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Abstract

The Monte Carlo generator MERADGEN 1.0 for the simulation of radiative events
in parity conserving doubly-polarized Møller scattering has been developed. Analyt-
ical integration wherever it is possible provides rather fast and accurate generation.
Some numerical tests and histograms are presented.
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1 Introduction

The precise measurements in polarized Møller scattering play a very impor-
tant role in the modern polarimetry. The coincidence detection of the final
electron pairs allows to essentially reduce a background of radiative effects [1]
that accompany any charge particle scattering, including investigated reac-
tion. However due to finite detector resolution it is impossible to remove all
radiative event contributions out of the data. Moreover the additional virtual
particle contributions can not be removed by any experimental cuts. Therefore
to reach the appropriate accuracy we need to perform the radiative correction
procedure consisting in the calculation of these effects within QED and esti-
mate them numerically.

The calculation of the lowest order QED radiative corrections (RC) to polar-
ized Møller scattering was already performed in [2,3] (see also the references
therein). In [2] these corrections were calculated exactly (without the ultra-
relativistic approximation) but unfortunately also without any experimental
cuts. In [3] the similar corrections were performed for longitudinally polarized
Møller scattering within the ultrarelativistic approximation. The numerical
analysis which is presented in [3] shows that RC to Møller scattering are very
sensitive to the missing mass (inelasticity) cuts.

However, the consideration only the missing mass cuts during RC procedure
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is insufficient. The realistic situation corresponds to taking into account the
detector geometry that can essentially complicate the integration over the real
photon phase space. In such situation an approach based on the Monte Carlo
simulation of radiative events is the most adequate. The Monte Carlo gener-
ators RADGEN [4] and ELRADGEN [5] for simulation of radiative events in
deep inelastic and elastic lepton-nucleon scattering can serve as an examples
of such approach.

In present paper a new Monte Carlo generator MERADGEN 1.0 1 for the
simulation of the radiative events in parity conserving part of polarized Møller
scattering is presented that can be used for the polarimetry purpose of present
and future experiments, for example, in JLab and SLAC. Naturally, as we are
taking into consideration the parity conserving effects and the beam energy is
rather small (from 1 to 45 GeV), the weak contributions (Z-boson exchange
and so one) to this process are negligible. So, we restricted our calculation
within QED theory only.

The present paper is organized as following. In Section 2 the kinematics of the
investigated process and the generation method are presented. The different
contributions to the cross section that is responsible for real photon emission
are considered in Section 3. Then in Section 4 the brief structure of the code
is discussed, in Section 5 we described the input-output data. In Section 6 we
explain how to run tests of our code, some conclusions are given in Section 7.
Finally, in Appendices the 4-momenta reconstruction formulas, some lengthy
formulas for RC and test output are presented.

2 Kinematics and Method of Generation

The lowest order contribution to the observable cross section of Møller scat-
tering reaction

e(k1, ξL) + e(p1, ηL) → e(k2) + e(p2) (1)

(in parentheses the 4-momenta and polarization vectors of electrons are pre-
sented, and k2

1 = k2
2 = p21 = p22 = m2) can be described by the standard set of

Mandelstam variables:

s = (k1 + p1)
2, t = (k1 − k2)

2, u = (k2 − p1)
2,

s+ t + u = 4m2, (2)

1 FORTRAN code MERADGEN 1.0 is available from http://www.hep.by/RC
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while the beam (ξL) and target (ηL) polarization vectors read:

ξL =
1√
λs

(s− 2m2

m
k1 − 2mp1

)

,

ηL =
1√
λs

(

2mk1 −
s− 2m2

m
p1

)

. (3)

where λs = s(s− 4m2).

For the definition of the lowest order contribution to Møller scattering it is
enough to define an initial beam energy k10 = ELab

b (in Lab. system), a scatter-
ing angle θCM (in CM system) of the detected electron with the 4-momentum
k2 and an azimuthal angle φ. The cross section does not depend on φ up to
taking into account the detector geometry. Let us notice that ELab

b and cos θCM

can be expressed via the invariants in the following way:

cos θCM = 1 + 2t/s = 1− 2y, ELab
b =

s− 2m2

2m
, (4)

where y = −t/s. Therefore instead of the scattering angle and the beam energy
for the definition of the Born cross section we can use s and t variables.

