
ar
X

iv
:h

ep
-p

h/
04

07
03

3v
2 

 2
1 

Fe
b 

20
05

Fast Evaluation of CTEQ Parton

Distributions in Monte Carlos

Zack Sullivan

Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia,
IL 60510-0500, USA

Abstract

A few changes to the routines that calculate CTEQ parton distribution functions
allow modern compilers to optimize the evaluations, while having no quantitative
effect on the results. Overall computation time is reduced by a factor of 4–5 in
matrix-element calculations, and by 1.3–2.5 in showering Monte Carlo event gen-
erators. Similar improvements in performance may be expected in any calculations
relying heavily on interpolation or multiple calls to functions.

1 Introduction

A significant amount of time and computing resources are spent on calculat-
ing events at hadron colliders. Whether a theoretical calculation of matrix
elements, or an experimental simulation of events with detector effects, one
common element is the evaluation of parton distribution functions (PDFs).
These functions return the probability of finding a parton (quark or gluon)
inside of a proton, based on two parameters: the fraction of momentum car-
ried by the parton x, and the square of the energy scale of the process Q2.
Because the input parameters can span several orders of magnitude, the val-
ues of these functions are stored in two-dimensional tables for a finite number
of input points. An approximate result for an arbitrary input of x and Q2 is
derived by interpolating between the values obtained from the nearest table
entries.

In profiling ZTOP [1,2], a FORTRAN code written to simulate next-to-leading-
order jet distributions in single-top-quark production, it has become apparent
that much of the execution time of real production code is spent acquiring
PDFs. Upon close examination of the CTEQ4 and CTEQ5 PDF codes [3], a
handful of trivial optimizations arise that can cut this time in half. Based on

Preprint submitted to Elsevier Science 13 December 2004

http://arxiv.org/abs/hep-ph/0407033v2


Table 1
Fraction of time spent evaluating PDF functions using default CTEQ computer
codes for three programs: the next-to-leading-order jet calculation ZTOP, and two
showering event generators, HERWIG and PYTHIA.

Program CTEQ4/5 CTEQ6

ZTOP 90% 60%

HERWIG 70% 33%

PYTHIA 35% 16%

this success, I examine further algorithmic improvements in the typical inter-
face functions that reduce the execution time by another factor of two or more
for all CTEQ PDFs (including CTEQ6 [4]). I provide specific recommenda-
tions that are simple to implement, but which can have large consequences for
efficiency.

A gprof profile of ZTOP [1,2] indicates that up to 90% of the execution time
is spent in acquiring PDFs. Execution times in other programs appear to be
dominated by the same routines. In Table 1 I show the typical fraction of
time spent evaluating PDFs for ZTOP, and the two most common showering
event generators, HERWIG 6.1 [5], and PYTHIA 6.2 [6]. The results in Table 1
were generated using the GNU g77 3.1 compiler for linux on a 1.4 GHz Pen-
tium 4 processor with the flags -g -pg -O3 -march=pentium4 -msse2, and
were verified by commenting out the routines. The results vary by less than
3% when changing compilers or compiler flags. Times for CTEQ4 and CTEQ5
differ from CTEQ6, because the latter uses a different interpolation algorithm.
Retrieving PDFs is always the most time-intensive operation in these calcula-
tions. Therefore, it behooves us investigate what options are available to speed
up the PDF routines.

Having identified the PDFs as the main bottleneck in the calculation of cross
sections and events at hadron colliders, I will examine several successive levels
of optimization in Sec. 2. The trade off will be that each level involves replacing
a larger fraction of the base code. In Sec. 3 I evaluate the effectiveness of each
change using a benchmark program, and three real production codes: ZTOP,
HERWIG, and PYTHIA. I conclude with some observations and recommendations
for future improvements.

