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Abstract

A new algorithm to calculate Coulomb wave functions with all of its arguments complex is
proposed. For that purpose, standard methods such as continued fractions and power/asymptotic
series are combined with direct integrations of the Schrödinger equation in order to provide very
stable calculations, even for large values of |η| or |ℑ(ℓ)|. Moreover, a simple analytic continu-
ation for ℜ(z) < 0 is introduced, so that this zone of the complex z-plane does not pose any
problem. This code is particularly well suited for low-energy calculations and the calculation of
resonances with extremely small widths. Numerical instabilities appear, however, when both
|η| and |ℑ(ℓ)| are large and |ℜ(ℓ)| comparable or smaller than |ℑ(ℓ)|.
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No. of processors used: 1

Has the code been vectorized?: No

No. of bytes in distributed program, including test data, etc.:

No. of lines in distributed program: 2422

Nature of physical problem: The calculation of Coulomb wave functions with all of their argu-
ments complex is revisited. The new methods introduced allow to greatly augment the range
of accessible ℓ, η, and z.

Method of solution: Power/asymptotic series and continued fractions are supplemented with
direct integrations of the Coulomb Schrödinger equation. Analytic continuation for ℜ(z) < 0 is
also precisely computed using linear combinations of the functions provided by standard meth-
ods, which do not follow the branch cut requirements demanded for Coulomb wave functions.

Restrictions on the complexity of the problem:

Typical running time: N/A

Unusual features of the program: none

Keywords: Coulomb, complex analysis, numerical integration, resonances, Regge poles

PACS: 02.30.Fn, 02.30.Gp, 03.65.Ge, 23.50.+z

Long Write-up

1 Introduction

Coulomb wave functions are one of the most basic objects of particle theory. They describe the
behavior of a particle in a point-like Coulomb field, and thus appear in virtually all domains of
quantum physics. The correspondent dimensionless Coulomb Schrödinger equation reads:

w′′(z) =

(

ℓ(ℓ + 1)

z2
+

2η

z
− 1

)

w(z) (1)

where w(z) is a Coulomb wave function, ℓ is the orbital angular momentum, and η the Som-
merfeld parameter.

The Coulomb wave functions can be expressed with hyper-geometric functions [1]. The
regular Coulomb wave function reads:

Fℓ,η(z) = Cℓ(η) zℓ+1 eiωz
1F1 (1 + ℓ + iωη; 2ℓ + 2;−2iωz) (2)

Cℓ(η) = 2ℓ exp

[−πη + [log(Γ(1 + ℓ + iη)) + log(Γ(1 + ℓ − iη))]

2
− log(Γ(2ℓ + 2))

]

(3)
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In this expression, ω can be equal to ±1 and the normalizing Gamow factor Cℓ(η) [1] is given.
Outgoing (ω = 1) and incoming (ω = −1) Coulomb wave functions are defined the following
way:

Hω
ℓ,η(z) = eiω[z−η log(2z)−ℓ π

2
+σℓ(η)]

2F0

(

−ℓ + iωη, 1 + ℓ + iωη; ;− i

2ωz

)

(4)

σℓ(η) =
log(Γ(1 + ℓ + iη)) − log(Γ(1 + ℓ − iη))

2i
(5)

where the Coulomb phase shift σℓ(η) appears [1]. The analytic continuation for complex ℓ
and η of Ref. [2, 3] for the function log(Γ(z)) occurring in Cℓ(η) and σℓ(η) is followed, thus
guaranteeing consistent values even when the negative real axis branch cut of complex variables
1 + ℓ + iη and 1 + ℓ − iη is crossed. The regular Coulomb wave function Fℓ,η, as well as the
logarithmic irregular Coulomb wave function Gℓ,η, can be expressed with H+

ℓ,η and H−

ℓ,η [1]:

Fℓ,η(z) =
H+

ℓ,η(z) − H−

ℓ,η(z)

2i
(6)

Gℓ,η(z) =
H+

ℓ,η(z) + H−

ℓ,η(z)

2
(7)

Despite the deceptively simple form of Eq. (1) and analytical expressions of Coulomb wave
functions of Eqs. (2,4), the Coulomb wave function is difficult to compute numerically. Already
on the real axis, it can vary by many orders of magnitude for moderate values of |η|. The
situation becomes even worse when the wave function is analytically continued to the complex
plane. Analytic continuation arises when one deals, for example, with resonant states, as
energies become complex [4]. It appears also with non-integer values of ℓ with, for example,
Regge pole trajectory calculations [5]. Coulomb wave functions are multivalued functions of the
complex variable z in the general case and thus a branch cut must be imposed on the negative
z-real axis [2]. This implies that numerical calculations must be employed with care, as wave
functions issued directly from standard numerical expressions do not follow the same branch
cut discontinuities as the requested Coulomb wave function.

The Coulomb wave function computation has been considered in many papers. A recent
review of numerical methods and definitions for both non-relativistic and relativistic cases can
be found in Ref. [6]. Most of papers have dealt with only real arguments [7], or with at least
one of them real (ℓ in Ref. [8], z in Ref. [9]). The special important case of Whittaker functions,
with η purely imaginary (bound Coulomb wave functions), has also been treated on its own [10].
The first paper (and only one to our knowledge) which considered all complex arguments in a
unified way is Ref. [11]. Through the use of continued fractions calculated with the powerful
Lentz method, as well as recurrence relations in ℓ and Padé approximants, the authors managed
to encompass a large part of the complex plane for each ℓ, η, and z. The program of Ref. [11]
quickly became a standard in the physics community and is part of the CERNLIB library [12].
However, important parts of the complex plane remained uncovered for both numerical and
theoretical reasons, as was already stated in [11]. First, because of numerical instabilities of
used recursions, one cannot calculate Coulomb wave functions, for example, close to imaginary
axes when the modulus of η or ℑ(ℓ) becomes large. As a consequence, the case of large |η| and
integer ℓ for all z, important for low-energy narrow resonant states, has remained problematic
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[13]. Moreover, due to the different branch cuts of Coulomb wave functions and asymptotic
series/continued fractions in the complex z-plane, it is impossible to directly calculate Hω

ℓ,η(z)
for ℜ(z) < 0 and ωℑ(z) < 0.

In order to circumvent these caveats, it has been chosen to complement standard methods
with direct integrations of Eq. (1). The latter can be simply implemented, and the only require-
ment is that one has to integrate in directions of increasing modulus of the wave function to
avoid numerical instability [14]. Also, the ℜ(z) < 0 and ωℑ(z) < 0 parts of the complex z-plane
can be accessed with numerical methods, as the (wrong) Coulomb wave functions coming out
of the latter are linear combinations of the true Coulomb wave functions whose coefficients can
be computed precisely, so that their determination becomes straightforward. With these new
features, it will be demonstrated that the range of arguments is much larger than in previous
programs. It is also important to state that quadruple precision is not needed with the proposed
method.

The structure of the paper is as follows: first, the used numerical methods will be described
in Sec. (2). Examples of calculations will then be depicted for several sets of arguments in
Sec. (3). In particular, the determination of resonant states with extremely small widths will
be discussed. The structure of the program will then be described. Finally, conclusions and
perspectives will be stated.

2 Numerical methods

2.1 Power series for Fℓ,η

The regular solution Fℓ,η can be expanded in power series [1]:

Fℓ,η(z) = Cℓ(η)
+∞
∑

n=0

an zn+ℓ+1 (8)

a0 = 1

a1 =
η

ℓ + 1

an =
2η an−1 − an−2

n(n + 2ℓ + 1)
∀n ≥ 2 (9)

This formula is very useful for small values of |z|, but is unstable for large |z| because of

numerical cancellations. Hence, it is used only for |z| ≤ 1

2
.
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2.2 Asymptotic series

Hω
ℓ,η can be expanded in asymptotic series, so that for |z| large enough, Hω

ℓ,η(z) can be calculated
up to a given numerical precision with a finite number of terms N [15]:

Hω
ℓ,η(z) ≃ eiω[z−η log(2z)−ℓ π

2
+σℓ(η)]

N−1
∑

n=0

bn

zn
(10)

b0 = 1

bn+1 =
n(n + 1 + 2iωη) + iη(iη + ω) − ℓ(ℓ + 1)

2iω(n + 1)
bn ∀n ≥ 0 (11)

However, due to the different branch cuts discontinuity of Hω
ℓ,η and the asymptotic series,

Eq. (10) is correct only for ℜ(z) > 0 or ℜ(z) < 0 and ωℑ(z) > 0 [11]. In the rest of the
complex plane, it nevertheless provides a linear combination of H+

ℓ,η and H−

ℓ,η, which is utilized
to determine Hω

ℓ,η (see Sec. (2.6)).
In practice, the asymptotic series give a meaningful result for a given N if |aN/zN | < ǫ with

ǫ the numerical precision [15]. In addition, one checks if the Wronskian of the two functions
generated by Eq. (10) respectively using ω = 1 and ω = −1 is equal to 2i. The Wronskian
value can be evaluated with Eq. (10) for |z| → +∞. If ℜ(z) > 0, Fℓ,η(z) is calculated with
asymptotic series using Eq. (6) if H+

ℓ,η(z) and H−

ℓ,η(z) are correctly computed with Eq. (10).