For the radiative process with the real photon emission

e(k1, ξL) + e(p1, ηL) → e(k2) + e(p2) + γ(k) (5)

(k2 = 0) three new kinematic variables have to be defined. At first, following
notations of ref. [3] we introduce an inelasticity v = Λ2 − m2, where Λ =
k1 − k2 + p1 and Λ2 is so-called missing mass square. Maximum value of the
inelasticity

vmax =
st +

√

s(s− 4m2)t(t− 4m2)

2m2
∼ s+ t (6)

can be defined from the kinematical restriction (see, for example, the Chew-
Low diagram in [6]). This variable can be directly reconstructed from the
data. To remove the contribution of the hard photon emission the events with
v ≤ vcut are taking into account, where the value vcut is far less than vmax.
The second variable is defined by t1 = (p2 − p1)

2 = (k1 − k2 − k)2. At last,
the third variable should be choose as z = 2k2k. Notice that for the radiative
process

cos θCM = 1 + 2t/(s− v). (7)
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To reconstruct the 4-momenta of all particles for radiative process in any
system it is enough to determine of variables s, t, v, t1, z and the azimuthal
angle φ. As an example, in Appendix A the 4-momenta of electrons and real
photon are expressed through these variables and presented in the center of
the initial electron mass system.

The simulation of the radiative events can be performed by the following
algorithm:

• For the fixed initial energy and t the non-radiative and radiative parts of
the observable cross section are calculated.

• The channel of scattering is simulated for the given event in accordance
with partial contributions of these two (non-radiative and radiative) positive
parts into the observable cross section.

• The angle φ is simulated uniformly from 0 to 2π.
• For the radiative event the kinematic variables v, t1 and z are simulated in
accordance with their calculated distributions.

• The 4-momenta of all final particles in the required system are calculated.
• If the initial t has not a fixed value (i.e. simulated according to the Born
probability distribution) then the cross sections have to be stored for
reweighing. The t-distribution is simulated over the Born cross section, and
realistic observed t-distribution is calculated as sum of weights, they are
ratios of the observable and Born cross sections.

Let us consider some important steps of simulation of the radiative events in
more details.

3 Non-radiative and radiative parts of the observable cross section

Here we consider the observable cross section that has a form 2 :

σobs(vcut) = σ0 + σRV (vcut) + σR
F (vcut), (8)

where σ0 is the Born contribution, σRV is an infrared divergency free sum of
the contributions of the additional virtual particles and the ”infrared” part
of the real photon emission, σR

F is the infrared divergency free part of the
unobservable photon emission. The explicit expressions for each term of equa-
tion (8) can be found in [3]. Since the expressions for the two virtual photon
contribution as well as δH1 and δS1 in [3] contain the misprints (fortunately,
it is not seriously reflecting on the numerical estimations presented in [3]),

2 Here and later we consider the differential cross section σ ≡ dσ/dy
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the additional virtual particle contributions together with δH1 and δS1 are also
presented in Appendix B.

Now we consider σR
F in more detail: before integration over the inelasticity and

the real photon phase space it can be presented as

σR
F (vcut) =

α3

4s

vcut
∫

0

dv
∫

dΓk(|MR|2 − 4F IR|M0|2), (9)

where MR is a sum of matrix elements contributed to the real photon emission
(see Appendix C for details), while M0 is a Born matrix element. The real
photon phase space reads

dΓk =
1

π

d3k

k0
δ((Λ− k)2 −m2) =

1

4π

dt1dz
√

−∆(k1, k2, p1, k)
, (10)

where ∆(k1, k2, p1, k) is the Gram determinant. At last,

− F IR =
m2

z2
+

m2

z21
+

m2

v2
+

m2

v21
+

s− 2m2

z1v1
+

s− 2m2

zv
+

+
t− 2m2

z1z
+

t− 2m2

v1v
+

u0 − 2m2

z1v
+

u0 − 2m2

v1z
, (11)

where z1 = 2kk1, v1 = 2kp1 and u0 = s+ t− 4m2.

For separation of the cross section (8) into the radiative and non-radiative
parts it is necessary to introduce a new fictitious parameter vmin associated
with missing mass square resolution. Then the equation (9) can be rewrite in
the following way

σR
F (vcut) =σr(vcut, vmin) +

α3

4s

vmin
∫

0

dv
∫

dΓk(|MR|2 − 4F IR|M0|2)−

−α3

s

vcut
∫

vmin

dv
∫

dΓkF
IR|M0|2, (12)

where

σr(vcut, vmin)=
α3

16πs

vcut
∫

vmin

dv

tmax

1
∫

tmin

1

dt1

zmax
∫

zmin

dz
√

−∆(k1, k2, p1, k)
|MR|2 =
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=

vcut
∫

vmin

dv

tmax

1
∫

tmin

1

dt1

zmax
∫

zmin

dz
d3σr(vcut, vmin)

dvdt1dz
(13)

is the radiative part of the cross section. The limits of the integration over z
are defined from the equation ∆(k1, k2, p1, k) = 0, while tmin

1 and tmax
1 can be

found from zmin = zmax (see [6] for details).

