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Abstract

micrOMEGAs 2.0 is a code which calculates the relic density of a stable mas-
sive particle in an arbitrary model. The underlying assumption is that there is
a conservation law like R-parity in supersymmetry which guarantees the stability
of the lightest odd particle. The new physics model must be incorporated in the
notation of CalcHEP, a package for the automatic generation of squared matrix ele-
ments. Once this is done, all annihilation and coannihilation channels are included
automatically in any model. Cross-sections at v = 0, relevant for indirect detec-
tion of dark matter, are also computed automatically. The package includes three
sample models: the minimal supersymmetric standard model (MSSM), the MSSM
with complex phases and the NMSSM. Extension to other models, including non
supersymmetric models, is described.

1 Introduction

Precision cosmological measurements have recently provided strong evidence that the
universe is dominated by dark energy and also contains a large dark matter component
M, 2, B]. Furthermore, the amount of dark matter today, the relic density, has been
measured with good precision by WMAP, 0.094 < Qh? < 0.128 [T, 2] . While one can
show, based on general arguments [H], that a reasonable value for the relic density of cold
dark matter, can be obtained in any model with a stable particle that is weakly interacting,
the precision reached allows to actually test in details the implication of the new physics
models that propose a dark matter candidate, thus putting strong constraints on new
models. It is particulary interesting that models for new physics whose prime goal is to
solve the hierarchy problem, for example supersymmetry, can in many cases also provide
a viable candidate for dark matter. In the minimal supersymmetric standard model
(MSSM) one introduces a discrete symmetry, called R-parity, to prevent too fast proton
decay. This symmetry also ensures consistency with electroweak precision measurements.
This discrete symmetry then guarantees the stability of the lightest R-parity odd particle,
in this case the lightest supersymmetric particle (LSP). Within this context a number
of studies have examined the impact of the precise measurement of the relic density and
shown that it puts strong constraints on supersymmetric models, either the MSSM [5G [7]
or high scale models such as minimal supergravity (mSUGRA) [, @, [0, [T, T2, 13} [14],
non-universal SUGRA [I5, 6, 7, I8, 9], or string inspired models [20]. Furthermore,
studies of relic density of dark matter in some generalizations of the MSSM such as the
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MSSM with CP violation[21], 22, 23, 24], the NMSSM which contains an extra singlet
[25, 26] or even the MSSM with an extended gauge structure such as an extra U(1)[27] or
the left-right symmetric model [2§], all emphasize the presence of new channels that can
lead to a reasonable value of the relic density of dark matter where it was not possible
within the MSSM. However candidates for dark matter go far beyond the much studied
neutralino LSP in the MSSM. Besides the extensions of the MSSM mentionned above,
explicit examples include a model with universal extra dimensions [29, BO] where the cold
dark matter (CDM) candidate is the partner of the hypercharge gauge boson, a model
with warped extra dimensions [B1] where the CDM is the Kaluza-Klein excitation of a
right-handed neutrino and little Higgs models where in some cases the partner of the
hypercharge gauge boson is the CDM candidate [32, B3] while in other cases the CDM is
a heavy neutrino [34]. One can even have a scalar CDM candidate, for example in theory
space models [32]. In all these models that propose alternate solutions to the hierarchy
problem, a discrete symmetry like R-parity conservation is either present by construction
or needs to be introduced for the viability of the model. The main problems that this
discrete symmetry alleviates are rapid proton decay, as in warped extra dimensions, or
consistency with electroweak precision measurements as in universal extra dimensions or
the littlest Higgs model. These discrete symmetries then naturally ensure the stability of
the lightest odd particle (LOP) !.

Sophisticated tools have been developed to perform a precise computation of the relic
density within R-parity conserving supersymmetric models, three are publicly available:
micrOMEGAs 1.3 [B5, B6],DarkSUSY [37] and IsaTOOLS [38. In view of the diversity of
the new physics models and of the CDM candidates, there is a clear need for complete
and precise codes to calculate the relic density of dark matter in different models, to
the level of what has been achieved in the MSSM. Here we propose an extension of
micrOMEGAs 1.3 that serves this purpose.

One of the difficulty of the computation of the relic density is that a large number
of channels can contribute to the (co-)annihilation cross-section of dark matter. For ex-
ample in the general MSSM, close to 3000 processes can contribute, in particular a large
number of processes are relevant when the spectrum is such that many particles are not
much heavier than the dark matter candidate. Therefore a certain level of automation is
desirable. The structure of micrOMEGAs which is based on CalcHEP [39] a program that
automatically calculates cross-sections in a given model, makes it in principle straightfor-
ward to make a complete code for the relic density calculation in a new model. Once the
new model is implemented into CalcHEP and Feynman rules defined, all annihilation and
coannihilation channels are calculated automatically. The standard micrOMEGAs routines
can then be used to compute the relic density. To automatize as much as possible the
procedure for implementing a new model, it is possible to use a program like LanHEP (],
which starts from a Lagrangian in a human readable format and derives all the neces-
sary Feynman rules. Note that a similar approach has been adopted by the authors of
DM++ [AT]. Using CalcHEP [39] for the automatic generation of matrix elements, they
have computed the relic density of dark matter in a little Higgs model.

The approach that we propose here is very general and, as long as one sticks to
tree-level masses and cross-sections, necessitates minimal work from the user beyond the
definition of the model file. However it has been demonstrated that for an accurate

'In the following we will use R-parity to designate generically the discrete symmetry that guarantees
the stability of the LOP.



relic density calculation is is necessary in many cases to take into account higher-order
corrections. In particular corrections to the mass of either the LOP or of any particle that
can appear in s-channel are important. In the MSSM or in the NMSSM such corrections
to Higgs masses are known to be very important. The large QCD corrections to the Higgs
width must also be taken into account when annihilation occurs near a Higgs resonance.
In general one expects that these loop corrections can be implemented via an effective
Lagrangian. In practice then it might be necessary for the user to implement additional
routines or interface other programs to take these effects into account.

Another advantage of our approach based on a generic program like CalcHEP is that
one can compute in addition any cross-section or decay width in the new model con-
sidered. In particular, tree-level cross-sections for 2 — 2 processes and 2-body decay
widths of particles are available. Furthermore the cross-sections times relative velocity,
ov, for neutralino annihilation at v — 0 and the yields for the continuum ~, e™, p, v spec-
tra, relevant for indirect detection of neutralinos, are also automatically computed. The
procedure that derives the v, e™, p, v spectrum from the different channels for two-body
annihilation of the dark matter particles was developed for the MSSM 2] and can be
applied to a generic model.

