
ar
X

iv
:p

hy
si

cs
/0

60
91

68
v2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
7

N
ov

 2
00

6

The Application Hosting Environment:

Lightweight Middleware for Grid-Based

Computational Science

P. V. Coveney, R. S. Saksena and S. J. Zasada

Centre for Computational Science, Department of Chemistry, University College

London, 20 Gordon Street, London, WC1H 0AJ

M. McKeown and S. Pickles

Manchester Computing, Kilburn Building, The University of Manchester, Oxford

Road, Manchester, M13 9PL

Abstract

Grid computing is distributed computing performed transparently across multiple
administrative domains. Grid middleware, which is meant to enable access to grid
resources, is currently widely seen as being too heavyweight and, in consequence,
unwieldy for general scientific use. Its heavyweight nature, especially on the client-
side, has severely restricted the uptake of grid technology by computational scien-
tists. In this paper, we describe the Application Hosting Environment (AHE) which
we have developed to address some of these problems. The AHE is a lightweight,
easily deployable environment designed to allow the scientist to quickly and eas-
ily run legacy applications on distributed grid resources. It provides a higher level
abstraction of a grid than is offered by existing grid middleware schemes such as
the Globus Toolkit. As a result the computational scientist does not need to know
the details of any particular underlying grid middleware and is isolated from any
changes to it on the distributed resources. The functionality provided by the AHE
is ‘application-centric’: applications are exposed as web services with a well-defined
standards-compliant interface. This allows the computational scientist to start and
manage application instances on a grid in a transparent manner, thus greatly simpli-
fying the user experience. We describe how a range of computational science codes
have been hosted within the AHE and how the design of the AHE allows us to
implement complex workflows for deployment on grid infrastructure.

Key words: grid computing, scientific workflows, middleware, service oriented
architecture, web services
PACS: 47.11.Mn, 87.57.Ra, 07.05.Tp, 89.20.Ff

Preprint submitted to Elsevier 22 June 2021

http://arxiv.org/abs/physics/0609168v2

1 Introduction

We define grid computing as distributed computing performed transparently
across multiple administrative domains [1,2]. By grid computing, we refer
to any activity involving digital information - computational processing,
visualisation, data collection from instruments and computational analyses,
database access, storage and retrieval [1] - performed by utilising compu-
tational, visualisation, network and storage resources available on a grid.
Grid computing has immense potential for computational scientists. A grid
composed of resources belonging to different institutions has the potential
to provide a level of service and support that cannot be expected from
intra-institutional resources or even an existing set of independent resources
which are not integrated into a grid as such. Some of the benefits possible
from using grid infrastructure include capacity for increased workload
volumes, faster response times/turn-around times for the user, and increasing
the frequency of running analyses. Integration of resources into a grid
infrastructure allows for better consolidation and workload management and
may result in reduction of overall costs for grid resource owners. Grids can
be used to solve computational science problems that could not be solved
by a single resource either at all or efficiently, possibly due to compute,
memory, data or network limitations [3,4]. A grid provides a flexible and
dynamic infrastructure based on open standards which scales efficiently as
the number of component resources increases. A general computational grid
should provide easy access to computational, visualisation, storage, network
and other resources, enabling computational scientists to pick and choose
those required to achieve their widely varying scientific objectives.

Many emerging grids are in operation around the world, for example,
the UK National Grid Service (NGS) [5], US TeraGrid [6], Enabling Grids
for E-sciencE (EGEE) [7] and Distributed European Infrastructure For
Supercomputing Applications (DEISA) [8] in the EU and the Japanese
National Research Grid Initiative (NAREGI) [9], which make capability
for computational processing, data storage and visualisation on high speed
networks available to computational scientists. The engagement of scientists
in grid activities is essential for such grids to mature into genuine production-
level infrastructure which can deliver the much heralded potential of grid
computing to the international computational science community.

2 Motivation for the Application Hosting Environment

Grid architecture consists of various components including grid middleware,
application programming interfaces (APIs), software development kits,

2

protocols, services, system software and hardware [10]. In our efforts over the
past four years to utilise grids to address new challenges in computational
science and engineering, we have experienced significant barriers, particularly
when dealing with heavyweight grid middleware [11]. Transparency, implying
minimal complexity for computational scientists using grid technology, has
been missing from existing distributed computing infrastructures that might
aspire to call themselves grids. In this paper, we present the approach we
have taken to address and overcome the heavyweight grid middleware problem.

Grid middleware is the software layer that transforms distributed, het-
erogeneous resources spanning multiple administrative domains into a
single, integrated grid so that the heterogeneity and multiplicity of the
distributed resources is transparent to the user. The user interacts with all
the heterogeneous resources in the grid through a uniform interface. Thus,
middleware is a critical component of grid infrastructure and its lack of
usability has been a major barrier to the uptake of grid technology. Many
of the current grid middleware solutions can be characterised as what we
describe as ‘heavyweight’, that is they display some or all of the following
features: (i) the grid middleware’s client-side software, which is what the
users/computational scientists have to interact with on their desktops, is
difficult to install and configure, (ii) has non-negligible dependencies on
supporting software (iii) requires non-standard ports to be opened within
client-side firewalls and (iv) the server-side components of the grid middleware
exhibit the same heavyweight characteristics as the client-side software; in
most cases the situation is worse on the server-side. As a result, the user
faces significant obstacles in deploying and using many of the current grid
middleware solutions. This has led to reluctance amongst many scientists to
actively embrace grid technology [11]. It is important for the development of
grid computing as a whole that as many diverse groups of scientists as possible
begin to use grids; it is crucial that the uptake of grid technologies occurs
beyond specialized grid-centric projects [12,13,14]. While some progress has
been made in the field of grid middleware technology [15,16], the prospect of a
heterogeneous, on-demand computational grid as ubiquitous as the electrical
power grid is still a long way off.

To address these deficiencies, there is now much attention focused on
‘lightweight’ middleware solutions [17,18,19,20], which attempt to lower
the barrier of entry for grid users. Our efforts to address these deficiencies
have been concentrated on the development of the Application Hosting
Environment (AHE), a lightweight WSRF [21] compliant, web services based
environment for hosting scientific applications. The AHE alleviates many
of the problems posed by heavyweight grid middleware for computational
scientists, who are among those who stand to benefit the most from grid
computing. The AHE allows scientists to quickly and easily run unmodified
application codes on grid resources, managing the transfer of files to and from

3

the grid resources and allowing the user to monitor the status of application
instances that are run on the grid. In the AHE, we adopt a standards-based
web services approach to expose scientific applications on the grid as stateful
web services.

From a computational scientist’s perspective, a web service is simply
any computational application functionality that is accessible over a network
as a service, that can be invoked in multiple contexts, possibly to form
higher-level services. The description of the services provided by the AHE is
standards-compliant [22] so that they can be invoked using any web services
compliant client (see Appendix B for more details). The AHE design is
influenced by our previous work on WEDS (WSRF-based Environment for
Distributed Simulation) [18], a hosting environment designed for operation
primarily within a single administrative domain. The AHE differs fromWEDS
in that it is designed to operate seamlessly across multiple administrative
domains, in a true grid sense.