Since the observable cross section (8) is the sum of the radiative and non-
radiative parts

σobs(vcut) = σr(vcut, vmin) + σnr(vcut, vmin), (14)

we immediately find that

σnr(vcut, vmin) =σ0 + σRV (vcut) +
α3

4s

vmin
∫

0

dv
∫

dΓk(|MR|2 − 4F IR|M0|2)−

−α3

s

vcut
∫

vmin

dv
∫

dΓkF
IR|M0|2. (15)

Let us notice that the explicit formulae both for d3σr(vcut, vmin)/dvdt1dz in
the equation (13) and σnr(vcut, vmin) allow us to start the generation of the
radiative events. However to speed up the process of generation it is useful to
perform the integration over z and t1 analytically. So, the following analytical
expressions

dσr(vcut, vmin)

dv
=

tmax

1
∫

tmin

1

dt1

zmax
∫

zmin

dz
d3σr(vcut, vmin)

dvdt1dz
,

d2σr(vcut, vmin)

dvdt1
=

zmax
∫

zmin

dz
d3σr(vcut, vmin)

dvdt1dz
(16)

are incorporated in our Monte Carlo program. The analytical integration can
be performed in a standard way (see, for example, [2,6] and references therein).

At the end of this section it should be noted that according to the equation
(14) the non-radiative and radiative contributions to the cross section depend
on vcut and vmin, while the observable cross section depends on vcut only.
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program main
✟✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍

merad init

urand
✘✘✘✘✘✘✘✘✘

meradgen
✏✏✏✏✏✏✏✏✏✏

�
�

��

❏
❏
❏❏

PPPPPPPPPP

grid init sig xsbt dcanc fsir

Fig. 1. The structure of the program MERADGEN 1.0

4 The structure of the program and radiative event simulation

The structure of the Monte Carlo generator MERADGEN 1.0 is presented in
fig. 1. The main blocks mean:

• merad init — here we define all constants which are necessary for gener-
ation;

• grid init — here we prepare the grids for generation of kinematic variables,
really we approximate the theoretical curve by some sets of segments;

• urand — random number generator (flat);
• sig — the Born cross section and part of the virtual contribution (vertices
and self energies);

• xsbt — box contribution;
• dcanc — the contribution with cancellation of the infrared divergency;
• fsir — analytical cross sections dσr(vcut, vmin)/dv, d

2σr(vcut, vmin)/dvdt1
and d3σr(vcut, vmin)/dvdt1dz.

For the convenience sake we split our programm into 4 FORTRAN-files:

• run.f — main program for the event generation;
• test.f — main program for the tests;
• meradgen.f — the collection of main functions and subroutines of MER-
ADGEN 1.0;

• fsir.f — function fsir for calculation of the analytical cross sections that
are presented above.

For the events (tests) generation we need to run ”make” (”make test”) com-
mand.

Now let us consider the input-output data in more details.
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5 Input-output data

As an input data MERADGEN 1.0 uses 4-momentum of the virtual photon
vpgen := k1 − k2 that generated in CM system externally, energy of electrons
and degree of electrons polarization. There is only one variable itest in MER-
ADGEN 1.0 that responsible for output. If itest := 0 the output data are
gathered in two common blocks (see file output.inc):

common/variables/vgen,t1gen,zgen,weight,ich

and

common/vectors/vprad,phirad.

Here vgen, t1gen and zgen are generated photonic variables v, t1 and z re-
spectively, (they are necessary first of all for the test), weight is a ratio of
the observable cross section to the Born one, variable ich shows the radiative
(ich := 1) or non-radiative (ich := 0) scattering channel, the 4-momentum
vprad := p2 − p1 and photonic 4-momentum phirad := k also defined in CM
system.

