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Abstract

Quantum Monte Carlo (QMC) is among the most accurate methods for solving the time independent Schrödinger
equation. Unfortunately, the method is very expensive and requires a vast array of computing resources in order
to obtain results of a reasonable convergence level. On the other hand, the method is not only easily parallelizable
across CPU clusters, but as we report here, it also has a high degree of data parallelism. This facilitates the use of
recent technological advances in Graphical Processing Units (GPUs), a powerful type of processor well known to
computer gamers. In this paper we report on an end-to-end QMC application with core elements of the algorithm
running on a GPU. With individual kernels achieving as much as 30x speed up, the overall application performs at
up to 6x relative to an optimized CPU implementation, yet requires only a modest increase in hardware cost. This
demonstrates the speedup improvements possible for QMC in running on advanced hardware, thus exploring a path
toward providing QMC level accuracy as a more standard tool. The major current challenge in running codes of this
type on the GPU arises from the lack of fully compliant IEEE floating point implementations. To achieve better
accuracy we propose the use of the Kahan summation formula in matrix multiplications. While this drops overall
performance, we demonstrate that the proposed new algorithm can match CPU single precision.
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1. Introduction

The rapid increase in GPU floating point per-
formance and their excellent flops/$ characteristics,
suggests that they may provide cost effective so-
lutions for scientific computation problems. Given
that the GPU computing model is (1) quite different
from standard CPU models, (2) lacks a fully compli-
ant IEEE floating point implementation, and (3) is
optimized for very specific graphics type computa-
tional kernels, it is not clear a priori which scientific
computing tasks are cost effective on GPUs.

A number of scientific computing algorithms have
been pursued on the GPU, e.g., fluid simulations1,2,
elasticity3, and general finite element methods4.
At the level of computational mathematics kernels,
we have seen work on LU decomposition5, ma-
trix/vector products6–14, iterative solvers10,15, and
transforms such as Fourier and Wavelet7,16–18. In
some cases the results can be disappointing relative
to highly tuned CPU implementations, in particular
when high precision answers are required, or when
problem sizes do not hit a particular sweet spot
(i.e., large matrices, or power-of-2 sized data struc-
tures, etc.). With continuing hardware development
these performance barriers are being ameliorated,
and with the recent announcement by nVidia of
double precision availability on the GPU in 2007,
computational precision is a fading problem as well.

In this paper we consider quantum chemistry
computations, the heart of which is the computa-
tion of the electronic structure of a given molecule
using the quantum mechanical equations of mo-
tion. This information is critical for, among other
tasks, finding optimized geometric structures for the
molecule, reaction pathways, obtaining vibrational
information, and providing a basis for develop-
ing higher level approximation methods including
molecular dynamics simulations. Accurate results
have application in catalysis, nanotechnology, drug
design, and fuel cells, among many others.

Due to the large state space (3N for N electrons)
and the non linear nature of the time independent
Schrödinger equation, exact results are all but im-
possible. Consequently a variety of approximation
algorithms have been developed. One such ap-
proach, Quantum Monte Carlo (QMC)19, is based
on the stochastic evaluation of the underlying inte-
grals and is guaranteed to produce accurate answers
in the limit of infinite state space sampling. Even
though a very large number of samples are typically

required, QMC is easily parallelizable and scales as
O(N3) (albeit with a very large constant). This mo-
tivates a search for computational augmentation.

We report on our implementation of QMC on the
nVidia 7800 GTX and compare it against a 3.0 gHz
Intel P4, considered to be representative of similar
levels of development. These technologies are im-
proving very fast, both for CPUs and for GPUs. Cur-
rently however, the time to doubled performance on
GPUs is noticably shorter than for CPUs, leading
to increasing performance advantages for GPUs if a
computation maps well enough onto the GPU. Since
CPUs are beginning to follow the same multicore
technology trend, the notion that precision issues
are temporal is reenforced.

In the present paper, scientific results as well as
underlying formalisms were simplified for purposes
of presentation and to focus on the essential com-
putational aspects. We admit that it is unclear how
single precision results might be useful, especially
for an algorithm designed to produce highly accu-
rate results. In the mean time, our single precision
implementation is presented. Aside from the perfor-
mance of individual kernels we consider (1) preci-
sion issues arising from the noticeable differences to
single precision IEEE floating point arithmetic, (2)
performance issues arising from the specific sizes of
matrices we must use, and (3) the overall perfor-
mance of an end to end application when compared
against a heavily tuned CPU based version.

