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Abstract

We study autocorrelation times of physical observables in lattice QCD as a function of the molecular dynamics trajectory length in the hybrid
Monte-Carlo algorithm. In an interval of trajectory lengths where energy and reversibility violations can be kept under control, we find a variation
of the integrated autocorrelation times by a factor of about two in the quantities of interest. Trajectories longer than conventionally used are found
to be superior both in the Nf = 0 and Nf = 2 examples considered here. We also provide evidence that they lead to faster thermalization of systems
with light quarks.
© 2006 Published by Elsevier B.V.
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1. Introduction

Hybrid Monte-Carlo (HMC) [1] is the most widely used al-
gorithm to simulate non-Abelian gauge theories in the presence
of Nf > 0 quark flavors. For Wilson-type quark actions it was
found, in its most straightforward application, to become pro-
hibitively expensive in the regime of phenomenological interest
(with two very light quarks) [2]. Recent advances [3–6] how-
ever have led to a substantial lowering of the CPU time of
simulations. These more sophisticated forms of HMC typically
have a number of parameters that have to be tuned to guarantee
an efficient simulation. One parameter that is however com-
mon to all HMC algorithms is the length τ of the trajectories
of ‘molecular dynamics’ evolution, at the end of which an ac-
cept/reject step is performed to correct for any finite-step-size
errors.
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The algorithm efficiency’s dependence on τ has only been
rarely and partially studied in the literature [7–10]. The reason
for this is easy to understand. If we neglect the cost of evalu-
ating the Hamiltonian, performing trajectories of length τ = 2
represents the same computational cost as twice as many tra-
jectories of length 1: indeed, as discussed in Appendix A, the
average energy violations along a trajectory at fixed step-size
are weakly dependent on the length within a reasonable range,
and the reversibility violations increase rather slowly (see how-
ever [11]). Hence, with a high acceptance rate in both cases,
to discriminate between these two running modes one has to
determine the autocorrelation times of the observables of in-
terest with some accuracy and reliability. This in turn requires
very high statistics, which one is normally not ready to invest
into parameter optimization. In this letter we study this question
in various situations where high statistics can be achieved, and
yet some realistic features of difficult simulations are present.
A study of the 2d XY-model [12] in the early days of HMC fol-
lowed a similar strategy, and a thorough analytic investigation
of the free field theory case can be found in [13].
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Table 1
The parameters of the physical systems considered

L3 × T BF Nf 1/dτ β κ a/r0 [Ref.] aMPS

A 84 A 0 30 6.086 – 0.16 [23] –
124 A 0 30 6.364 – 0.11 [23] –
164 A 0 30 6.57 – 0.08 [23] –

B 83 × 32 0 0 50 6.0 0.1338 0.19 [23] 0.38(2)

C 243 × 32 0 2 32 5.3 0.1355 0.16 [25] 0.325(10)

D 124 A → 0 2 32 5.6215 0.136665 0.11 [24] –

A boundary field (BF) 0 means that it is vanishing, while A refers to ‘point A’ of Ref. [18].
Whether in the end our conclusions carry over to other forms
of HMC algorithms will require direct testing. However we
show that the dependence of the algorithm’s efficiency on τ can
be significant, and a factor around two in computing time can
easily be wasted in the case of an unfortunate choice of trajec-
tory length.

2. Data

We employ the hybrid Monte-Carlo algorithm [1]. The
Hamiltonian governing the evolution of the molecular dynamics
is

(1)H = 1

2

∑
μ,x

Tr
{
Πμ(x)Πμ(x)

} + S[U ],

where the momenta Πμ are traceless Hermitian matrices.
The gauge fields are thus updated according to U ′

μ(x) =
exp[iΠμ(x)dτ ]Uμ(x). In the Nf = 2 simulations, two pseudo-
fermions are used to stochastically represent the determinant
of the O(a) improved Wilson fermions: the fermionic part of
S results from even–odd [14] and mass-preconditioning [4] the
Hermitian Dirac operator. The gauge part of S is the Wilson
plaquette action.

When Nf = 2, we use the Sexton–Weingarten integration
scheme [15], with a step-size four times larger for the fermionic
forces; the quoted step-size dτ always denotes the largest one.
A complete update cycle with trajectory length τ performs an
integer number τ/dτ of such steps followed by the Metropolis
decision. The system has then advanced by τ molecular dy-
namics (MD) units, and in the rest of this paper all quantities
referring to Monte Carlo time are given in MD units. If, for in-
stance, successive measurements of observables are separated
by M trajectories, an autocorrelation function �(i) arises where
i refers to successive measurements. From it we define the in-
tegrated autocorrelation time, that is directly relevant for the
statistical error, in our MD units as

(2)τint = Mτ

[
1

2
+

∑
i�1

ρ(i)

]
, ρ(i) = �(i)/�(0).