Here we have to do some remarks: 1) for non-radiative events vgen := 0,
t1gen := t, z := 0, vprad := vpgen and phirad := 0, and 2) as it was
mentioned above, the variable v can be reconstructed experimentally and the
events with hard photons vcut < v ≤ vmax usually remove from the data. In
order to speed up the process generation, we generated variable v from vmin

up to vcut = (s+ t)/2 ∼ vmax/2.

Now let us consider one sample of generation. It is well known that for the
elastic process (1) the energy of the detected electron k20 can be directly
defined via the scattering angle θCM and the initial electron beam energy in
the following way:

ELab
2 ≈ cos2

θCM

2
ELab

b , (17)

but when we deal with the real photon emission (5) the process becomes
inelastic and, as a result, the ”elastic” equation (17) is broken and we have
the 2-dimensional distribution over ELab

2 and cos θCM. From fig. 2 one can see
that this distribution has a sharp peak near an ”elastic” line described by the
equation (17).
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Fig. 2. The 2-dimensional distributions of the scattering electron energy in lab.
system and scattering angle θ in CM system

6 Test runs

For our test runs we use the fact that if the events are simulated correctly
their distributions over variables v, t1 and z must obey to the corresponding
probability distributions:

ρ(v) =
1

Nv

dσr(vcut, vmin)

dv
, Nv = σr(vcut, vmin),

ρ(t1) =
1

Nt1

d2σr(vcut, vmin)

dvdt1
, Nt1 =

dσr(vcut, vmin)

dv
,

ρ(z) =
1

Nz

d3σr(vcut, vmin)

dvdt1dz
, Nz =

d2σr(vcut, vmin)

dvdt1
. (18)

Then for generation of ρ(v), ρ(t1) or ρ(z) distributions one has to put in the file
test.f the value of variable itest such as: itest := 1, itest := 2 or itest := 3,
respectively, next to type ”make test” and, at last, ”./test.exe”. The value
rgen/rcalc, i.e. ratio of generated ρ-distribution to corresponding calculated
cross section should be near unit. In Appendix D the test outputs for v, t1, z
generation with P = 1 (see formula (B.2)), ELab

b =45 GeV, θCM = 900, 20 bins
for the histogramming and 108 radiative events are presented.

The simulated distributions of the photonic variables for the SLAC E158 ex-
periment kinematic conditions and for the different degrees of polarization are
presented in fig. 3 (all of parameters are noted there). We suppose vmin rather
small: vmin = 2 × 10−2ELab

b m. In the fig. 3 we can see clearly the divergent
behavior of the distributions at v → 0, z → zmin,max, t1 → tmin

1 corresponding
to the infrared singularity at the vmin → 0. Also it can be seen the physical,
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so-called z- and z1-peaks of distribution ρ(t1).

The other test with itest := 4 consists in the cross-check of the accu-
racy of vector reconstruction. So, using all 4-momenta we reproduce the
value of generated invariant and compare them with the generated value.
In this test we also calculate the photonic mass square as m2gamma :=
phirad(4)2−phirad(1)2−phirad(2)2−phirad(3)2, which should be near zero.
In last part of Appendix D we can see good coincidence reconstructed and
generated invariants in different (random) kinematical points and very small
values of photonic mass square.

7 Conclusion

In this paper the Monte Carlo generator MERADGEN 1.0 serving for the sim-
ulation of radiative events in parity conserving longitudinally doubly-polarized
Møller scattering is presented. Following for the absolute necessity of both ac-
curacy and quickness for our program we have developed the fast and high
precise code using analytical integration wherever it was possible. MERAD-
GEN 1.0 can be employed for the radiative corrections procedure in experi-
ments with the complex detector geometry, such as SLAC E158 experiment
and experiments of modern polarimetry (JLAB, SLAC).
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Appendix A 4-momenta reconstruction

The 4-momentum definition in the center of mass system of the initial electrons
for Møller process with real photon emission is shown in fig. 4 and can be
presented in the form:

k1 = (k10, 0, 0, |~k1|), p1 = (p10, 0, 0,−|~p1|),
k2 = (k20, k21, k22, k23), p2 = (p20, p21, p22, p23),

k = (k0, k1, k2, k3), (A.1)
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Fig. 4. Definition of momenta and angles in center-of-mass frame

while their components can be expressed via the invariants and azimuthal
angle φ (that is usually generated uniformly) in the following way:

k10 = p10 =
1

2

√
s, |~k1| = |~p1| =

√
λs

2
√
s
,

k20 =
s− v

2
√
s
, k21 =

√

λ3

λs

cos φ, k22 =

√

λ3

λs

sin φ, k23 =

√
sλ2

2
√
λs

,

p20 =
s− z

2
√
s
,

p21 = −
√
λsλ1λ8 sinφ+ (4λ3λ4 + sλ2λ7) cosφ

4λ1

√
λsλ3

,

p22 =

√
λsλ1λ8 cosφ− (4λ3λ4 + sλ2λ7) sinφ

4λ1

√
λsλ3

,

p23 =

√
s(λ7 − λ2λ4)