2.3 Continued fractions

The logarithmic derivatives fω = F ′

ℓ,η/Fℓ,η and hω = Hω′

ℓ,η/H
ω
ℓ,η can be expanded in continued

fractions [11]:

fω(z) =
ℓ + 1

z
+ iω +

1

z

[ −2iωaz

b + 2iωz+

−2iω(a + 1)z

b + 1 + 2iωz + · · ·

]

(12)

hω(z) = iω
(

1 − η

z

)

+
iω

z

[

ac

2(z − η + iω)+

(a + 1)(c + 1)

2(z − η + 2iω) + · · ·

]

(13)

where the standard notations a = 1 + ℓ + iωη, b = 2ℓ + 2, and c = −ℓ + iωη are used [11]. The
value of fω (also denoted as f) is derived from Eq. (2) and is thus theoretically independent of
ω. Lentz method is used to evaluate continued fractions numerically [11].

The fω domain of convergence is the whole complex plane besides Fℓ,η zeros, while the one
of hω follows 2F0 analytic properties, so that it is the whole complex plane minus the half-axis
[0 : −iω∞[, where hω has a branch cut discontinuity.

The continued fraction hω is particularly important, as with the knowledge of Fℓ,η(z), F ′

ℓ,η(z),

and the Wronskian relation F ′

ℓ,ηH
ω
ℓ,η − Fℓ,ηH

ω′

ℓ,η = 1, it can be used to determine Hω
ℓ,η(z) [11]:

Hω
ℓ,η(z) =

1

Fℓ,η(z) [f(z) − hω(z)]
(14)

Note that Hω
ℓ,η(z) and Fℓ,η(z) must be numerically linearly independent for this formula to be

stable. If they are not, H−ω
ℓ,η (z) is calculated instead and Hω

ℓ,η(z) can be deduced from it and
Eq. (6). As hω and Hω

ℓ,η have different branch cuts, hω is equal to the logarithmic derivative of

5



Hω
ℓ,η only if ℜ(z) > 0 or ℜ(z) < 0 and ωℑ(z) > 0, so that Eq. (14) is correct in this zone only.

However, the continued fraction can be used even outside this zone if one takes care of branch
cuts (see Sec. (2.6)). Added to that, the continued fractions fω and hω play a prominent role
for the calculation of Coulomb wave functions by direct integration (see Sec. (2.4)).

The numerical applicability of these continued fractions is, however, hindered by spurious
effects. It has been noticed in Ref. [16] that Eq. (12) exhibits anomalous convergence. When
|z| becomes large, the general term of fω(z) becomes very small before increasing very much,
and then only to decrease again to provide a convergent result. As a consequence, both values
of f+(z) and f−(z) are always calculated and compared to check convergence. However, the
anomalous convergence phenomenon is weaker when one chooses ω such that ωℑ(z) < 0 [16],
so that fω(z) can be correct even if f+(z) 6= f−(z) numerically.

The case of hω is much better [11], but problems have nevertheless been encountered. For
example, the numerical value of h+(z) for ℓ = 0, η = 10, and z = 0.01 − 3i is wrong and
numerically equal to f(z). This difficulty is removed by using only the ω for which |f(z)−hω(z)|
is large enough (i.e. larger than 1 or at least larger than |f(z) − h−ω(z)|).

Another problem is the very slow convergence of Eq. (13) in the vicinity of the branch cut
for moderate |z| (see Table (1)). Direct integration is used to solve this problem. For that, if
the number of iterations in Lentz method exceeds 100,000 (one also assumes ℜ(z) ≥ 0), one
calculates Hω

ℓ,η(z0) and Hω′

ℓ,η(z0) with z0 not too close to the imaginary axis, chosen so that |Hω
ℓ,η|

increases from z0 to z. The slow convergence of hω is absent for z0, so that Eq. (13) can be used
for the integration starting point. Then, one integrates Eq. (1) from z0 to z, which is a stable
operation as |Hω

ℓ,η| increases along the integration path. hω(z) is then equal to Hω′

ℓ,η(z)/Hω
ℓ,η(z)

at the end of integration. If ℜ(z) < 0, one uses the symmetry formula hω
ℓ,η(z) = −h−ω

ℓ,−η(−z).

This formula can be demonstrated using the fact that Hω
ℓ,η(z) ∝ H−ω

ℓ,−η(−z) for ωℑ(z) > 0 (both
functions are solutions of Eq. (1) and are minimal in the considered region for |z| → +∞), and
analytic continuation as both functions f1 : z → hω

ℓ,η(z) and f2 : z → −h−ω
ℓ,−η(−z) have the same

branch cut.

2.4 Direct integration

Considering the simplicity of the Coulomb equation (Eq. (1)), direct integration is a suitable
method to calculate Coulomb wave functions. For that, the Burlisch-Stoer-Henrici method
of Ref. [14] is used. However, one has to pay attention to two problems. Firstly, no branch
cut discontinuity can come out of direct integration, so that it is necessary to integrate in the
zones of the complex plane where branch cut effects are absent. Hence, numerical integration
is performed only for ℜ(z) > 0. For the other half of the complex plane, one uses the symmetry
transformation z → −z, η → −η, leaving Eq. (1) invariant. Secondly, numerical integration is
stable only if the modulus of the Coulomb wave function increases or remains close to constant.
Increase or decrease of the wave function along the integration path is determined by its second-
order Taylor expansion at z = z0 + h:

Ψ(z)

Ψ(z0)
≃ 1 + h

Ψ′(z0)

Ψ(z0)
+

h2

2

(

ℓ(ℓ + 1)

z2
0

+
2η

z0
− 1

)

(15)

where Ψ is either Fℓ,η or Hω
ℓ,η, h the integration step, and (z0, Ψ(z0), Ψ′(z0)) the starting point of

the numerical integration. If the modulus of the ratio defined in Eq. (15) is larger than one, the
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numerical integration can be performed safely. If not, the continued fraction q(z) = Ψ′(z)/Ψ(z)
is evaluated with Eq. (12) (q = fω) or Eq. (13) (q = hω). Eq. (1) is integrated backward
from z to z0 with (z, 1, q(z)) as the starting point, guaranteeing stable integration. One
then obtains (z0, Ψc(z0), Ψ′

c(z0)) after integration, with obviously Ψc(z0) = Ψ(z0)/Ψ(z) and
Ψ′

c(z0) = Ψ′(z0)/Ψ(z). The value of (z, Ψ(z), Ψ′(z)) comes forward. The only nuisance in
this method is that the continued fraction q(z) can be wrong due to numerical instability (see
Sec. (2.3)).

This can be partially solved if one considers a direct integration of Fℓ,η(z). If ℜ(ℓ) > −1, Fℓ,η

increases in modulus with |z| in the vicinity of z = 0 (non-oscillatory zone). As a consequence,
if |Fℓ,η| is found to decrease on its initial path, z0 is reinitialized to z/(2|z|), where the power
series formula of Eq. (8) is available, so that a decrease of |Fℓ,η| from z0 to z is less likely to
happen. If the direct integration of Fℓ,η(z) is found to be unstable despite this change of path,
it is preferred to calculate Hω

ℓ,η(z) with direct integration (ω chosen so the branch cut of hω
ℓ,η is

avoided) as hω is numerically more stable than fω (see Sec. (2.3)). Fℓ,η(z) is then calculated
with Eq. (6) and the following formula:

H−ω
ℓ,η (z) =

2iω

Hω
ℓ,η(z) [hω(z) − h−ω(z)]

(16)

which can be obtained similarly to Eq. (14). This process is, however, stable if Hω
ℓ,η(z) and

H−ω
ℓ,η (z) are not numerically equal, so that it is not employed if |Fℓ,η| is found to be smaller

than 0.1 on its integration path. This is a sound procedure as fω(z) is usually correct in this
case if ωℑ(z) < 0 (see Sec. (2.3)).

As a result, direct integration is a powerful tool to determine Fℓ,η(z) outside the zone of
applicability of Eq. (8). It also provides hω(z) close to its branch cut, where the numerical cost
of Eq. (13) becomes prohibitive (see Sec. (2.3)).