In numerical estimates the sum has to be truncated. If we spe-
cify a window W (in MD units) this amounts to the restriction
i � W/(Mτ). We refer the reader to [16] for the definition of
�(i), in particular for derived quantities, such as an effective
mass. The error bars shown in plots of ρ are computed using
Eq. (E.11) of Ref. [3].
We investigate the trajectory length dependence of autocor-
relation times in three different systems (A, B, C: see Table 1).
All simulations were done in 32-bit arithmetic, except for sys-
tem C (64-bit). The system D will be used as a playground for
thermalization. The lattice spacing is known in units of r0 [19]
at 1% level for the Nf = 0 runs and 5% for the Nf = 2 runs. All
lattices have Schrödinger functional boundary conditions. Since
we will be using somewhat longer trajectories than is usual, the
question of reversibility violations arises. We check for this in
the standard way (see e.g. [7]) by monitoring the Hamiltonian
variation 〈|δH |↔〉 under the following operations: a trajectory
‘forward’, reversing the sign of the momenta, and integrating
back to the starting point.

The observables we will focus on are those which typi-
cally have autocorrelation times much larger than that of the
plaquette. One observable (defined already in the pure gauge
theory) is dS/dη; the inverse of its expectation value de-
fines the Schrödinger functional renormalized coupling con-
stant [18]. The angle η parametrizes the Abelian boundary field,
the ‘point A’ of the fundamental domain corresponding to η = 0
where the boundary gauge field is proportional to λ3 + √

3λ8
(λa is a Gell–Mann matrix). The others are fermionic: the cor-
relators fA(x0) and fP(x0) correspond to the propagation of a
quark and an antiquark from a boundary to a point in the bulk
of the lattice where the axial current or pseudoscalar density
annihilates them [17]. Finally we also consider f1, which is
the amplitude for boundary-to-boundary propagation through
the lattice. It serves to normalize the other correlators. In par-
ticular, ZAfA(x0)/

√
f1 ∼ FPSe−(x0−T/2)MPS holds far from the

boundaries, where MPS and FPS correspond to the pseudoscalar
mass and decay constant [17].

2.1. HMC in the pure gauge theory

We start by investigating autocorrelation times for gluonic
quantities in the pure-gauge HMC (system A), where we have
three different lattice spacings at constant physical parameters
(see Table 2). The acceptance rates, as well as 〈δH 2〉, are given
(the step-size is the same in all these runs); we are clearly in
the regime of high acceptance PA where 〈δH 2〉 
 2π(1 −PA)2

[28]. The dependence of 〈δH 2〉 on τ is moderate. Therefore the
dependence of PA is even weaker, but note that the effect of
lower acceptance at larger τ is automatically taken into account
in the autocorrelation of observables. The reversibility viola-
tions as measured by 〈|δH |↔〉 grow as

√
τ here, or even more

slowly; the reader is referred to Appendix A for a more de-
tailed discussion of 〈δH 2〉 and 〈|δH |↔〉. We now focus on the
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Table 2
The autocorrelation times (in units of MD time) for dS/dη, the acceptance, the energy and reversibility violations for different choices of trajectory length. W is
the window in MD time over which the autocorrelation time has been accumulated. From top to bottom: L = 8, 12 and 16, while La/r0 = const. Runs in single
precision

A: pure gauge τ = 1/2 τ = 1 τ = 2 τ = 4

L = 8 τint[dS/dη] 6.10(35)W=64 5.90(30)W=36 3.14(10)W=36 3.92(12)W=44
τtrunc[dS/dη]W=25 5.0(2) 4.2(1) 2.75(7) 3.46(9)
Acceptance [%] 97 97 97 96
〈δH 2〉/(Ldτ)4 0.789(6) 0.953(6) 1.221(8) 1.71(1)
104 · 〈|δH |↔〉 2.0 2.6 3.5 4.9

L = 12 τint[dS/dη] 9.5(1.0)W=86 6.4(5)W=63 3.34(18)W=34 4.36(24)W=44
τtrunc[dS/dη]W=25 5.8(3) 4.7(2) 3.1(1) 3.8(2)
Acceptance [%] 94 93 93 91
〈δH 2〉/(Ldτ)4 0.941(6) 1.134(8) 1.40(1) 1.92(3)
104 · 〈|δH |↔〉 5.1 6.4 8.8 12.2

L = 16 τint[dS/dη] 6.5(1.0)W=52 5.8(6)W=52 4.2(4)W=40 6.0(4)W=68
τtrunc[dS/dη]W=25 5.3(5) 4.2(5) 3.5(2) 4.8(3)
Acceptance [%] 89 88 86 84
〈δH 2〉/(Ldτ)4 1.08(1) 1.31(2) 1.58(2) 2.10(4)
104 · 〈|δH |↔〉 9.1 12 16 21
observable dS/dη defined in [18]. We emphasize that, unlike
the plaquette, this is an observable dominated by long-distance
fluctuations and it typically has an autocorrelation time signifi-
cantly larger than one.