2λ1

√
λs

,

k0 =
v + z

2
√
s
,

k1 =

√
λsλ1λ8 sinφ+ (4λ3λ6 − sλ2λ7) cosφ

4λ1

√
λsλ3

,

k2 =
−
√
λsλ1λ8 cosφ+ (4λ3λ6 − sλ2λ7) sinφ

4λ1

√
λsλ3

,
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k3 =

√
s(λ7 + λ2λ6)

2λ1

√
λs

. (A.2)

Here

λ1 = (s− v)2 − 4sm2, λ2 = 2t + s− v − 4m2,

λ3 = −st(s + t− v − 4m2)−m2v2, λ4 = s(s− v − 4m2)− (s+ v)z,

λ5 = vz(s− v − z)−m2(v + z)2, λ6 = s(v − z)− v(v + z),

λ7 = (s+ 2t1 − z − 4m2)λ1 − λ2λ4, λ8 = 16λ3λ5 − λ2
7. (A.3)

As a result, the angles in fig. 4 can be expressed via the invariants in the
following way:

cos θ =
sλ2√
λsλ1

, cos θk =
s(λ7 + λ2λ6)

(v + z)λ1

√
λs

, tanφk =

√
λsλ1λ8

sλ2λ7 − 4λ3λ6
. (A.4)

Appendix B Additional virtual particle, δH1 and δS1 contributions

The virtual contributions to Møller scattering can be separated into three
parts:

σV = σS + σVer + σBox, (B.1)

where 1) σS is a virtual photon self-energy contribution, 2) σVer is a vertex
function contribution, 3) σBox is a box contribution. Now we consider each of
them.

(1) The contribution of the virtual photon self energies (including the photon
vacuum polarization by hadrons) to the cross section looks like

σS =
4πα2

t2
Re

(

−1

t
Σ̂γ

T (t) + Πh(−t)
)[

(1 + P )
u2

s
− (1− P )

s2

u

]

+(t ↔ u). (B.2)

Here P = PBPT , where PB (PT ) is the beam (target) polarization, Σ̂γ
T (−t)

is the renormalized transverse part of the γ–self-energy [7] (this part in-
cludes vacuum polarization by e, µ and τ charged leptons: in correspond-
ing formula of [7] we should take a summing index f = e, µ, τ). The
hadronic part of the photonic vacuum polarization associated with light
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quarks can be directly obtained from the data on process e+e− → hadrons
via dispersion relations. Here we use parameterization of [8]

ReΠh(−t) ∼= A+B ln(1 + C|t|), (B.3)

with updated parameters A,B,C in different energy regions.
(2) For the contribution of the electron vertices we used the results of the

paper [7] (see also references therein). We can obtain the vertex part as

σVer =
2α3

t2

[

(1 + P )
u2

s
− (1− P )

s2

u

]

Λ1(t,m
2) + (t ↔ u), (B.4)

where

Λ1(t,m
2) = −2 ln

|t|
λ2

(

ln
|t|
m2

− 1
)

+ ln
|t|
m2

+ ln2 |t|
m2

+
π2

3
− 4. (B.5)

(3) Recalculated here expressions for the box cross section are slightly differ-
ent from presented in [3] (we correct the misprints in the expression (16)
of [3])

σBox =
2α3

t

[1 + P

s

(2u2

t
ln

s

|u| ln
√

s|u|
λ2

− δ1(γγ)
)

−1− P

u

(2s2

t
ln

s

|u| ln
√

s|u|
λ2

− δ2(γγ)
)]

+ (t ↔ u), (B.6)

The expressions δ1,2(γγ) have the form:

δ1(γγ) = l2s
s2 + u2

2t
− lsu− (l2x + π2)

u2

t
,

δ2(γγ) = l2s
s2

t
+ lxs− (l2x + π2)

s2 + u2

2t
, (B.7)

and logarithms look like

ls = ln
s

|t| , lx = ln
u

t
. (B.8)

