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Abstract

We demonstrate an application of the spectral method as a numerical approximation

for solving Hyperbolic PDEs. In this method a finite basis is used for approximating the

solutions. In particular, we demonstrate a set of such solutions for cases which would

be otherwise almost impossible to solve by the more routine methods such as the Finite

Difference Method. Eigenvalue problems are included in the class of PDEs that are

solvable by this method. Although any complete orthonormal basis can be used, we

discuss two particularly interesting bases: the Fourier basis and the quantum oscillator

eigenfunction basis. We compare and discuss the relative advantages of each of these two

bases.

PACS: 02.60.-x, 02.60.Lj
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1 Introduction

Partial differential equations are ubiquitous in science and industry, since the dynamical laws

governing all physical phenomena can be usually approximated by a set of partial differential

equations. These include diverse phenomena such as the dynamics of fluids, gravitational

fields, electromagnetic fields, etc. In particular, we are more interested in the applications in

quantum cosmology and quantum mechanics.

∗Email: pedram@sbu.ac.ir
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In some particular physical applications the problem is so simplified that the resulting

PDE is simple enough to be solved analytically, for example by the method of separation of

variables. However, when a more realistic modeling of the problem is required, the resulting

partial differential equation might become so complicated that an analytical solution might

not be feasible any more. In such cases, we have to resort to an approximate technique.

These approximate techniques could be either analytic or numeric. An obvious example of

an approximate analytic technique would be the usual perturbation method, in which the

problem is divided into two segments. The main segment is supposed to be exactly solvable.

The second segment is supposed to modify the solution obtained in the main segment only

very slightly. This modification can be obtained analytically for any desired degree of accuracy.

On the other hand, the numeric solutions could be either perturbative in nature or completely

numeric. In the first case, as explained above, the main part is solved analytically. However,

the perturbation part is solved numerically. Examples of the completely numerical methods

range from the simple Finite Difference Methods (FDM) [1] to the more sophisticated Multigrid

Method, Collocation Method [2, 3], and Finite Element Method (FEM) [4, 5]. In these methods

the configuration space is discretized, and the value of the solution at each grid point is

determined by the values of its neighboring points. Therefore in these methods the smoothness

of the solution is an important condition to get a reasonable approximate solution. However,

sometimes the solutions are not smooth. Moreover, we have encountered problems which seem

to posses intrinsic instabilities that we were not able to overcome, even when we implemented

the Courant stability condition [6] using FDM, or the implicit FDM, or their combination.

The simplest problem we have encountered that seems to posses both of the aforementioned

problems is the following hyperbolic PDE. This problem appeared in applications of Robertson-

Walker quantum cosmology with zero curvature and is a particular case of the so called the

Wheeler-DeWitt (WD) Eq. [7],

{

− ∂2

∂u2
+

∂2

∂v2
+ u2 − v2

}

ψ(u, v) = 0. (1)
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Figure 1: Left, plot of the |Reψ(u, v)|2 of the solution to the Wheeler-DeWitt Eq. (1) with 130
basis states used in the expansion of the solution. Right, |Reψ(u, v)|2 of this solution along
the classical circular path [18] (i.e. along its crest .)

This equation is exactly solvable [8]. By choosing an appropriate set of initial conditions,

the absolute value squared of the solution (sometimes called the wave packet) has a smooth

behavior and coincides well with the classical solution [8]. However, if we consider the real and

imaginary parts of the solution separately, we can see that each part has pervasive oscillations

almost everywhere, in particular along the crest of the |ψ(u, v)|2 (Fig. 1). From the Figure

it is obvious that the usage of explicit or implicit FDM would fail in this type of situations.

Moreover for smaller classical path radii, although there will be less oscillations, the solutions

that we attempted to find using FDM showed divergent behavior at large distances.

We are interested in solving problems which are generalizations of the one mentioned above.

This gives us motivation to use a different numerical method to solve this type of problems.

This method, which was first introduced by Galerkin, consists of first choosing a complete

orthonormal set of eigenstates of a, preferably relevant, hermitian operator to be used as

a suitable basis for our solution. For this numerical method we obviously can not choose

the whole set of the complete basis, as these are usually infinite. Therefore we make the

approximation of representing the solution by only a finite superposition of the basis functions.

By substituting this approximate solution into the differential equation, a matrix equation is
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obtained. The expansion coefficients of these approximate solutions could be determined by

eigenvalues and eigenfunctions of this matrix. This method has been called the Galerkin

Method, and is a subset of the more general Spectral Method (SM) [9, 10, 11, 12]. Spectral

methods fall into two broad categories. The interpolating, and the noninterpolating method.