2.5 Hω
ℓ,η expansion

When 2ℓ is not an integer, the following formula can be used to calculate Hω
ℓ,η [11]:

Hω
ℓ,η =

Fℓ,η eiωχ − F−ℓ−1,η

sin χ
(17)

χ = σℓ(η) − σ−ℓ−1(η) − (ℓ + 1/2)π (18)

In practice, it has been chosen to apply it only for |ℑ(ℓ)| ≥ 1 and |z| ≤ 1, as other methods
have been found to be more robust for other cases. For a given z, the expression of Eq. (17) is
numerically stable if the Wronskian relation between Fℓ,η and F−ℓ−1,η is respected:

F ′

ℓ,ηF−ℓ−1,η − Fℓ,ηF
′

−ℓ−1,η = sin χ (19)

Note that Eq. (18) is not used to calculate sin χ as it is unstable due to cancellation effects.
Another formula is preferred:

sin χ = −(2ℓ + 1) Cℓ(η) C−ℓ−1(η) (20)

which can be demonstrated using Eqs. (8,19) with z → 0.

7



2.6 Analytic continuation for ℜ(z) < 0

Analytic continuation for ℜ(z) < 0 is first considered for the regular function Fℓ,η. Using
Eqs. (3,8), Fℓ,η(z) and Fℓ,−η(−z) can be shown to be proportional:

Fℓ,η(z) = −e−π(η−iℓ) Fℓ,−η(−z) for arg(z) > 0

Fℓ,η(z) = −e−π(η+iℓ) Fℓ,−η(−z) for arg(z) ≤ 0 (21)

Hence, Fℓ,η(z) can always be deduced from Fℓ,−η(−z), so that calculations for ℜ(z) ≥ 0 are
sufficient to determine Fℓ,η in all the complex plane.

The situation is more complicated for Hω
ℓ,η, as the direct evaluation of Eq. (10) and Eq. (14)

provides correct values for ℜ(z) < 0 and ωℑ(z) > 0, but wrong results occur when ℜ(z) < 0

and ωℑ(z) < 0 [11]. We will denote as H
ω (ASd)
ℓ,η and H

ω (CFd)
ℓ,η the numerical values coming from

a naive implementation of respectively Eq. (10) and Eq. (14). As they are issued from analytic
expressions providing solutions of Eq. (1), they are still solutions of this equation even when

ℜ(z) < 0 and ωℑ(z) < 0. However, the different branch cuts of Hω
ℓ,η, H

ω (ASd)
ℓ,η , and H

ω (CFd)
ℓ,η

imply that the two latter functions are linear combinations of H+
ℓ,η and H−

ℓ,η in this quadrant of
the z-complex plane. Their coefficients will be shown to be very simple expressions of ℓ and η
and can be related to standard circuital relations [17].

If one considers |z| → +∞, one can deduce from Eqs. (4,10) that:

Hω
ℓ,η(z) = H

ω (ASd)
ℓ,η (z) + aω H

−ω (ASd)
ℓ,η (z) for ℜ(z) < 0 and ωℑ(z) < 0 (22)

where aω is a constant depending on ℓ and η. The equality H−ω
ℓ,η = H

−ω (ASd)
ℓ,η in the considered

region is also used. From Eqs. (6,22), one has:

2iFℓ,η(x−) = H
+ (ASd)
ℓ,η (x−) + (a+ − 1) H

− (ASd)
ℓ,η (x−) (23)

−2iFℓ,η(x+) = H
− (ASd)
ℓ,η (x+) + (a− − 1) H

+ (ASd)
ℓ,η (x+) (24)

where x+ = x + iǫ and x− = x − iǫ for x < 0 and ǫ > 0. Branch cut discontinuities of Fℓ,η and

H
ω (ASd)
ℓ,η are straightforward from Eqs. (8,10), so that Eq. (23) can be rewritten as:

2i e−2iπℓ Fℓ,η(x+) = e−2πη H
+ (ASd)
ℓ,η (x+) + e2πη (a+ − 1)H

− (ASd)
ℓ,η (x+) + O(ǫ) (25)

Finally, using Eqs. (24,25) with ǫ → 0, one obtains aω = 1− e2iπ(iη−ℓω) and hence the requested
formula:

Hω
ℓ,η(z) = H

ω (ASd)
ℓ,η (z) +

[

1 − e2iπ(iη−ℓω)
]

H
−ω (ASd)
ℓ,η (z) (26)

for which ℜ(z) < 0 and ωℑ(z) < 0.
Considering the different branch cut discontinuities of Eqs. (10,14) on the negative real axis

and analytic continuation, one obtains:

H
ω (CFd)
ℓ,η (z) = e2iπ(ℓω−iη)H

ω (ASd)
ℓ,η (z) (27)

with ℜ(z) < 0 and ωℑ(z) < 0.
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Using Eqs. (6,26,27), the formulas analog to Eq. (26) for continued fractions are derived:

Hω
ℓ,η(z) = H

ω (CFd)
ℓ,η (z) − 2iω

[

e2iπ(ℓω−iη) − 1
]

Fℓ,η(z) (28)

Hω
ℓ,η(z) = H

−ω (CFd)
ℓ,η (z) + 2iω e−2iπ(ℓω+iη) Fℓ,η(z) (29)

with ℜ(z) < 0, ωℑ(z) < 0 for Eq. (28) but ωℑ(z) > 0 for Eq. (29). As the calculation of
Fℓ,η(z) is prerequisite to determine Hω

ℓ,η(z) with continued fraction formulas (see Eq. (14)), the
numerical evaluation of Hω

ℓ,η(z) with Eqs. (28,29) is straightforward.
Even though the expressions of the coefficients in front of H−ω

ℓ,η in Eq. (26) and Fℓ,η in
Eqs. (28,29) are elementary, care must be given to calculate them due to possible overflow or
underflow and numerical cancellations. One has to use complex generalizations of the standard
C-language functions log1p(x) = log(1 + x) and expm1(x) = ex − 1 for x → 0 to avoid possible
numerical inaccuracies.

As a result, the ℜ(z) < 0 domain no longer poses any numerical problem, as the formulas
of Eqs. (26,28,29) render it comparable to the rest of the z-complex plane.

2.7 Poles of the Coulomb wave functions

When 1 + l + iωη is a negative integer, Coulomb wave functions are undefined (see Eqs. (3,5)).
Nevertheless, if one considers ℜ(ℓ) > −1, numerical solutions of Eq. (1) always exist and can be
computed. For this, Fℓ,η is defined with Eq. (8) putting arbitrarily Cℓ(η) = 1. Direct integration
can be performed precisely for Fℓ,η, as the continued fraction fω of Eq. (12) is finite so that no
numerical inaccuracy can occur. H−ω

ℓ,η can still be defined with Eq. (14) as h−ω 6= fω, so that
one can calculate two linearly independent solutions of Eq. (1) when 1 + l + iωη is a negative
integer. Note that the branch cut of H−ω

ℓ,η is, for this definition, [0 : iω∞[ and not the negative
real axis. Hω

ℓ,η and Gℓ,η can, however, not be defined so that they are arbitrarily put equal to
Fℓ,η and H−ω

ℓ,η respectively.

2.8 Quasi-real ℓ, η and z

When ℓ, η or z are very close to their real axes with at least one of them complex, the imaginary
part of Coulomb wave functions can become tens of order of magnitude smaller than their real
parts. Consequently, it can be numerically imprecise as calculations are always provided up to
the same absolute precision for both real and imaginary parts. This is especially visible if one
deals with resonant states of extremely small widths γ such as proton emitters (γ ∼ 10−20 keV)
[18]. For these kinds of states, one generally uses approximate current formulas [19], providing
very good values for γ if it is small enough. However, it is possible to reach the same precision
directly at the Coulomb wave function level. For this, one expands the Coulomb wave functions
Fℓ,η and Gℓ,η up to first order in the vicinity of the real axes of ℓ, η, and z:

A(ℓ, η, z) = A(ℓr, ηr, x) + i

[

ℓi
∂A

∂ℓ
(ℓr, ηr, x) + ηi

∂A

∂η
(ℓr, ηr, x) + y

∂A

∂z
(ℓr, ηr, x)

]

+ O(ℓ2
i , η

2
i , y

2) (30)

where ℓr, ηr, x and ℓi, ηi, y are respectively the real and imaginary parts of ℓ, η, and z, and
A(ℓ, η, z) is either Fℓ,η(z) or Gℓ,η(z). All values involving A(ℓr, ηr, x) are real (one considers
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x > 0 only) so that function and partial derivatives can be evaluated numerically. In practice, if
ǫ is the demanded numerical precision, the conditions |y| <

√
ǫ min(1, x), |ηi| <

√
ǫ and |ℓi| <

√
ǫ

must be fulfilled for Eq. (30) to be used. It was checked that direct and approximate results
yield the same results up to a precision comparable to ǫ if |y| =

√
ǫ min(1, x), |ℓi| = |ηi| =

√
ǫ

with ǫ = 10−10 (see Table (2)).
Hω

ℓ,η(z) can be obtained straightforwardly from the knowledge of Fℓ,η(z) and Gℓ,η(z). Con-
sequently, the whole Coulomb wave function can be derived up to a given relative numerical
precision for both real and imaginary parts even if they are very different in modulus.