It should be noted that vertex and box parts contain the infrared divergence
through the appearance of the fictitious photon mass λ. The infrared part
from virtual cross section can be extracted in a simple way:

σV
IR = σV − σV (λ2 → s) = −2α

π
ln

s

λ2

(

ln
tu

m2s
− 1

)

σ0. (B.9)

The correct expressions for δH1 and δS1 read
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δH1 =−1

2
l2m +

(

ln
t2(s+ t)2(s− vmax)

s(s+ t− vmax)2vmax(vmax − t)
+ 1

)

lm − 1

2
ln2 vmax

|t| −

− ln2(1− vmax

t
) + ln

s+ t

s+ t− vmax

ln
(s+ t)(s+ t− vmax)

t2
+

+ ln
s− vmax

|t| ln
s− vmax

s
+ ln

vmax

|t| + 2
[

Li2

(

vmax

s

)

− Li2

(

vmax

t

)

−

−Li2

(

vmax

s+ t

)

]

+Li2

(

s− vmax

s

)

− Li2

(

t− vmax

t

)

− π2

6
,

δS1 =−5

2
l2m + (3− 2lr)lm − (lm − 1) ln

s(s+ t)

t2
− 1

2
l2r −

π2

3
+ 1. (B.10)

Appendix C Matrix element of the real photon emission

The sum of the matrix elements contributed to the real photon emission in
Møller process reads:

Mα
R =

1

t1
ū(k2)Γµα(k2, k1)u(k1)ū(p2)γµu(p1) +

+
1

t
ū(k2)γµu(k1)ū(p2)Γµα(p2, p1)u(p1)−

− 1

u
ū(p2)Γµα(p2, k1)u(k1)ū(k2)γµu(p1)−

− 1

z2
ū(p2)γµu(k1)ū(k2)Γµα(k2, p1)u(p1). (C.1)

The conjugate matrix element can be found in a simple way:

M̄α
R =

1

t1
ū(k1)Γ̄να(k1, k2)u(k2)ū(p1)γνu(p2) +

+
1

t
ū(k1)γνu(k2)ū(p1)Γ̄να(p1, p2)u(p2)−

−1

u
ū(k1)Γ̄να(k1, p2)u(p2)ū(p1)γνu(k2)−

− 1

z2
ū(k1)γνu(p2)ū(p1)Γ̄να(p1, k2)u(k2). (C.2)

Here z2 = z − s− t1 + 4m2 and

Γµα(a, b) =
( bα
kb

− aα
ka

)

γµ −
γµk̂γα
2bk

− γαk̂γµ
2ak

,
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Γ̄να(a, b) = −
( bα
kb

− aα
ka

)

γν −
γνk̂γα
2bk

− γαk̂γν
2ak

. (C.3)

By introducing

S(a1, a2, a3, a4) = Tr[a1ρ(a2)a3Λ(a4)]

S(a1, a2, a3, a4, a5, a6, a7, a8) = Tr[a1ρ(a2)a3Λ(a4)a5ρ(a6)a7Λ(a8)], (C.4)

where

u(k1)ū(k1) = ρ(k1) =
1

2
(k̂1 +m)(1− PBγ5ξ̂L),

u(p1)ū(p1) = ρ(p1) =
1

2
(p̂1 +m)(1− PTγ5η̂L),

u(k2)ū(k2) = Λ(k2) = k̂2 +m, u(p2)ū(p2) = Λ(p2), (C.5)

the square of matrix elements reads:

|MR|2=−Mα
RM̄

α
R =

=− 1

t21
S(Γµα(k2, k1), k1, Γ̄να(k1, k2), k2)S(γµ, p1, γν , p2)−

− 1

t1t
S(Γµα(k2, k1), k1, γν, k2)S(γµ, p1, Γ̄να(p1, p2), p2)−

− 1

t1t
S(γµ, k1, Γ̄να(k1, k2), k2)S(Γµα(p2, p1), p1, γν , p2)−

− 1

t2
S(γµ, k1, γν, k2)S(Γµα(p2, p1), p1, Γ̄να(p1, p2), p2) +

+
1

t1u
S(Γµα(k2, k1), k1, Γ̄να(k1, p2), p2, γµ, p1, γν, k2) +

+
1

t1u
S(Γµα(p2, k1), k1, Γ̄να(k1, k2), k2, γµ, p1, γν, p2) +

+
1

t1z2
S(Γµα(k2, k1), k1, γν, p2, γµ, p1, Γ̄να(p1, k2), k2) +

+
1

t1z2
S(γµ, k1, Γ̄να(k1, k2), k2,Γµα(k2, p1), p1, γν, p2) +

+
1

tu
S(γµ, k1, Γ̄να(k1, p2), p2,Γµα(p2, p1), p1, γν, k2) +

+
1

tu
S(Γµα(p2, k1), k1, γν , k2, γµ, p1, Γ̄να(p1, p2), p2) +

+
1

tz2
S(γµ, k1, γν, p2,Γµα(p2, p1), p1, Γ̄να(p1, k2), k2) +

+
1

t1z2
S(γµ, k1, γν , k2,Γµα(k2, p1), p1, Γ̄να(p1, p2), p2)−
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− 1

u2
S(Γµα(p2, k1), k1, Γ̄να(k1, p2), p2)S(γµ, p1, γν , k2)−

− 1

uz2
S(Γµα(p2, k1), k1, γν , p2)S(γµ, p1, Γ̄να(p1, k2), k2)−

− 1

uz2
S(γµ, k1, Γ̄να(k1, p2), p2)S(Γµα(k2, p1), p1, γν, k2)−

− 1

z22
S(γµ, k1, γν, p2)S(Γµα(k2, p1), p1, Γ̄να(p1, k2), k2). (C.6)

Appendix D Test output

Here we present the results of the test as test.dat output file corresponding
to:
1) itest := 1 – the generation of ρ(v) distribution and comparison it with the
analytical cross section corresponding to the first formula in (18) (here and
below all of invariants v, t1, z are in GeV2)

itest=1

v generation

rgen is generated probability

rcalc is calculated probability

Ebeam=45.0 GeV

theta=90.0 degrees in CM system

P=pb*pt=1.00 beam polarization times target polarization

number of bins 20

number of radiative events 100000000

initial random number 12

bin v rgen rcalc rgen/rcalc

1 0.6998E-03 376.4 375.0 1.004

2 0.1268E-02 205.8 205.4 1.002

3 0.1826E-02 143.4 143.2 1.001

4 0.2382E-02 111.3 111.2 1.002

5 0.2936E-02 92.07 91.91 1.002

6 0.3490E-02 79.40 79.29 1.001

7 0.4043E-02 70.70 70.59 1.002

8 0.4596E-02 64.45 64.41 1.001

9 0.5148E-02 60.02 59.96 1.001

10 0.5701E-02 56.81 56.78 1.001

11 0.6254E-02 54.52 54.57 0.9991

12 0.6806E-02 53.26 53.15 1.002

13 0.7358E-02 52.40 52.38 1.000

14 0.7910E-02 52.27 52.19 1.001

15 0.8463E-02 52.69 52.54 1.003
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16 0.9015E-02 53.38 53.40 0.9996

17 0.9567E-02 54.94 54.78 1.003

18 0.1012E-01 56.53 56.69 0.9973

19 0.1067E-01 59.35 59.17 1.003

20 0.1122E-01 62.15 62.29 0.9978

2) itest := 2 – the generation of ρ(t1) distribution and comparison it with the
analytical cross section corresponding to the second formula in (18)

itest=2

t1 generation

rgen is generated probability

rcalc is calculated probability

Ebeam=45.0 GeV

theta=90.0 degrees in CM system

P=pb*pt=1.00 beam polarization times target polarization

number of bins 20

number of radiative events 100000000

initial random number 12

v= 0.5749E-02

bin t1 rgen rcalc rgen/rcalc

1 -0.2852E-01 235.5 201.1 1.171

2 -0.2638E-01 183.0 313.5 0.5836

3 -0.2533E-01 30.60 28.38 1.078

4 -0.2377E-01 11.23 10.86 1.034

5 -0.2228E-01 8.905 8.711 1.022

6 -0.2081E-01 9.842 9.674 1.017

7 -0.1933E-01 14.89 14.58 1.021

8 -0.1763E-01 76.89 73.02 1.053

9 -0.1689E-01 73.09 74.37 0.9827

10 -0.1518E-01 11.62 11.45 1.015

11 -0.1369E-01 6.749 6.655 1.014

12 -0.1212E-01 7.542 6.696 1.126

13 -0.1095E-01 5.605 5.257 1.066

14 -0.9398E-02 2.392 2.340 1.022

15 -0.7939E-02 1.711 1.700 1.007

16 -0.6487E-02 1.385 1.381 1.003

17 -0.5041E-02 1.206 1.205 1.001

18 -0.3594E-02 1.142 1.132 1.009

19 -0.2129E-02 1.250 1.213 1.030

20 -0.1505E-03 11.30 7.410 1.525

3) itest := 3 – the generation of ρ(z) distribution and comparison it with the
analytical cross section corresponding to the third formula in (18)
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itest=3