As compared to an earlier version of micrOMEGAs 1.3 that was developed specifically
for the MSSM, micrOMEGAs 2.0 gives the possibility to compute the relic density in a
generic model. Furthermore, improvements have been made within the MSSM and its
extensions. Note however that the relic density calculation itself has not been modified
for the MSSM in this new version. Specifically, the new features of micrOMEGAs 2.0 are:

e Possibility to include in the package any particle physics model with a discrete
symmetry that guarantees the stability of the cold dark matter candidate (LOP)
and to compute the relic density of CDM.

e Compute automatically the cross-sections for annihilation of the LOP at small ve-
locities into SM final states and provide the energy spectra for 7, e, p, v final states.

e For the MSSM with input parameters defined at the GUT scale, the interface with
any of the spectrum calculator codes reads an input file in the SUSY Les Houches
Accord format (SLHA) [E3].

e Implementation of the MSSM with complex parameters (CPV-MSSM) with an in-
terface to CPsuperH to calculate the spectrum.

e Routine to calculate the electric dipole moment of the electron in the CPV-MSSM

e In the NMSSM, new interface compatible with NMHDECAY?2.1.

Generically micrOMEGAs 2.0 was developed under the assumption that the model
contains a symmetry like R-parity and that particles are either odd or even under this
parity. In the case of a model with a Zs-parity, one can effectively use the classification
of odd and even particles and the model can be incorporated in micrOMEGAs as for the
simple R-parity model. The extension to more complicated symmetry groups, especially
when they lead to two stable particles, is not straightforward. Such models cannot be
implemented through an automatic procedure as described here. We further assume, as is
the case in the MSSM, that odd particles which contribute to coannihilation processes are



in relative thermal equilibrium in the early universe and that for even particles produced
in annihilation of the LOP, there are no significant branching ratios into odd particles.

In this manual, we first briefly review the relic density calculation. In section 3 we then
present the various features of micrOMEGAs 2.0 and the routines available for handling
parameters, computing the relic density, all cross-sections and decay widths as well as the
annihilation cross-sections at small velocities. A description of specific routines developed
for the MSSM, for the CPV-MSSM and for the NMSSM follows in section 4. We then
describe the implementation of new models in micrOMEGAs 2.0 in Section 5. Finally we
explain the installation procedure. Examples of a micrOMEGAs 2.0 session and possible
problems in compilation can be found in the appendices.

2 Relic density of dark matter

A relic density calculation entails solving the evolution equation for the abundance of the
dark matter, Y (7), defined as the number density divided by the entropy density, (here
we follow closely the approach in [44] E5])

dy  [mg.(T)

=\ g My < ov > (Y(T)P = Yey(T)7) (1)

where g, is an effective number of degree of freedom [A4], M, is the Planck mass and
Y.,(T') the thermal equilibrium abundance. < ov > is the relativistic thermally averaged
annihilation cross-section. The dependence on the specific model for particle physics en-
ters only in this cross-section which includes all annihilation and coannihilation channels,
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where g; is the number of degree of freedom, o;;.1; the total cross-section for annihilation
of a pair of supersymmetric particles with masses m;, m; into some Standard Model
particles (k, 1), and p;;(y/s) is the momentum (total energy) of the incoming particles in
their center-of-mass frame.

Integrating Eq. [l from 7' = oo to T' = T} leads to the present day abundance Y (7)
needed in the estimation of the relic density,
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where s(7p) is the entropy density at present time and h the normalized Hubble constant.

To compute the relic density, micrOMEGAs solves the equation for the abundance
Eq. 0, numerically without any approximation. In addition, micrOMEGAs also estimates
the relative contribution of each individual annihilation or coannihilation channel to the
relic density. For this specific purpose only, we use the freeze-out approximation (for more
details, see [24]).

As in previous versions, we include in the thermally averaged cross-section, Eq. Bl
only the processes involving the LOP as well as those particles for which the Boltzmann
suppression factor, B, is above some value B,
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where m;, m; are the masses of the incoming particles, X = Myop/T. The value recom-
mended is B, = 107° [35] and corresponds roughly to m,, < 1.5Mpop. As in previous
versions of micrOMEGAs , new processes are compiled and added only when necessary, in
run-time.

In the framework of the MSSM, as realized in micrOMEGAs 1.3 , the computation of all
annihilation and coannihilation cross-sections are done exactly at tree-level. For this we
rely on CalcHEP [39], a generic program which once given a model file containing the list
of particles, their masses and the associated Feynman rules describing their interactions,
computes any cross-section in the model. To generalize this program to other particle
physics models one only needs to replace the calculation of the thermally averaged anni-
hilation cross-section for the stable particle that plays the role of dark matter. This can be
done easily after specifying the new model file into CalcHEP. Then to solve numerically the
evolution equation (Eq. M)and calculate Qh? one uses the standard micrOMEGAs routines.
Full details on this can be found in Ref. [36]

In order that the program finds the list of processes that need to be computed for the
effective annihilation cross-section, one needs to specify the analogous of R-parity and
assign a parity odd or even to every particle in the model. The standard model particles
and other particles such as Higgses have an even parity. The lightest odd particle will
then be identified to the dark matter candidate.

After specification of the R-parity odd particles, micrOMEGAs automatically generate
all processes of the type

~xi~ X — XY

where ~ y; designates all R-parity odd particle and XY all R-parity even particles, for
example standard model particles and Higgses. micrOMEGAs then looks for s-channel
poles as well as for thresholds to adapt the integration routines for higher accuracies in
these specific regions, and performs the relic density calculation. Note that there is no
automatic procedure to check that the LOP is colorless and neutral, the relic density
calculation can be performed even for such candidates?.

3 Structure and general routines

The micromegas_2.0 package contains the following files and directories:

e the directory CalcHEP_src with CalcHEP source files;

e the directory sources which contains general routines for relic density calculation;

e the directory MSSM with the MSSM model files and auxiliary routines necessary for
the model implementation as well as constraints on the model;

e the Makefile used for package installation.

e the newProject command file for implementation of new models.

e the cgwRun command file to run the program under Cygwin.

2This can be used for example to calculate the density of the charged NLSP from which one can
extract the relic density of CDM in models where the gravitino is the LSP [4G].



One can also include additional packages developed for specific models. These packages
contain a directory with the name of the model, e.g. NMSSM or CPV-MSSM, and they
should be installed separately in the main micromegas_2.0 directory.

