
ar
X

iv
:0

70
5.

40
24

v2
 [

ph
ys

ic
s.

co
m

p-
ph

]
 1

9
O

ct
 2

00
7

Ground state of the time-independent

Gross-Pitaevskii equation

Claude M. Dion a, Eric Cancès b

aDepartment of Physics, Ume̊a University, SE-90187 Ume̊a, Sweden

bCERMICS, École Nationale des Ponts et Chaussées and INRIA, 6 & 8, avenue

Blaise Pascal, cité Descartes, F-77455 Marne-la-Vallée Cedex 2, France

Abstract

We present a suite of programs to determine the ground state of the time-independent
Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The
calculation is based on the Optimal Damping Algorithm, ensuring a fast convergence
to the true ground state. Versions are given for the one-, two-, and three-dimensional
equation, using either a spectral method, well suited for harmonic trapping poten-
tials, or a spatial grid.

PACS: 03.75.Hh; 03.65.Ge; 02.60.Pn; 02.70.-c

Key words: Gross-Pitaevskii equation; Bose-Einstein condensate; ground state;
Optimal Damping Algorithm.

PROGRAM SUMMARY

Manuscript Title: Ground state of the time-independent Gross-Pitaevskii equation
Authors: Claude M. Dion and Eric Cancès
Program Title: GPODA
Journal Reference:

Catalogue identifier:

Licensing provisions: none
Programming language: Fortran 90
Computer: any
Compilers under which the program has been tested: Absoft Pro Fortran, The Port-
land Group Fortran 90/95 compiler, Intel Fortran Compiler
RAM: From < 1 MB in 1D to ∼ 102 MB for a large 3D grid
Keywords: Gross-Pitaevskii equation, Bose-Einstein condensate, Optimal Damping
Algorithm

Email addresses: claude.dion@tp.umu.se (Claude M. Dion),
cances@cermics.enpc.fr (Eric Cancès).

Preprint submitted to Elsevier 23 October 2018

http://arxiv.org/abs/0705.4024v2

PACS: 03.75.Hh; 03.65.Ge; 02.60.Pn; 02.70.-c
Classification: 2.7 Wave Functions and Integrals, 4.9 Minimization and Fitting
External routines: External FFT or eigenvector routines may be required

Nature of problem:

The order parameter (or wave function) of a Bose-Einstein condensate (BEC) is ob-
tained, in a mean field approximation, by the Gross-Pitaevskii equation (GPE) [1].
The GPE is a nonlinear Schrödinger-like equation, including here a confining po-
tential. The stationary state of a BEC is obtained by finding the ground state of
the time-independent GPE, i.e., the order parameter that minimizes the energy. In
addition to the standard three-dimensional GPE, tight traps can lead to effective
two- or even one-dimensional BECs, so the 2D and 1D GPEs are also considered.
Solution method:

The ground state of the time-independent of the GPE is calculated using the Opti-
mal Damping Algorithm [2]. Two sets of programs are given, using either a spectral
representation of the order parameter [3], suitable for a (quasi) harmonic trapping
potential, or by discretizing the order parameter on a spatial grid.
Running time:

From seconds in 1D to a few hours for large 3D grids.
References:

[1] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999)
463.

[2] E. Cancès, C. Le Bris, Int. J. Quantum Chem. 79 (2000) 82.

[3] C. M. Dion, E. Cancès, Phys. Rev. E 67 (2003) 046706.

2

LONG WRITE-UP

1 Introduction

Advances in cooling methods for dilute atomic gases have made it possible to
attain a new state of matter, the Bose-Einstein condensate (BEC) [1,2]. As the
temperature of atoms gets very low, their de Broglie wavelength, an inherently
quantum character, can become greater than the interatomic distance. At that
point, bosonic atoms will “condense” into a unique quantum state and become
indistinguishable parts a of macroscopic quantum object, the BEC. It has now
been achieved for all stable alkali atoms [3–7], as well as with hydrogen [8],
metastable helium [9,10], and for diatomic molecules [11].