2. Intro to Graphical Processing Units

GPUs have received much interest outside the
graphics world recently due to their immense pro-
cessing power even though they are actually de-
vices designed for very specialized tasks. Many re-
views of GPU adaptability and compatibility are
already available1,20,21, and we do not attempt to
improve upon them. In addition, there has been
the development of specialized programming envi-
ronments6,22,23 for GPUs specifically designed to
smooth the porting of non-graphics applications,
and GPU vendors themselves have recently released
general purpose GPU programming environments.

Our approach was to start from the ground up in
hopes of squeezing the best performance we can from
the device. To describe our techniques a truncated
description of the technology is required. The moti-
vating principle for GPU design is that simple cal-
culations do not need general processors, so the ad-
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dition of an auxiliary processor could both speed up
graphics related calculations as well as free the CPU
to complete other tasks. Since graphical calculations
most typically involve drawing 2D images of colors
ultimately intended for a screen, GPUs start with
pixels (more generally referred to as fragments or
texels) as the atomistic unit of data. Fragments are
manifested here as 4 single precision floats, aliased
as xyzw channels. A 2D array of fragments is called
a texture, and is the fundamental storage class. A
GPU will stream a region of a texture through an ar-
ray of simple fragment processors (our nVidia 7800
GTX has 24), where each of these will produce one
fragment as output. A programmer can utilize this
process by designating a kernel for the fragment pro-
cessors to use, resulting in the evaluation of data
for a specified region in a texture. This entire proce-
dure is commonly referred to as a pass. A kernel is a
small program which in the graphics context would
typically perform some shading calculation. There is
nothing in principle preventing the user from writing
a “shader” which performs some scientifically rele-
vant computation using the broad class of functions
available at the programmable shader level.

In practice, many considerations are necessary in
order to maximize efficiency. Graphics processing
can be thought of as a sophisticated queuing system
were a CPU sends a list of tasks to one (or more)
connected GPUs and collects the results when the
calculations are complete. This means that there are
also processor communication factors that need to
be included. As far as the GPU itself is concerned,
we mention here the considerations
– padding empty slots in texture data with 0 when-

ever data dimensions do not match dimensions on
the GPU,

– running as many passes with a kernel before swap-
ping it for another since the GPU can only have
one kernel loaded at a time,

– careful data arrangement,
– a tuning of how much of the computation as a

whole should be assigned to each kernel
– and in general, keeping the GPU busy at all times.

Before discussing how these concerns play out in
our setting we give a brief high level introduction
to Quantum Monte Carlo computations to under-
stand the needed computational components which
we seek to map to the GPU.

3. Intro to Quantum Monte Carlo

The most important information about a
molecule is its ground state energy, calculated by
means of the time independent Schrödinger equa-
tion

〈E〉 =
∫

Ψ(r̄)ĤΨ(r̄)dr̄∫
Ψ2(r̄)dr̄

(1)

where Ψ(r̄) : R3N → R is the wave function, map-
ping the 3N Cartesian coordinates of N electrons
into a probability amplitude related to the proba-
bility density in Eq. (4). (Equation (1) includes the
common restriction that Ψ(r̄) is a real valued func-
tion.) The Hamiltonian operator Ĥ is given by

Ĥ = −1
2
∇2 + V (r̄) (2)

where the Laplacian is over all 3N electronic co-
ordinates and calculates the kinetic energy (in the
unitless Hartree measure) of the electrons in the
molecule. The V (r̄) term represents the potential
energy due to Coulomb interactions between all
pairs of electrons and nuclei. The energy E is the
eigen value of Ĥ operating on the eigen function
Ψ(r̄). The ground state energy is the lowest such
eigen value, and is of primary interest here.

There are many methods to calculate Eq. (1) with
varying degrees of accuracy and computational com-
plexity. The highly accurate QMC family of algo-
rithms24 uses Metropolis25 integration to fine tune
the result provided by a cheaper method. It uses the
local energy

EL(r̄) =
ĤΨ(r̄)
Ψ(r̄)

= −1
2
∇2Ψ(r̄)

Ψ(r̄)
+ V (r̄) (3)

which represents an evaluation of the energy for a set
of electronic coordinates. In terms of the stationary
probability distribution of electrons

ρ(r̄) =
Ψ2(r̄)∫
Ψ2(r̄)dr̄

(4)

we can transform Eq. (1) into the Monte Carlo in-
tegration form

〈E〉 =
∫
ρ(r̄)EL(r̄)dr̄ = lim

Nt→∞

1
Nt

Nt∑
t=1

EL(r̄t).