The directory for each model, including the new model that can be defined by the
user, all have the same structure, they contain three directories

calchep/ work/ 1lib/
as well as a Makefile, that compiles the code, and some sample main programs for the cal-
culation of Qh2. In general, work is intended for model implementation and CalcHEP ses-
sions needed for the generation of matrix elements 1ib - for all special functions necessary
for the model and calchep - for interactive CalcHEP sessions only.

The work/ directory contains several files and directories, in particular the models/
subdirectory where the model is defined in CalcHEP notation. The contents of this
subdirectory will be detailed in Section B, at this point we only need to mention that two
files vars1.mdl and funcl.mdl contain the independent parameters and functions of the
model. The work/so_generated subdirectory is used to store shared libraries of matrix
elements generated by CalcHEP . When one micrOMEGAs routine needs a matrix element it
looks for the corresponding dynamic library in the so_generated/ directory. If this library
exists it is linked, if not, micrOMEGAs launches a CalcHEP session in work/calchep and
generates the requested library. Note however that the specific contents of the library are
not checked, when modifying a model it is necessary to remove all files in so_generated/.

In this section we review the general routines of micrOMEGAs 2.0 that can be used
in any model. These routines are located in the sources directory and compiled in
sources/micromegas.a. Most of these routines were described in more details in Ref. [36]
in the context of the MSSM. We include them here for the sake of completeness. First
note that we provide two sets of programs and routines to allow the user to work either
with C or Fortran. Most of the C and Fortran commands have the same format. We list
first the C' commands and when necessary the analogous Fortran call in squared brackets.
We do not write explicitly the Fortran call when it is identical to the C call 3. Note that
in C, the variable file is of FILE* type, whereas in Fortran it is an integer which speci-
fies the input/output channel number. In both cases the fname variable which specifies
the file is used for a text type variable. All information about the variable types can
be found in the files sources/micromegas.h (C version) and sources/micromegas_f.h
(Fortran version). Finally, many of the functions described in this section are used in the
sample main routines provided with the package and described in Section EEIl It could
be instructive for the user to study the examples included with the MSSM and/or the
NMSSM.

3.1 Model parameters

The parameters needed for the computation of cross-sections in a given model are spec-
ified within micrOMEGAs 2.0 in the notation of CalcHEP. These include both the inde-
pendent parameters of the model, hereafter also called variables, as well as all internal
functions, the so-called constraints of the models. All model files can be found in the
work/models subdirectory of each model. The variables are defined in the varsl.mdl
model file while the constraints are derived from the independent parameters and are

3The & symbol is used in C to designate the address of the corresponding parameter, it is not needed
in Fortran.



calculated by CalcHEP as specified in the funcl.mdl model file. Both these files contain
some comments to explain the meaning of parameters. Example of constraints are the
vertex functions written in terms of independent parameters of the model. In some mod-
els, masses are constraints whereas in the MSSM, masses are independent variables. The
variables used in the MSSM in fact include all masses and mixing matrices, a partial list
can be found in Ref. [B6], Table 2. Note that what we call here independent parameters
from the point of view of computing matrix elements are not necessarily free parameters
of the model. For example in the MSSM, the independent parameters can be derived from
a much reduced set of input parameters, the 5 input parameters of the SUGRA model or
the soft SUSY breaking parameters of the MSSM. Within micrOMEGAs there is no check
of the self-consistency of the model, we assume that constraints are imposed by other
functions. Therefore one has to be careful when changing by hand some of the variables
of the model. For example, the neutralino mass matrix depends at tree-level on only four
parameters, so changing the value of the mass of only one neutralino without appropriate
modifications to other masses and to the mixing matrix to ensure a self-consistent system
could lead to wrong results.

3.2 Setting of parameters.

In the following we describe the few routines that allow to set or read the value of any
independent parameters listed in the vars1.mdl file.

e assignVal(name,val) and assignValW(name,val) assigns value val to variable name.
e findVal (name,&val) finds the value of variable name and assigns it to parameter val.
e findValW(name) just returns the value of variable name.

If name does not correspond to any variable of the model, both assignVal and findVal
return a non-zero error code whereas assignValW and findValW write a warning on the
screen.

e readVar(file) reads variables from the file. This file should contain two columns,
the first one specifying the names of variables, and the second one the corresponding nu-
merical values. readVar returns zero when the file has been read successfully, a negative
value when the file can not be opened for reading and a positive value to signal a wrong
file record at the line corresponding to the value of the error code.

e printVar(file) prints the numerical values of all variables into file. Of course, this
file should have been opened previously.

efindParam(name,&err) returns the value of the parameters name defined in models/func1.mdl.
Not all parameters are accessible automatically by this command, for details see Section B
A non-zero error code means that a parameter was not found.

3.3 Calculation of Relic density.

The first step before performing a relic density calculation is to find among all the R-parity
odd particles, the lightest stable one. Once this is done, the generic micrOMEGAs routine
for calculating the relic density can be called. The routines that find the LOP, give infor-
mation about particle masses and calculate the relic density are described below.



e sortOddParticles(message) sorts the odd particles with increasing masses. message
contains the name of the LOP. This routine returns a non zero error code when a wrong set
of parameters is used, for example one for which some constraints cannot be calculated,
the corresponding constraint is listed in message. This routine has to be called before
any other routine described in this section.

e lopmass_() [lopmass()] gives the mass of the lightest odd particle.

e printMasses(file,sort) prints all masses of odd particles into the file file. If sort #
0 the masses are sorted so the mass of the LOP is given first.

e darkOmega (&Xf,fast,Beps) is the main routine to calculate Qh?. X; = Mrop/T
characterizes the freeze-out temperature. This routine does not use the freeze-out ap-
proximation. The value of X is given for information and is also used as an input for the
routine that gives the relative contribution of each channel to Qh?, see printChannels
below. The fast = 1 flag forces the fast calculation (for more details see Ref. [36]). This is
the recommended option and gives an accuracy around 1%. The parameter Beps defines
the criteria for including a given channel in the computation of the thermally averaged
cross-section, Eq. @l The recommended value is Beps = 10~* — 1075, on the other hand
if Beps = 1 only annihilation of the lightest odd particle is computed.

e printChannels (Xf,cut,Beps,prcnt,file) writes into the file file the contributions
of different channels to (2h*)~'. The cut parameter specifies the lowest value to be
printed. If prent # 0 the contributions are given in percent. Note that it is only for this
specific purpose that we use the freeze-out approximation.