3 Design of the Application Hosting Environment

The AHE is an ensemble of programs written in Perl with Java-based
command-line and Graphical User Interface (GUI) client tools. The purpose
of the AHE is to provide a mechanism for deploying applications onto
computational grids that makes it easy for the scientist to start and manage
applications on the grid. The AHE has a client-server architecture in which
as much of the complexity as possible is moved to the AHE server. This
makes the AHE client thinner, with a reduced set of software dependencies,
and easy to install. Our approach works better than the conventional and
relatively inflexible portal approach as the AHE client is not constrained to
being a web browser. The AHE client has been implemented as a desktop GUI
application as well as an interoperating set of command-line tools, making it
highly flexible and powerful as a tool for constructing lightweight workflows
via scripting as described in Section 5. Furthermore, all state persistence
occurs on the AHE server, which substantially increases client mobility.

To ensure that the AHE client is easy to install, configure and use,
whilst providing maximum functionality, a number of design constraints were
set on the overall design of the AHE:

(1) We do not require the user to install Globus [15], Unicore [16] (or any
other grid middleware) clients on his/her machine even if the grid, that
he wishes to run applications on, uses such grid middleware.

(2) We assume that the client device uses NAT (Network Address Translation
[23]) and that the device is firewalled to only allow outgoing connections.

4

This effectively means that the client does not accept any inbound con-
nections: all communication is out-bound and initiated by the client.

(3) For maximum portability, we require that the client only supports HTTP
[24], HTTPS [25] and SOAP [26].

(4) The client does not have to be installed on a single machine; the user can
move between clients on different machines and access the applications
that have been launched from any one of them. The user can even employ
a combination of different clients - for example, a command line client to
launch an application and a GUI client to monitor it. The client therefore
must maintain no information about an application instance’s state. All
state information is maintained as a central service on the AHE server
that is queried by the AHE client.

(5) The client machine needs to be able to upload input files to and download
output files from a grid resource, but we assume it does not have GridFTP
client software installed. A WebDAV-based intermediate file staging area
is therefore used to perform file-staging between the client and the target
grid resource.

(6) The AHE client maintains no knowledge of the location of the application
on the target grid resource, or how it should be run, and it maintains no
information on specific environment variables that need to be set.

(7) The client should not be affected by changes to a remote grid resource,
for example if its underlying middleware changes to a newer version of
the Globus Toolkit [15,27].

(8) All communication is secured using Transport Layer Security (TLS) [28]
with the user’s X.509 certificate [29] used for encryption, authentication
and authorization.

These design constraints have led us to an architecture in which the AHE
client is extremely lightweight and simple to deploy, with no dependencies
except for the Java Runtime Environment [30]. It should be noted that this
design does not remove the need for middleware solutions such as Globus
or Unicore on the grid resource (which may be, for example, a US TeraGrid
site or a supercomputer on the DEISA grid); indeed, we provide an interface
to run applications on multiple resources with different underlying grid
middlewares, so it is essential that the grid resource provides a supported
middleware installation on their machines. The AHE uses GridSAM [31], a
job submission and monitoring software, as its interface to the grid resources.
GridSAM provides the AHE server with a uniform interface to the different
type of grid middleware installed on a grid. See Section B and Figure B.1
for a brief discussion of GridSAM’s role in the AHE architecture. The AHE
removes the requirement to install any other middleware on the user’s client
machine: the user simply needs to install the lightweight AHE client to
interact with the grid resources which may have heavyweight middleware
installed on them. The AHE client currently provides a uniform interface to
grid resources with installations of Globus Toolkit 2.4.3 [15], Grid Engine

5

6.0 u4+ [32], Condor v6.4, 6.6 and 6.7 [33] and Unicore [16] while work is
in progress to enable interfacing to Globus Toolkit 4.0 [27] based grids. The
recently developed Unicore support for AHE fulfils demand for the capability
to launch applications on the EU DEISA grid [8] and brings with it the much
sought after interoperability between Unicore-based grids and Globus-based
grids.

In addition to the state information about all the application instances, the
AHE server also stores all the necessary information about how an application
should be run on the various computational grid resources and provides a
single, uniform interface to the AHE client for running that application across
all possible grid resources. This is particularly useful for applications that
run on supercomputers which often have unique deployment scenarios and
require special runtime environments. Storing this deployment/configuration
information on the AHE server as a central application-specific service is an
efficient mechanism for making the information available and useful to a large
number of users at once.

The AHE design is based around the notion that very often a group of
researchers will want to run the same application, but not all of them will
possess the skill or inclination to install the application on a remote set of
grid resources. In the AHE, we therefore distinguish between experts and end-
users. An expert user installs the application and configures the AHE server,
so that all participating users can share the same application on the grid at
large. The end-user simply needs to download and install the lightweight AHE
client and is then able to trivially access such ‘centrally installed’ applications.

The design of the AHE is novel in its application-centric approach, ac-
cording to which we treat the computational ‘application’ as a higher level
entity than a computational ‘job’. Computational steering applications
[34,35], coupled model simulations [36,37] and workflows [38,39,40] are cases
where applications and jobs can be clearly distinguished. In the initial AHE
release, applications and jobs stand mainly in a one-to-one relationship except
for the case of workflow applications. Complex workflow applications have
been deployed on grids using the AHE wherein the workflows are composed
of simpler computational jobs. This is discussed in more detail in Section 5.
By providing a service that will launch a particular application rather than a
generic computational job it is possible to reduce the complexity of the client
and make the scientist’s life easier. The scientist can then concentrate on
science rather than spending time understanding and installing middleware
and managing individual jobs.

6

4 Application Hosting

An application is said to be grid-enabled when it is able to run on multiple
heterogeneous resources comprising a grid. In the computational science
domain, the AHE provides a mechanism to expose an unmodified application
as a standards-compliant web service. Appendix A and B provide more
technical detail about how this is done.

When an application is launched on a grid resource using the AHE,
that instance of the application is referred to as the application instance. In
other words, the user can launch many application instances for an application
which is hosted in the AHE. Any kind of modelling and simulation application
can be hosted within the AHE. To the best of our knowledge, all of the
applications currently hosted in the AHE are simulation codes as discussed
in Section 4. We therefore use the term simulation instead of application
instance in much of the following discussion of the AHE. However, the same
discussion is applicable, more generally, to instances of any other type of
application hosted in the AHE.

We currently host a number of scientific applications within the AHE
including the highly scalable molecular dynamics (MD) codes DL POLY
3.01 [41], NAMD [42], LAMMPS [43] and GROMACS [44] and the lattice-
Boltzmann (LB) code, LB3D [3,45,46]. Scientists can use the AHE client
to launch these applications on a grid; in particular, we currently use the
AHE to run these applications on the UK NGS and US TeraGrid resources.
The AHE does not require the application to be modified as long as the
application is reasonably well-behaved with respect to the run parameter
specification, file-naming and file-location conventions.

We next describe, how to run such applications on a grid using the
AHE. Most of the steps involved are common to all applications. Then we
discuss some of the specific applications currently hosted in the AHE. Lastly,
we describe how the AHE client and server can be configured to host a new
application.

4.1 Running hosted applications

The steps involved in running an application instance on a grid using the
AHE are listed below. We present the steps in terms of running application
instances of simulation type applications. The AHE GUI client is implemented
in the familiar ‘wizard’ fashion; each step in the launching process is presented
to the user as a separate screen in the GUI with controls to navigate between

7

screens:

(1) In the AHE client wizard, the user first specifies the particular application
that he wishes to run, e.g., DL POLY, and other constraints such as the
number of processors on which to run it, maximum wall time required
and so on. The AHE server returns a list of grid resources on which the
application is installed and that match the constraints. The user then
selects the grid resource on which he wants to run the simulation.