Starting from the many-body Hamiltonian describing the cold atoms, it is pos-
sible to reduce the problem, by considering the order parameter, or wave func-
tion, for the condensed fraction only. It is governed by a nonlinear Schrödinger
equation, the Gross-Pitaevskii equation (GPE) [12–16]

[

− ~
2

2m
∇

2
x + Vtrap(x) + λ3D |ψ(x)|2

]

ψ(x) = µψ(x), (1)

with the normalization condition ‖ψ‖L2 = 1, where ~ is the reduced Planck
constant, m the mass of the boson, Vtrap a trapping potential spatially confin-
ing the condensate, and µ the chemical potential of the condensate. Physically,
the nonlinearity corresponds to the mean field exerted on one boson by all the
others and is given, for a condensate of N bosons in 3D, by

λ3D ≡ g3DN =
4π~2aN

m
. (2)

The value of a, the scattering length, varies according to the species of bosons
being considered. The energy associated with the wave function ψ(x) is ob-
tained according to [12–16]

E[ψ] = N
∫

R3

[

~
2

2m
|∇ψ(x)|2 + Vtrap(x) |ψ(x)|2 +

λ3D
2

|ψ(x)|4
]

dx. (3)

We present here a suite of programs designed to calculate the ground state
of the GPE, i.e., the order parameter ψ(x) with to the lowest energy. This
corresponds to the actual condensate order parameter, in the absence of any
excitation. The problem is thus to find the ground state of the condensate, that
is a normalized function ψGS(x) that minimizes E[ψ]. Recall that if Vtrap is
continuous and goes to +∞ at infinity, and if λ3D ≥ 0, the ground state of E[ψ]

3

exists and is unique up to a global phase. In addition, the global phase can be
chosen such that ψGS is real-valued, and positive on R

3. The ground state ψGS

can be computed using the Optimal Damping Algorithm (ODA), originally
developed for solving the Hartree-Fock equations [17,18]. This algorithm is
garanteed to converge to the ground state. Two different discretizations of the
order parameter are available in our sets of programs. In one case, a basis
set of eigenfunctions of the harmonic oscillator is used, which is particularly
suited for a harmonic (or quasi-harmonic) trapping potential Vtrap. In this case,
an efficient method to convert from the spectral representation to a spatial
grid [19] is employed to treat the nonlinearity. In the other case, a spatial grid
is used throughout, with the kinetic energy derivative evaluated with the help
of Fast Fourier Transforms. Note that, in all cases, the value of the energy
given on output is actually the energy per particle, E[ψ]/N .

2 Optimal Damping Algorithm

To describe the ODA [17,18] in the context of the GPE, we start by defining
the operators

Ĥ0 ≡ − ~
2

2m
∇2
x + V (x), (4)

corresponding to the linear part of the GPE (1), and

Ĥ(ρ) ≡ Ĥ0 + λ3Dρ(x) (5)

the full, nonlinear Hamiltonian, where we have introduced ρ ≡ |ψ|2 (N ρ(x)
is the density of the condensate at point x).

The ODA is based on the fact that the ground state density matrix γGS =
|ψGS〉〈ψGS| is the unique minimizer of

inf
{

E [γ], γ ∈ S(L2(R3)), 0 ≤ γ ≤ I, tr(γ) = 1
}

. (6)

In the above minimization problem, S(L2(R3)) denotes the vector space of
bounded self-adjoint operators on L2(R3) and I the identity operator on L2(R3).
The energy functional E [γ] is defined by

E [γ] = tr(Ĥ0γ) +
λ3D
2

∫

R3

ρ2γ,

where ργ(x) = γ(x,x) (γ(x,y) being the kernel of the trace-class operator γ).
The ODA implicitly generates a minimizing sequence γk for (6), starting, for
instance, from the initial guess γ0 = |ψ0〉〈ψ0|, where ψ0 is the ground state
of Ĥ0. The iterate γk+1 is constructed from the previous iterate γk in two steps:

4

• Step 1: compute a normalized order parameter ψ′

k which minimizes

sk = inf

{

d

dt
E [(1− t)γk + t|ψ〉〈ψ|]

∣

∣

∣

∣

∣

t=0

, ‖ψ‖L2 = 1

}

.

It is easy to check that ψ′

k is in fact the ground state of Ĥ(ργk) and that
either ψ′

k = ψGS (up to a global phase) or sk < 0.
• Step 2: compute

αk = arginf {E [(1− t)γk + t|ψ′

k〉〈ψ′

k|] , t ∈ [0, 1]}

and set γk+1 = (1 − αk)γk + αk|ψ′

k〉〈ψ′

k|. Note that α can be computed
analytically, for the function t 7→ E [(1− t)γk + t|ψ′

k〉〈ψ′

k|] is a second order
polynomial of the form E [γk] + tsk +

t2

2
ck.