3.4 Calculation of cross-sections and widths.

For a relic density calculation one needs to compute the cross-sections for annihilations
of any pairs of R-parity odd particles. In micrOMEGAs the codes for the generation
of the corresponding matrix elements are generated using CalcHEP. In fact any 2 — 2
cross-section or two-body decay width within a given model is also available in CalcHEP,
for example cross-sections for production of pairs of SUSY particles in ete™ collisions.
Cross-sections involving 3 or more particles in the final state can also be computed by
CalcHEP but since special care is required for the phase space integration, for example in
case of resonances, they are not provided automatically. To obtain a given cross-section
or decay width, the first step consists in generating the corresponding matrix element
with CalcHEP. Then one can check the contents of the new libraries and finally perform
the numerical calculation of cross-sections or decay widths.

e newProcess(procName, libName) [ newProcess(procName, libName, address) ]
compiles the codes for any 2 — 2 or 1 — 2 reaction. The result of the compilation is
stored in the library
work/so-generated/libName. so.
If the library 1ibName already exists, it is not recompiled and the correspondence between
the contents of the library and the procName parameter is not checked. libName is also
inserted into the names of routines in the libName.so library. Thus libName can not con-
tain symbols that cannot be used in identifiers, for example the symbols +, — %, /, . The
name of a given process, procName, has to be specified in CalcHEP notation, for example
in the MSSM
"e,E->71+,71-"



stands for the lightest chargino pair production in e*e™ collisions. Note that procName
should not contain any blank space. Multi-process generation is also possible by using
the symbol 2*x. For example, "e,E->2*x" designates all possible two particle final
states for an ete™ collision. Note that all library names starting with omg or 2width_
are reserved for internal calls of the darkOmega routines and cannot be used for new li-
braries. Although such libraries cannot be created by the user, the ones already compiled
in micrOMEGAs can be loaded and used to calculate the corresponding matrix elements.
In this case the procName argument can be left blank. These internal micrOMEGAs li-
braries are named omg<particle>_<particle>.so and 2width_<particle>.so. Here
<particle> is the particle name where " 47, , """ are replaced respectively by ”_P”,
”_M”,”_t”. The newProcess routine returns the address of the compiled code for further
usage. If the process can not be compiled, then a NULL address is returned?.

%

There are two routines which allow to check the library contents.

eprocInfol(address,&ntot,&nin,&nout)

provides information about the total number of subprocesses (ntot) stored in the library
specified by address as well as the number of incoming (nin) and outgoing (nout) parti-
cles for these subprocesses. Typically, for collisions (decays), nin = 2(1) and nout = 2.
eprocInfo2(address,nsub,N,M)

fills for subprocess nsub (1 < nsub < ntot) an array of particle names N and an array of
particle masses M. These arrays have size nin + nout and the elements are numbered in
the usual CalcHEP notation starting with the initial state.

Once the source code for the relevant matrix elements have been generated, two differ-
ent procedures for the numerical calculation of cross-sections or decay widths are available.
e cs22(address, nsub, P, cl, c2 , &err)
calculates the cross-section for a given 2 — 2 process, nsub, with center of mass momen-
tum P(GeV). The differential cross-section is integrated from ¢l < cos < ¢2 and @ is the
angle between p; and ps in the center-of-mass frame. Here p; (p3) denote respectively the
momentum of the first initial(final) particle. err contains a non zero error code if nsub
exceeds the maximum value for the number of subprocesses (given by the argument ntot
in the routine procInfol).

e pWidth2(address,nsub)

returns the partial decay width (in GeV) for subprocess number nsub > 0. If the pa-
rameter () which specifies the QCD scale is involved in the width calculation, its value is
automatically set to the mass of the incoming particle. For example () allows to account
for running Yukawa coupling in h;qq vertices.

e decay2Info(Particle,file)

returns the total width for the particle specified by its name in CalcHEP notation and
writes all partial widths in file. If file = NULL (or file.eq.0 in Fortran) only the total
width is given as output. This procedure uses the routine pWidth2 described above. Note
that all the widths of odd particles are independent parameters in the model, see Section
B3 So, for reactions where such widths can play a role they should first be calculated
by decay2Info. The numerical value can be assigned to the appropriate variable via the

4In Fortran, instead of address we use a two element INTEGER array, this length is sufficient to store
a computer address.



assignVal command.
Examples on how to use the routines described in this section can be found in the
sample main programs MSSM/cs_br.c/F.

3.5 Calculation of annihilation spectra.

The indirect detection rate of dark matter in the galactic halo through their decay prod-
ucts in photons, positrons or antiprotons depend on the annihilation cross-section of dark
matter at small relative velocity. The cross-sections for the different 2-body annihilation
channel of the LOP are calculated automatically in any model. We then provide the
continuum spectrum for v, e™, p, v production. Here we describe the general procedure
used to calculate the spectrum and the different routines available. Note however that an
improved and more complete version of the indirect detection module, including integra-
tion over various dark matter profiles and propagation of positrons and antiprotons will
be presented in a separate publication [A2, A7].

The procedure we follow is similar to the one implemented in DarkSUSY [B87]. For the
basic channels, qq, ut =, 77, WTW~, ZZ, we provide tables for v, e*, p, v production
as obtained by PYTHIA °. For channels containing two different particles, AB, we obtain
the final spectrum by taking half the sum of the AA and BB spectra. For channels with
Higgses, or other particles whose mass are a priori unknown, we recursively calculate all
1 — 2 decay channels until we obtain particles in the basic channels. If during these
decays we get a pair of particles AB where A is one of the basic channel, we suppose that
half of the spectrum is obtained from AA and continue to decay B.

The gamma ray flux can be evaluated as

o, — ov N (photons) (5)

cm?2sec sr

where Ny is the number of particles with energy £ > FE,,;,. The factor H includes the
integral of the squared of the dark matter density over the line of sight,

H = 8i7r /OOO dr% <\/7‘2 + ¢ — 2rrg cos(¢)) (6)

where ¢ is the angle in the direction of observation, in radians, %(r) is the averaged

squared dark matter density in GeV/ cm®, 7 is the distance from the Galactic center in
kpc and rg = 8.5kpc is the distance of the Sun to the center of the galaxy. In the present
version, we have implemented only the modified isothermal distribution,

5« [(03GeV 1+ (ro/ap)*\?
pQ(T) N ( em3 1+ (r/ag)? )

(7)

where ag = 3.5kpc is the length scale.