2.9 Scaled wave functions and alternative normalization

It often happens that Hω
ℓ,η(z) overflows or underflows when |z| or |η| become large, but only

through the exponential factor of Eq. (4). As a consequence, the following scaled Coulomb
wave functions can also be calculated in the code:

Hω
ℓ,η(z)sc = Hω

ℓ,η(z) e−iω[z−η log(2z)] (31)

They are particularly useful if one calculates products of Coulomb wave functions where the
different exponential factors cancel each other.

At the limit of very small energies, where |η| is very large, Cℓ(η) can also overflow or
underflow, so that it is no longer possible to calculate Coulomb wave functions. However, their
normalization factor is usually unimportant, as in the case of a resonant state calculation. For
that, we introduced the following renormalized wave functions:

Fℓ,η(z)r = Cℓ(η)−1 Fℓ,η(z)

Hω
ℓ,η(z)r = Cℓ(η) Hω

ℓ,η(z)

Gℓ,η(z)r = Cℓ(η) Gℓ,η(z) (32)

An example of a resonant state for which Cℓ(η) underflows will be given in Sec. (3.2).

2.10 Recurrence relations and associated Wronskian tests

Coulomb wave functions obey recurrence relations of their angular momentum ℓ [11]:

wℓ,η(z) =
Sℓ

Rℓ
wℓ−1,η(z) − 1

Rℓ
w′

ℓ−1,η(z)

w′

ℓ,η(z) = Rℓ wℓ−1,η(z) − Sℓ wℓ,η(z) (33)

where w is any of the F, G, H+ or H− functions, Rℓ = (2ℓ + 1)
Cℓ(η)

Cℓ−1(η)
and Sℓ =

ℓ

z
+

η

ℓ
.

ℜ(ℓ), denoted ℓr, is supposed to be larger than zero. These recurrence relations are stable
provided |wℓ,η(z)| increases with ℓr. As Fℓ,η(z) → 0 with ℓr → +∞ [11], for ℓr large enough,
the recurrence relations are stable with ℓr decreasing if one calculates regular Coulomb wave
functions and with ℓr increasing if one calculates irregular Coulomb wave functions. For the
irregular wave functions, one has the most stable calculations if one calculates Hω

ℓ,η(z) with ω
chosen so |Hω

ℓ0,η(z)| ≤ |H−ω
ℓ0,η(z)|, ℓ0 being the angular momentum of smallest modulus. Indeed,

10



this guarantees Hω
ℓ0,η to be the minimal solution of Eq. (1) if Fℓ0,η is not. One may have,

however, a turning point ℓt before which |Fℓ,η(z)| increases [11]. In this case, Fℓ,η has to be
recurred backward from the angular momentum of largest modulus, denoted ℓ1, backward to
ℓt but forward from ℓ0 to ℓt. Conversely, Hω

ℓ,η must be recurred backward from ℓt to ℓ0 and
forward from ℓt to ℓ1.

The previous recurrence relations provide additional relations between Coulomb wave func-
tions:

Fℓ,ηH
ω
ℓ+1,η − Fℓ+1,ηH

ω
ℓ,η =

1

Rℓ+1

(34)

F ′

ℓ,ηH
ω
ℓ+1,η + Fℓ,ηH

ω′

ℓ+1,η = F ′

ℓ+1,ηH
ω
ℓ,η + Fℓ+1,ηH

ω′

ℓ,η (35)

If ω is chosen so |Hω
ℓ,η(z)| ≤ |H−ω

ℓ,η (z)|, in order to have two Coulomb wave functions numerically
linearly independent, Eqs. (34,35) provide a good test to check the accuracy of the Coulomb
wave functions calculated with the methods of previous sections, as angular momentum recur-
rence relations do not enter them.

The non-standard normalization defined in Eq. (32) can also be used in the code along with
recurrence relations, which can be obtained straightforwardly from Eqs. (32,33). Scaling of Hω

ℓ,η

for ω = ±1 (see Eq. (31))) is, however, not considered in this context, because all Coulomb
wave functions have to be numerically finite for the method to work, so that it would only
result in the trivial multiplication of Hω

ℓ,η(z) by e−iω[z−η log(2z)].

3 Examples

3.1 Calculations in difficult zones of the complex plane

In order to illustrate the proposed numerical methods, we selected sets of ℓ, η, and z parameters
having sizable values. z is always of the form Rte

iθ, where Rt = |η| +
√

|ℓ(ℓ + 1)| + |η|2 is a
generalization of the turning point in the complex plane. Problems of convergence indeed
typically occur in the vicinity of this point [11]. |η| and |ℓ| have been chosen so that at least
one is large in a set of parameters (see Figs. (1,2,3,4,5)).

It was chosen not to have both |η| and |ℑ(ℓ)| large with |ℜ(ℓ)| < |ℑ(ℓ)| or comparable, as
calculations become unstable therein. For these values of ℓ, η, and z, Coulomb wave functions
vary by several orders of magnitude along the complex circle of radius Rt and oscillate much as
well. Hence, we represented the decimal logarithm of the modulus of Coulomb wave functions,
which varies smoothly. One should note that the discontinuities encountered at θ = π follow
the branch cuts imposed to Coulomb wave functions and are not induced by any numerical
inaccuracy. These calculations show that Coulomb wave functions can be calculated precisely
even when they vary much in argument and modulus.

3.2 Calculations of resonant states of very small widths

In order to show the possibilities of the present program related to resonant states with ex-
tremely small widths, e.g. proton emitters [18], we consider a spherical Schrödinger equation
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with a Woods-Saxon potential crudely mimicking a heavy nuclear target acting on a proton
projectile:

h =
p2

2µ
− V0

1 + exp
(

r−R0

d

) + Vc(r) (36)

where µ is the reduced mass of the proton state so that ~
2/2µ = 21 MeV fm2, d is the diffuseness

of the potential fixed at 0.63 fm, R0 is the radius of the potential of 6.5 fm, V0 is the depth of
the Woods-Saxon potential, and Vc(r) is a Coulomb potential generated by a uniformly charged
sphere of radius R0 and charge Z = 66. These parameters correspond to the proton emitter
141Ho [19].

The 2s1/2 proton state energy and width of the Hamiltonian h of Eq. (36) is calculated
for several values of V0 (see Table (3)). The width γ coming from direct integration of h is
compared with the following standard current approximation [19]:

γc = ℜ(k)
~

2

µ

∣

∣

∣

∣

u(R)

H+(kR)

∣

∣

∣

∣

2

(37)

where k is the linear momentum of the proton resonant state, u(r) its radial wave function,
and R a radius large enough so u(r) ∝ H+(kr) for r > R. The value R = 20 fm was chosen.
As expected, both values γ and γc are identical, as γ is very small. If V0 = 56.46 MeV, one
obtains an energy of 6.949·10−4 MeV while the width is numerically zero. This value could be
computed only through the renormalization of Coulomb wave functions of Eq. (32), as for this
energy log10(Cℓ(η)) = −535, implying Cℓ(η) underflow.

These results show that the proposed program is very well suited for the direct calculation of
very narrow resonances, for which one has to enter numerically challenging areas of the complex
plane. It would be interesting to use this program along with coupled-channel integration
methods [18, 19] in order to extend the current method to deformed states.

4 The program cwfcomplex

4.1 Routines of the program

The code cwfcomplex is written in standard C++, uses only standard libraries and is thus
portable on many machines. It is separated in four different files: complex functions.H, cwf-
comp.H, cwfcomp.cpp and test rec rel.cpp.

complex functions.H contains elementary complex functions which are not in the standard
library, and routines calculating constants specific to the Coulomb wave functions:

• inf norm: provides the infinite norm of a complex number.

• isfinite: returns true if the complex number is finite.

• operators overloading of complex and integers.

• expm1 : complex generalization of the function expm1(x) = ex − 1 precise for x → 0.
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• log1p: complex generalization of the function log1p(x) = log(1 + x) precise for x → 0.

• log Gamma: log(Γ(z)) calculated with the method of Ref. [3].

• sigma l calc: complex Coulomb phase shift σℓ(η) (see Eq. (5)).

• log Cl eta calc: log(Cℓ(η)) (see Eq. (3)).

• log cut constant AS calc: logarithm of the constant in front of H
−ω (ASd)
ℓ,η in Eq. (26).

• log cut constant CFa calc: logarithm of the constant in front of Fℓ,η in Eq. (28).

• log cut constant CFb calc: logarithm of the constant in front of Fℓ,η in Eq. (29).