2 Levels of optimization

It is important to recognize that code which evaluates PDFs is often embedded
in complex ways inside an application. Hence, the replacement of a given

2



routine could be considered invasive. I consider classes of optimization that
each replace larger portions of code. In practice the first two changes I suggest
are easy to accommodate. However, the final one replaces a routine from a
commonly used library, and hence care must be taken to ensure that no hidden
dependencies arise. In all cases the routines have been verified to work with
all programs mentioned in this paper.

2.1 Modifying POLINT

Looking more carefully at a profile of ZTOP using CTEQ5 PDFs indicates that
more than 75% of the time is spent inside the subroutine POLINT. POLINT is a
routine designed to perform a polynomial fit of degree n−1 to a data set of n
points based on Neville’s algorithm [7]. This subroutine is used by the CTEQ
Collaboration [3,4] to interpolate smoothly between the values of x and Q2

that are read in from a table of best-fit values.

One approach to increasing speed would be to replace POLINT outright with
alternate interpolations, or functional fits to the PDFs. While these are rea-
sonable choices, it is important to ensure that any results are numerically
identical to results obtained previously. Therefore, I begin by making trivial
modifications of POLINT itself. Two useful changes [8] are:

(1) Remove the line: IF(DEN.EQ.0.)PAUSE.
(2) Write different versions of POLINT for 3- and 4-point interpolation, and

call them directly. E.g., replace POLINT(XA,YA,N,X,Y,DY) with
POLINT3(XA,YA,3,X,Y,DY) in PARTONX4 or PARTONX5.

The first optimization is the most important as the line is never reached in the
evaluation of the CTEQ PDFs, but it generally prevents the compiler from
fully optimizing the loops [9]. Beyond being an unnecessary comparison, allow-
ing a break point out of the loop forces the processor to flush the instruction
pipeline, and can produce a missed branch comparison. It also prevents the
compiler from using most types of parallel instructions. The second optimiza-
tion mostly helps compilers to optimize the loops by defining the number of
iterations at compile time, rather than dynamically.

This optimization is more often effective with CTEQ4/5 than with CTEQ6,
since POLINT is only used at the edges of the x and Q2 tables in CTEQ6.
However, using these optimizations with CTEQ6 will never be slower, and
can be much faster for some calculations. We will see in Sec. 3 that using
POLINT3 and POLINT4 has other benefits as well.

A further optimization for CTEQ4/5 comes from completely recoding Neville’s
algorithm for the special case of 3 points, and removing the return of the error

3



estimation. As a general routine, POLINT evaluates several expressions that are
never used if there are only 3 points. Furthermore, the CTEQ code does not
use the error estimate provided in the general case. Therefore, all unnecessary
calculations and assignments are removed. This results in a reduction of the
number of machine instructions, data reads, and data writes by a factor of
3. Net effects on the overall speed of execution are described in Sec. 3. The
“fast” version of POLINT3 is listed in the Appendix.

2.2 Modifying PARTONXN

Most programs that use parton distribution functions access them through
interface routines, such as STRUCTM and PFTOPDG [10]. The key feature of these
routines is that they ask for the density of all partons at once (uv, us, dv, ds,
s, c, b, g). Typically this is done by looping over the routines that access the
PDFs, where the values of x and Q2 are fixed, but only the flavor of the parton
changes. This immediately suggests an algorithmic improvement that should
be applicable to all types of parton distributions: save the values of x and Q2,
and the results of any functions applied to them, and bypass those functions
unless x or Q2 change.

This algorithmic improvement in the CTEQ PDFs involves minor edits to
the routines PARTONXN, where N is the number of the CTEQ set. The changes
consist of adding a few SAVE statements, and a test for whether x or Q2 has
changed. For CTEQ4/5 add

DOUBLE PRECISION XLAST, QLAST, QG

INTEGER JX,JQ

DATA XLAST, QLAST / -1D0, -1D0 /

DATA JX, JQ / 0, 0 /

SAVE XLAST,QLAST,QG,JX,JQ

IF ((X.EQ.XLAST).AND.(Q.EQ.QLAST))

& GOTO 99

XLAST=X

QLAST=Q

after the declaration statements, and add a statement label 99 to the first line
that involves the parton flavor:

99 IF (IPRTN .GE. 3) THEN

The calls to POLINT should also be changed to one of the versions of POLINT3
mentioned in Sec. 2.1.