(5)
Here r̄t are a series of electronic coordinates gen-
erated with respect to ρ(r̄) by some importance
sampling scheme26. Since error scales as 1/

√
Nt in

Monte Carlo methods a rather large number of sam-
ples is required to achieve useful accuracies. Addi-
tionally, it is common to run several independent
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series, called walkers, in order to minimize the error
due to serial correlation between theNt data points.

In terms of computational complexity, the diffi-
culty for QMC lies in the evaluation of ∇2Ψ(r̄t) for
each EL(r̄t) as well as the evaluation of Ψ(r̄t) and
∇Ψ(r̄t) which are used for importance sampling.
The most common functional form for Ψ(r̄) has at
least three nested stages of evaluation. At the first
stage, we place a collection of Nbf basis functions
centered at the nuclei in the 3D coordinate space.
Typically a given nucleus is associated with multi-
ple basis functions. The basis function takes as ar-
gument the local coordinates of a given electron (i)
relative to the nucleus (j), rij = ri −Rj . The best
results are achieved with the following functional
form

χj(xij , yij , zij) = x
kj

ij y
lj
ijz

mj

ij

∑
nj

anj
e−bnj

r2ij . (6)

For each basisfunction,Rj , kj , lj ,mj , nj , anj and bnj

are parameters given as input to the QMC program.
The kj , lj ,mj ∈ N parameters give the basisfunction
the required symmetry, and nj ∈ N+ helps select
the quality of fit. The other parameters are all real
numbers.

The second stage of evaluation takes linear
combinations of basisfunctions to create molecu-
lar orbitals. The kth orbital is given by φk(ri) =∑
j χj(rij)cjk, where cjk ∈ R are coefficients input

to QMC. These orbitals represent the spread of the
electron across the entire molecule.

Finally, the third stage of evaluation relevant to
this study is the Slater determinant, chosen for its
antisymmetric properties. For the Ns electrons of a
given quantum spin (N = Nα + Nβ ∼ 2Nα) the
determinant is a function of the φk (which in turn
are functions of the χj(rij))

Ds(r̄s) = |Ms(r̄s)| =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1 (r1) φ2 (r1) · · · φNs
(r1)

φ1 (r2) φ2 (r2)
...

. . .

φ1 (rNs
) φNs

(rNs
)

∣∣∣∣∣∣∣∣∣∣∣∣
(7)

(here we partition r̄ into r̄α and r̄β) and the wave-
function is

Ψ(r̄) = Dα(r̄α)Dβ(r̄β).

To calculate the kinetic energy, we first obtain
∇2
iφk(ri) =

∑
j ∇2

iχj(rij)cjk, and then sum the
contributions from all the electrons in all the orbitals

∇2Ψ(r̄)
Ψ(r̄)

=
∑

s∈{α,β}

∑
i,k∈Ns

[
M−1
s (r̄s)

]
ki
∇2
iφk(ri).

(8)
A similar procedure is followed for calculating the
gradient of the wavefunction for each electron with
the exception that the final summation results in a
vector of gradients.

To summarize the algorithm, we are given a set
of nuclear coordinates, basis function parameters,
and the cjk, which describe the wavefunction as
fit by some other (more approximate and cheaper)
method. Additionally, we choose some parameters
including the number of steps Nt, the number of
walkers W , an initial guess scheme for positions r̄
of all the electrons, as well as several parameters re-
lating to the importance sampling. Although spe-
cific choices are often related to the computational
resources available and to the importance sampling
method used, W is usually O(10) to O(103), Nt is
O(104) toO(108), and the dimensions of cjk are usu-
ally betweenO(10) andO(103), depending upon the
molecule. With these in hand, the algorithm can be
stated as shown in Algorithm 1 (the ⊗ represents
matrix multiplication), where simplifications have
been included based on assumptions about the im-
portance sampling.