• sin chi calc: sin(χ) calculated with Eq. (20).

• exp I omega chi calc: eiωχ calculated with Eqs. (18,20).

In cwfcomp.H, the class ODE integration and member functions extrapolation in zero, F r u,
integration Henrici and operator () performing direct integration of the Coulomb Schrödinger
equation are defined, as well as the class Coulomb wave functions, with which one can calcu-
late all Coulomb wave functions. All the routines of the class Coulomb wave functions are in
cwfcomp.cpp .

• F dF init : initialization of the member variables debut, F debut and dF debut used for
direct integration (see Sec. (4.3)).

• asymptotic series: calculate the asymptotic series in Eq. (10) for Coulomb wave function
and derivative.

• continued fraction f, continued fraction h: calculate the continued fractions of respec-
tively Eq. (12) and Eq. (13).

• F dF power series: calculate Fℓ,η(z) and F ′

ℓ,η(z) with Eq. (8).

• asymptotic expansion F dF, asymptotic expansion H dH scaled : calculate Fℓ,η(z) and F ′

ℓ,η(z)

(Hω
ℓ,η(z) and Hω′

ℓ,η(z) scaled, see Eq. (31)) from Eqs. (10,26,31).

• F dF direct integration, H dH direct integration: calculate Fℓ,η(z) and F ′

ℓ,η(z) (Hω
ℓ,η(z)

and Hω′

ℓ,η(z)) by direct integration of Eq. (1).

• partial derivatives, first order expansions : calculate Fℓ,η(z) and F ′

ℓ,η(z) or Gℓ,η(z) and
G′

ℓ,η(z) with the method of Sec. (2.8).

• H dH from first order expansions : calculate Hω
ℓ,η(z) and Hω′

ℓ,η(z) with the method of Sec. (2.8).

• H dH with F dF and CF : calculate Hω
ℓ,η(z) and Hω′

ℓ,η(z) with Eqs. (13,28,29).

• H dH with expansion: calculate Hω
ℓ,η(z) and Hω′

ℓ,η(z) with Eq. (17).

• F dF with symmetry relations: calculate Fℓ,η(z) and F ′

ℓ,η(z) for ℜ(z) < 0 with Eq. (21).
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Except F dF init, all the latter routines are private in the class Coulomb wave functions and
should not be used directly.

The following routines of the class Coulomb wave functions are public and provide the
requested Coulomb wave functions:

• F dF : calculate Fℓ,η(z) and F ′

ℓ,η(z).

• G dG : calculate Gℓ,η(z) and G′

ℓ,η(z).

• H dH : calculate Hω
ℓ,η(z) and Hω′

ℓ,η(z).

• H dH scaled : calculate Hω
ℓ,η(z) and Hω′

ℓ,η(z) scaled (see Eq. (31)).

The calculation of Gℓ,η(z) and G′

ℓ,η(z) is performed by calculating Fℓ,η(z), H+
ℓ,η(z), and their

derivatives, so that one has Gℓ,η(z) = H+
ℓ,η(z) − iFℓ,η(z) and G′

ℓ,η(z) = H+′

ℓ,η(z) − iF ′

ℓ,η(z).
The file test rec rel.cpp contains additional useful routines using the class Coulomb wave functions :

• Wronskian test : function calculating Coulomb wave functions accuracy from Wronskian’s
(see Sec. (2.10)).

• cwf l tables recurrence relations: routine calculating Coulomb wave functions with recur-
rence relations for integer spaced ℓ’s (see Sec. (2.10)).

• F dF l tables rec rel helper, cwf l tables rec rel helper : routines called by
cwf l tables recurrence relations, not intended to be used directly.

4.2 Use of the program

Due to its object-oriented programming, cwfcomplex is easy to use. One has to declare first a
class Coulomb wave functions with three parameters l, eta, and is it normalized, where l and
eta are two complex numbers representing ℓ and η, and is it normalized is a boolean equal
to true if one uses the standard normalization of Coulomb wave functions and false if one
uses the normalization of Eq. (32). For example, one declares class Coulomb wave functions
cwf(is it normalized,l,eta);. Then, one can use the member functions of the class cwf. For that,
one needs the complex value z, the integer omega = ±1 (for Hω

ℓ,η), and two complex numbers
A, dA to store the Coulomb wave function and its derivative. The instructions to obtain A and
dA are the following:

• cwf.F dF (z,A,dA); to compute Fℓ,η(z) and F ′

ℓ,η(z).

• cwf.G dG (z,A,dA); to compute Gℓ,η(z) and G′

ℓ,η(z).

• cwf.H dH (omega,z,A,dA); to compute Hω
ℓ,η(z) and Hω′

ℓ,η(z).

• cwf.H dH scaled (omega,z,A,dA); to compute Hω
ℓ,η(z) and Hω′

ℓ,η(z) scaled (see Eq. (31)).
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In order to test the accuracy of previous functions, one has to declare a second class
Coulomb wave functions of parameters is it normalized, l+1 and eta, for example,
class Coulomb wave functions cwf p(is it normalized,l+1,eta);. Then, the instruction const
double W = Wronskian test (z,cwf,cwf p); provides their relative precision, calculated from
their Wronskian’s and angular momentum recurrence relations (see Sec. (2.10)), stored in the
double W.

Tables of integer spaced ℓ’s Coulomb wave functions are calculated with the routine
cwf l tables recurrence relations. For this, one needs the complex angular momentum of small-
est modulus l deb, the number of angular momenta to calculate Nl, eta, is it normalized, the
number of z-variables Nz, the one-dimensional complex array of z-variables z tab, six two-
dimensional Nz x Nl complex arrays F tab, dF tab, G tab, dG tab, Hp tab, dHp tab, Hm tab
and dHm tab to respectively store the regular wave functions F and derivatives, the irregular
wave functions G and derivatives, the outgoing irregular wave functions H+ and derivatives,
and the incoming irregular wave function H− and derivatives, so that F tab[iz][il] will provide
Fℓ,η(z) with ℓ =l deb+il and z =z tab[iz] (same for other tables). The instruction is then:

cwf l tables recurrence relations (l deb,Nl,eta,is it normalized,Nz,z tab,
F tab,dF tab,G tab,dG tab,Hp tab,dHp tab,Hm tab,dHm tab);

If one considers a single complex variable z, one can use the following instruction:

cwf l tables recurrence relations (l deb,Nl,eta,is it normalized,z,
F tab,dF tab,G tab,dG tab,Hp tab,dHp tab,Hm tab,dHm tab);

where F tab,...,dHm tab are now one-dimensional arrays of Nl complex numbers (F tab[il] =
Fℓ,η(z) with ℓ =l deb+il, same for other tables).

Examples are provided by the program examples.cpp, which calculates values of different
Coulomb wave functions and derivatives on a circular z-path of the form z = Reiθ, with
θ ∈ [0 : 2π[, for given ℓ0, η and R, their accuracy with the function Wronskian test and a table
of integer spaced ℓ’s Coulomb wave functions with the routine cwf l tables recurrence relations,
with the same parameters as before and ℓ starting from ℓ0.

4.3 Recommendations

Even though there are no restrictions for the complex values used in the program, it is advised
to use ℜ(ℓ) > −1. Calculations have indeed been found to be more stable for these values. If
one has ℜ(ℓ) ≤ −1, one can use the symmetry transformation ℓ → −ℓ − 1, as Eqs. (17,18)
imply Hω

ℓ,η = Hω
−ℓ−1,η eiωχ.

Due to the direct integration procedures, Coulomb wave functions should be calculated if
possible for z varying smoothly if one considers tables of Coulomb wave function values. Indeed,
the complex numbers z, Fℓ,η(z), F ′

ℓ,η(z) are stored in the class under the names debut, F debut
and dF debut after each calculation, so that the integration from this point to the next is faster
and more precise if z varies continuously in the complex plane. Also, it is better for |Fℓ,η|
to increase on its path as then no continued fraction calculation f(z) (see Eq.(12)) is needed
during direct integration.
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5 Conclusion