(2) Next, the AHE client wizard prompts the user to specify the location of
the input files and the names of the output files that would be produced at
the end of the simulation. In the most general case, the user can manually
specify the locations of input files and the names of output files. However,
the AHE client has a plug-in parser feature, whereby application-specific
plug-in parsers can be integrated into the client automating the file man-
agement operations. This is discussed in more detail in Sections 4.2 and
4.3

(3) The user then uses the AHE client wizard to start the simulation on the
grid resource.

(4) Once the simulation has started, the user can manually check the simu-
lation status or choose either to set the AHE client to poll the status of
the simulation or to shut-down the client and return at a later time to re-
trieve the simulation status. The user can use any machine with an AHE
client installation, not necessarily the one from which the simulation was
started to monitor his/her simulations. This is ideal in situations where
the user would like to access the simulation state, including the input and
output files, from different machines.

(5) Apart from monitoring the status of the simulation, users can also ter-
minate their simulation before normal completion using the AHE client.

(6) Finally, when the simulation has completed, the user can transfer all the
input and output files on the remote grid resource at the click of a button.
The task of recovering output files scattered around a (global) grid has
been very tedious until now and this feature of the AHE has greatly
enhanced the productivity of grid users.

(7) The user may then destroy all memory of the simulation on the AHE
server or can allow the simulation state to persist on the AHE server to
review it in the future. Note that a review may involve retrieving the
simulation input and output files at a later time.

The combination of the capability to parse configuration files in order to dis-
cover input and output files, to automatically stage the files to and from the
grid resources, and to review the state of the simulation including associ-
ated files long after the simulation has finished, makes the AHE an extremely
powerful tool for addressing the challenge of solving the provenance problem
especially when one wishes to run a large number of application instances
distributed across a grid.

8

4.2 Example applications

DL POLY
DL POLY [41] is a parallel molecular dynamics package for simulations of
macromolecules, polymers, ionic systems and solutions. We host DL POLY
within the AHE for users who wish to run molecular dynamics (MD)
simulations with DL POLY on the UK NGS core nodes and the HPCx facility
[47]. This makes it trivial to launch DL POLY simulations on these grid
resources using the AHE client wizard.

A DL POLY specific plug-in parser has been integrated into the AHE
client, so that the user simply needs to specify the location of the CONFIG,
file on his/her local machine and all the input files, such as CONTROL,
FIELD and/or TABLE, etc., automatically get staged to the remote grid
resource at the start of the simulation.

Once the simulation has terminated, the user can, at the click of a
button, retrieve all the input and output files from his/her DL POLY
simulations, for example, the OUTPUT, REVCON, REVIVE, STATIS files
to the local machine.

NAMD and LAMMPS
We host NAMD and LAMMPS within the AHE for users who wish to run
MD simulation with these applications on the UK NGS core nodes and US
TeraGrid sites. NAMD [42] is a parallel molecular dynamics code primarily
used for large-scale bio-molecular simulations. LAMMPS [43] is a parallel
molecular dynamics code with optimizations for long-range interactions. It
is trivial to launch NAMD and LAMMPS simulations using the AHE client
wizard by following the steps described previously.

Plug-in parsers for NAMD and LAMMPS have already been integrated
into the AHE client and are supplied with the AHE client download. These
plugin-parsers allow the user to specify the location of the NAMD/LAMMPS
configuration file from which the AHE automatically discovers and transfers
all the input and output files that the application instance will consume and
produce.

For example, the NAMD/LAMMPS configuration file along with the
force-field paramete file, co-ordinate file, velocity file, and restart files that
may be required to run the simulation are automatically staged to the grid
resource at the start of the simulation. Since the simulation is run within a
single working directory on the remote grid resource, any relative paths in the
configuration files are removed. All input and output files that belong to a
particular simulation are located in a uniquely associated working directory.

9

Once the simulation has finished the user can again, at the click of a button,
retrieve all the output files from his/her simulation working directory on the
remote grid resource.

GROMACS
GROMACS [44] is a highly optimized, parallel molecular dynamics simulation
package extensively used for biomolecular simulations. We host GROMACS
within the AHE for users who wish to run MD simulations with GROMACS
on the UK NGS core nodes. A client parser plug-in makes it trivial to launch
the application using either the AHE GUI or command-line clients.

GROMACS differs from most of the other applications currently hosted in the
AHE in that it consists of two separate applications, namely a preprocessor
(grompp) and the actual simulation code (mdrun). A Perl script has been
created which runs on the grid resource and directs the output of the prepro-
cessor to the input of the simulation code. This script is then hosted in the
AHE and treated as a single application. A client configuration parser has also
been created which takes its input from a ‘meta’ configuration file, allowing
the user to specify parameters for both components of the application.

Once complete, the AHE client stages back both the output from the simula-
tion code and certain important intermediate files created by the preprocessor.

LB3D
LB3D [46] is a massively parallel implementation of the lattice-Boltzmann
model for amphiphilic fluid dynamics [3,45] which is able to reproduce the mor-
phological and rheological phenomena observed in ternary amphiphilic mix-
tures from purely bottom-up mesoscopic interactions. We have hosted LB3D
within the AHE to run lattice-Boltzmann simulations on the UK NGS and US
TeraGrid nodes. In this case, it was necessary for us to modify the application,
as some features of the code were incompatible with the AHE design. LB3D
produces output files whose names contain a randomly generated string while
relying also on a pre-exisiting output directory at the start of the simulation.
In order to be easily hosted within the AHE, it is preferable to know in ad-
vance the names of the output files that the code will generate during the
execution so as to automate the process of output file retrieval. Moreover, in
the AHE design, each independent execution of an application is associated
with a unique working directory on the remote grid resource, within which
the simulation is run and the staging and de-staging of input and output files
occurs. It is, therefore, desirable for the application code to run within a single
working directory. In grid environments, where because of the multiplicity of
resources, one needs to keep track of output dispersed across various remote
grid resources, it is particularly useful to have working directories associated
with specific simulations.

10

4.3 Hosting a new application

To host an application within the AHE, the expert-user needs to configure the
AHE server with the following application-specific information:

(1) location of the application executable on the grid resources, e.g., NGS
nodes and TeraGrid sites.

(2) any environment variables that may be required to run the application
on the different grid resources such as the path to dynamically linked
libraries

The reader should consult the AHE server installation guide [48] for the exact
location where this information needs to be stored. After configuring the
AHE server with the above information, running a short script provided with
the server distribution updates the registry of hosted applications to include
the new application. There is no need to restart the AHE server once a new
application has been added in this manner.

Once the above changes have been made to the server-side, the user is
able to run the application using the AHE client in the generic mode, i.e.
the AHE client does not require any modification when a new application
is hosted. However, it is possible to write an application-specific plug-in
parser for the AHE client which can parse the user-specified application
configuration file to automatically discover the input and output files for the
particular application instance that the user wishes to launch. The parsing
capability allows the user to simply specify the location of the configuration
file; the AHE client then automatically parses it to find out all the input
file locations and output file names. Thus, when the simulation is started
the input files are automatically staged to the remote grid resource and the
output files are retrieved at the end of the simulation. Details of writing and
integrating such a plug-in parser with the AHE client are specified in the
AHE client user guide [49].