Algorithm 1 The QMC algorithm
Esum ← 0
for w = 1 to W do

rij ← initialize()
for t = 1 to Nt do

for s = α and s = β do
Ms ← χj(rij)⊗ cjk
Xs ← ∂

∂xi
χj(rij)⊗ cjk

Ys ← ∂
∂yi

χj(rij)⊗ cjk
Zs ← ∂

∂zi
χj(rij)⊗ cjk

Ls ← ∇2
iχj(rij)⊗ cjk

end for
Jastrow ← J(r̄)
Ψ← detMα ∗ detMβ∗ Jastrow
Esum ← Esum+
EL(Ms, Jastrow, {derivatives}...)

rij ← sampling(Ψ, rij , Xs, Ys, Zs, Ls)
end for

end for
Eavg ← Esum/(Nt ∗W )

The high degree of parallelism is evident since
each processor can calculate all the linear algebra
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for its walkers and only needs to produce a single
value; the energy. ∗

One big advantage of QMC relative to alternative
methods is the freedom one has in choosing the func-
tional form of Ψ(r̄). This is exploited by multiply-
ing the Slater determinant wave function with a set
of pairwise interaction terms which explicitly model
electron correlation by employing inter-electronic
coordinates. The only condition is that these terms,
called Jastrow functions, preserve the antisymme-
try of the wave function. To satisfy this condition,
we use the functional form

J(r̄) =
∏
q<p

eupq(rpq) (9)

which provides a term for each particle-particle in-
teraction, where

upq(rpq) =
∑Γ
κ=1 apqκr

κ
pq

1 +
∑Λ
κ=1 bpqκr

κ
pq

(10)

and p and q index all electrons and nuclei, and rpq
is the distance separating the two particles. The
number of terms (Γ and Λ) is arbitrary, and de-
pends on the quality of fit. These parameters, along
with apqκ, bpqκ ∈ R, are input to the QMC algo-
rithm. With this modification, our wave function is
now ΨQMC(r̄) = Dα(r̄α)Dβ(r̄β)J(r̄), and there are
chain rule effects for the gradient and Laplacian.
The rationale for these additional terms is the im-
proved convergence if the wave function is a better
approximation of the eigen function of Ĥ to begin
with. Jastrow functions involving 3 particles were
not considered here.

Within the family of QMC algorithms, there are
two popular varieties. The first is called Variational
Monte Carlo (VMC) in which the procedure de-
scribed in this section is employed to provide an
exact integration for the given wavefunction. The
method is termed variational since it is commonly
coupled with a wavefunction optimization step. Dif-
fusion Monte Carlo (DMC) uses the wavefunction
only as a guide. Instead of a direct integration, it
has a mechanism to project out a (mostly) correct
wavefunction, and thus provide exact energies for
the system. That said, a DMC calculation will con-
verge better for higher quality wavefunctions. The
subject matter considered here is agnostic to this
choice except that DMC includes slightly more com-
putational effort than VMC.

∗ While some QMC algorithms only update one electron per

Monte Carlo step, our method updates all at once26.

4. Implementation on the GPU

The QMcBeaver27 code, under development in
our group to perform QMC calculations, was used as
the CPU implementation on which to base our study
of a GPU implementation. In order to locate the
computationally expensive components in the code,
we minimize file I/O, ignore localization procedures
which lead to sparser matrices28,29, and we only
consider single determinant, restricted Hartree-Fock
wavefunctions. Moving all electrons at once allows
us to use the highly optimized matrix multiplication
routines available in the ATLAS 3.7.1130,31 BLAS
library and use the LAPACK extension to ATLAS
to perform the necessary matrix inversions. Using
this representation of QMC as our starting point, we
find that the computational effort on the CPU for
N electrons is approximately 11% focused on the 10
dense matrix multiplications atO(N3) each, 73% on
the 10 basis function set evaluations at O(N2) each,
and 4% on the (electron - electron) pairwise Jastrow
function evaluations at O(N2). These fractional es-
timates are relatively stationary for molecules with
as many as 150 electrons. The leading components
not yet ported to the GPU include matrix inver-
sion and electron-nuclear Jastrow functions as well
as other processes specific to DMC.

For the molecule sizes we are targeting the ma-
trices are small and rectangular; specializations cur-
rently overlooked in GPU code. Combined with the
fact that the cjk matrix can be reused for all ma-
trix multiplications, we pursued several optimiza-
tion strategies in detail. In particular, all of our ker-
nels were designed to evaluate as many walkers si-
multaneously as GPU hardware limitations permit.