The set

C =
{

γ ∈ S(L2(R3)), 0 ≤ γ ≤ I, tr(γ) = 1
}

being convex, γk ∈ C for all k and either γk = γGS or E [γk+1] < E [γk]. In addi-
tion, it can be proved that, up to a global phase, ψ′

k converges to ψGS when k
goes to infinity. Likewise, ρk ≡ ργk converges to ρGS ≡ ψ2

GS. It is important to
note that the sequences ψ′

k and ρk can be generated without explicitely com-
puting γk. This is crucial to reduce the overall memory requirement of ODA.

Let us now describe a practical implementation of ODA, in which only order
parameters and densities are stored in memory. The algorithm is initialized by
ψ0, from which we derive ρ0 = |ψ0|2, f0 = (ψ0, Ĥ0ψ0), and h0 = (ψ0, Ĥ(ρ0)ψ0).
The iterations go as follows:

(1) Calculate the ground state ψ′

k of Ĥ(ρk), and ρ
′

k = |ψ′

k|2.
(2) Compute

f ′

k =(ψ′

k, Ĥ0ψ
′

k),

h′k =(ψ′

k, Ĥ(ρk)ψ
′

k),

h′′k =(ψ′

k, Ĥ(ρ′k)ψ
′

k).

(3) Calculate

sk = h′k − hk,

ck = hk + h′′k − 2h′k + f ′

k − fk.

(4) Set αk = 1 if ck ≤ −sk, αk = −sk/ck otherwise, and

5

Eopt =
1

2
(fk + hk) + αksk +

α2
k

2
ck,

ρk+1=(1− αk)ρk + αkρ
′

k,

fk+1=(1− αk)fk + αkf
′

k,

hk+1=2Eopt − fk+1.

(5) If |sk/Eopt| > εODA (convergence criterion), go to (1), otherwise compute
the ground state of H(ρk+1), which is the solution sought, and terminate.

To calculate the ground state of the operators Ĥ0 and Ĥ(ρ), the inverse power
method is used, with the convergence criterion |Ei+1 − Ei| ≤ εIP, where E are
the lowest eigenvalues at consecutive iterations. The inverse power algorithm
itself uses the conjugated gradient method to solve Ĥv = u, with u given and
v unknown. The convergence of the conjugated gradient is controlled by the
criterion εCG. The only exception to this is in gpoda1Ds, where the ground
states of the operators are found by a matrix eigenproblem solver routine (see
Sec. 4.6.1).

3 Representations of the GPE

The Gross-Pitaevskii equation was defined in Eq. (1), with the nonlinearity
Eq. (2) in 3D. In this work, we are also considering cases where the con-
finement Vtrap is so tight in some spatial dimension that the condensate can
actually be considered as a two-, or even one-dimensional object. This leads
to different representations of the nonlinearity λ and the expression for the
coupling parameters g2D and g1D can be found in Refs. [20–22]. We refer to
chapter 17 of [2] for a detailed discussion of the validity of the mean field
approximation in these cases.

3.1 Spatial grid approach

If the order parameter is represented on a discretized spatial grid, the calcula-
tion of the potential energy and the nonlinearity are trivial, as they both act
locally, while the kinetic energy operator is non-local. By means of a Fourier
transform, it is possible to convert from position to momentum space, where
the kinetic operator is local. This is implemented by means of a Fast Fourier
Transforms (FFTs), allowing to convert back and forth between the two rep-
resentations, to evaluate each part of the Hamiltonian in the space where it is
local.

6

3.2 Spectral method

For many situations, the trapping potential is harmonic, or a close variation
thereof, i.e.,

Vtrap(x, y, z) =
m

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+ V0(x, y, z), (7)

where ω is the trapping frequencies in each direction and V0 accounts for
eventual corrections to a purely harmonic trap. In this case, it is advantageous
to use a basis set made up of the eigenfunctions of the quantum harmonic
oscillator.