The first category, which includes the Pseudospectral and the Spectral Element Methods,

divides the configuration space into a set of grid points. Then one demands that the differential

equation be satisfied exactly at a set of points known as the collocation or interpolation points.

Presumably, as the residual function is forced to vanish at an increasingly larger number of

discrete points, it will be smaller and smaller in the gaps between the collocation points.

The noninterpolating category includes the Lanczos tau-method and the Galerkins method,

mentioned above. The latter is the method that we apply and, in conformity with the usual

nomenclature, we shall simply refer to it as the Spectral Method. The interesting characteristic

of this method is that it is completely distinct from the usual spatial integration routines,

such as FDM, which concentrate on spatial points. In SM the concentration is on the basis

functions and we expect the final numerical solution to be approximately independent of the

actual basis used. That is we expect the approximate solution to converge to the exact solution

as the number of basis elements used increases. This point has been clearly demonstrated by

Maday et. al. [13]. Moreover in this method, the refinement of the solution is accomplished

by choosing a larger set of basis functions, rather than choosing more grid points, as in the

numerical integration methods. We should note that we are implicitly assuming that the

true solution is expandable in any complete orthonormal basis such as Fourier, Laguerre[14],

Chebyshev[15], or Legendre[16] basis. However, this requirement is usually satisfied for cases

of physical applications.

The paper is organized as follows: In section 2 and 3 we layout the implementation of this

method using the quantum eigenfunctions for the simple harmonic oscillator, henceforth called

the Oscillator basis, and the Fourier basis, respectively. In section 4 we solve a particularly

interesting example relevant to quantum cosmology by this method using both of the afore-
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mentioned basis functions. This problem is a generalization of the one represented in Eq. (1)

and does not seem to have an exact solution, and we have not been able to solve this problem

by any other numerical method that we tried. In section 5 we discuss the accuracy of each

of the cases, and make a comparison between the two. In section 6 we discuss some general

features of this method.

2 The Oscillator Basis

The general PDE equation that we want to solve is a hyperbolic one cast in the form,

Hψ(u, v) =

{

− ∂2

∂u2
+

∂2

∂v2
+ ω2

1u
2 − ω2

2v
2 + f̂(u, v)

}

ψ(u, v) = 0, (2)

where f̂(u, v) is an arbitrary operator of u and v, but with derivatives less than two. Eq. (2) in

general is not separable, however, any solution can be written as a superposition of the basis

elements,

ψm,n(u, v) = αm(u)βn(v), (3)

where each of the sets {αn} and {βm} is an orthonormal complete set. In this section we take

both of them to be the Oscillator basis [17]. That is,

αn(u) =
(

ω1

π

)1/4 Hn(
√
ω1u)√

2nn!
e−ω1u2/2, (4)

βn(v) =
(

ω2

π

)1/4 Hn(
√
ω2v)√

2nn!
e−ω2v2/2, (5)

where Hn(x) denote the Hermite polynomials. In particular the set {ψm,n(u, v)} is a complete

orthonormal set which can be used to span the zero sector subspace of the Hilbert space of

the hermitian operator H , as defined in Eq. (2). These basis elements are L2 measurable

square integrable functions on R2 with an inner product defined in the usual way, so that the

orthonormality, for example, takes the form,

∫

ψm,n(u, v)ψm′,n′(u, v)dudv = δm,m′δn,n′.
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We can construct a general solution as follows,

ψ(u, v) =
∑

m,n

Am,nαm(u)βn(v), (6)

and can use the following expansion,

f̂(u, v)ψ(u, v) =
∑

m,n

Bm,nαm(u)βn(v), (7)

where Bm,n are coefficients that can be determined once f̂(u, v) is specified. By substituting

Eqs. (6,7) in Eq. (2), and using the differential equation of the Hermite polynomials we obtain,

∑

m,n

[

[(2m+ 1)ω1 − (2n+ 1)ω2]Am,n +Bm,n

]

αm(u)βn(v) = 0. (8)

Because of the linear independence of αm(u)s and βn(v)s, every term in the summation must

satisfy,

[(2m+ 1)ω1 − (2n+ 1)ω2]Am,n +Bm,n = 0. (9)

It only remains to determine the matrix B. By using Eqs. (6,7) we have,

∑

m,n

Bm,nαm(u)βn(v) =
∑

m,n

Am,nf̂(u, v)αm(u)βn(v). (10)

By multiply both sides of the above equation by αm′(u)βn′(v) and integrating over the full

range of variables u and v, and using orthonormality of the basis functions, one finds,

Bm,n =
∑

m′,n′

(
∫ ∞

−∞

∫ ∞

−∞
αm(u)βn(v)f̂(u, v)αm′(u)βn′(v)dudv

)

Am′,n′ ≡
∑

m′,n′

Cm,n,m′,n′Am′,n′.