5 Scientific Workflows

In addition to the GUI, the AHE client includes a closed set of atomic
command-line tools that replicate the essential operations in the AHE GUI
client. For example, there are AHE command-line tools to ‘prepare’ an appli-
cation instance for running on a grid resource, to ‘start’, ‘monitor’, ‘terminate’
and ‘getoutput(files)’. Complex workflows composed of multiple simulations
and/or calculations can be realised very simply by writing scripts that com-
bine the command-line tool functionality. Here, we present three examples of

11

how the AHE command-line tools can be combined to compose and deploy
complex workflows.

5.1 Ensembles of simulations

sim1

sim2

simN

Grid Resource Y

Grid Resource X

Grid Resource Z

AHE

Fig. 1. Running ensembles of application instances on a grid using the AHE. Ap-
plication instances labelled as sim1, sim2,..., simN are started on computational
resources on the grid using the AHE. The AHE manages input/output file-staging
for each application instance to/from the associated grid resource. The user is able
to monitor the status of all the application instances.

In the workflow depicted in Figure 1, the user wishes to launch a large
number of independent simulations on the grid and retrieve the results
for post-processing. There may be an additional requirement for these
simulations to run concurrently. Despite their multiplicity, each simulation
may be computationally expensive. For high-end applications, the capabilities
needed can only be delivered by resources available on grids such as the
UK NGS and US TeraGrid. Computational resources on the grid provide a
flexible, low cost alternative to intra-institutional supercomputing resources
for running such ensembles of simulations. Provided sufficient computational

12

resources are available on the grid, deployment of the ensemble workflow via
the AHE results in shorter turn-around time and greatly enhanced control of
provenance for the simulation output data as compared to submitting each
simulation individually on a local computational resource.

The ensemble functionality is currently being employed to run an en-
semble of molecular dynamics simulations of the HIV-1 protease and
inhibitors [38], each with a different starting configuration for the system,
in order to obtain better statistics. Within the ensemble of simulations, the
initial conditions are identical for the simulations except for the initial atomic
velocity distributions, sampled from a Maxwell-Boltzmann distribution and
randomised differently for the same system temperature.

Such ensembles of MD simulations are useful for thermodynamic inte-
gration (TI) calculations where multiple MD simulations need to be launched
at different values of the dual topology parameter λ or where multiple short
trajectory simulations can be launched on a grid to give insight into the
thermodynamics of a single long trajectory simulation [50]. An alternative
way to study TI calculations via chained simulations is discussed in Section 5.2.

Thus the AHE provides a simple way to write scripts in order to start
simulations on multiple grid resources. The user needs only to specify the
configuration file for each simulation; the AHE automatically discovers and
stages input/output files to/from the remote grid resource without the
user having to install any complicated grid middleware on his/her local
machine. This feature is particularly useful when there are a large number
of simulations to be launched on several resources which span multiple
administrative domains.

The AHE server maintains a history of all the simulations that have
been launched by each user and allows for their monitoring and review in the
future. As noted previously, the user has the flexibility to change between
client machines while still having a reference to his/her entire simulation
history.

5.2 Chained simulations

In the workflow in Figure 2, the user wishes to launch a sequence of chained
simulations where one application instance begins execution after the previous
instance has finished and may depend on output from the previous instance’s
execution.

Such a workflow of chained simulations is currently being used by nu-

13

AHE

sim1

Grid Resource X

simN

Grid Resource Z

sim2

Grid Resource Y

Chain of
Simulations

Fig. 2. Running a chain of application instances on a grid using the AHE. Appli-
cation instances labelled as sim1, sim2,...., simN are started in sequence on com-
putational resources on the grid using the AHE. The AHE manages input/output
file-staging to/from the associated grid resources; piping the output from one appli-
cation instance as input for the next application instance in the chain. The user is
able to monitor the status of each application instance as the workflow progresses.

merous AHE users. In particular, the chained simulation capability is being
used to study binding affinities of wild-type and mutant HIV-1 proteases
with drug inhibitors [39]. In order to obtain a starting structure for the MD
production runs, the initial artificially mutated HIV-1 protease wildtype
crystal structure is equilibrated by subjecting it to a chain of equilibration
simulations, each simulation corresponding to a step in the equilibration
procedure. This is illustrated in Figure 3. The AHE is used to automate the

Fig. 3. Running a chain of MD simulations on a grid; each simulation corresponds
to a different step in the initial relaxation of the system to equilibrium before pro-
duction runs can be performed.

14

entire process of launching and managing the equilibration simulations in
sequence on the grid, thus realising the workflow in Figure 3. The automation
provided by AHE includes starting each simulation on different grid resources
in sequence, transferring input files to the grid resource at the start and
retrieval of output files at the end of each simulation. This feature is particu-
larly valuable as it frees the user from the mundane task of keeping track of
all the simulation data files and manually transferring them across the grid
resources for the next simulation in the chain. Thermodynamic integration

λ

<E>

<E>

t

time

Check for Convergence
Starting

Conformation

λ=0.1

λ=0.2

λ=0.3

λ=0.9

Calculate Integral

Run each simulation on the grid

Chain of
Simulations

Fig. 4. Thermodynamic integration calculation consisting of a chain of simulations
at different values of parameter λ is an ideal candidate for grid deployment. See
text in Fowler et al. [34] for more details.

(TI) calculations [34,40], where each simulation is run at a particular value of
the dual topology parameter λ (0 ≤ λ ≤ 1), such that the initial configuration
for a simulation at λ

n
+ 1 is obtained from a simulation at λ

n
, is another

example of a workflow of chained simulations that can be deployed via
the AHE. This is illustrated in Figure 4. As noted in Section 5.1, TI-type
calculations can also be studied using an ensemble workflow. Additionally,
one can imagine a chained workflow as in Figure 2 comprising of application
instances belonging to different application types.

5.3 Concurrent simulations

In the workflow in Figure 5, the user wishes to launch concurrent and
dependent simulations on multiple grid resources. The simulations may
need to communicate with each other periodically during their execution.
This type of workflow can be used to perform coupled model simulations
[37] where the system being simulated spans multiple time-scales and/or

15

sim2

Grid Resource Y

sim1

Grid Resource X

AHE

Fig. 5. Running coupled application instances on a grid using the AHE. Each ap-
plication instance is executed on a separate grid resource via the AHE. The AHE
can monitor the individual components as they execute.

length-scales. In order to accurately and efficiently simulate such systems,
the different domains of the system are simulated at different levels of detail
using distinct applications which communicate at regular intervals. See De
Fabritiis et al. [36] for a description of such a multiscale computational
technique that has successfully coupled molecular dynamics with Landau’s
fluctuating hydrodynamics to simulate sound waves propagating in bulk
water and reflected by a lipid monolayer. Although such coupled models have
not been deployed with the AHE yet, the AHE provides the infrastructure to
start up the different applications on the grid, and once communication has
been established and concurrent execution has begun, the AHE will enable
the user to monitor individual applications and/or to terminate them, while
at the same time furnishing a high-level overview of the entire coupled model
application.