We start by rescaling Eq. (1), introducing dimensionless lengths (x̃, ỹ, z̃),

x =

(

~

mωx

)1/2

x̃, (8a)

y =

(

~

mωy

)1/2

ỹ, (8b)

z =

(

~

mωz

)1/2

z̃, (8c)

and a new order parameter ψ̃ defined as

ψ(x, y, z) = Aψ̃(x, y, z). (9)

Considering the normalization condition
∫

R3

|ψ(x, y, z)|2 dx dy dz = 1, (10)

we take

A =
(

m

~

)3/4

(ωxωyωz)
1/4 (11)

such that ∫

R3

∣

∣

∣ψ̃(x̃, ỹ, z̃)
∣

∣

∣

2
dx̃ dỹ dz̃ = 1. (12)

The Gross-Pitaevskii equation now reads

[

ωx

ωz

(

−1

2
∇2

x̃ +
x̃2

2

)

+
ωy

ωz

(

−1

2
∇2

ỹ +
ỹ2

2

)

+

(

−1

2
∇2

z̃ +
z̃2

2

)

+ Ṽ0(x̃, ỹ, z̃) + λ̃3D
∣

∣

∣ψ̃(x̃, ỹ, z̃)
∣

∣

∣

2
]

= µ̃ψ̃(x̃, ỹ, z̃), (13)

with

Ṽ0(x̃, ỹ, z̃) ≡
1

~ωz
V0(x, y, z), (14)

7

λ̃3D ≡ m3/2

~5/2

(

ωxωy

ωz

)1/2

g3DN = 4πaN
(

m

~

ωxωy

ωz

)1/2

, (15)

and

µ̃ ≡ µ

~ωz

. (16)

Similarly,

Ẽ[ψ̃] ≡ E[ψ]

~ωz
. (17)

Using the Galerkin approximation, we can express the order parameter ψ̃ as
a linear combination of a finite number of (orthonormal) basis functions φ,

ψ̃(x̃, ỹ, z̃) =
Nx̃
∑

i=0

Nỹ
∑

j=0

Nz̃
∑

k=0

cijkφi(x̃)φj(ỹ)φk(z̃), (18)

where the φ are chosen as the eigenfunctions of the 1D harmonic oscillator,
i.e.,

(

−1

2

d2

dξ2
+
ξ2

2

)

φn(ξ) =
(

n +
1

2

)

φn(ξ). (19)

In the spectral representation of Eq. (18), Eq. (13) becomes a series of coupled
equations for the coefficients cijk, and the first part of the Hamiltonian can be
evaluated by a simple multiplication, according to Eq. (19). The second part
of the Hamiltonian, consisting of the Ṽ0 and the nonlinear terms, is local in
(x̃, ỹ, z̃) and couples the different coefficients. Its operation can be calculated
in a manner similar to what is used for the spatial grid (see Sec. 3.1): starting
from the coefficients cijk, the order parameter ψ̃ is evaluated at selected grid
points (x̃, ỹ, z̃), the local terms are then trivially calculated, and the order
parameter is transformed back to the spectral representation. This procedure
can be performed efficiently and accurately using the method described in
Ref. [19].

For the 2D case, i.e., when the motion along y is suppressed, we rescale the
lengths according to Eq. (8), which results in

A =
(

m

~

)1/2

(ωxωz)
1/4 (20)

for the scaling factor of the order parameter. We thus obtain the 2D GPE

[

ωx

ωz

(

−1

2
∇2

x̃ +
x̃2

2

)

+

(

−1

2
∇2

z̃ +
z̃2

2

)

+ Ṽ0(x̃, z̃) + λ̃2D
∣

∣

∣ψ̃(x̃, z̃)
∣

∣

∣

2
]

= µ̃ψ̃(x̃, z̃),

(21)
where

λ̃2D ≡ λ2D
m

~2

(

ωx

ωz

)1/2

. (22)

8

Similarly, we get for the one-dimensional case (where the motion along x and
y is frozen)

A =
(

mωz

~

)1/4

, (23)

[

−1

2
∇2

z̃ +
z̃2

2
+ Ṽ0(z̃) + λ̃1D

∣

∣

∣ψ̃(z̃)
∣

∣

∣

2
]

= µ̃ψ̃(z̃), (24)

and

λ̃1D ≡ λ1D

(

m

~3ωz

)1/2

. (25)

4 Description of the programs

4.1 gpoda3Dg

This program solves the full 3D GPE (1) on a grid. Atomic units are used
throughout.

4.1.1 User-supplied routines

The double precision function potentialV(x,y,z) takes as input the three
double precision arguments x, y, and z, corresponding to the spatial coordi-
nates (x, y, z), and returns Vtrap(x, y, z).