(11)

Therefore we can rewrite Eq. (9) as,

[(2m+ 1)ω1 − (2n+ 1)ω2]Am,n +
∑

m′,n′

Cm,n,m′,n′ Am′,n′ = 0. (12)

It is obvious that the presence of the operator f̂(u, v) in Eq. (2), leads to nonzero coefficients

Cm,n,m′,n′ in Eq. (12), which in principle could couple all of the matrix elements of A. For

the usual choices of f̂(u, v), e.g. the choice presented in [8]: f̂ = 9
4
k(u2 − v2)1/3, the problem,
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to the best of our knowledge, is not analytically solvable. Therefore we have to resort to a

numerical solution. In general the number of basis elements are at least countably infinite.

The aforementioned coupling of terms in the main matrix Eq. (12) forces us to make the

approximation of using a finite basis. It is easy to see that the more basis functions we

include, the closer our solution will be to the exact one. We select the first N basis functions

in each direction, that is m and n run from 1 to N . Then we replace the square matrix A with

a column vector A′ with N2 elements, so that any element of A corresponds to one element of

A′. With this replacement, Eq(̇12) can be written as,

DA′ = 0, (13)

where D is a square matrix with N2 × N2 elements which can be obtained from Eq. (12).

Looked upon as an eigenvalue equation, i.e. DA′
a = aA′

a, the matrix D has N2 eigenvectors.

However, for constructing the acceptable wavefunctions, i.e. the ones satisfying the WD Eq.

(2), we only require eigenvectors which span the null space of the matrix D. That is, due to Eq.

(12) we will have exactly N null eigenvectors which will be linear combination of our original

eigenfunctions introduced in Eq. (3). After finding these N eigenvectors A′i (i = 1, 2, 3, ..., N),

we can find the corresponding elements of the matrix A, Aim,n. Therefore the wavefunction

can be expanded as,

ψ(u, v) =
∑

i

λiψi(u, v), (14)

where ψi(u, v) are the appropriate eigenfunctions for the problem (i.e. Eq. (2)),

ψi(u, v) =
∑

m,n

Aim,nαm(u)βn(v). (15)

In Eq. (14) λis are arbitrary complex constants to be determined by the initial conditions.

3 The Fourier Basis

As mentioned before, any complete orthonormal set can be used for this SM. In this section

we use the Fourier series basis as a second example. That is, since we need to choose a finite
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subspace of a countably infinite basis, we restrict ourselves to a finite square region of sides

2L. This means that we can expand the solution as,

ψ(u, v) =
2
∑

i,j=1

∑

m,n

Am,n,i,j gi

(

mπu

L

)

gj

(

nπv

L

)

, (16)

where,






g1
(

mπu
L

)

=
√

2
RmL

sin
(

mπu
L

)

,

g2
(

mπu
L

)

=
√

2
RmL

cos
(

mπu
L

)

.
and Rm =

{

1, m 6= 0
2, m = 0

That is in the Fourier basis we assume periodic boundary condition. By referring to the WD

Eq. (2), we realize that in the Fourier basis it is appropriate to introduce f̂ ′ as,

f̂ ′(u, v) = f(u, v) + ω2
1u

2 − ω2
2v

2, (17)

and, in analogy with Eq. (7), we can make the following expansion,

f̂ ′(u, v)ψ(u, v) =
∑

i,j

∑

m,n

B′
m,n,i,j gi

(

mπu

L

)

gj

(

nπv

L

)

. (18)

By following steps analogous to those of Eqs. (8-11) we obtain,

[

(

mπ

L

)2

−
(

nπ

L

)2
]

Am,n,i,j +B′
m,n,i,j = 0, (19)

where

B′
m,n,i,j=

∑

m′,n′,i′,j′

[

∫∫ L

−L
gi

(

mπu

L

)

gj

(

nπv

L

)

f̂ ′(u, v)gi′

(

m′πu

L

)

gj′

(

n′πv

L

)

dudv

]