At the time of writing, there is a significant AHE user base with oth-
ers planning to use it. Favourable experiences have been reported for NAMD
and LAMMPS applications hosted within the AHE as compared to alternative
strategies [15,18,35] for running jobs on grids [38]. As expected, from the
design criteria, the key benefits for users have been:

(i) minimal installation, configuration and maintenance effort on the client-
side;

(ii) flexibility of restarting or switching between clients so that the client
need not be ‘attached’ to the grid in order to launch or manage jobs;

(iii) automatic staging in of input files to a grid resource, third party file
transfer between resources, and retrieval of distributed files to the local

16

machine on job completion;
(iv) no need to repeatedly submit individual jobs to many resources and

monitor status across multiple grid resources.

Users have expressed the need for the capability to monitor queues on differ-
ent grid resources. This capability can be provided by the AHE in future if
the queue status information is published via a web service by the resource
managers installed on the grid resources.

6 Future Developments

Future extensions of the AHE aim to add functionality that enables even
more ambitious computational science projects to be undertaken on grids
with ease. Globus Toolkit 4 (GT4) [27] and Unicore [16] are able to process
jobs specified using the JSDL schema and we are exploring the possibility of
future versions of AHE being able to directly submit jobs to Globus Toolkit
4 (GT4) and Unicore without the need for GridSAM (see Appendix B) as
a third party tool to provide the web service interface for job submission.
Work is underway to integrate the WSRF-compliant RealityGrid steering
framework into the AHE [35], which will provide support for starting and
managing steerable applications and coupled model applications hosted in
the AHE. We plan to extend the current workflow functionality to orchestrate
even more complex workflows, using the industry-standard BPEL language
[51]. The scientist will be provided with graphical tools to interface with the
BPEL workflow engine and easily implement their desired BPEL workflow
operations.

We are now looking at new platforms on which the lightweight AHE
client can be deployed. For example, work is underway on an AHE client
that runs on mobile phones and PDAs [52] allowing scientists to launch
and monitor simulations on the move. Co-allocation is one of the major
challenges faced by computational scientists trying to perform cross-site
runs using multiple concurrently available grid resources [14]. No automated
advanced reservation and co-scheduling systems are in place yet within
so-called production grids; performing cross-site runs [14] today requires
human intervention for booking resources in advance and making sure these
are indeed available at the desired time 1 . A fault-tolerant web services
compliant approach to co-allocation called HARC [55] has recently been
proposed and implemented. The attractiveness of this scheduler stems from

1 Note that the beta version of the NAREGI [9] software stack has a super-scheduler
at the heart of its architecture [53] and claims to implemenent WS-Agreement [54]
compliant co-allocation.

17

its ability to co-allocate (i) compute resources and (ii) lambda networks [56],
which are dynamically provisioned optical networks for bandwidth intensive
applications. An interface to the HARC system will be developed in the
AHE client to provide support for automated, fault-tolerant co-allocation.
We hope to provide support for MPICH-G2 [57] enabled applications in the
future. Finally, we are also looking into the use of the AHE for accessing
campus-based resources, often referred to as ‘campus grids’. Ultimately, AHE
could become a uniform interface to all computational resources.

7 Conclusions

Our goal in this work has been and continues to be to provide scientists with
tools such as command-line interfaces that are simple and familiar, while at the
same time furnishing access to a much more powerful set of resources on grids
than previously available, allowing scientists to use their own creativity to
achieve increasingly complex computational objectives. The AHE allows com-
putational scientists to overcome the barrier of heavyweight, difficult-to-use
grid middleware and thereby to take advantage of grid computing with much
greater ease than has been possible hitherto. Grid computing has contributed
significantly to the scientific programme within isolated, grid-centric computa-
tional science projects [3,12,13,58,59] but it still remains under-utilised among
wider national and international computational science communities. The in-
volvement of increasing numbers of computational scientists in grid activities
is essential for determining best practices in grid scheduling policies, provi-
sioning/orchestration policies and resource configuration. We hope that the
AHE will help to realise these goals.

8 Distribution and Installation

The first release of the AHE was made available on 31 March 2006. The AHE
(Version 1.0.1) client and server software can be downloaded from the Reality-
Grid website at http://www.realitygrid.org/AHE or the NeSCForge website at
http://forge.nesc.ac.uk/projects/ahe. Future releases will continue to be avail-
able from the RealityGrid website. Documentation, including installation and
configuration of the AHE to run applications on the UK NGS and US Tera-
Grid, is also available from these websites. Subscription to the AHE mailing list
is open at http://www.mailinglists.ucl.ac.uk/mailman/listinfo/ahe-discuss.

A version of the AHE software, Version 1.0.2, has also been developed
in which the AHE server can be hosted within the Apache Jakarta Tomcat

18

http://www.realitygrid.org/AHE
http://forge.nesc.ac.uk/projects/ahe
http://www.mailinglists.ucl.ac.uk/mailman/listinfo/ahe-discuss

container [60]. This version of the AHE is distributed via the Open Middle-
ware Infrastructure Institute UK (OMII-UK) [61] within the latest OMII
3.2.0 server and client software which was released on 12 November 2006.
This version of the AHE conforms to the OMII Integration Specification and
is easily installable and integrated with the rest of the OMII distribution
including WSRF::Lite [62] and GridSAM [31] which are pre-requisites for
the AHE. OMII 3.2.0 server and client software is available for download at
http://www.omii.ac.uk.

9 Acknowledgements

We are grateful to many current AHE users for suggestions and comments
which have improved its usability. We thank Dr. Phil Fowler, Kashif Sadiq,
Mary-Ann Thyveetil and Dr. James Suter for providing scientific use cases
during the initial development of the AHE. In particular, we acknowledge
Kashif Sadiq for providing use cases for the ensemble and chained simula-
tion workflow functionality of the AHE. We would like to thank Dr. Dorothy
Duffy and Alex Rutherford for providing expertise and use cases for host-
ing DL POLY in the AHE. The AHE is funded by EPSRC through the Re-
alityGrid (GR/R67699), RealityGrid Platform Grant (EP/C536452/1) and
Rapid Prototyping of Usable Grid Middleware (GR/T27488/01) projects, and
through the OMII Managed Programme project Robust Application Hosting
using WSRF::Lite (http://www.omii.ac.uk/mp/mp wsrf lite.jsp).

A Web Services and the Application Hosting Environment

In the AHE, we have adopted the Service Oriented Architecture (SOA) ap-
proach to providing applications as services on the grid. Web services are one
way of realizing SOA. As mentioned in the main text, from a computational
scientist’s perspective a web service is simply any computational functional-
ity accessible over a network as a service. The term ‘service’ implies that the
user simply needs to know the description of the service in order to invoke
it and does not need to know how the functionality of the service is actually
implemented; this is particularly important on a heterogeneous grid. Hence,
in order for the web service to be consumed by a client, it is of utmost im-
portance that the web services have standards-compliant interfaces. In the
AHE, we use WSRF::Lite [62], a perl library that provides the framework for
writing web services. In this Service Oriented Architecture (SOA) approach,
the key concept is that of loosely coupled components, i.e., web services, that
interact via SOAP messages and whose interface is described by documents

19

http://www.omii.ac.uk
http://www.omii.ac.uk/mp/mp_wsrf_lite.jsp

conforming to the WSDL standard [22].

There are obvious benefits to the adoption of a standards-based, dynamic and
flexible approach to running applications on heterogeneous grid resources and
managing the state of the application instances in a uniform, integrated way.
Such an approach allows flexible integration of multiple applications to accom-
plish complex computational tasks on the grid, as we aspire to do with the
AHE’s workflow functionality. Also, the widespread adoption of the web ser-
vices approach in industry and academia permits grid computing practitioners
to take advantage of numerous existing web services and web services devel-
opment tools that are independently being made available to the community
and to take advantage of the significant standardization and inter-operability
efforts which clearly also address significant issues in grid computing.