4.1. Walker Batch Scheme

The GPU pipeline is very deep, so there is a sub-
stantial overhead cost for any calculation we wish to
perform. This is in terms of work the GPU has to
do to prepare for a given calculation, effort needed
to move the GPU into full production efficiency,
and any costs incurred by traversing the CPU/GPU
boundary. This can be amortized by processing as
many fragments simultaneously on the GPU as pos-
sible. For Monte Carlo type algorithms we can ac-
complish this by increasing the number of walkers
processed per GPU pass. This has allowed us to tune
both the size of the problem and the texture aspect
ratio to the GPU. For example, we can arrange our
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data in GPU memory according to an empirically
optimized pattern such as 4 rows by 4 columns so
that each pass amounts to 16 walker evaluations in
parallel.

4.2. Basis Function Evaluation

The number of basis functions as well as their con-
trolling parameters are chosen according to chemi-
cal considerations. Typical are 5 basis functions for
each Hydrogen and 15 basis functions for each atom
Lithium to Neon, leading to a matrix aspect ratio of
between 4 and 8. The choice of basis set and all as-
sociated parameters are held fixed during a run and
evaluation only depends on the 3N electronic coor-
dinates, producing value, gradient, and Laplacian.

4.2.1. Kernel 1: Data Generation
The major choice regarding basis function eval-

uation (Eq. (6)) concerns the organization of the
output data: different regions of one output tex-
ture or separation by channel (xyzw) resulting in
two output textures. We opted for keeping the out-
put in different regions so as to allow specialization
(i.e.derivatives) of the kernels. As regards input data
re-use, we opted for evaluating a single basis func-
tion for 4 electrons. This choice minimizes texture
lookups and increases instruction parallelism since
only one nj from Eq. (6) is used in the same frag-
ment.

4.2.2. Kernel 2: Layout Conversion
Most matrix multiplication approaches on the

GPU pack 2x2 submatrices into a single xyzw mem-
ory slot and we employed this layout as well. The
basis function evaluation output is in 4x1 layout, ne-
cessitating a conversion which we used to filter out
any bad values as well. Due to the batching (Sec-
tion 4.1) texture layout, fences between rows and
columns of walkers required special maintenance at
this stage.

4.3. Matrix Multiplication

For purposes of performance comparison we used
the ATLAS 3.7.1130,31 library’s single precision ma-
trix multiplication on our 3 GHz Pentium 4 as a
CPU benchmark. For the GPU several studies of
matrix multiplication performance have been per-
formed7–9,11,13,14 so our main focus is on the perfor-

mance for the (relatively) small rectangular matri-
ces we encounter in our application, as well as the
fact that we use the same multiplicand for all mul-
tiplications.

0

2

4

6

8

10

12

14

16

18

20

0 64 128 192 256 320 384

Dimension of Square Matrix

G
F
L
O

P
S

Standard, 16

Standard, 1

KSF, 16

KSF, 1

ATLAS

Fig. 1. The cost of correcting for the summation error in

multiplication of square matrices. Indicated is the number of

multiplications performed simultaneously, reusing the mul-
tiplicand.

For the 2x2 layout the inner product for the pixel
at C[i,j] becomes the series of pixel products
for(k=0; k<N; k++){
C[i,j].xyzw += A[i,k].xxzz*B[k,j].xyxy

+ A[i,k].yyww*B[k,j].zwzw;
}
with N representing the number of pixels used in the
inner product. In the GPU vector notation above,
the C[i, j].x data written separately is
C[i,j].x += A[i,k].x*B[k,j].x

+ A[i,k].y*B[k,j].z}.
The values are stored in row-major format across
the xyzw channels. This method can be modified to
take advantage of multiple render target (MRT)8

functionality on the GPU. Essentially, MRTs can
take advantage of up to 4 related data structures on
the GPU with which to arrange and facilitate re-use
of data.

The results shown in Figures 1 and 2 both show
the matrix performance speedups for a variety of
matrix sizes and parameter choices. The effect of
multiplying several matrices simultaneously is to
raise the performance level (in terms of GFLOPS)
for smaller matrices. When performing calculations
using rectangular matrices, the set up costs can be
quenched almost entirely. It is also apparent that for
some domains, the GPU has significant performance
gains relative to the CPU when CPU cache peculiar-
ities play a role. Although the KSF error correcting
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Fig. 2. The dimension of the inner product is 6 times that

as the short dimension shown. The multiplicand is reused
for all 5 multiplications.

algorithm (described in Section 5.2) negates most
speedup gains for the particular technologies com-
pared here, the hidden advantage remaining is that
the calculation is performed on the GPU, minimiz-
ing GPU/CPU communication.