4



The CTEQ6 PDFs use a completely different interpolation through the table
of x and Q2. Most of the calculations in PARTONX6 are associated with this
interpolation, and therefore there is a greater potential gain by adding

DOUBLE PRECISION X, Q

INTEGER JX, JQ

DATA X, Q / -1D0, -1D0 /

DATA JX, JQ / 0, 0 /

SAVE X, Q, JX, JQ, JLX, JLQ

SAVE SS, CONST1, CONST2, CONST3, CONST4

SAVE CONST5, CONST6

SAVE SY2, SY3, S23, TT, T12, T13, T23

SAVE T24, T34, TY2, TY3

SAVE TMP1, TMP2, TDET

IF ((XX.EQ.X).AND.(QQ.EQ.Q)) GOTO 99

after the declaration statements, and adding the statement label 99 to the
same place as in CTEQ4/5. The calls to POLINT should also be changed to
POLINT4, as mentioned in the Sec. 2.1.

2.3 Modifying STRUCTM and PFTOPDG

All of the optimizations suggested so far consist of modifying the CTEQ rou-
tines. However, there can still be a significant overhead in calling the CTEQ
routines. Since most programs access the PDFs by calling STRUCTM or PFTOPDG,
a final improvement would be to completely replace these routines with ver-
sions specialized to the CTEQ PDFs. The idea is to incorporate PARTONXN

directly into STRUCTM, and to remove any additional redundancies. These rou-
tines may be obtained from the author or from Ref. [11].

There are two options for optimizing PFTOPDG. The first option is to write
another copy of the code in STRUCTM that returns the values in a different
format. The second option, which is used by the CERNLIB PDFLIB routines, is
to simply call STRUCTM. The first option is error-prone, and only provides a
2% improvement in speed. The second option is actually an interface bug in
CERNLIB PFTOPDG, since it advertises that it will separately return the PDFs
for all quarks and anti-quarks. This is fine for CTEQ4–6, but newer PDFs
may not have the same value for s and s̄. Therefore, a call to PFTOPDG may
quietly give incorrect results in the future. Care must be taken to ensure that
a given set of PDFs are consistently accessed.

5



3 Optimization results

In order to assess the usefulness of these optimizations, I evaluate four pro-
grams. I consider a loop over PDFs, and three calculations of t-channel single-
top-quark production: ZTOP, an analytic next-to-leading order calculation of
jet distributions [1,2], HERWIG 6.1 [5], and PYTHIA 6.2 [6]. All calculations are
compiled with the GNU FORTRAN compiler g77 versions 2.95 and 3.1, and the
Intel compiler ifc 6.0. Previously [8], I have investigated the effects of the
first optimization on HERWIG and PYTHIA while including fast detector simu-
lation SHW [12]. The routines added by SHW contribute a few percent to the
overall execution time. Hence, in order to more effectively isolate the effects of
the PDFs and reduce dependency on unnecessary libraries, I do not use SHW

here, or write out any data. All numerical results are from execution on a 1.4
GHz Pentium 4 machine. Limited tests performed on Pentium 3 machines are
completely consistent with the results described below.

3.1 Benchmark for PDFs

The most naive test of potential speed gains comes from looping over parton
distribution functions. I probe values of x between 10−5 and 0.98, and fix
the scale to be Q2 = (x ∗ 1960 GeV)2. These choices avoid any possibility of
anomalous gains due to fast memory access in the level 2 cache. However, this
may underestimate the benefit of using POLINT4 in the CTEQ6 distributions
for processes at the Large Hadron Collider at CERN, where larger values of
Q2 will be typical. In Ref. [8], I called the CTEQ routines directly. For this
comparison, I access the routines using a simple version of STRUCTM. This
is more representative of the typical use of the PDFs, and allows a direct
comparison of all optimization levels.