Am′,n′,i′,j′

=
∑

m′,n′,i′,j′
C ′
m,n,i,j,m′,n′,i′,j′ Am′,n′,i′,j′, (20)

Therefore we can rewrite Eq. (19) as

[

(mπ)2 − (nπ)2
]

Am,n,i,j +
∑

m′,n′,i′,j′
C ′
m,n,i,j,m′,n′,i′,j′ Am′,n′,i′,j′ = 0. (21)

In this case, we select 4N2 basis functions. Using reasoning analogous to the previous case,

for example by defining the column vector A′ out of the matrix A, we transform Eq. (21) to

D′A′ = 0. (22)
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Where, as before, D′ is a square matrix now with (2N)2 × (2N)2 elements which can be easily

obtained from Eq. (21). After finding the 4N2 eigenvectors of D′, we select the 2N ones with

zero eigenvalue, i.e. A′k (k = 1, 2, 3, ..., 2N). We can then find the corresponding elements of

matrix A, Akm,n,i,j. Therefore, the wavefunction can be expanded as

ψ(u, v) =
∑

k

λkψk(u, v), (23)

where, as before, ψk(u, v) are the appropriate eigenfunctions for the problem (i.e. Eq. (2)),

ψk(u, v) =
∑

m,n,i,j

Akm,n,i,j gi

(

mπu

L

)

gj

(

nπv

L

)

. (24)

Here λk s in Eq. (23) are again arbitrary complex constants to be determined by the initial

conditions.

Now we apply this method to one of the examples stated above which happens to be

relevant in quantum cosmology, and was our original motivation for using this method.

4 Application of the Spectral Method to a Specific Ex-

ample

For a specific example, we consider a hyperbolic PDE which happens to be the Wheeler-DeWitt

equation for the Robertson-Walker quantum cosmology with non-zero curvature,

{

− ∂2

∂u2
+

∂2

∂v2
+ ω2

1u
2 − ω2

2v
2 +

9

4
k(u2 − v2)1/3

}

ψ(u, v) = 0. (25)

As mentioned before, the case k = 0 is exactly solvable [8] and has a closed form solution in

the Oscillator basis. We shall state these solutions here for illustrative purposes, especially for

motivating the choice of initial conditions and comparison with the non-trivial cases, i.e k 6= 0,

which shall be solved by this method next. In this case f(u, v) = 0 in Eq. (2), so the matrix

B in Eq. (9) is also zero due to Eq. (7). Therefore, Eq. (9) reduces to,

[(2m+ 1)ω1 − (2n+ 1)ω2]Am,n = 0. (26)
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This means Am,n = 0 for,

ω2 6=
2m+ 1

2n+ 1
ω1. (27)

That is we have nontrivial solutions only for ω1 and ω2 being a rational multiple of each other.

Choosing ω1 = ω2 for simplicity, we have n = m and the expansion of the wavefunction (Eq.

(6)) reduces to,

ψ(u, v) =
∑

m

Amαm(u)βm(v), (28)

where Am ≡ Am,m are complex expansion coefficients that can be determined by applying ini-

tial conditions (i.e. specifying ψ(u, 0) and ∂ψ
∂v
|v=0). In references [8, 18] the authors considered

the following initial condition on the wave function,

ψ(u, 0) =
1

2π1/4

(

e−(x−χ)2/2 + e−(x+χ)2/2
)

. (29)

We can decompose any initial wavefunction in the Oscillator basis. For the choice presented

in Eq. (29) we have,

ψ(u, 0) =

′

∑

n

cnαn(u), where cn = e−
1
4
|χ|2 χn√

2nn!
, (30)

and χ is an arbitrary complex number. The prime on the summation denotes the restriction

that n is even. These coefficients are same as those of the coherent states of a one dimensional

simple harmonic oscillator. With this choice of coefficients we expect that a classical-quantum

correspondence should be manifest. The canonical choice for initial slope is [8],

∂ψ

∂v

∣

∣

∣

∣

∣

v=0

=
∑

n

cnαn(u)H
′
n(0)

(−1)(n/2)n!
(n/2)!