The computation of Coulomb wave functions with all its arguments complex is a very difficult
task. The single use of power/asymptotic series and continued fractions quickly shows its
limitation when |η| or |ℑ(ℓ)| increases. It was found that the range of accessible ℓ, η, and
z is greatly augmented by adding the direct integration method of the Coulomb equation.
Calculations are stable for values of |ℑ(η)| as important as 80, and |ℑ(ℓ)| can be as large as
100 as well. This method is particularly stable for the implementation of extremely narrow
resonant states. However, instabilities appear when both |η| and |ℑ(ℓ)| are large, and |ℜ(ℓ)|
smaller or comparable to |ℑ(ℓ)|. For example, the values ℓ = 15i, η = 10, and z = 20eiθ

used in a calculation similar to the ones presented in Sec. (3.1) provide wrong wave functions
in the vicinity of θ = 3π/2. This particular problem can be treated by always accepting the
value of fω(z) in F dF direct integration for backward integration (see Sec. (2.4)). Other issues
can be solved by using H dH with expansion in H dH and H dH scaled even if |z| > 1 or
|ℑ(ℓ)| < 1. (The comments in the code beginning with four slashes explain to the user how
to make modifications accordingly.) Nevertheless, these are solutions for very particular cases
and cannot be included in a general program. Calculations can also become too long if one
considers irregular Coulomb wave functions for 0 < |ℓ| < 1 and |z| < 10−5, as the continued
fraction of Eq.(13) converges very slowly for z ∼ 0 [11] and direct integration cannot be used
in this region. Even though one encounters numerical problems for large values of |ℑ(ℓ)/ℜ(ℓ)|
and |η| or very small |z|, this program has rendered possible calculations which could not be
undertaken with standard methods.
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Test Input

true
(1,0.1)
(50,50)
100.156
10
3

# Description of the input parameters
#
# Boolean: true if ones uses standard normalization, false if one uses alternative normalization.
# Complex: angular momentum l.
# Complex: Sommerfeld parameter eta.
# Double: radius R of the path in the complex plane: z = R exp(i theta), theta in [0:2 pi[.
# Integer: number of points Nz to be considered on the path.
# Integer: number of points Nl for the recurrence relation : l[rec] = l+k, k in [0:Nl-1].
#
# Compilation: g++ -O3 examples.cpp -o run
# Input instruction: ./run < test.input
# The output is in test.output .
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Test Output

is it normalized:true l:(1,0.1) eta:(50,50) R:100.156 Nz:10 Nl:3

z:(100.156,0)
F:(-1.021072923e+15,-2.836755456e+15) F’:(1.275057299e+15,-2.729507771e+15)
G:(2.836755456e+15,-1.021072923e+15) G’:(2.729507771e+15,1.275057299e+15)
H+:(5.673510913e+15,-2.042145845e+15) H+’:(5.459015542e+15,2.550114598e+15)
H-:(7.0774288e-17,1.501204734e-16) H-’:(5.671783379e-17,-1.558437769e-16)
Wronskian test: 1.628444125e-11

z:(81.02790609,58.87021973)
F:(0.01090170509,0.002924757522) F’:(0.006665318369,0.003695114571)
G:(57.24722492,-32.54791917) G’:(-42.75162529,10.97359983)
H+:(57.24430017,-32.53701746) H+’:(-42.7553204,10.98026514)
H-:(57.25014968,-32.55882087) H-’:(-42.74793017,10.96693451)
Wronskian test: 1.307402399e-11

z:(30.94990609,95.25401645)
F:(-2.246133078e-15,2.098754042e-15) F’:(-5.747597654e-16,2.506104287e-15)
G:(-4.367342675e+13,-1.907186698e+14) G’:(1.181536987e+14,1.103266317e+14)
H+:(-4.367342675e+13,-1.907186698e+14) H+’:(1.181536987e+14,1.103266317e+14)
H-:(-4.367342675e+13,-1.907186698e+14) H-’:(1.181536987e+14,1.103266317e+14)
Wronskian test: 2.604836552e-11

z:(-30.94990609,95.25401645)
F:(-3.696304706e-35,8.374503306e-35) F’:(5.116568262e-35,9.162544125e-35)
G:(2.32622983e+33,-4.170545023e+33) G’:(2.19801873e+33,4.986604576e+33)
H+:(2.32622983e+33,-4.170545023e+33) H+’:(2.19801873e+33,4.986604576e+33)
H-:(2.32622983e+33,-4.170545023e+33) H-’:(2.19801873e+33,4.986604576e+33)
Wronskian test: 6.182547672e-12

z:(-81.02790609,58.87021973)
F:(-2.432130956e-67,3.004725207e-66) F’:(3.593950134e-66,1.98955822e-66)
G:(1.065320986e+65,-5.911485321e+64) G’:(1.320210869e+64,1.651750319e+65)
H+:(1.065320986e+65,-5.911485321e+64) H+’:(1.320210869e+64,1.651750319e+65)
H-:(1.065320986e+65,-5.911485321e+64) H-’:(1.320210869e+64,1.651750319e+65)
Wronskian test: 1.818126864e-10

z:(-100.156,1.22651674e-14)
F:(7.915510206e-34,-4.070932761e-34) F’:(3.191449042e-34,1.291346723e-33)
G:(4.180561145e+103,8.128671328e+103) G’:(-1.326122108e+104,3.277393326e+103)
H+:(4.180561145e+103,8.128671328e+103) H+’:(-1.326122108e+104,3.277393326e+103)
H-:(4.180561145e+103,8.128671328e+103) H-’:(-1.326122108e+104,3.277393326e+103)
Wronskian test: 1.24249569e-16
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z:(-81.02790609,-58.87021973)
F:(-23318.74764,-17080.04412) F’:(28164.502,-34900.64756)
G:(17080.04412,-23318.74763) G’:(34900.64758,28164.50199)
H+:(34160.08824,-46637.49527) H+’:(69801.29514,56329.004)
H-:(6.998646405e-06,8.686284079e-06) H-’:(1.393963282e-05,-1.022684069e-05)
Wronskian test: 1.320762168e-11

z:(-30.94990609,-95.25401645)
F:(-3.419604636e+30,-3.206140946e+30 ) F’:(4.148673182e+30,-5.870853625e+30)
G:(3.206140946e+30,-3.419604636e+30) G’:(5.870853625e+30,4.148673182e+30)
H+:(6.412281891e+30,-6.839209271e+30) H+’:(1.174170725e+31,8.297346365e+30)
H-:(4.01631585e-32,5.686566419e-32) H-’:(7.772167842e-32,-7.290658234e-32)
Wronskian test: 1.127990924e-11

z:(30.94990609,-95.25401645)
F:(1.125583254e+40,3.548477279e+39) F’:(3.759922307e+38,1.698605313e+40)
G:(-3.548477279e+39,1.125583254e+40) G’:(-1.698605313e+40,3.759922307e+38)
H+:(-7.096954559e+39,2.251166509e+40) H+’:(-3.397210626e+40,7.519844613e+38)
H-:(6.373392552e-43,-2.945348841e-41) H-’:(-4.036846683e-41,1.270436304e-41)
Wronskian test: 1.056406572e-11

z:(81.02790609,-58.87021973)
F:(-2.579395538e+32,7.380968215e+32) F’:(-9.701448492e+32,1.926734513e+32)
G:(-7.380968215e+32,-2.579395538e+32) G’:(-1.926734513e+32,-9.701448492e+32)
H+:(-1.476193643e+33,-5.158791075e+32) H+’:(-3.853469026e+32,-1.940289698e+33)
H-:(-4.963907579e-34,-9.779175601e-35) H-’:(2.098665903e-34,6.035174252e-34)
Wronskian test: 1.628966764e-12

Recurrence relations results for a table of z values.
z:(100.156,0)
l[rec]:(1,0.1)
F:(-1.021072923e+15,-2.836755456e+15) F’:(1.275057299e+15,-2.729507771e+15)
G:(2.836755456e+15,-1.021072923e+15) G’:(2.729507771e+15,1.275057299e+15)
H+:(5.673510913e+15,-2.042145845e+15) H+’:(5.459015542e+15,2.550114597e+15)
H-:(7.0774288e-17,1.501204734e-16) H-’:(5.67178338e-17,-1.558437769e-16)

l[rec]:(2,0.1)
F:(-9.963131598e+14,-2.756374147e+15) F’:(1.235449857e+15,-2.655381893e+15)
G:(2.756374147e+15,-9.963131598e+14) G’:(2.655381893e+15,1.235449857e+15)
H+:(5.512748294e+15,-1.99262632e+15) H+’:(5.310763785e+15,2.470899715e+15)
H-:(7.256451117e-17,1.54534022e-16) H-’:(5.855852326e-17,-1.602324976e-16)

l[rec]:(3,0.1)