The most direct way to evaluate the performance of different
τ -choices for a given observable is to compare the correspon-
ding normalized autocorrelation function, ρ(t). This is done on
Fig. 1, for trajectory lengths 1/2, 1, 2, 4. There is a marked dif-
ference between, say, τ = 1/2 and τ = 2 in favor of the latter,
at all MD-time separations. The choice τ = 4 is slightly supe-
rior to τ = 2 at short MD-time separation at the largest lattice
spacing, while the opposite is true at the finest lattice spacing.
Note en passant that at the shortest time separation, ρ is much
smaller for τ = 2 than for τ � 1. In fact, the τ = 2 autocorre-
lation function shows a significant non-monotonic behavior, as
has been observed by us for hybrid overrelaxation algorithms,
and also in a simple model studied in [13].

For a run of given MD-time length and measurement fre-
quency, the error squared of the observable is proportional to
1/τint. When τint is large compared to the measurement fre-
quency, it corresponds to the area under the curves shown in
Fig. 1. In practice, a window W must be chosen where to stop
the summation. This may be chosen in a self-consistent way
which balances statistical against systematic errors. We use by
default the prescription described in [16]. However, to rate re-
lative performances of algorithms, we also compute here an
integrated autocorrelation time τtrunc where the summation is
truncated at a fixed window W = 25. It turns out that typically
80% of the true τint has by then been accumulated; the uncer-
tainty on τtrunc is almost half of that on the full τint and the
hierarchy between the different trajectory lengths is at any rate
maintained (Table 2).

Fig. 2 then illustrates the dependence of the truncated auto-
correlation time on the trajectory length τ . One sees that this
quantity is minimized somewhere around τ = 2, and this con-
clusion is largely independent of the lattice spacing in the range
considered. Overall we see a variation by a factor two of τtrunc
Table 3
The autocorrelations time (in units of MD time) of two primary observables
(f1 and fP) and of the effective pseudoscalar mass and decay constant in the
middle of the lattice, the acceptance, the energy and reversibility violations for
different choices of trajectory length. Runs in single precision

B: quenched, 83 × 32 τ = 1/2 τ = 2 τ = 4

τint[f1] 40(5)W=270 24(4)W=184 20(3)W=172
τint[fP] 75(20)W=245 44(8)W=316 32(4)W=256
τint[meff

PS(T /2)] 25(4) 13.5(1.6) 12.1(1.2)

τint[f eff
PS (T /2)] 33(6) 19.0(2.6) 14.7(1.6)

Acceptance [%] 98 98 97
〈δH 2〉/(L3T dτ4) 0.827(5) 1.32(1) 1.87(3)
104 · 〈|δH |↔〉 4.9 9.9 11

for 1/2 � τ � 4. Generally speaking this is a substantial varia-
tion which translates directly into a corresponding speed-up of
simulations whose cost is dominated by the HMC.

2.2. HMC in quenched QCD

As our next observables we now consider fermionic cor-
relators. Although we are ultimately interested in dynamical,
large-volume simulations (system C), we first investigate the
autocorrelation times in system B, which, roughly speaking,
is a quenched version of system C with in addition the spa-
tial extent divided by 3. The computing time is now dominated
by the measurements. The run-length is trun 
 32000 in total
(four independent lattices, called ‘replicas’, were simulated).
We investigate the range τ = 1/2 to τ = 4, within which we
see hardly any variation of the acceptance, and 〈|δH |↔〉 scales
roughly with

√
τ : Table 3 shows this, as well as some relevant

autocorrelation times.
The comparison of autocorrelation functions for f1 and fP is

done on Fig. 3. The advantage of τ = 4 and τ = 2 over τ = 1/2
is both substantial and statistically significant. This is reflected
in a factor of about two in the integrated autocorrelation times.
This gain is at least as marked in physical quantities such as the
effective pseudoscalar mass and decay constant.
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Fig. 1. Autocorrelation function of dS/dη in a pure gauge HMC (system A),
for different trajectory lengths (from top to bottom: L = 8, 12 and 16).