4.4. Jastrow Functions

The third most computationally demanding com-
ponent of our QMC algorithm is the evaluation
of the pairwise Jastrow function in Eq. (9). For
the GPU implementation, we focused on porting
the electron-electron terms (electron-nuclei terms
are substantially fewer). We need to evaluate N
choose 2 polynomials (one for each electron-electron
pair) which are then summed. Since parameters in
Eq. (10) differ between same/opposite spin electron
pairs, texture data is partitioned in order to allow
kernel specialization.

We proceed in 3 steps:
Kernel 1 evaluates the magnitude and normalized
vector between all pairs of electrons for a total of
4 values per fragment.

Kernel 2 finds the value, Laplacian, and gradient
of Eq. (9), writing the first two to one texture and
the latter three to another.

Kernel 3 computes the sums, maintaining the
electron indices for the gradient summands.

5. GPU Floating Point Error

One of the goals of quantum chemistry is the cal-
culation of the electronic energy of a molecule with
sufficient accuracy, stated as 1 to 2 kcal/mol. To

this end absolute error of the final result must not
be worse than 1× 10−3 Hartrees. An appropriately
parameterized QMC calculation can meet this crite-
rion given enough Monte Carlo iterations. For this
study, we want to consider whether single precision
is satisfactory. To test this, three simple DMC cal-
culations were performed on a large CPU cluster to
compare numerically a result calculated in double
precision with exactly the same calculation in sin-
gle precision. First, a calculation is performed on a
Helium atom using a 17s basis set32 and a 2 deter-
minant expansion in natural orbitals obtained us-
ing GAMESS33. Figure 3 shows that the single and
double precision results are very similar, where the
exact answer is approximately -2.90372434 hartrees.
Second, the torsional barrier in ethane was studied
using the cc-pCVTZ35 basis set with CCSD(T) op-
timized Eclipsed and Gauche configurations36. Fig-
ure 4 again shows similar results between single and
double precision, where the experimental value is
2.73 kcal/mol36. While these results are by no means
conclusive, especially since the quality of the re-
sult is dependent upon the quality of the wavefunc-
tion, they provide evidence that single precision is
not altogether unreasonable. This is can be seen
since the iterates are decoupled to some degree from
each other by random numbers, and since the Monte
Carlo statistics itself happens in double precision.
Furthermore, if a pathological electronic configura-
tion is identified, it can always be more delicately
handled on the CPU in double precision. Lastly, sin-
gle precision QMC calculations might be useful in an
independent VMC wavefunction optimization cal-
culation. Since DMC only employs the wavefunction
as a guide, variationally optimized parameters are
far less restrictive in terms of precision.

As far as our nVidia 7800 GTX GPU is concerned,
we studied the floating point error to obtain a best
estimate for single point evaluations. We considered
two principal sources of error relevant to our prob-
lem as compared to the level of error available on a
CPU: underflow and effects of rounding. The evalu-
ation of basis functions (Eq. (6)), for example, can
easily underflow if the bnj

are too negative. We in-
vestigated whether the lack of de-normals on GPUs
was a problem since this means a GPU will under-
flow faster than a CPU. As regards rounding, the
IEEE floating point standard calls for a relative er-
ror of±0.5×10−7 in the basic arithmetic operations
for single precision. On current GPUs the relative
error in these operations appears to be37 at least
±0.5 × 10−7 and ±1.0 × 10−7. For dense linear al-
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gebra this yields a difference in error between CPU
and GPU computed results.

5.1. Underflow Corrections

To begin with, it is questionable whether one
would permit de-normals to be included in cal-
culations even on some CPUs. Many processor
manufacturers elect software implementations of
de-normals, which severely penalize the processing
speed. Since we were unable to get decent timing
results in matrix multiplication on the CPU unless
de-normals were flushed to zero before multiplica-
tion, our performance comparisons actually already
represent a lack of de-normals on both processors.

Basis function evaluation involves exponentials

with arguments negative enough to cause underflow,
an effect we do not want to ignore. To avoid under-
flow error one may simply scale relevant variables
to avoid the de-normal range, but must do so care-
fully to avoid the worse problem of overflow. The
effect of this type of error depends heavily on the
distribution of parameters, which is highly specific
to our application. Thus we measured the effect of
these shifts on the final calculated EL(r̄) for each
iteration, compared to the same calculation as per-
formed on the CPU in double precision.