20



F:(-9.584372325e+14,-2.64073598e+15) F’:(1.180083758e+15,-2.547127509e+15)
G:(2.64073598e+15,-9.584372325e+14) G’:(2.547127509e+15,1.180083758e+15)
H+:(5.28147196e+15,-1.916874465e+15) H+’:(5.094255019e+15,2.360167515e+15)
H-:(7.544527529e-17,1.613446827e-16) H-’:(6.131348038e-17,-1.670888938e-16)

z:(81.02790609,58.87021973)
l[rec]:(1,0.1)
F:(0.01090170509,0.002924757522) F’:(0.00666531837,0.00369511457)
G:(57.24722493,-32.54791916) G’:(-42.75162529,10.97359982)
H+:(57.24430017,-32.53701746) H+’:(-42.7553204,10.98026514)
H-:(57.25014969,-32.55882087) H-’:(-42.74793018,10.9669345)

l[rec]:(2,0.1)
F:(0.01069308234,0.002972399334) F’:(0.006522115638,0.003689236481)
G:(57.93801038,-33.60221658) G’:(-43.37569649,11.55133447)
H+:(57.93503798,-33.5915235) H+’:(-43.37938573,11.55785658)
H-:(57.94098278,-33.61290967) H-’:(-43.37200725,11.54481235)

l[rec]:(3,0.1)
F:(0.01038725067,0.003043902107) F’:(0.006311911265,0.003681809291)
G:(58.95045958,-35.24443848) G’:(-44.3055982,12.46205462)
H+:(58.94741568,-35.23405123) H+’:(-44.30928001,12.46836653)
H-:(58.95350348,-35.25482573) H-’:(-44.30191639,12.45574271)

z:(30.94990609,95.25401645)
l[rec]:(1,0.1)
F:(-2.246133078e-15,2.098754042e-15) F’:(-5.747597651e-16,2.506104288e-15)
G:(-4.367342673e+13,-1.907186698e+14) G’:(1.181536987e+14,1.103266317e+14)
H+:(-4.367342673e+13,-1.907186698e+14) H+’:(1.181536987e+14,1.103266317e+14)
H-:(-4.367342673e+13,-1.907186698e+14) H-’:(1.181536987e+14,1.103266317e+14)

l[rec]:(2,0.1)
F:(-2.280830781e-15,2.034967775e-15) F’:(-6.280365023e-16,2.478500727e-15)
G:(-4.826447957e+13,-1.907399944e+14) G’:(1.213466147e+14,1.081922962e+14)
H+:(-4.826447957e+13,-1.907399944e+14) H+’:(1.213466147e+14,1.081922962e+14)
H-:(-4.826447957e+13,-1.907399944e+14) H-’:(1.213466147e+14,1.081922962e+14)

l[rec]:(3,0.1)
F:(-2.331318569e-15,1.939356637e-15) F’:(-7.06875848e-16,2.436443775e-15)
G:(-5.518815356e+13,-1.904610411e+14) G’:(1.260154402e+14,1.047559123e+14)
H+:(-5.518815356e+13,-1.904610411e+14) H+’:(1.260154402e+14,1.047559123e+14)
H-:(-5.518815356e+13,-1.904610411e+14) H-’:(1.260154402e+14,1.047559123e+14)

z:(-30.94990609,95.25401645)
l[rec]:(1,0.1)
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F:(-3.696304706e-35,8.374503306e-35) F’:(5.116568262e-35,9.162544125e-35)
G:(2.32622983e+33,-4.170545023e+33) G’:(2.19801873e+33,4.986604576e+33)
H+:(2.32622983e+33,-4.170545023e+33) H+’:(2.19801873e+33,4.986604576e+33)
H-:(2.32622983e+33,-4.170545023e+33) H-’:(2.19801873e+33,4.986604576e+33)

l[rec]:(2,0.1)
F:(-3.976658859e-35,8.274528706e-35) F’:(4.8327284e-35,9.349101023e-35)
G:(2.184541884e+33,-4.231185626e+33) G’:(2.351297285e+33,4.898721703e+33)
H+:(2.184541884e+33,-4.231185626e+33) H+’:(2.351297285e+33,4.898721703e+33)
H-:(2.184541884e+33,-4.231185626e+33) H-’:(2.351297285e+33,4.898721703e+33)

l[rec]:(3,0.1)
F:(-4.394887926e-35,8.113966164e-35) F’:(4.398972708e-35,9.619612834e-35)
G:(1.968199386e+33,-4.309629699e+33) G’:(2.572345582e+33,4.754740671e+33)
H+:(1.968199386e+33,-4.309629699e+33) H+’:(2.572345582e+33,4.754740671e+33)
H-:(1.968199386e+33,-4.309629699e+33) H-’:(2.572345582e+33,4.754740671e+33)

z:(-81.02790609,58.87021973)
l[rec]:(1,0.1)
F:(-2.432130956e-67,3.004725207e-66) F’:(3.593950134e-66,1.98955822e-66)
G:(1.065320986e+65,-5.911485322e+64) G’:(1.320210869e+64,1.651750319e+65)
H+:(1.065320986e+65,-5.911485322e+64) H+’:(1.320210869e+64,1.651750319e+65)
H-:(1.065320986e+65,-5.911485322e+64) H-’:(1.320210869e+64,1.651750319e+65)

l[rec]:(2,0.1)
F:(-3.576416599e-67,3.029259022e-66) F’:(3.559897692e-66,2.145032835e-66)
G:(1.030789257e+65,-6.225220366e+64) G’:(1.903651657e+64,1.626497749e+65)
H+:(1.030789257e+65,-6.225220366e+64) H+’:(1.903651657e+64,1.626497749e+65)
H-:(1.030789257e+65,-6.225220366e+64) H-’:(1.903651657e+64,1.626497749e+65)

l[rec]:(3,0.1)
F:(-5.328192626e-67,3.06145691e-66) F’:(3.501151213e-66,2.380004106e-66)
G:(9.770243181e+64,-6.655971946e+64) G’:(2.74025893e+64,1.583938607e+65)
H+:(9.770243181e+64,-6.655971946e+64) H+’:(2.74025893e+64,1.583938607e+65)
H-:(9.770243181e+64,-6.655971946e+64) H-’:(2.74025893e+64,1.583938607e+65)

z:(-100.156,1.22651674e-14)
l[rec]:(1,0.1)
F:(7.915510206e-34,-4.070932761e-34) F’:(3.191449041e-34,1.291346722e-33)
G:(4.180561145e+103,8.128671329e+103) G’:(-1.326122108e+104,3.277393326e+103)
H+:(4.180561145e+103,8.128671329e+103) H+’:(-1.326122108e+104,3.277393326e+103)
H-:(4.180561145e+103,8.128671329e+103) H-’:(-1.326122108e+104,3.277393326e+103)

l[rec]:(2,0.1)
F:(7.60252401e-34,-4.273651875e-34) F’:(3.593368917e-34,1.252731129e-33)
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G:(4.388739394e+103,7.807256555e+103) G’:(-1.286466613e+104,3.690136722e+103)
H+:(4.388739394e+103,7.807256555e+103) H+’:(-1.286466613e+104,3.690136722e+103)
H-:(4.388739394e+103,7.807256555e+103) H-’:(-1.286466613e+104,3.690136722e+103)

l[rec]:(3,0.1)
F:(7.127789352e-34,-4.540648434e-34) F’:(4.144057432e-34,1.192784614e-33)
G:(4.66292605e+103,7.319737507e+103) G’:(-1.224905766e+104,4.255655031e+103)
H+:(4.66292605e+103,7.319737507e+103) H+’:(-1.224905766e+104,4.255655031e+103)
H-:(4.66292605e+103,7.319737507e+103) H-’:(-1.224905766e+104,4.255655031e+103)

z:(-81.02790609,-58.87021973)
l[rec]:(1,0.1)
F:(-23318.74764,-17080.04412) F’:(28164.502,-34900.64756)
G:(17080.04412,-23318.74763) G’:(34900.64757,28164.50199)
H+:(34160.08824,-46637.49528) H+’:(69801.29514,56329.004)
H-:(6.998646405e-06,8.686284079e-06) H-’:(1.393963282e-05,-1.022684069e-05)

l[rec]:(2,0.1)
F:(-23227.13327,-15830.94943) F’:(26224.1359,-34846.45541)
G:(15830.94944,-23227.13327) G’:(34846.45543,26224.13589)
H+:(31661.89887,-46454.26654) H+’:(69692.91084,52448.27179)
H-:(6.890524871e-06,9.17086489e-06) H-’:(1.468279939e-05,-1.002406502e-05)

l[rec]:(3,0.1)
F:(-22989.33501,-14034.3731) F’:(23425.9144,-34604.63695)
G:(14034.3731,-22989.335) G’:(34604.63697,23425.91439)
H+:(28068.7462,-45978.67001) H+’:(69209.27392,46851.8288)
H-:(6.703413121e-06,9.918798258e-06) H-’:(1.582831668e-05,-9.679629412e-06)

z:(-30.94990609,-95.25401645)
l[rec]:(1,0.1)
F:(-3.419604636e+30,-3.206140946e+30) F’:(4.148673182e+30,-5.870853625e+30)
G:(3.206140946e+30,-3.419604636e+30) G’:(5.870853625e+30,4.148673182e+30)
H+:(6.412281891e+30,-6.839209271e+30) H+’:(1.174170725e+31,8.297346364e+30)
H-:(4.01631585e-32,5.68656642e-32) H-’:(7.772167843e-32,-7.290658234e-32)