, (31)

where Hns are the Hermite polynomials and prime denotes differentiate respect to v. By

choosing χ to be a real, the classical paths corresponding to these solutions can be shown

to be circles with radii χ. We have found that 35 basis functions are sufficient for finding

the solution to an accuracy of about 10−8 , when the classical radius of the wave packet (χ)

10
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Figure 2: Oscillator Basis: Left, the absolute value squared of the wave packet |ψ(u, v)|2 for
χ = 4 and N = 35, k = 0. Right, the contour plot of the same figure with the classical path
superimposed as the thick solid line.

is less than 4 (Fig. 2). As can be seen in the figure, and also for all the cases presented in

[8], the classical-quantum correspondence is manifest. Note that the wave packet has compact

support and in the oscillator basis, the truncation of the basis functions automatically restricts

the solution to have this property. We only need to choose the configuration space domain to

be large enough.

At this point it seems to us that a brief mention of the relevant dynamical equations for the

classical cosmology might be helpful, at least for completeness, especially in light of the fact

that “classical-quantum correspondence” that we keep mentioning in this paper is particularly

important in physics. Moreover, the non-linearity and the moving singular behavior of these

equations would become apparent. These equations are (see, for example, [19]),

ü+ u+
3k

2

u

(u2 − v2)2/3
= 0, (32)

v̈ + v +
3k

2

v

(u2 − v2)2/3
= 0, (33)

u̇2 + u2 − v̇2 − v2 +
9

4
k(u2 − v2)1/3 = 0. (34)
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Here the u and v variables are functions of time. Equations (32) and (33) are the dynamical

equations and, Eq. (34) is the zero energy constraint, from which the Wheeler-deWitt Eq. (25)

arises. An appropriate initial conditions is the following,

u(0) = −χ, v(0) = 0, u̇(0) = 0, v̇(0) = v̇0, (35)

where χ can be treated as a free parameter and v̇0 is adjusted so that Eq. (34) is satisfied.

With this choice of initial conditions the classical path would be, as mentioned before, exactly

a circle in the k = 0 case, as depicted in Fig. 2. In the general case of ω1 6= ω2, these solutions

would give Lissajous figures.

For the case k 6= 0, the problem is not exactly solvable in quantum cosmology and we

will use the SM to get an approximate solution. We have to mention that the corresponding

equations for classical cosmology, Eqs. (32)-(34), are a set of non-linear, coupled ODEs with

moving singularities which are not exactly solvable either. However, a general method for

solving them has been presented in [20], and this is the method we shall use. Also a detailed

explanation of the physical setting of the problem in the classical domain has been presented

in [19]. On one hand, we need to choose a set of appropriate initial conditions for both the

classical and quantum cases which would make their correspondence manifest when they are

superimposed, as in Fig. 2 which was for the k = 0 case. However, we should note that the

values of v̇0 in the classical case depends on k. On the other hand, an appropriate choice for

the initial conditions should be such that we could easily compare our results with the k = 0

case. Therefore, here we choose the same initial conditions for the quantum cosmology Eqs.

(30,31), and classical cosmology Eq. (35), as for the k = 0 case. An alternative would be to

choose appropriate initial canonical slope for the quantum cosmology case [21]. Having set the

initial conditions, we proceed to solve the quantum cosmology problem for the case k 6= 0 with

the Oscillator basis.

Both the classical and quantum solutions for the case k = +1 are shown in Fig. 3. We can

see that the general behavior of this case is similar to the k = 0 case. In particular, again we

12
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Figure 3: Oscillator Basis: Left, the absolute value squared of the wave packet |ψ(u, v)|2 for
χ = 4 and N = 35, k = +1. Right, the contour plot of the same figure with the classical path
superimposed as the thick solid line.

have a very good classical-quantum correspondence. However, although the extreme points of

the solution do not change as compared to the k = 0 case, the whole pattern is a little wider.

Moreover, the solution (|ψ|2) is not as smooth as k = 0 case.

Both the classical and quantum solutions for the case k = −1 are shown in Fig. 4. We can

see that the general behavior of this case is also similar to the k = 0 case. In particular, again

we have a very good classical-quantum correspondence. However, although the extreme points

of the solution do not change as compared to the k = 0 case, the whole pattern is a little

narrower. Moreover, the solution (|ψ|2) is not as smooth as k = 0 case. More importantly,

when k = −1 we encounter a new characteristic of the solution. Note that the u2 − v2 term

in Eq. (25) is usually dominant and causes stability of the solutions, for all k. However, the

9
4
k(u2 − v2)(1/3) term in that equation could cause instability near u = ±v lines, only in the

case of k < 0. However this is precisely where the dominant term vanishes. Therefore we do

expect numerical instabilities along these two lines for this case. These instabilities can be

seen in Fig. 4. However, due to numerical approximations made, the instabilities seem to be

more pronounced along the line u = v in our solution. We have not been able to the pinpoint

the exact source of this numerical asymmetry in the instability.
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Figure 4: Oscillator Basis: Left, the absolute value squared of the wave packet |ψ(u, v)|2 for
χ = 4 and N = 35, k = −1. Right, the contour plot of the same figure with the classical path
superimposed as the thick solid line.