The main routines to calculate the ~, e*, p, v spectrum are
e calcSpectrum(v,outP,tab,&err)
calculates ov in ¢cm?/sec and writes the spectrum of one collision in the array tab. This
array has to contain 250 elements of type double. The input parameters are the rela-
tive velocity v in natural units,® and the type of the outgoing particle, outP. We use

5For this version, we use the DarkSUSY tables. Improved and more versatile tables will be presented
in [42.

6Note that for neutralino collisions in the galactic halo v should be about 0.001.
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outP =0,1,2 for -y, e*, p and 3, 4, 5 for v, v,, v;. A non-zero error code indicates that
one of the particle appearing in the decay products does not have 2-body decay modes.
ezInterp(x,tab)

interpolates the table tab obtained by calcSpectrum. Here = log(E/M), where E is
the energy of the outgoing particle and M the LOP mass. This returns the value dN/dz,
where N is the number of particles.

e spectrInfo(Xmin,tab,&Ntot,&Etot)

calculates some statistical information about the spectra stored in table tab. Xmin =
Erin/Mrop defines the minimal energy considered. The routine calculates Ntot - the
number of particles with energy E > FE,;,,; Etot - the total energy (divided by Myop) of
the particles produced. When working in C, NULL can be substituted as an argument
for any unnecessary output parameters.

espectrTable(tab,fname,mess,Xmin,N) writes in file fname the spectrum stored in the
tab array. mess contains some text that describes the plot. Xmin is the minimal energy,
N < 300 is the number of points. This file can be read by the CalcHEP program tab_view
(see example in spectrum.c file) or by other graphics program.

erhoQisothermal (r) is the averaged squared dark matter density with the modified
isothermal distribution, Eq. [, r is the distance from the galactic center in kpc.
eHaloFactor(fi, rhoQ) performs the integration of the squared dark matter density
over the line of sight, Eq. The function rhoQ can be either the default function
rhoQisothermal or another function provided by the user.

3.6 QCD routines.

Many auxiliary routines were developed within the context of a specific model and will
be detailed in the next section. However a few functions are available for all models, for
example the functions that compute the running standard parameters: QCD coupling
and heavy quark masses.

einitQCD(alfsMZ,McMc,MbMb,Mtp)

This function initializes the parameters needed for the functions listed below. It has to
be called before any of these functions. The input parameters are the QCD coupling at
the Z scale, as(My), the quark masses, m.(m.), my(my) and my(pole).

e alphaQCD(Q)

calculates the running oy at the scale Q in the MS scheme. The calculation is done using
the NNLO formula in [48]. Thresholds for b-quark and t-quark are included in n; at the
scales my(my)) and my(m;) respectively.

e MtRun(Q), MbRun(Q), McRun(Q)

calculates top, bottom and charm quarks running masses evaluated at NNLO.

e MtEff(Q), MbEff(Q), McEff(Q),

calculates effective top, bottom and charm quark masses using [45]

MZ(Q) = M(Q)? [1+5.67a+ (35.94 — 1.36n)a’
+  (164.14 — ny(25.77 — 0.259n;))a’] (8)

where a = a,(Q)/m, M(Q) and a4(Q) are the quark masses and running strong coupling
in the M S-scheme. In micrOMEGAs , we use the effective quark masses calculated at the
scale Q = 2Mop.
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4 Sample models : specific routines

4.1 MSSM

In the case of the MSSM, special routines were developed both for specifying the indepen-
dent parameters as well as for including higher order corrections. These have already been
described in [36], for completeness we summarize the main points here and we point out
the modifications implemented. In the MSSM, we use loop corrected superparticle masses
and mixing matrices. These masses and mixing matrices are then used to compute ex-
actly at tree-level all annihilation/coannihilation cross-sections. Higher order corrections
to the Higgs masses are also calculated by one of the spectrum calculators. QCD cor-
rections to Higgs partial widths are included as well as the important SUSY corrections,
the Am, correction, that are relevant at large tan 5. These higher-order corrections also
affect directly the Higgs-qq vertices and are taken into account in all the relevant annihi-
lation cross-sections. These routines were described in [B6] and have not been changed.
A description of parameters can be found in the MSSM/1ib/pmodel .h file.

The independent parameters of the model include all masses and mixing matrices as
specified in the SLHA [A3]. We have chosen this enlarged set of parameters rather than
the MSSM soft SUSY breaking parameters used in the original version of micrOMEGAs for
the greater flexibility it provides in modifying parameters and in incorporating models. In
this approach once the MSSM has been implemented within CalcHEP, the same model file
can be used for either mSUGRA, AMSB or the general MSSM. The only difference will
be in the definition of the input parameters and the use of different routines to determine
the independent parameters.

To define the spectrum one can either read the independent parameters defined in
the SLHA format [43] from an input file, calculate the set of independent parameters
starting from the GUT scale input parameters and using one of the spectrum calculator,
or calculate the set of independent parameters from the weak scale MSSM parameters.
For input parameters specified at the GUT scale, for example in the context of SUGRA
models, loop corrections are obtained from one of the public codes which calculate the
supersymmetric spectrum using renormalization group equations (RGE), SUSPECT 2. 3[A9],
SOFTSUSY 1. QM, SPHENO 2.2. 2“5:]1 or ISAJET7. 69“52“.

The routines that define the spectrum are
e specSUGRA defines the independent parameters of the MSSM starting from a set of input
parameters in the SUGRA model. Here spec stands for one of the spectrum calculators
suspect, isajet, spheno, or softSusy.

e specAMSB does the same as above within the AMSB model.

e specEwsbMSSM calculates the masses of Higgs and supersymmetric particles in the MSSM
including one-loop corrections starting from weak scale input parameters. Here spec
stands for one of the spectrum calculators suspect, isajet, spheno, or softSusy.

e assignValW("dMb", deltaMb()) needs to be called in order to include the threshold
correction to the Hbb vertex. This call must be done only after the spectrum has been
calculated using one of the commands above.

Some facilities to read or write directly SLHA files are also available
e readLesH(f) reads the SLHA input file f.

e writeLesH(f) saves into the file fthe SLHA MSSM parameters.
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The default spectrum calculator package is SUSPECT 2.3. To work with another pack-
age one has to specify the appropriate path in MSSM/1ib/Makefile. For this the environ-
ment variables ISAJET, SPHENO or SOFTSUSY must be redefined accordingly. Note that we
also provide a special interface for ISAJET to read a SLHA file. This means that the user
must upgrade his original ISAJET libraries to include this interface. Specific instructions
are provided in the README file.

