed for setting the regularization parameter λ which controls
the importance of the self-expressiveness term, ||X−XC||2F (or ||Φ(X)−Φ(X)C||2F in kernel based approaches).
To this end, the following data-driven strategy is used: λ = αmaxi

1
maxj 6=i |X(:,j)>X(:,i)| . Hence, the larger

the parameter α is, the more important the self-expressiveness term is considered in the optimization. This
parameter setting is used for LR`1-SSC, KNN-SSC, KSSC, SSC-L1 and SSC-L2.
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