The effect of shifting the exponential turns out
to be relatively small for the set of parameters we
considered. We conclude that shifting helps, but the
lack of de-normals on the GPU turned out not to
be a significant source of error. For parameter sets
which consistently produce de-normals, single pre-
cision should probably be avoided entirely.

5.2. Kahan Method
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Fig. 5. KSF corrects for rounding error in matrix multipli-

cation. The resultant matrix is 1000x1000, and the operand
data is sampled from a uniform distribution [0,1].

Dense matrix multiplication is the most signifi-
cant source of error in our computations when run
on the GPU. Figure 5 shows the roundoff error inher-
ent in matrix multiplication, as estimated by mul-
tiplying two matrices created with a uniform distri-
bution of data. As a function of the dimension of the
inner product, we calculate the relative error aver-
aged over all the elements in the resultant 1000x1000
matrix using CPU double precision as our reference
data. The problem is due to the propagation of er-
rors, which scales approximately linearly with the
length of the inner products. A CPU typically mini-
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Fig. 6. The ”QMC-Distributed” data for the multipliers was

generated either on the CPU or on the GPU, and the matrix
multiplication was either corrected using KSF or left as the

standard method

mizes this by performing the calculations at a higher
precision than the data type.

When summing a sequence of floating point num-
bers using the basic formula

∑
xj , the floating point

result is
∑
xj(1 + δj), where the perturbation error

is defined as |δj | < (n − j)ε and ε is the machine
error. To compensate for the propagation of errors
we use the Kahan summation formula (KSF)38,39 in
the context of matrix multiplication. This alterna-
tive method for summing a sequence of n numbers
is shown below:
S = x[1];
C = 0;
for(j=2; j<=n; j++){
Y = x[j] - C;
T = S + Y;
C = (T - S) - Y;
S = T;

}
This method is algebraically equivalent, but if these
steps are preserved during compilation, the algo-
rithm has the power to produce the result

∑
xj(1 +

δj) + O(nε2)
∑
|xj | where |δj | ≤ 2ε40. To explain

this algorithm, one first observes that the low or-
der bits of Y are lost when adding it to S. These
bits can be recovered with the correction term C.
The value for C is found by subtracting Y from the
part of Y which is properly accounted for in the sum
(the parenthesis are critical). This is not the only
summation improvement available although it does
compete well41.

A simple modification makes the KSF suitable for
use in matrix multiplications as shown in Algorithm

Algorithm 2 KSF-corrected GPU Matrix Multipli-
cation
float4 T = 0, C = 0, Y = 0, S=0;
int j = 0;
while(j < N){
Y = A[i,k].xxzz*B[k,j].xyxy - C;
T = S + Y;
C = (T - S) - Y;
S = T;
Y = A[i,k].yyww*B[k,j].zwzw - C;
T = S + Y;
C = (T - S) - Y;
S = T;
j++;

}
return S;

2. Here (i, j) represents the coordinates of the ele-
ment in the product matrix we are working on. It is
important to note that the propagation error in ad-
dition is corrected for, but not any error due to mul-
tiplication, even though such corrections are possi-
ble42. However, as Figure 5 shows, the improvement
is enough to even beat single precision on the CPU
for long enough inner products.

To estimate the improvement that KSF provides
for our QMC methods, we move to a “QMC dis-
tribution” of data for our multiplier matrices while
keeping the multiplicand (representing cjk) as uni-
formly random matrix. The distribution was formed
by generating a representative set of basisfunction
parameters and a psuedo-random configuration of
electrons. This distribution was evaluated either on
the GPU or on the CPU and then sent to the GPU
for multiplication. The relative error was again es-
timated against double precision on the CPU. Al-
though the results in Figure 6 have a higher vari-
ance, it shows that using the KSF method, we are
able to approximately obtain equivalent results as
CPU single precision.

6. Results

To test the GPU port of our code, we sample 7 ar-
bitrary molecules spanning the range over which we
wish to measure performance. We present speedup
estimates for the calculation time spent on equiva-
lent tasks performed on both our 7800 GTX GPU
and our 3GHz Pentium 4, as well as compare the
final cost of incorporating the KSF correction. We
ran the calculations long enough to converge the
speedup ratio.
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It is evident that for the range of molecules con-
sidered, the speed penalty incurred with KSF rose as
the matrix multiplication cost became more promi-
nent. The KSF formula served to keep the relative
error in the calculated EL(r̄) to a constant across
all molecules at approximately 1x10−6. It is worth
noting that KSF did not make a significant differ-
ence in either speed nor correction for many of the
smaller molecules.