There are two spectrum information commands which in micrOMEGAs 1.3 were in-
cluded in printMasses,

e HiggsMasses(file) prints into file the masses and widths of Higgs particles.
e olContents(file) prints into file the neutralino LSP components in terms of bino,
wino, higgsinol, and higgsino2 fractions.

The MSSM package also includes routines that calculate other constraints such as dp
( deltarho_), (¢ —2), (gmuon_), collider limits (masslimits_), Br(b — s7v) (bsgnlo_),
and Br(Bs; — ptp~) (bsmumu_), see Ref. [36].

4.1.1 Sample main programs

The directory MSSM contains several examples of main programs written in C (or For-
tran), these include programs to calculate Qh? with either SUGRA or MSSM models as
well as programs to calculate cross-sections and branching ratios or spectrum of outgo-
ing particle for dark matter annihilation. In general when these sample programs are
launched without arguments, the arguments needed are explained on the screen.

esugomg.c/F calculates the spectrum of Higgs and SUSY particles as well as the relic
density Qh? and other constraints.

es_cycle.c calculates the relic density of Qh? in a cycle. For the set of mSUGRA param-
eters used in this example, the output should correspond to the file data/s_cycle.res.
eomg.c/F calculate Qh? for a set of MSSM input parameters to be read from a file. The
name of this file is given as an argument of the executable omg. The appropriate format
is given in the sample files provided in the directory data. It is possible to execute the
program with several files (arguments) in one call. The results corresponding to the sam-
ple input data files omg data/data* can be found in the data/omg.res file.
ecs_br.c/F give some examples for the calculation of partial widths and cross-sections.
espectrum.c/F give examples of calculation of neutralino annihilation spectrum. The
output is a graphical plot which is displayed on the screen.

4.2 CPV-MSSM

In the MSSM model described above all parameters are assumed to be real, generically
though the parameters of the MSSM can be complex (CPV-MSSM). Furthermore, it
is possible that electroweak baryogenesis could work in MSSM scenarios with complex
phases. A new CPV-MSSM model file with complex parameters was rebuilt in the
CalcHEP notation [39] using LanHEP [0, thus specifying all relevant Feynman rules.
For the Higgs sector, an effective potential was written in order to include in a consis-
tent manner higher-order effects [53]. Although this model is only a simple extension

13



of the MSSM, the implementation within micrOMEGAs is done differently. The indepen-
dent parameters of the model include in addition to some standard model parameters
only the weak scale MSSM input parameters. The constrained parameters, in particular
the masses, are evaluated through auxiliary functions. Masses, mixing matrices and pa-
rameters of the effective potential are read directly from CPsuperH [B3], together with
masses and mixing matrices of neutralinos, charginos and third generation sfermions. On
the other hand, masses of the first two generations of sfermions are evaluated (at tree-
level) within micrOMEGAs in terms of independent parameters of the model. This means
that in this model it is not possible to get the value of the mass of the SUSY particles,
say the lightest neutralino, using the findVal ("MNE1") command, rather one has to call
findParam("MNE1",err). The code for CPsuperH is included in our package.

Among the special routines that were described for the MSSM in the previous section,
only the ones that give information about the spectrum can also be used in this model,
HiggsMasses(file) and olContents(file). The latter gives the real and imaginary
part of the bino/wino/Higgsino,/Higgsinos components of the LSP. Since the phases in
the CPV-MSSM are strongly constrained by measurements of electric dipole moments, it
is important ti take into account. We have developed a special routine for this purpose
e edm_(&de,&dT1) returns the value of the electric dipole moment of the electron, d. in
units of ecm as well as the dipole moment of Thallium, dz;. One-loop neutralino/chargino
contributions as well as two-loop squark, quark and chargino contributions are included
[24, 54, B, B6] as well as the four-fermion operator for dr;. The latter two contributions
can dominate, especially for large values of tan 3. The upper limit from the measurement
of the electric dipole moment of the electron is actually d. < 2.2 x 10~*"ecm [57].

4.3 NMSSM

The NMSSM is the simplest extension of the MSSM with one extra singlet, as a result
the model contains one additional neutralino as well as additional scalars. A new model
file was implemented into CalcHEP and as in the MSSM, an improved effective potential
for the Higgs sector was defined. More details on the model can be found in Ref. [25].

The independent parameters of the model include, in addition to some standard model
parameters, the weak scale NMSSM input parameters as defined in the SLHA2 [58].
The constrained parameters, in particular the masses, are evaluated through auxiliary
functions. For this we call NMHDECAY [29] specifying an input file in the SLHA2 format
(slhainp.dat). The masses, mixing matrices are then read directly from the output file
of NMHDECAY [60] written in the SLHA2 format (spectr.dat). These two SLHA files
are available in the main NMSSM directory. The parameters of the Higgs potential are
derived from the physical masses and mixing matrices of the charged and neutral Higgses
as described in [25]. Note however that in NMHDECAY, the masses are computed using
the DR values of the independent parameters of the Higgs sector, A, x,tan 3, ju, Ay, A,
and include additional loop corrections. Some of these parameters, in particular pu, Ay, A,
receive large corrections. To take these corrections into account we have modified the
procedure to extract the parameters of the Higgs potential that used previously the input
value at weak scale. We have a good agreement with NMHDECAY for the partial widths
of heavy Higgses into lighter Higgs particles.

The HiggsMasses(file) and olContents(file) routines described in the MSSM can
also be used in this model. The latter gives the bino/wino/Higgsino,/ Higgsinos/singlino
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components of the LSP. As in the MSSM the function bsgnlo_() returns the value of
Br(b — svy). This value is calculated within NMHDECAY [60, 59] “. Note that in
this model it is not possible to get the value of the mass of the SUSY particles using
the findVal command, since these are constrained parameters. Rather one has to call
findParam.

Theoretical and experimental constraints on the model are checked thoroughly within
NMHDECAY, a function has been written specifically for the NMSSM :
eNMHwarn (file) returns the number of constraints that are not satisfied as provided by
NMHDECAY. Information about these constraints is stored in file. The description of
different experimental (e.g. LEP limits on Higgs masses) and theoretical constraints on
the model can be found in Ref. [60].

5 New models.

In general, to implement a new model the user only needs to write the model in the
CalcHEP format. The directory for the new model can be created by the
newProject <NewModel>

command. The new directory <NewModel> will contain in particular, a directory work for
the description of the model and a directory 1ib implementation of external functions. It
also contains a directory calchep as well as examples of main programs for the calculation
of Qh?, omg.c and omg.F, and finally a Makefile that compiles the code. Note that this
Makefile is created automatically and does not need to be modified by the user.