In the AHE, an application instance is represented as a transient stateful web
service Resource WS-Resource [21]. The WS-Resource properties associated
with the application instance include

• the application instance’s reference handle or the EndPoint Refer-
ence(EPR)

• status of the application instance
• a trivial name to refer to the simulation
• date and time when the application instance was started,
• the grid resource on which its running,
• names and URLs of the input files
• names and URLs of the output files.

Each time an application is run on the grid, a WS-Resource [21] is created on
the AHE server-side, and is used to represent that instance of the application’s
execution. This WS-Resource provides an interface for the user to interact with
the application instance. The WS-Resource corresponding to the application
instance and its WS-Resource properties are stored on the AHE server in a
database referred to as the ‘App Instance Registry’. This is described in more
detail in Appendix B. The WS-Resource properties can be queried at any
time using the AHE client or any other web services compliant client. In this
way the AHE provides a uniform interface for managing simulations of various
scientific application codes deployed on multiple grid resources.

The WS-Resource persists even after the application instance has finished exe-
cuting, providing information on the location of any output files as well as the
input files and configuration parameters used to initially run the application.
This is a powerful provenance capability of the AHE, as the user can return
at a later time and review the simulation by querying the properties of the
associated WS-Resource.

20

B AHE Architecture

Fig. B.1. Architecture of the Application Hosting Environment; the numbers denote
operations performed between the AHE client, AHE server, File Staging Service,
File Store, MyProxy server and Grid Resources. See the text in Appendix B for a
detailed description of this diagram.

WSRF::Lite
The AHE is developed with WSRF::Lite, a Perl implementation of the Web
Service Resource Framework (WSRF [21,63]) specification which has been
ratified by the OASIS [64] standards body. WSRF::Lite is the follow-on from
OGSI::Lite, the Perl implementation of the Open Grid Service Infrastructure
(OGSI [65]) specification from GGF [66]. It is built on SOAP::Lite [67] the
Perl module for web services from which it derives its name.

In the current release of the AHE, we host the WS-Resources on the server-
side within the Apache web server and store the WS-Resource properties in
a PostgreSQL [68] database. The PostgreSQL [68] database storing the sim-
ulation’s state can be replicated and backed up non-locally to provide fault
tolerance.

GridSAM
The AHE currently accesses computational resources on the grids via middle-
ware called GridSAM [31]. GridSAM provides a web services interface, running

21

in an OMII [61] web services container, for submitting and monitoring jobs on
grid resources with various Distributed Resource Managers (DRMs) - Globus
2.4.3 [15], Grid Engine 6.0 u4+ [32] and Condor v6.4, v6.6 and v6.7 [33] -
via its DRM connector-based plugin-in architecture. GridSAM has a plug-in
architecture that allows connectors for different types of DRMs to be inte-
grated into it, thereby adding the functionality to submit and monitor jobs
on resources with those DRMs.

Computational jobs submitted to GridSAM are described using another
emerging standard, the Job Submission Description Language. GridSAM con-
sumes Job Submission Description Language (JSDL [69]) documents and per-
forms the task of ‘job’ submission to the target grid resource.

File Staging Area (FSA)
The ‘File Staging Area’ (FSA) is designed to allow the client to use the Web-
DAV [70] file transfer protocol to ‘GET’ (step 13 in Figure B.1) or ‘PUT’ (step
4 in Figure B.1) a file on the WebDAV server so that it can be downloaded
by GridSAM on to the target grid resource (step 10/12 in Figure B.1). This is
designed to handle the case where input files exist on the user’s client machine
and these need to be transferred to the grid resource. Similarly, the FSA is
useful when files need to be retrieved from the remote grid resource to the lo-
cal client machine. The FSA provides an intermediate file-staging area, albeit
one which is accessible via normal HTTP GET and PUT mechanisms and is
useful for pulling down the simulation input/output files from anywhere on
the grid using nothing more than a web browser or potentially a PDA. We
consider this type of file transfer as ‘pass by value’ since the client actually
transports the file to the FSA.

FileStore
For much larger input/output files, which the user may not wish to download
to his/her local machine, the AHE supports third-party file transfer using
a ‘FileStore’ mechanism. The FileStore is any place on the grid where files
required by the instance of the application are available through GridFTP or
HTTP. The FileStore is used to hold large files like checkpoints that would
not normally be stored on the client machine. The AHE client passes the URL
[71] of the source input file or target output file to the AHE server and the
input files automatically get staged from the FileStore to the grid resource on
which the simulation is to be run or the output files from the grid resource
automatically get staged out to the desired target FileStore. These are steps
10 and 12 in Figure B.1. We call this ‘pass by reference’ Note that FileStore
may be a grid resource providing a storage service such as the data nodes on
the UK NGS.

MyProxy
Security is critical in any grid computing environment [1]. We chose not to

22

use WS-Security [72,73] for the AHE because message level security is not
required: we do not have any intermediaries for relaying SOAP messages. In
the AHE, communication is via HTTPS to provide Transport Layer Security
(TLS [28]); mutual authentication is used between the AHE client and the
AHE server using X.509 digital certificates [29]. For users of the UK NGS
[5], digital certificates or e-Science certificates can be obtained from the na-
tional certification authority [74]. Within the AHE, the App WS-Resource is
given access to a proxy certificate [29] stored on a MyProxy [75] server. The
AHE server implements fine-grained authorization in that only the owner of
the simulation has access to its properties. This can be extended to provide
group access or open access analogous to the UNIX file system permissions
for collaborative work.

App Server Registry
The ‘App Server Registry’ maintains a registry of all the applications that are
hosted within the AHE, such as, DL POLY [41], NAMD [42], LAMMPS [43],
GROMACS [44] and LB3D [3,45,46]. The user can query the registry (step
1 in Figure B.1) to find the address for the service factory that provides a
particular application.

App Server Factory
The ‘App Server Factory’ is a web service based on the Factory Pattern [76]
which creates a new App WS-Resource on the AHE server each time the user
invokes the Prepare operation.

App WS-Resource
The ‘App WS-Resource’ exists on the AHE server and is a WS-Resource rep-
resenting a particular application instance. The user invokes the Prepare op-
eration of the App Server Factory whenever an application instance needs to
be launched on the grid. For each invocation of the Prepare operation, a new
App WS-Resource is created on the AHE server and its WS-Resource proper-
ties are initialized as per the application instance parameters specified by the
user.

App Instance Registry
The AHE server maintains an ‘App Instance Registry’ which contains
the history of all application instances/WS-Resources that the user has
launched/created. The App Instance Registry is implemented by a Post-
greSQL [68] database. The user can query the App Instance Registry to get a
list of all the application instances launched and the associated WS-Resource
properties. Collaborative analysis of simulation histories is greatly aided by
the stored WS-Resource properties that can be accessed online via the App
Instance Registry.

We now briefly describe the numbered operations in Figure B.1:

23

(1) User retrieves a list of applications hosted within the AHE from the App
Server Registry.