l[rec]:(2,0.1)
F:(-3.392855448e+30,-3.007724359e+30) F’:(3.853513229e+30,-5.788374417e+30)
G:(3.007724359e+30,-3.392855448e+30) G’:(5.788374417e+30,3.853513229e+30)
H+:(6.015448719e+30,-6.785710896e+30) H+’:(1.157674883e+31,7.707026457e+30)
H-:(3.986897101e-32,5.991979415e-32) H-’:(8.242309638e-32,-7.310395217e-32)

l[rec]:(3,0.1)
F:(-3.339981893e+30,-2.724844995e+30) F’:(3.435784336e+30,-5.648469464e+30)
G:(2.724844995e+30,-3.339981893e+30) G’:(5.648469464e+30,3.435784336e+30)
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H+:(5.449689989e+30,-6.679963785e+30) H+’:(1.129693893e+31,6.871568672e+30)
H-:(3.932323694e-32,6.468436407e-32) H-’:(8.977628494e-32,-7.327940398e-32)

z:(30.94990609,-95.25401645)
l[rec]:(1,0.1)
F:(1.125583254e+40,3.548477279e+39) F’:(3.759922313e+38,1.698605313e+40)
G:(-3.548477279e+39,1.125583254e+40) G’:(-1.698605313e+40,3.759922313e+38)
H+:(-7.096954559e+39,2.251166509e+40) H+’:(-3.397210626e+40,7.519844627e+38)
H-:(6.373392558e-43,-2.945348841e-41) H-’:(-4.036846684e-41,1.270436304e-41)

l[rec]:(2,0.1)
F:(1.092775914e+40,3.208281133e+39) F’:(6.877131706e+38,1.638289489e+40)
G:(-3.208281133e+39,1.092775914e+40) G’:(-1.638289489e+40,6.877131706e+38)
H+:(-6.416562265e+39,2.185551829e+40) H+’:(-3.276578978e+40,1.375426341e+39)
H-:(1.265131507e-42,-3.049938868e-41) H-’:(-4.208492895e-41,1.233299224e-41)

l[rec]:(3,0.1)
F:(1.043809065e+40,2.740200645e+39) F’:(1.099037848e+39,1.550082818e+40)
G:(-2.740200645e+39,1.043809065e+40) G’:(-1.550082818e+40,1.099037848e+39)
H+:(-5.480401289e+39,2.087618131e+40) H+’:(-3.100165636e+40,2.198075696e+39)
H-:(2.26211583e-42,-3.213069851e-41) H-’:(-4.477068961e-41,1.172939493e-41)

z:(81.02790609,-58.87021973)
l[rec]:(1,0.1)
F:(-2.579395538e+32,7.380968215e+32) F’:(-9.701448491e+32,1.926734514e+32)
G:(-7.380968215e+32,-2.579395538e+32) G’:(-1.926734514e+32,-9.701448491e+32)
H+:(-1.476193643e+33,-5.158791075e+32) H+’:(-3.853469027e+32,-1.940289698e+33)
H-:(-4.963907579e-34,-9.779175603e-35) H-’:(2.098665903e-34,6.035174253e-34)

l[rec]:(2,0.1)
F:(-2.416251979e+32,7.159184131e+32) F’:(-9.355630991e+32,1.963184002e+32)
G:(-7.159184131e+32,-2.416251979e+32) G’:(-1.963184002e+32,-9.355630991e+32)
H+:(-1.431836826e+33,-4.832503957e+32) H+’:(-3.926368004e+32,-1.871126198e+33)
H-:(-5.124854379e-34,-1.067175763e-34) H-’:(2.104701743e-34,6.26792112e-34)

l[rec]:(3,0.1)
F:(-2.191409619e+32,6.833977857e+32) F’:(-8.857660418e+32,2.000904331e+32)
G:(-6.833977857e+32,-2.191409619e+32) G’:(-2.000904331e+32,-8.857660418e+32)
H+:(-1.366795571e+33,-4.382819238e+32) H+’:(-4.001808662e+32,-1.771532084e+33)
H-:(-5.377076882e-34,-1.205969114e-34) H-’:(2.115384163e-34,6.632005233e-34)

Recurrence relations results for a single z.
z:(100.156,0)
l[rec]:(1,0.1)
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F:(-1.021072923e+15,-2.836755456e+15) F’:(1.275057299e+15,-2.729507771e+15)
G:(2.836755456e+15,-1.021072923e+15) G’:(2.729507771e+15,1.275057299e+15)
H+:(5.673510913e+15,-2.042145845e+15) H+’:(5.459015542e+15,2.550114597e+15)
H-:(7.0774288e-17,1.501204734e-16) H-’:(5.67178338e-17,-1.558437769e-16)

l[rec]:(2,0.1)
F:(-9.963131598e+14,-2.756374147e+15) F’:(1.235449857e+15,-2.655381893e+15)
G:(2.756374147e+15,-9.963131598e+14) G’:(2.655381893e+15,1.235449857e+15)
H+:(5.512748294e+15,-1.99262632e+15) H+’:(5.310763785e+15,2.470899715e+15)
H-:(7.256451117e-17,1.54534022e-16) H-’:(5.855852326e-17,-1.602324976e-16)

l[rec]:(3,0.1)
F:(-9.584372325e+14,-2.64073598e+15) F’:(1.180083758e+15,-2.547127509e+15)
G:(2.64073598e+15,-9.584372325e+14) G’:(2.547127509e+15,1.180083758e+15)
H+:(5.28147196e+15,-1.916874465e+15) H+’:(5.094255019e+15,2.360167515e+15)
H-:(7.544527529e-17,1.613446827e-16) H-’:(6.131348038e-17,-1.670888938e-16)
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Table 1: Number of iterations n needed for the continued fraction h+(z) to converge up to
ǫ = 10−10 with Lentz method. The set of parameters is chosen here as ℓ = 0, η = 10, and
z = x − 2i, with x varying between 0 and 1.

x n
1 485

0.5 1,679
0.1 35,984
0.05 137,922
0.01 3,146,899
0.005 12,107,924

Table 2: Comparison of the Coulomb wave functions Fℓ,η(z) and Gℓ,η(z) and derivatives cal-
culated with direct and first-order expansion methods. The second and third columns show
respectively the real and imaginary parts of the Coulomb wave functions obtained with the
direct method. The fourth and fifth column provides the relative difference of the same real
and imaginary parts with those calculated with the first-order expansion respectively. The used
set of parameters is ℓ = i10−5, η = 10 + i10−5, and z = 0.1 + i10−6.

Direct (real part) Direct (im. part) Rel. diff. (real part) Rel. diff. (im. part)
F 4.306·10−14 –9.033·10−19 1.481·10−10 6.819·10−10

F ′ 7.635·10−13 –1.861·10−17 2.507·10−10 5.467·10−10

G 7.787·1011 1.842·107 3.299·10−10 1.053·10−9

G′ –9.416·1012 –2.076·108 3.086·10−10 2.849·10−10
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Table 3: Energies and widths of the 2s1/2 proton state of the Hamiltonian h of Eq. (36) as
a function of the depth of the Woods-Saxon potential V0 given in MeV. γ denotes the width
obtained by direct integration of h, and γc is the width obtained by the approximate current
formula of Eq. (37). Energies are given in MeV and widths in keV.

V0 (MeV) E (MeV) γ (keV) γc (keV)
50 4.510 6.188·10−1 6.188·10−1

51 3.847 6.134·10−2 6.134·10−2

52 3.168 2.597·10−3 2.597·10−3

53 2.477 2.664·10−5 2.664·10−5

54 1.773 1.777·10−8 1.777·10−8

55 1.060 1.260·10−14 1.260·10−14

56 0.336 7.738·10−36 7.738·10−36

56.4 4.458·10−2 4.956·10−121 4.956·10−121

56.46 6.949·10−4 0 0
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Figure 1: Decimal logarithms of |Fℓ,η(z)|, |H+
ℓ,η(z)|, and |H−

ℓ,η(z)| as a function of the argument
θ of z, given in units of radian over π. They are respectively represented with full, dashed, and
dotted lines. z = Rte

iθ with Rt the generalized turning point |η| +
√

|ℓ(ℓ + 1)| + |η|2. ℓ and η
are here respectively equal to 0.1i and 50 + 0.1i.
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Figure 2: Same as Fig. (1), except that ℓ and η are here respectively equal to 0.1i and 50+50i.
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Figure 3: Same as Fig. (1), except that ℓ and η are here respectively equal to 0.1i and 1 + 80i.
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Figure 4: Same as Fig. (1), except that ℓ and η are here respectively equal to 100i and 0.1+0.1i.
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Figure 5: Same as Fig. (1), except that ℓ and η are here respectively equal to 100 + 10i and
50 + 50i.
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