In Table 2 I show the relative speed gain for each correction broken down by
compiler and PDF set. The numbers are normalized to the results obtained
using POLINT3/4. This choice is based on the observation in Ref. [8] that the
execution times in typical codes are dependent on detailed choices of com-
piler flags. However, by using POLINT3/4, this dependence tends to disappear.
Hence, by using the lowest level of optimization, not only do the programs
operate up to factors of 2 faster, the speeds become more dependent on algo-
rithms and less dependent on compiler details.

Table 2 demonstrates the speed enhancement due to saving common results be-
tween calls, as described in Sec. 2.2. This is a mild enhancement for CTEQ4/5,
where the dominant subroutine is POLINT3, but is a significant improvement
for CTEQ6. For CTEQ4/5, I also show the results of using a fully optimized

6



Table 2
Typical speed gains compared to POLINT3/4 when looping over all partons, and
10−5 < x < 0.98. Each column is separately normalized. The fastest time for each
is also listed.

g77 3.1(2.95) ifc 6.0

Optimization CTEQ4/5 CTEQ6 CTEQ4/5 CTEQ6

Default CTEQ 1/(1.1–1.2) 1.0 1/(1.5–2.7) 1/1.03

POLINT3/4 1.0 1.0 1.0 1.0

POLINT3 (fast) 1.5 — 1.2 —

SAVE x,Q2 1.26 2.6 1.12 2.4

SAVE x,Q2 (fast) 2.3 — 1.9 —

fastest STRUCTM 3.1 3.1 4.6 2.7

fastest times 40 s 50 s 17 s 35 s

version of POLINT3, described in Sec. 2.1, and the total improvement when
combined with saving the values. At this level, the typical gain over the base
POLINT3/4 is an additional factor of 2.

There are several possible ways to combine POLINT and PARTONXN into STRUCTM.
The line labeled “fastest STRUCTM” lists the speed gain over POLINT3/4 using
all suggested improvements. The net enhancement over the default CTEQ
distributions ranges from a factor of 3 to more than a factor of 12. All bench-
marks are somewhat artificial, but this is a good indication of the upper range
of improvements we might expect.

The final line of Table 2 shows the fastest times achieved for an arbitrary fixed
number of loops. The first observation is that the ifc compiler tends to be
a factor of 1–3 times faster than the g77 compilers. (The difference between
g77 2.95 and g77 3.1 tends to be less than 5–10%.) The second observation
is that the fastest CTEQ4/5 is up to a factor of 2 faster than CTEQ6. This
effect comes entirely from the difference in interpolation algorithms. We should
therefore expect the fractions of time spent calling PDFs listed in Table 1 to
become smaller, and CTEQ4/5 to use less time than CTEQ6.

3.2 Matrix element codes and ZTOP

Benchmarks can be misleading. Therefore, I consider the effects of the op-
timizations of Sec. 2 on a working production code of single-top-quark pro-
duction [1,2] called ZTOP. The results listed in Table 3 show a remarkably
similar gain to the benchmark scenario except at the fastest times. Again,

7



Table 3
Typical speed gains for the matrix-element code ZTOP relative to POLINT3/4. Each
column is separately normalized. The fastest time for each is also listed.

g77 3.1(2.95) ifc 6.0

Optimization CTEQ4/5 CTEQ6 CTEQ4/5 CTEQ6

Default CTEQ 1/1.2 1.0 1/(1.6–2.2) 1.0

POLINT3/4 1.0 1.0 1.0 1.0

POLINT3 (fast) 1.3 — 1.25 —

SAVE x,Q2 1.2 2.0 1.13 2.0

SAVE x,Q2 (fast) 1.7 — 1.7 —

fastest STRUCTM 1.9 2.15 1.9, 2.7 2.15

fastest times 86 s 98 s 60, 42 s 62 s

the replacement of POLINT by POLINT3 tends to remove the dependence on
compiler flags. By using the replacement for STRUCTM, an additional factor of
2 is typical. The ifc compiler pushes this to a factor of 3 on a Pentium 4
processor by adding vectorization. The last line of Table 3 shows the typical
result that the Intel compiler is a factor of 1.5–2 faster than g77.