2.3. Mass-preconditioned HMC in Nf = 2 QCD

We now come to Nf = 2 dynamical simulations in a spatial
volume of (2 fm)3, and consider the same fermionic correlators
as in the previous section. The quark mass is around ms , the
Fig. 2. The truncated autocorrelation time of dS/dη in the pure gauge sys-
tem (A), as a function of the trajectory length τ and for different lattice spa-
cings.

Table 4
The autocorrelations time (in units of MD time) of two primary observables (f1
and fP) and of the effective pseudoscalar mass and decay constant in the middle
of the lattice, the acceptance, the energy and reversibility violations for different
choices of trajectory length. The value of 〈δH 2〉/(L3T dτ4) marked by a * was
obtained for one of the replicas; the other had one spike of δH 
 2000. Runs in
double precision

C: Nf = 2, κ = 0.1355 τ = 1/2 τ = 2

τint[f1] 30(15)W=145 24(8)W=134
τtrunc[f1]W=50 23(5) 15(3)
τint[fP] 45(20)W=185 26(10)W=134
τtrunc[fP]W=50 28(7) 18(4)

τint[meff
PS(T /2)] 9.5(2.5) 6.8(1.5)

τint[f eff
PS (T /2)] 14(4) 4.2(8)

Acceptance [%] 90 91
〈δH 2〉/(L3T dτ4) 0.147(4)∗ 0.164(6)
104 · 〈|δH |↔〉 1.0 2.5

strange quark mass, and we have two values of τ , 1/2 and 2.
The total statistics in each case is about trun = 4000 (2 replicas
were simulated).

Note that the acceptance is practically the same in both runs.
The autocorrelation functions of f1 and fP are compared on
Fig. 4. Naturally the error bars are now larger; nonetheless a sta-
tistically significant advantage of the run at τ = 2 is seen at
MD-time separations up to about 30. This is confirmed when
one looks at the truncated autocorrelation time with a window
of W = 50. The autocorrelation function of f1 is in fact sur-
prisingly similar to that in the quenched simulation, Fig. 3.
The resulting autocorrelation times are given in Table 4. In
spite of large uncertainties, there is a significant reduction of
τint[f eff

PS (T /2)] when going from τ = 1/2 to τ = 2.

2.3.1. Thermalization with light quarks
Since we observe that autocorrelation times of long-distance

observables are reduced by the use of longer trajectories, we
also expect their thermalization to be accelerated by the latter.
Consider the thermalization of system D (see Table 1). The ex-
ercise here is to
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Fig. 3. Autocorrelation function of the correlators f1 and fP in quenched QCD (system B), for different trajectory lengths.

Fig. 4. Autocorrelation function of the correlators f1 and fP in Nf = 2 QCD (system C), for different trajectory lengths.

Fig. 5. Thermalization of two long-distance observables (dS/dη and fP − f ′
P) having zero as expectation value. The starting configurations are taken from an

ensemble where these expectation values are non-zero (system D).
1. start from the ensemble with non-zero boundary field
(‘point A’ of [18]);

2. revert to homogeneous Dirichlet boundary conditions, and
hence vanishing background field [18];

3. let the system rethermalize under the HMC evolution, for
two different choices of trajectory length;

4. track how fast quantities whose expectation values vanish
by symmetry in the homogeneous Dirichlet case relax to
zero.

Fig. 5 shows the relaxation of the observables dS/dη and
fP − f ′

P. The latter is the asymmetry between the correlator
emanating from one boundary and the other. A data point at
time t shows the value of the observable averaged over 16 inde-
pendent replicas (corresponding to independent starting config-
urations), and averaged over the MD time interval ]t −6, t +6].
The dS/dη measurements were done after every trajectory and
fP − f ′

P every other trajectory.
The thermalization takes place faster with the choice of tra-

jectory length τ = 2, at least in the relatively early stages. In
difficult simulations the time-consuming part is presumably the
tail of the thermalization, but it would require very large statis-
tics to demonstrate an algorithmic advantage in that regime.
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Fig. 6. Variation of the Hamiltonian along one MD trajectory on lattice C, in units of
√

V dτ2, where V is the number of lattice points.
3. Conclusion

We have investigated the dependence of autocorrelation
times on the HMC trajectory length, focusing on long-distance
observables, in a variety of different physical situations. We
find this dependence to be substantial (a factor around 2) and
statistically significant. The reduced correlation of successive
measurements, done at fixed intervals of molecular dynamics
time, is most clearly seen in the autocorrelation functions them-
selves.