(2) User invokes the Prepare operation in step 2 on the App Server Factory.
(3) As a result of the invocation of the Prepare operation, the App Server

Factory creates a new App WS-Resource representing the instance of the
application. The App Server Factory returns a WS-Addressing [77] End-
Point Reference (EPR) to the client which the client uses to communicate
with the App WS-Resource.

(4) The AHE client automatically transfers the user’s input files to the File
Staging Area.

(5) The user uploads his/her proxy credential to the MyProxy server. This
is then valid for one week by default.

(6) The user starts the application instance and the AHE returns the initial
status of the application instance.

(7) Once the App WS-Resource is created as a result of the Prepare opera-
tion, its reference handle and associated properties are stored in the App
Instance Registry (see 3 above).

(8) The AHE server creates one or more JSDL documents based on the user’s
specification of the application instance and submits them to GridSAM
which then starts the application instance on the target grid resource.

(9) The App WS-Resource uses the proxy certificate for authentication with
the various grid resources that the user wishes to use.

(10) The input files are staged from the FSA to the target grid resource on
which the application instance will be executed.

(11) The user can use the AHE client to invoke, monitor and terminate com-
mands on the App WS-Resource in order to check the status and, if need
be, to terminate the application instance.

(12) Once the job finishes, the output files are transferred from the grid re-
source to the FSA.

(13) The user can use the AHE client to manually or automatically download
the output files from the FSA.

(14) The user can query the App Instance Registry to review the history of
application instances.

References

[1] P. V. Coveney, Scientific grid computing, Phil. Trans. R. Soc. A 363 (2005)
1707–1713, DOI: 10.1098/rsta.2005.1603.

[2] B. Boghosian, P. V. Coveney, Scientific applications of grid computing,
Computing in Science and Engineering 7 (5) (2005) 10–13, DOI:
10.1109/MCSE.2005.95.

[3] J. Chin, P. V. Coveney, Chirality and domain growth in the gyroid mesophase,

24

Proceedings of the Royal Society of London Series A, published online, June
2006DOI: 10.1098/rspa.2006.1741.

[4] B. Boghosian, L. I. Finn, P. V. Coveney, Moving the data to the computation:
multi-site distributed parallel computation.
http://www.realitygrid.org/publications/GD3.pdf

[5] National Grid Service (NGS).
http://www.ngs.ac.uk

[6] P. H. Beckman, Building the TeraGrid, Phil. Trans. R. Soc. A 363 (2005) 1715–
1728, DOI: 10.1098/rsta.2005.1603.
http://www.teragrid.org

[7] F. Gagliardi, B. Jones, F. Grey, M. E. Begin, M. Heikkurinen, Building
an infrastructure for scientific grid computing: status and goals of the
EGEE project, Phil. Trans. R. Soc. A 363 (2005) 1729–1742, DOI:
10.1098/rsta.2005.1603.
http://www.eu-egee.org

[8] Distributed European Infrastructure for Supercomputing Applications
(DEISA).
http://www.deisa.org

[9] National Research Grid Initiative (NAREGI).
http://www.naregi.org

[10] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: Enabling scalable
virtual organizations, Intl. J. Supercomputer Applications 15 (2001) 3–23.

[11] J. Chin, P. V. Coveney, Towards tractable toolkits for the grid: A plea for
lightweight usable middleware, UK e-Science Technical Report UKeS-2004-01.
http://nesc.ac.uk/technical papers/UKeS-2004-01.pdf

[12] R. J. Blake, P. V. Coveney, P. Clarke, S. M. Pickles, The TeraGyroid experiment
- Supercomputing 2003, Scientific Programming 13 (1) (2005) 1–17.
http://iospress.metapress.com/link.asp?id=gcxd7nr3h1k29rw1

[13] S. Jha, P. V. Coveney, M. J. Harvey, SPICE: Simulated Pore Interactive
Computing Environment, in: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, 2005, pp. 70–75, DOI: 10.1109/SC.2005.65.
http://www.realitygrid.org/Spice/anal109.pdf

[14] B. M. Boghosian, P. V. Coveney, S. Dong, L. I. Finn, S. Jha, G. Karniadakis,
N. Karonis, NEKTAR, SPICE and Vortonics: Using federated grids for large
scale scientific applications, in: Proceedings of Challenges of Large Applications
in Distributed Environments, 2006, pp. 34–42, ISBN 1-4244-0420-7.

[15] I. Foster, C. Kesselman, Globus: A metacomputing infrastructure toolkit, Int.
J. Supercomputer Applications 11 (2) (1997) 115–128.
http://www.globus.org/toolkit/downloads/2.4.3

25

[16] D. Breuer, D. Erwin, D. Mallmann, R. Menday, M. Romberg, V. Sander,
B. Schuller, P. Wieder, Scientific computing with UNICORE, in: Proceedings
of the NIC Symposium 2004, Vol. 20 of NIC, John von Neumann Institute for
Computing, Julich, 2003, pp. 429–440, ISBN 3-00-012372-5.
http://www.fz-juelich.de/nic-series/volume20/erwin.pdf

[17] J. Kewley, R. Allan, R. Crouchley, D. Grose, T. van Ark, M. Haynes, L. Morris,
GROWL: A lightweight grid services toolkit and applications, in: Proceedings
of the 4th UK e-Science All Hands Meeting, 2005.
http://www.allhands.org.uk/2005/proceedings/papers/460.pdf

[18] P. V. Coveney, J. Vicary, J. Chin, M. Harvey, WEDS: a WSRF-based
environment for distributed simulation, Phil. Trans. R. Soc. A 363 (2005) 1807–
1816, DOI: 10.1098/rsta.2005.1608.

[19] J. Rixon, Using Astrogrid CEA to access compute grids, in: Grid Workshop,
Strasbourg, 2005.
http://cdsweb.u-strasbg.fr/meeting5/rixon-cea-and-grid.pdf

[20] J. Blower, K. Haines, E. Llewellin, Data streaming, workflow and firewall
friendly grid services with Styx, in: Proceedings of the 4th UK e-Science All
Hands Meeting, 2005.
http://www.allhands.org.uk/2005/proceedings/papers/573.pdf

[21] Web Service Resource 1.2.
http://docs.oasis-open.org/wsrf/wsrf-ws resource-1.2-spec-pr-01.pdf

[22] http://www.w3.org/TR/WSDL.

[23] The IP network address translator (NAT), IETF RFC 1631.
http://www.faqs.org/rfcs/rfc1631.html

[24] Hypertext Transfer Protocol HTTP/1.1, IETF RFC 2616.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[25] HTTP over TLS, IETF RFC 2818.
http://www.faqs.org/rfcs/rfc2818.html

[26] Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/soap

[27] I. Foster, Globus Toolkit Version 4: Software for service-oriented systems, in:
IFIP International Conference on Network and Parallel Computing, Springer-
Verlag LNCS 3779, 2005, pp. 2–13.
http://www.globus.org/toolkit/docs/4.0/

[28] The TLS protocol version 1.0, IETF RFC 2246.
http://www.faqs.org/rfcs/rfc2246.html

[29] Internet X.509 public key infrastructure certificate mangement protocols, IETF
RFC 2510.
http://www.faqs.org/rfcs/rfc2510.html

26

[30] http://www.java.com.

[31] http://gridsam.sourceforge.net/.

[32] http://gridengine.sunsource.net.

[33] http://www.cs.wisc.edu/condor.