Not all matrix element calculations use all PDFs. In the case of t-channel
single-top-quark production, one leg in the matrix-element diagrams has only
an incoming b or b̄ quark, or a gluon g. Additional time might be saved by
eliminating any unnecessary calls to the PDFs. In practice this can be very
difficult to achieve, e.g., HERWIG and PYTHIA use the PDFLIB STRUCTM [10]
interface as an abstraction. In order to use individual PDFs, they would have
to incorporate a new interface. In the case of ZTOP, the execution time can be
reduced by a factor of 1.5 from the base POLINT3/4, but the improvement is
less significant as additional optimizations are used. In general, if there is a
clear way to eliminate extraneous calls to PDFs when coding matrix elements,
it should be implemented.

3.3 HERWIG and PYTHIA

Theoretical calculations are typically at the matrix-element or jet level, but
experimental and careful phenomenological studies generally resort to using
showering Monte Carlo event generators. These codes are significantly more
complex, and we should expect to see less gain in efficiency as additional time
is spent in showering and detector simulation. In order to assess the impact
on the two most common event generators, HERWIG 6.1 [5] and PYTHIA 6.2 [6],
I use them to calculate t-channel single-top-quark production, including all

8



Table 4
Typical speed gains for PYTHIA relative to POLINT3/4. Each column is separately
normalized. The fastest time for each is also listed.

g77 3.1(2.95) ifc 6.0

Optimization CTEQ4/5 CTEQ6 CTEQ4/5 CTEQ6

Default CTEQ 1/1.03 1.0 1/(1.15–1.25) 1.0

POLINT3/4 1.0 1.0 1.0 1.0

POLINT3 (fast) 1.06 — 1.05 —

SAVE x,Q2 1.04 1.13 1.05 1.13

SAVE x,Q2 (fast) 1.1 — 1.1 —

fastest STRUCTM 1.14 1.15 1.18 1.15

fastest times 55 s 58 s 42 s 43 s

showering effects.

While evaluating PDFs is indeed the most time-intensive operation in PYTHIA,
Table 1 tells us that no optimization can provide more than about a factor of
1.5 improvement in speed. In Table 4 we see that the ifc compiler achieves
almost the full factor of 1.5, while g77 can attain a factor of 1.2. Both results
are significantly faster than the parameterizations of CTEQ PDFs built into
PYTHIA. Since using table-based PDFs is also inherently more accurate, there
appears to be no reason to continue producing parameterizations.

The HERWIG event generator spends almost as much time evaluating PDFs as
the matrix element example considered above. This can be traced to HERWIG

calling STRUCTM 1100–1800 times for each event requested. Table 5 shows the
speed gains when using the each level of optimization as before. Remarkably,
execution times are reduced by a factor of 1.8–2.5 for CTEQ4/5, and by 1.4–
1.7 for CTEQ6. The actual times are somewhat anomalous, however. Unlike
the benchmark, ZTOP, or PYTHIA, g77 3.1 appears to produce faster code than
ifc 6.0, and CTEQ6 is faster than CTEQ4/5. This is fortuitous for people
using the g77 compiler, but there is a catch. Using any compiler, and any PDF
code (including the default CTEQ PDFs), the number of events produced by
HERWIG 6.1 differs by up to 5% when different compiler flags are used. There
appears to be a large sensitivity to round-off errors when using initial-state
showering. This should be further investigated to determine whether this issue
affects all HERWIG results, or is isolated to certain processes.