z generation

rgen is generated probability

rcalc is calculated probability

Ebeam=45.0 GeV

theta=90.0 degrees in CM system

P=pb*pt=1.00 beam polarization times target polarization

number of bins 20

number of radiative events 100000000

initial random number 12

v= 0.5749E-02

t1=-0.1437E-01

bin z rgen rcalc rgen/rcalc

1 0.9087E-02 640.0 755.7 0.8469

2 0.1043E-01 55.53 56.31 0.9862

3 0.1159E-01 20.80 20.85 0.9977

4 0.1274E-01 10.47 10.36 1.011

5 0.1388E-01 5.989 6.002 0.9977

6 0.1501E-01 3.898 3.872 1.007

7 0.1615E-01 2.727 2.717 1.004

8 0.1729E-01 2.074 2.062 1.006

9 0.1841E-01 1.695 1.692 1.002

10 0.1955E-01 1.508 1.493 1.010

11 0.2068E-01 1.430 1.416 1.010

12 0.2181E-01 1.447 1.434 1.009

13 0.2295E-01 1.559 1.545 1.009

14 0.2408E-01 1.771 1.764 1.004

15 0.2521E-01 2.151 2.135 1.008

16 0.2634E-01 2.765 2.760 1.002

17 0.2748E-01 3.917 3.891 1.007

18 0.2862E-01 6.302 6.267 1.005

19 0.2979E-01 13.29 13.26 1.002

20 0.3112E-01 108.4 120.0 0.9027

4) itest := 4 – the cross-check of the accuracy of the vector reconstruction for
5 random radiative events

itest=4

variable reconstruction

Ebeam=45.0 GeV

theta=90.0 degrees in CM system

P=pb*pt=1.00 beam polarization times target polarization

number of radiative events 5

initial random number 12

-------------------------------------------
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event= 1

test v reconstruction

v=0.612136E-02 reconstructed v from 4-vectors

v=0.612136E-02 generated v

test t1 reconstruction

t1=-0.170339E-01 reconstructed t1 from 4-vectors

t1=-0.170339E-01 generated t1

test z reconstruction

z=0.155138E-01 reconstructed z from 4-vectors

z=0.155138E-01 generated z

m2gamma=-0.150213E-09 real photon mass square

-------------------------------------------

event= 2

test v reconstruction

v=0.861313E-03 reconstructed v from 4-vectors

v=0.861312E-03 generated v

test t1 reconstruction

t1=-0.221464E-01 reconstructed t1 from 4-vectors

t1=-0.221464E-01 generated t1

test z reconstruction

z=0.877074E-03 reconstructed z from 4-vectors

z=0.877074E-03 generated z

m2gamma=-0.231178E-11 real photon mass square

-------------------------------------------

event= 3

test v reconstruction

v=0.659541E-02 reconstructed v from 4-vectors

v=0.659541E-02 generated v

test t1 reconstruction

t1=-0.162121E-01 reconstructed t1 from 4-vectors

t1=-0.162121E-01 generated t1

test z reconstruction

z=0.689029E-02 reconstructed z from 4-vectors

z=0.689029E-02 generated z
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m2gamma=-0.710911E-10 real photon mass square

-------------------------------------------

event= 4

test v reconstruction

v=0.850422E-03 reconstructed v from 4-vectors

v=0.850423E-03 generated v

test t1 reconstruction

t1=-0.229561E-01 reconstructed t1 from 4-vectors

t1=-0.229561E-01 generated t1

test z reconstruction

z=0.196149E-03 reconstructed z from 4-vectors

z=0.196149E-03 generated z

m2gamma= 0.105991E-12 real photon mass square

-------------------------------------------

event= 5

test v reconstruction

v=0.267845E-02 reconstructed v from 4-vectors

v=0.267845E-02 generated v

test t1 reconstruction

t1=-0.255805E-01 reconstructed t1 from 4-vectors

t1=-0.255805E-01 generated t1

test z reconstruction

z=0.154160E-02 reconstructed z from 4-vectors

z=0.154160E-02 generated z

m2gamma=-0.316828E-11 real photon mass square
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