We have tried to minimize the amount of user “intervention”. In general the user has
only to include the CalcHEP model files in work/models, put the external codes that
calculate external functions of the model as well as auxiliary routines in the directory
1ib, write the corresponding lib/Makefile for their compilation. All other files and
subdirectories are generated automatically and do not need to be modified by the user.

5.1 The directory work

To implement a new model, the first step consists in writing the new CalcHEP model files
in the sub directory work/models. This model has to be the first in the list, thus the files
must have names *1.md1l. More precisely the model must include five files that specify the
list of particles (prtclsl.mdl), the independent variables (varsl.mdl), the Lagrangian with
all vertices (Igrngl.mdl), all internal functions (funcl.mdl) and external libraries required
for the model (extlibl.mdl). Note that to automatize as much as possible the procedure
for creating a new model, it is possible to use a program like LanHEP[A()], which starts
from the Lagrangian and derives all the necessary Feynman rules ®. Alternatively the user
can write by hand the model files of the new model. Slight modifications to the standard
CalcHEP model files are necessary, specific requirements are given below in Section
The directory work/so_generated contains the libraries of matrix elements gener-
ated automatically by CalcHEP . As mentioned earlier, since the contents of libraries in

"Note that for the moment, NMHDECAY computes only the one-loop contribution to Br(b — s7v).
8LanHEP was developed for CompHEP [G1] but there exists a simple tool to make a conversion to the
CalcHEP notation.
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so_generated/ are not checked, this directory should be cleaned every time a model is
modified. It will be then regenerated automatically.

5.2 The directory lib

Additional external functions may also be required to have a complete model, these should
be included in the directory 1ib. The functions required by funcl.mdl have to be incor-
porated as a shared library 1ib/mLib.so”. Other auxiliary routines not needed for the
model should be included in 1ib/aLib.a.

As explained in Section BTl it is sometimes more convenient to choose an enlarged
set of independent parameters for a given model even though physically these parameters
are not truly independent. Clearly, constraints on these parameters have to be imposed
before the calculation of matrix elements. Such is the case in the MSSM implementation
described here where all masses and mixings are chosen as independent parameters. As
usual, independent parameters have to be listed in vars1.mdl and should not be defined
in func1.mdl. Also the relevant functions should be compiled in 1ib/alib.a rather than
in 1ib/mLib.so. It is not compulsory to implement one or even both of these libraries.
The presence of these libraries are always checked by micrOMEGAs commands before
passing them to the linker. The execution of the Makefile in <NewModel> launches the
lib/Makefile in order to update the user’s libraries.

5.3 Specific requirements for the implementation of a new model.

The general format to be used for model files is described in [39]. Here we explain only
specific points needed for micrOMEGAs.

Names of odd particles. The name of odd particles must start with ~. With this
convention, automatic identification of the R-parity odd particles is done by micrOMEGASs.
For the purpose of optimizing the code, it is recommended that the first odd particle in
the models/prtclsl.mdl list be a potential LOP candidate.

Masses of odd particles. A * symbol should be added before the masses of R-parity
odd particles that are not independent parameters of the model, that is the ones that are
found in the models/funcl.mdl file. This is to force the inclusion of the corresponding
parameter in any generated code.

Widths of odd particles. The widths of odd particles should be independent param-
eters of the model. All odd particles, including the LOP, must have a width in order
to avoid divergences in cross-sections. For example, in coannihilation processes with ex-
change of the LOP in t-channel, one can meet a pole if the width of the LOP is zero. The
width of the LOP is set within micrOMEGAs to Mpop/100, see explanations in [36].

Automatic calculation of widths. In previous CalcHEP versions the widths of par-
ticles were treated as independent parameters. Starting from CalcHEP_2.4 there is an
option to calculate widths automatically. To switch on the mechanism of automatic

9In the case of Cygwin the shared libraries have the extention .dll

16



7'7

width calculation one must add the symbol in front of the width in the particle list
(models/prtclsl.mdl). If necessary, the corresponding parameter should be removed
from the list of independent parameters (models/varsi.mdl) and/or from the list of con-
strained parameters (models/funcl.mdl). For the relic density calculation, this trick is
used for widths of Higgs particles which occur as s-channel resonances.

5.4 Compilation of libraries.

Specific requirements for writing the 1ib/Makefile are detailed in this section. The
mlib.so library is used for external names resolution in the generation of shared libraries of
matrix elements. Such name resolution is a strict requirement of Darwin and Cygwin plat-
forms. We recommend the use of the compiler flags stored in the CalcHEP/FlagsForMake
file, in particular the option SHARED needed to generate a shared library instead of an
executable code.

Whenever operating with shared libraries there is a general a problem in finding the
location of the library in run-time. Normally, each shared library has a record which spec-
ifies its location, while linking this information is passed to the main program. Usually in
order to write this record correctly one has to specify the full path of the library after the
-o instruction. On some other platforms, for instance OSF1, one needs an additionnal
linker flag. In flagsForMake, this flag is named SONAME and it should be followed by
the full name of the library. The MSSM/1ib/Makefile gives an example on how to use
the SHARED and SONAME flags. All these options do not work with the Cygwin version
of UNIX. In this particular case only the shared libraries whose paths are included in
the PATH environment variable can be linked in run-time. For this reason, in the case of
Cygwin, micrOMEGAs executables have to be launched via the command

./cgwRun <exec> <param>
which corrects the PATH environment parameters before starting the micrOMEGAs ex-
ecutable. Here exec stands for the name of the executable and param for the input
parameters.

We assume that mLib.so does not contain calls to functions described in Section
or calls to external functions not needed for matrix element generation. On the other hand,
there are no such restrictions for al.ib.a. It can call any function in sources/micromegas.a,
for example the assignValW function to set the value of independent parameters of the
model. aLib.a can also use any function implemented in mLib. so, in particular functions
used in models/funcl.mdl. Thus the user can access the value of constrained parame-
ters. For example, in the NMSSM, nMass (1000022) will give the value of the mass of the
lightest neutralino. Here the PDG [8] code is used for particle names. Alternatively, we
provide a more convenient function that serves the same purpose. The function

findParam(name, &err)

will return the value of the parameters name defined in models/funcl.mdl. A non-zero
error code err signals failure to find the needed parameter. The parameters that are
accessible automatically by this command are, for technical reasons, the ones that enter
the calculation of the matrix element for pair annihilation of the first odd particle listed
in prtclsl.mdl. It is possible to access all other parameters in models/funcl.mdl. For
this, the user must insert a * in front of the corresponding parameter in funci.mdl and
recompile the model *°.