It would be an interesting comparison to solve exactly the same problem in the Fourier

basis. By using the procedure mentioned in section 3, and again choosing exactly 35 basis

functions for ease of comparison, we easily find the solutions for k = 0, k = 1 and k = −1,

which are shown in Figs. (5-7), respectively.

5 Comparison of the Oscillator and Fourier Bases

Here, we compare the results of the Spectral Method using the two finite bases. To this end,

we first discuss the errors of the solutions. In the case k = 0 we have the exact solutions as

an infinite series. For small radii, e.g. χ = 4, the difference between the exact solution and

a series solution with 120 oscillator terms is absolutely negligible. Therefore, we can safely

substitute this finite series for the exact one. For computing errors, we divide the 2D base

domain intoM2 grid points. Then, we average the square of the absolute value of the difference

of the exact solution with that obtained by the 35 Fourier or oscillator basis functions on the

grid points:

δ2k=0 =

∑M
i,j |ψ35(i, j)− ψ120(i, j)|2

∑M
i,j |ψ120(i, j)|2

. (36)
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superimposed as the thick solid line.
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Figure 6: Fourier Basis: Left, the absolute value squared of the wave packet |ψ(u, v)|2 for
χ = 4 and N = 35, k = 1. Right, the contour plot of the same figure with the classical path
superimposed as the thick solid line.
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Figure 7: Fourier Basis: Left, the absolute value squared of the wave packet |ψ(u, v)|2 for
χ = 4 and N = 35, k = −1. Right, the contour plot of the same figure with the classical path
superimposed as the thick solid line.

In the case k 6= 0 the problem is not exactly solvable, so for comparison purposes we define

a measure for the error as the average square of the absolute value of the difference of the

solutions with, for example, 35 and 30 basis functions. That is,

δ2k 6=0 =

∑M
i,j |ψ35(i, j)− ψ30(i, j)|2

∑M
i,j |ψ35(i, j)|2

. (37)

δFourier δoscillator
k = 0 6.70875× 10−2 4.16459× 10−7

k = +1 4.01423× 10−3 3.84836× 10−2

k = −1 2.83746× 10−3 3.64503× 10−2

Table I. Errors for the Oscillator and Fourier basis

From Table I we can conclude that the oscillator basis is more appropriate than Fourier basis

for the case k = 0. It seems that this is only due to the fact that the Oscillator basis is the

exact solution of the problem in this case. However, the Fourier basis is more appropriate for

the case k 6= 0. The main reason for this seems to us to be the fact that the solutions have

compact support, so we have an extra parameter that we can adjust (the size of spatial domain

(2L)) and this yields better results. In fact one can use this freedom to set up an optimization

procedure [22].
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6 Discussion

Here we have exhibited the implementation of the SM (Galerkin) for solving hyperbolic PDEs.

We use finite basis of Oscillator or Fourier eigenfunctions, for example, and show that in some

cases where the popular numerical methods such as FDM or FEM fail, this method gives

reasonable results very easily. The requirement that the solution should be expandable in

a complete orthonormal basis is crucial. However, certain bases might be more appropriate

for a given problem. For example, if the wave packets of previous section was not damped

strongly in u and v directions, choosing oscillator basis might not have been as appropriate. We

have found, much to our surprise, that the main source of error is the numerical integrations,

as compared to varying the number of basis elements. This arise due to the fact that in

order to find the coefficients C(m,n,m′, n′), we need to calculate N4 two fold integrations,

where N denotes the number of basis elements. This is the most time consuming part of

the procedure. Using programs with refined integration routines such as Mathematica would

have consumed too much time even at their default levels. So we used the simple trapezoid

integration technique using Fortran, and this severely limited our accuracy when we refrained

from refining our mesh excessively to avoid spending too much time. However, calculations of

C(m,n,m′, n′)s can be parallelized because these coefficients are independent. In some cases

we can calculate some of the integrals analytically (e.g. the values of C ′
m,n,i,j,m′,n′,i′,j′ in Eq.

(20) when k = 0), which decreases the computation time. The memory consuming part of the

procedure is solving the matrix equation (Eq. (13)) and this increases proportional to N4.
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