9



Table 5
Typical speed gains for HERWIG relative to POLINT3/4. Each column is separately
normalized. The fastest time for each is also listed.

g77 3.1(2.95) ifc 6.0

Optimization CTEQ4/5 CTEQ6 CTEQ4/5 CTEQ6

Default CTEQ 1/1.12 1.0 1/(1.2–1.7) 1.0

POLINT3/4 1.0 1.0 1.0 1.0

POLINT3 (fast) 1.25 — 1.1 —

SAVE x,Q2 1.14 1.6 1.12 1.3

SAVE x,Q2 (fast) 1.5 — 1.3 —

fastest STRUCTM 1.65 1.7 1.53 1.4

fastest times 64 s 50 s 75 s 55 s

Table 6
Fraction of time spent evaluating PDF functions using an optimized STRUCTM for
three programs: the next-to-leading-order jet calculation ZTOP, and two showering
event generators, HERWIG and PYTHIA.

Program CTEQ4/5 CTEQ6

ZTOP 42% 48%

HERWIG 30% 23%

PYTHIA 9% 9%

4 Conclusions

Given the increasingly complex nature of calculations of hadronic physics we
should investigate where bottlenecks in computational speed arise. It appears
that one source of significant loss of computational speed is in evaluating
parton distribution functions. For users of the CTEQ PDFs I propose three
levels of optimization that can reduce computational times by up to a factor
of 1.3–2.5 in showing event generators, and up to a factor of 4–5 in matrix-
element calculations.

We observe in Sec. 3 that replacing POLINT with POLINT3/4 greatly reduces
the dependence of program execution time on the choice of compiler flags. This
is a simple change, and can improve running times of some programs by up to
a factor of 2. Since most programs call several PDFs in a row with the same
values of x and Q2, the obvious next step is to modify the CTEQ routines
PARTONXN to save previous results, and calculate only what has changed. The
third level of optimization replaces the typical CERNLIB interface functions

10



STRUCTM and PFTOPDG [10] with fully optimized versions that are specialized
to the CTEQ parton distributions. I recommend that these improvements
be incorporated into the base CTEQ distribution [3], the PDFLIB routines in
CERNLIB [10], and the new Les Houches Accord compilation of PDFs LHAPDF
[13]. Full versions of the routines presented here may be obtained from the
author, or from Ref. [11].

Despite these impressive gains, we see in Table 6 that evaluating PDFs remains
the most time-consuming aspect of hadronic calculations. This suggests two
avenues of investigation that should be considered for future programs. First,
a systematic study of PDF evolution codes should be performed to deter-
mine whether there are more efficient interpolation algorithms to use with
table-based PDFs. This would allow universal improvements in code execu-
tion. Second, each Monte Carlo writer should be aware of the timing issues
(and potential bugs if s̄ is not the same as s), and consider using an interface
structure other than STRUCTM. The potential savings from calling one PDF
instead of eight or more could be very significant. Finally, it is interesting that
the optimizations I have listed can remove the apparent need for parameter-
izations of the parton distribution functions. In general, any calculation that
relies heavily on interpolation, or multiple evaluations of a function in which
some pieces do not vary, should see similar improvements in performance by
applying these same techniques.

Acknowledgements

This work was supported by Universities Research Association Inc. under Con-
tract No. DE-AC02-76CH03000 with the United States Department of Energy.

A A fast POLINT3

This is a “fast” version of POLINT3, which has been optimized for the special
case of 3-point fitting, and no possibility of divisions by zero. An error estimate
is not returned, since it is never used in the CTEQ evolution codes. This code
should be used to replace the version of POLINT called by the CTEQ4 and
CTEQ5 PDFs.

C This is a specialized recoding of Neville’s

C algorithm based on the POLINT routine from

C "Numerical Recipes", but assuming N=3, and

C ignoring the error estimation.