10For this, the generated shared libraries for matrix elements should first be cleaned. It is only when
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Use of external programs. When one function implemented in the CalcHEP model
makes use of some large external program, we recommend to use a system function call to
launch the corresponding external program separately. Communication with this external
program can proceed via files. There is no need to rewrite external functions as shared
libraries. For example we have adopted this procedure in the MSSM to call spectrum
calculators, the SLHA files provide a format for reading the input/output files of these
external programs. A similar procedure is used for calls to NMHDECAY or CPSuperH
in the NMSSM or the CPV-MSSM.

Code optimization. The evaluation of some external functions or constraints imple-
mented in the model can be time consuming. Sometimes micrOMEGAs recalculates all
constraints several times with slightly different parameters. We recommend that the user
inserts, in the time consuming functions, some checks of input parameters and uses the
previous result if the arguments were not changed.

5.5 Check of the new model

We strongly recommend, before the first launch of micrOMEGAs 2.0 with a new model,
to check the model in an interactive CalcHEP session. For this purpose first launch
./calchep in the work directory, find the Edit model menu and make some modifica-
tion without really changing the model, say add and remove one symbol. When you will
leave the Edit model menu, after you have confirmed your corrections, CalcHEP will
start to check the model. You should remove all bugs detected before starting your
micrOMEGAs session. The completeness of the mLib.so library for the model can also be
checked. For this one must first add to work/models/extlib1.mld one record,
../../1ib/mLib.so

Then, within an interactive CalcHEP session, the check will be performed at the compi-
lation of a new process, for example some decay width. An error message will signal a
problem in the mLib.so library.

6 Installation

The package can be obtained from the web page wwwlapp.in2p3.fr/micromegas. Un-
packing the file micromegas_2.0.tgz will create the directory micromegas_2.0 described
in previous sections. This file contains the full implementation of the MSSM model. The
NMSSM and the CPV-MSSM model files and auxiliary routines for implementation of
the model are obtained independently from NMSSM.tgz and CPVMSSM.tgz. They have to
be downloaded, unpacked, and copied in the micromegas_2.0 directory.
The installation consists of two steps, the general installation of micromegas_2.0 and
the installation of special models. The general installation is realized by the command
gmake!!
This command identifies the Unix platform, compiles the CalcHEP executable
CalcHEP_src/bin/s_calchep as well as the general function library sources/micromegas. a.
To install a new model one must use the command

micrOMEGAs recompiles the libraries that the parameter will be accessible via findParam.
UTf gmake is not available, for example with Darwin, one should use make instead
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./newProject <Name>
which creates a new sub-directory <Name> containing all files and sub-directories needed
for a new model. This directory has the same structure as the MSSM directory but does not
contain special MSSM routines and model files. How this directory should be updated to
implement completely a new model, was explained in Section Bl
At last, in order to compile an executable file for the calculation of relic density in the

framework of a model one has to move to the corresponding directory, say MSSM, and call

gmake main=<filename>
where <filename> designates the name of C or Fortran main routines. This <filename>
should have the corresponding .c or .F extension. The executable generated will have
the same name without an extension. To launch the executable with Cygwin one must
instead use the command

./cgwRun <name of exec> <param>
This commands improves the PATH environment parameters so that the shared libraries
are readable.
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A Problems in compilation.

The code was tested on several UNIX platforms with standard configuration, OSF1,
SunOS, Darwin, Cygwin. In general it should work without special tuning. Some common
problems and their solution are listed below.

At first gmake launches the getFlags routines in the CalcHEP_src subdirectory. This
getFlags checks the UNIX platform and writes the FlagsForSh file which contains com-
piler flags and special linker options accordingly. After that getFlags checks compiles
and writes an error message, if some option are not available. If FlagsForSh already
exists, then getFlags only checks compilers. This way, compiler options can be improved
by users.

B Example of microMEGASs session.

Here we present a sample output of the particle spectrum and relic density calculation
in the case of the mSUGRA model. First the user has to compile general routines with
./gmake launched in the directory micromegas_2.0, then the C version of sugomg main
program should be compiled in the MSSM directory with
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gmake main=sugomg.c
This generates the executable sugomg. This executable needs at least 4 parameters,
additional parameters are set to their default value if not provided. The meaning of
the input parameters are written on the screen when launching the programs without
input parameters. Out test run, which uses by default SUSPECT 2.3 for the spectrum
calculation, should give the following output:

./sugomg 100 100 0 10

Higgs masses and widths

Mh = 100.67 (wh =2.5E-02)
MHH = 173.71 (wHh  =8.5E-01)
MH3 = 172.58 (wH3 =1.2E+00)
MHc = 190.85

Masses of 0dd particles:

~0ol : MNE1 = 28.6 || 1+ : MC1 = 50.0 || ~02 : MNE2 = 55.8
“nl : MSnl = 101.9 || “ne : MSne = 102.4 || “nm : MSnm = 102.4
11 : MS11 = 107.9 || “eR : MSeR = 115.1 || “mR : MSmR = 115.1
“eL : MSeL = 129.6 || "mL : MSmL = 129.6 || 12 : MS12 = 134.3
03 : MNE3 = 158.0 || “04 : MNE4 = 188.2 || "2+ : MC2 = 190.6
“tl : MSt1 = 192.5 || bl : MSbl = 240.6 || “uR : MSuR = 254.4
“cR : MScCR = 254.4 || “uL : MSuL = 257.4 || “cL : MScL = 257.4
“dR : MSdR = 257.5 || "sR : MSsR = 257.5 || "b2 : MSb2 = 261.0
“dL : MSAL = 269.4 || "sL : MSsL = 269.4 || g : MSG = 270.1
“t2 : MSt2 = 332.9 ||

“01 = 0.828*bino -0.302*wino +0.453*higgsinol -0.135*higgsino2
Omega= 7.01E-02

Channels which contribute to 1/(omega) more than 1%.

Relative contributions in % are displayed

449 “ol "ol -> b B
7% “ol "ol ->
4% “ol “ol ->
4% “ol “ol ->
7% “ol "ol ->
17% “ol "ol ->
8% “ol "ol ->
8% "ol "ol -> e E

deltartho=  5.64E-04

gmuon=  1.22E-08

bsgnlo=  1.63E-04

bsmumu=  3.74E-09

WARNING: Chargino below LEP limit

85 ~n 0 & Q
=2 nago
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