[34] P. W. Fowler, S. Jha, P. V. Coveney, Grid-based steered thermodynamic
integration accelerates the calculation of binding free energies, Phil. Trans. R.
Soc. A 363 (2005) 1999–2015, DOI: 10.1098/rsta.2005.1603.

[35] S. M. Pickles, R. Haines, R. L. Pinning, A. R. Porter, A practical toolkit for
computational steering, Phil. Trans. R. Soc. A 363 (2005) 1843–1853.

[36] G. De Fabritiis, R. Delgado-Buscalioni, P. V. Coveney, Multiscale modelling of
liquids with molecular specificity, Physical Review Letters 97 (2006) 134501,
DOI: 10.1103/PhysRevLett.97.134501.

[37] P. V. Coveney, G. De Fabritiis, M. Harvey, S. Pickles, A. Porter, Coupled
applications on distributed resources, Computer Physics Communications 175
(2006) 389–396.
http://www.realitygrid.org/publications/coupled model.pdf

[38] P. V. Coveney, S. K. Sadiq, R. S. Saksena, M. Thyveetil, S. J. Zasada,
M. Mc Keown, S. Pickles, A lightweight application hosting environment for
grid computing, in: Proceedings of the 5th UK e-Science All Hands Meeting,
2006.
http://www.realitygrid.org/publications/ahm2006 ahe paper.pdf

[39] P. V. Coveney, S. K. Sadiq, R. S. Saksena, S. J. Zasada, M. Mc Keown,
S. Pickles, The Application Hosting Environment: Lightweight middleware for
grid based computational science, in: TeraGrid ’06 Conference, 2006.
http://www.realitygrid.org/publications/ahm2006 ahe paper.pdf

[40] P. W. Fowler, S. Geroult, S. Jha, G. Waksman, P. V. Coveney, The rapid and
accurate calculation of relative binding affinities for the SH2 domain using a
computational grid, preprint (2006).
http://realitygrid.org/publications/sh2paper.pdf

[41] W. Smith, T. R. Forester, A general-purpose parallel molecular dynamics
simulation package, J. Mol. Graph. 14 (1996) 136–141.

[42] L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz,
J. Phillips, A. Shinozaki, K. Vardarajan, K. Schulten, NAMD2:greater
scalability for parallel molecular dynamics, J. Comp. Phys. 151 (1999) 283–
312.

[43] S. J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J.
Comp. Phys. 117 (1995) 1–19.

[44] H. J. C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS:
A message-passing parallel molecular dynamics implementation, Computer
Physics Communications 91 (1995) 43–56.

27

[45] J. Harting, J. Chin, M. Venturoli, P. V. Coveney, Large-scale lattice
Boltzmann simulations of complex fluids: advances through the advent of
computational grids, Phil. Trans. R. Soc. A 363 (2005) 1895–1915, DOI:
10.1098/rsta.2005.1603.

[46] http://www.realitygrid.org.

[47] http://www.hpcx.ac.uk.

[48] AHE Server Installation Guide.
http://www.realitygrid.org/AHE/doc/AHEServerInstallationGuide.pdf

[49] AHE Client User Guide.
http://www.realitygrid.org/AHE/doc/AHEClientUserGuide.pdf

[50] M. R. Shirts, V. Pande, Mathematical foundations of ensemble dynamics,
Physical Review Letters 86 (2001) 4983–4987.

[51] http://www.oasis-open.org/committees/download.php/18714/wsbpel-
specification-draft-May17.htm.

[52] R. S. Kalawsky, S. P. Nee, I. Holmes, P. V. Coveney, A grid-enabled
lightweight computational steering client: A .NET PDA implementation,
Philosophical Transactions of the Royal Society A 363 (2005) 1885–1894, dOI:
10.1098/rsta.2005.1617.

[53] NAREGI The Japanese National Research Grid & Networking Infrastructure.
http://www.apan.net/meetings/tokyo2006/presentation/smatusuoka NII.pdf/

[54] http://www.gridforum.org/Public Comment Docs/Documents/Oct-2005/WS-
AgreementSpecificationDraft050920.pdf.

[55] J. Maclaren, M. Mc Keown, HARC: A Highly-Available Robust Co-scheduler,
submitted to the 5th UK e-Science All Hands Meeting (2006).
http://www.realitygrid.org/publications/HARC.pdf

[56] L. Smarr, T. DeFanti, M. D. Brown, C. de Laat, Special section: igrid 2005:
The global lambda integrated facility, Future Generation Computer Systems 22
(2006) 849–851.

[57] N. Karonis, B. Toonen, I. Foster, MPICH-G2: A grid-enabled implementation of
the Message Passing Interface, Journal of Parallel and Distributed Computing
63 (5) (2003) 551–563.

[58] J. Chin, P. V. Coveney, J. Harting, The TeraGyroid project - Collaborative
steering and visualization in an HPC grid for modelling complex fluids, in:
Proceedings of the 3rd UK e-Science All Hands Meeting, 2004.
http://www.allhands.org.uk/2004/proceedings/papers/181.pdf

[59] S. Jha, P. V. Coveney, M. J. Harvey, SPICE: Simulated Pore Interactive
Computing Environment - Using federated grids for “grand challenge”
biomolecular simulations, in: International Supercomputer Conference, 2006,
awarded the ISC Innovation Award for Life Sciences.
http://www.realitygrid.org/publications/spice isc06.pdf

28

[60] http://tomcat.apache.org/.

[61] http://www.omii.ac.uk.

[62] http://www.sve.man.ac.uk/Research/AtoZ/ILCT.

[63] http://www.globus.org/wsrf/.

[64] http://www.oasis-open.org/home/index.php.

[65] Open Grid Service Infrastructure.
http://www.gridforum.org/documents/GFD.15.pdf

[66] http://www.ggf.org.

[67] http://www.soaplite.com.

[68] http://www.postgresql.org.

[69] Job Submission Description Language (JSDL) specification, version 1.0, GGF.
https://forge.gridforum.org/projects/jsdl-wg/document/draft-ggf-jsdl-
spec/en/21

[70] IETF, HTTP extensions for distributed authoring - WEBDAV.
http://www.faqs.org/rfcs/rfc2518.html

[71] Uniform Resource Locators (URL), IETF RFC 1738.
http://www.faqs.org/rfcs/rfc1738.html

[72] Web services security: SOAP message security V1.0 (2004), OASIS standard
2000401.

[73] Web services security: X.509 TokenProfile V1.0 (2004).
http://docs.oasis-open.org/wss/2004/01/oasis-200402-wss-x509-token-profile-
1.0.pdf

[74] https://ca.grid-support.ac.uk.

[75] The MyProxy Online Credential Repository, Software: Practice and Experience,
2005.
http://www.ncsa.uiuc.edu/jbasney/myproxy-spe.pdf

[76] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Pattern: Elements of
Reusable Object Oriented Software, Addison-Wesley, 1995.

[77] Web service addressing 1.0 - core.
http://www.w3.org/TR/2005/WD-ws-addr-core-20050331/

29

	Introduction
	Motivation for the Application Hosting Environment
	Design of the Application Hosting Environment
	Application Hosting
	Running hosted applications
	Example applications
	Hosting a new application

	Scientific Workflows
	Ensembles of simulations
	Chained simulations
	Concurrent simulations

	Future Developments
	Conclusions
	Distribution and Installation
	Acknowledgements
	Web Services and the Application Hosting Environment
	AHE Architecture
	References