C Written by Z. Sullivan, May 2004

11



C This file uses a minimal number of

C instructions to do 3-point fitting.

C SUBROUTINE POLINT (XA,YA,3,X,Y,IGNORED)

SUBROUTINE POLINT3 (XA,YA,N,X,Y,DY)

IMPLICIT NONE

DOUBLE PRECISION XA(3),YA(3),X,Y,DY,DEN

DOUBLE PRECISION C1,HO,HP,HP2,W,D1,D2

INTEGER N

HO=XA(1)-X

HP=XA(2)-X

W=YA(2)-YA(1)

DEN=HO-HP

DEN=W/DEN

D1=HP*DEN

C1=HO*DEN

HP2=XA(3)-X

W=YA(3)-YA(2)

DEN=HP-HP2

DEN=W/DEN

D2=HP2*DEN

W=HP*DEN-D1

DEN=HO-HP2

IF((X+X-XA(2)-XA(3)).GT.0D0) THEN

Y=YA(3)+D2+HP2*W/DEN

ELSEIF((X+X-XA(1)-XA(2)).GT.0D0) THEN

Y=YA(2)+D1+HO*W/DEN

ELSE

Y=YA(1)+C1+HO*W/DEN

ENDIF

RETURN

END

References

[1] B. W. Harris, E. Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl, Phys. Rev. D
66, 054024 (2002).

[2] Zack Sullivan, Phys. Rev. D 70, 114012 (2004).

12



[3] CTEQ Collaboration, H. L. Lai et al., Phys. Rev. D 55, 1280 (1997); Z. Phys.
C 74, 463 (1997); Eur. Phys. J. C 12, 375 (2000).

[4] CTEQ Collaboration, J. Pumplin et al., J. High Energy Phys. 07, 012 (2002).

[5] G. Corcella et al., J. High Energy Phys. 01, 010 (2001).

[6] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).

[7] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes
in FORTRAN: The Art of Scientific Computing (Cambridge University Press,
Cambridge, 1986), Chap. 3.1.

[8] Zack Sullivan, Faster parton distribution evaluation in Monte Carlos,
FERMILAB-FN-755, hep-ph/0403055.

[9] Intel Architecture Optimization Reference Manual, Intel Corporation Document
245127-001, 1999; Intel Fortran Compiler for Linux Systems User’s Guide,
Volume II: Optimizing Applications, Intel Corporation Document 2553260-002,
2003.

[10] H. Plothow-Besch, W5051 PDFLIB 1991.03.21, CERN-PPE; Comput. Phys.
Commun. 75, 396 (1993); Int. J. Mod. Phys.A10, 2901 (1995); W5051 PDFLIB
2000.04.17, CERN-PPE.

[11] All files are available directly from the author, or from
http://home.fnal.gov/∼zack/pdf/.

[12] J. S. Conway et al., Report of the Tevatron Higgs working group, in Physics
at Run II: the Supersymmetry/Higgs Workshop, Fermilab, 1998, edited by
M. Carena and J. Lykken (Fermilab, Batavia, 2002), p. 39, hep-ph/0010338.

[13] W. Giele et al., The QCD/SM working group: Summary report, in Les
Houches 2001: Physics at TeV colliders, Les Houches, France, 2001, edited by
P. Aurenche et al., p. 275, hep-ph/0204316.

13

http://arxiv.org/abs/hep-ph/0403055
http://arxiv.org/abs/hep-ph/0010338
http://arxiv.org/abs/hep-ph/0204316

	Introduction
	Levels of optimization
	Modifying POLINT
	Modifying PARTONXN
	Modifying STRUCTM and PFTOPDG

	Optimization results
	Benchmark for PDFs
	Matrix element codes and ZTOP
	HERWIG and PYTHIA

	Conclusions
	Acknowledgements
	A fast POLINT3
	References