The optimal choice of τ is observable dependent. However
we have observed that trajectories longer than the ones con-
ventionally used provide an advantage in computing standard
physical quantities such as the pseudoscalar mass and decay
constant. It will be interesting to see whether this conclusion
also holds for HMC algorithms that use a different precondi-
tioning of the pseudofermion action, for a different number of
flavors, etc.

Naturally, other criteria are relevant in the final choice of tra-
jectory length; the issues of stability and reversibility violations
have been addressed in the appendix (see also Refs. [7,11,26]
to name a few). We are currently performing a simulation at a
quark mass of ms/2 with τ = 2 that shows good stability and
controlled reversibility violations.
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Appendix A. Stability and reversibility violations

In this appendix we discuss some important issues that one
might worry about if one increases the length of MD trajecto-
ries. Most of what follows is not new but we find it useful to
gather here the relevant points.
A.1. Energy violations along a trajectory

Fig. 6 shows the variation of the Hamiltonian along one MD
trajectory on lattice C, for two different step sizes (here the leap-
frog integrator was used with a ratio of 5 between the time-steps
of the two pseudo-fermion forces [5]). The right plot illustrates
the fact that the fluctuations of δH(t) around zero do not grow
very fast with MD time t .

Although a symplectic integrator such as leap-frog has dis-
cretization errors, there is a Hamiltonian which differs by
O(dτ 2) terms from the MD Hamiltonian, and which is exactly
conserved by the MD evolution [20,27]:

(A.1)Ho = H(t) + dτ 2h1(t) + dτ 4h2(t) + · · · .
Hence, for a given start configuration and momenta,

(A.2)−δH(t)

dτ 2
= δh1(t) + dτ 2δh2(t) + · · · .

In words, the curve δH(t)/dτ 2 is independent of dτ , up to
O(dτ 2) corrections. This is clearly what is seen on the left plot
of Fig. 6. Note that since in equilibrium 〈δH 〉 
 1/2〈δH 2〉 =
O(dτ 4) > 0 holds, we have 〈δh1(t)〉 = 0 and 〈δh2(t)〉 < 0 for
any fixed t .

A.2. Scaling of energy violations

The scaling law 〈δH 2〉 ∼ V dτ 4 was proposed in [20,21].
Indeed, since δH is O(dτ 2) for one trajectory, δH 2 is O(dτ 4)

and so is its average. As to the volume dependence, we confirm
that 〈δH 2〉 depends mainly on the number of lattice points V

[22], while the dependence on the coupling β is very weak.1

The values of 〈δH 2〉 in Table 2 are consistent with 〈δH 2〉 ∝
V η(τ), where η ∈ [1.07,1.11].

The dependence of 〈δH 2〉 on the trajectory length τ is very
moderate but follows no obvious formula (see Table 2). Never-
theless, the trend is reasonably well described by τα , 0.3 < α <

0.4.

1 Additional β = 6.086 simulations at L = 12 and 16 in system A with τ = 2

give 〈δH 2〉/(Ldτ)4 = 1.31(2) and 1.36(6), respectively.
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A.3. Stability

Of course the statements made in the previous paragraph
hold for exact arithmetics, and in practice it must be checked
empirically at what trajectory length rounding errors introduce
instabilities in the integration [26]. The other source of instabili-
ty can be the occurrence of an exceptionally large force, which
spoils the expansion in dτ . In the simulation C (see Table 1),
|δH | was bounded by 1 in the τ = 2 run, while one replica
experienced one spike of δH 
 2000 in the τ = 1/2 run (the
simulation then continued normally).

A.4. Reversibility violations

Reversibility violations in our simulations come from roun-
ding errors, and from the non-zero residuals of the inversions
in the MD evolution.2 These effects of course accumulate with
the length of the trajectory. However Tables 2, 3 and 4 show
that the increase of 〈|δH↔|〉 with τ in simulations where |δH |
is bounded by one and is typically much smaller, is rather
slow, roughly like ∼√

τ . Therefore it should not present a
serious problem. In the trajectory of Fig. 6 with dτ = 0.04,
104 · 〈|δH |↔〉 is 0.06, 0.3, 1.4 and 1.4 for τ = 0.08, 0.8, 1.6
and 8, respectively.

How a small reversibility violation influences the ensemble
generated is not known (to us); it may lead to an incorrect sam-
pling. The influence on expectation values of observables is
even harder to pin down. The study [7] showed that even with
〈|δH↔|〉 = 0.01 one does not see an effect in a number of ob-
servables computed at the sub-percent level.
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