Number of Number of Basisfunction Jastrow
Name Formula Electrons Basisfunctions Standard KSF Speedup Speedup

Acetic acid CH3COOH 32 80 3.2 3.1 18.2 0.7
Benzaldehyde C6H5CHO 56 150 4.4 4.1 25.9 2.1
[10]Annulene C10H10 70 200 6.3 5.6 30.2 3.4
Diazobenzene C12H10N2 96 326 5.3 4.5 31.6 6.4
Lysine C6H14N2O2 102 280 4.5 3.9 29.2 7.2
Arginine C6H14N4O2  116 387 4.9 4.1 28.5 9.3
HMX C4H8N8O8 152 516 6.6 5.3 33.3 14.0

Total Speedup

Fig. 7. QMC performance results on arbitrary molecules
picked to represent varying problem sizes. Speedup is defined

as the time spend processing on the CPU divided by the

time spend processing on the GPU.
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Fig. 8. Problem size is defined as the number of basisfunc-
tions × the number of electrons. The data points are from

the arbitrary molecules listed in Figure 7

To provide an estimate for the impact of these
speedup factors, we point out that for HMX, the cal-
culation is now 5 to 7 times faster. This means that
the new fractions of evaluation cost are that matrix
multiplication, which formerly composed 15% of the
cost is now only 4% (non-KSF) of the original to-
tal cost, the basis function cost went from 73% to
2.2%, and the electron-electron Jastrow evaluations
which used to cost 3.5% of the effort are now 0.3%. If
we approximate the effect of improving GPU tech-
nology over CPU technology as well as the possibil-
ity of multiple GPUs per CPU by setting the resid-
ual percentages at 0%, the original unaccounted for
8% suggests a theoretical factor of 13 speedup. A
recent calculation43 on free-base porphyrin which
has 162 electrons and 938 basis functions in the cc-
pVDZ basis set cost 40,000 CPU hours on an IBM
SP POWER3+ cluster. Thus, ignoring the precision
issue, we speculate that this calculation could theo-
retically cost 3,000 processor hours.

Although some of the performance numbers for
the individual kernels are very good, the code suf-
fers from Amdahl’s Law type inefficiencies because
of diminishing returns discovered during porting.
This is for several reasons. A few of the elements
of the computation, like the Monte Carlo statisti-
cal manipulations, can not be permitted to be run
in single precision. Furthermore, there are several
portions of the code for which a GPU port is cur-
rently unsuitable due to a lack of sufficient data par-
allelism either as O(N) components or as problems
with GPU-unfriendly data interdependencies. With
increasing capability on the GPU, more of the code
will be available to porting considerations.

It is obvious however that there is a GPU kind
of Gustafson’s Law44 advantage available. Specifi-
cally, if basis function and Jastrow function evalua-
tions can be considered as essentially free, then one
is encouraged to employ whatever functional form is
deemed best, regardless of computational complex-
ity. This is likely to increase both the quality of indi-
vidual iterates as well as improve the overall conver-
gence characteristics of a Monte Carlo calculation.
Of course this assumes that these advantages are
not washed out by precision errors stemming from
other parts of the code.

7. Conclusion

QMC type algorithms for first principles chem-
istry calculations are simple to parallelize and capa-
ble of exploiting the data parallel aspects of GPU
based computing. While the matrix sizes needed in
actual application practice are on the small side, re-
cent generation GPUs coupled with a few tricks have
become significantly better in achieving high perfor-
mance at these sizes. The overall result is a 3x to
6x speedup in the end to end simulation application
with a modest increase in hardware cost, making this
a very cost effective solution. The lack of full IEEE
floating point support is perhaps the most critical
issue for QMC. We were able to correct for the error
propagation, albeit only with a performance penalty
due to the more complex evaluation cost of the Ka-
han summation formula. Clearly a more complete
IEEE floating point treatment would be an excel-
lent improvement, and forthcoming improvements
will be welcomed.

Beyond that, we note that due to the rapid evo-
lution of GPU hardware (and the associated driver
software), attaining a sweet spot in the performance
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landscape is a never ending quest of parameter and
algorithm tweaking. We speculate that adoption of
the GPU as a computational engine will be greatly
facilitated if approaches such as ATLAS8,30 and ap-
plication specific libraries can be further brought to
the GPU arena.
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