A 3D FFT routine must also be supplied. The program is set up to work with
the dfftpack [23] transform of a real function, and can be linked directly to
this library.

If the user wishes to use another FFT, the file fourier3D.f90 must be mod-
ified accordingly. The program first calls fft init(n), where n is a one-
dimensional integer array of length 4, the last three elements containing the
number of grid points in x, y, and z, with the first element corresponding
to the maximum number of grid points in any direction, i.e., for n(0:3),
n(0) = maxval(n(1:3)). The program will then call repeatedly the subrou-
tine fourier3D(n,fin,fout,direction), with fin and fout double preci-
sion arrays of dimension (n(1),n(2),n(3)), and direction an integer. The
routine should return in array fout the forward Fourier transform of fin if
direction = 1, and the inverse transform for direction = −1. Any variable
initialized by fft init must be passed to fourier3D through a module. Note
that the main program expects to receive the Fourier coefficients (following
the forward transform) according to:

9

c1=
N
∑

n=1

fn,

c2m−2 =
N
∑

n=1

fn cos

[

2π(m− 1)(n− 1)

N

]

, m = 2, . . . , N/2 + 1

c2m−1 =−
N
∑

n=1

fn sin

[

2π(m− 1)(n− 1)

N

]

, m = 2, . . . , N/2

where the coefficients cm correspond to variable fout and the sequence fn to
fin.

4.1.2 Input parameters

The input parameters are read from a namelist contained in a file named
params3Dg.in, with the following format (the variable type is indicated in
parenthesis, where dp stands for double precision):

¶ms3Dg

mass = mass of the boson (dp),
lambda = nonlinearity λ3D (dp),
ng x = number of grid points in x, (integer),
ng y = number of grid points in y, (integer),
ng z = number of grid points in z, (integer),
xmin = first point of the grid in x (dp),
xmax = last point of the grid in x (dp),
ymin = first point of the grid in y (dp),
ymax = last point of the grid in y (dp),
zmin = first point of the grid in z (dp),
zmax = last point of the grid in z (dp),
critODA = convergence criterion for the ODA, εODA (dp),
critIP = convergence criterion for the inverse power, εIP (dp),
critCG = convergence criterion for the conjugated gradient, εCG (dp),
itMax = maximum number of iterations of the ODA (integer),
guess from file = read initial guess from file guess3Dg.data? (logical)
&end

If the value of the input parameter guess from file is .true., a file named
guess3Dg.data must be present in the local directory. It contains the initial
guess for the order parameter, and must consist in ng x × ng y × ng z lines,
each containing the values of the coordinates x, y, and z, followed by ψ(x, y, z).
Note that the program does not check if the coordinates correspond to the
grid defined by the input parameters. The program will simply assign the first
value of ψ to the first grid point, (xmin, ymin, zmin), then the second value
to the second grid point in x, with y = ymin and z = zmin, etc. After nx

10

points have been read, the next value of ψ is assigned to the second grid
point in y, with x = xmin and z = zmin, and so on. In other words, the fourth
column of guess3Dg.data contains ψ(x, y, z) in standard Fortran format, with
x corresponding to the first index, y to the second, and z to the third.

4.1.3 Output files

The order parameter is written out in file gs3Dg.data, with each line contain-
ing the coordinates x, y, and z, followed by ψ(x, y, z). If the algorithm has not
converged, the file will contain the function obtained at the last iteration. The
format of gs3Dg.data is the same as that of guess3Dg.data (see Sec. 4.1.2),
such that gs3Dg.data can be used as an initial guess for a new run, with for
instance a different value of λ (if the grid is changed, the function must be
interpolated to the new grid beforehand).

4.2 gpoda2Dg

This program solves the 2D GPE on a grid, corresponding to the 3D case
where motion along y is frozen. Atomic units are used throughout.

4.2.1 User-supplied routines

The double precision function potentialV(x,z) takes as input the two double
precision arguments x and z, corresponding to the spatial coordinates (x, z),
and returns Vtrap(x, z).

A 2D FFT routine must also be supplied. The program is set up to work with
the dfftpack [23] transform of a real function, and can be linked directly to
this library. For use of another FFT routine, please see Sec. 4.1.1.

4.2.2 Input parameters

The input parameters are read from a namelist contained in a file named
params2Dg.in. The namelist ¶ms2Dg follows the same format as the
namelist ¶ms3Dg presented in Sec. 4.1.2, with the omission of variables
ng y, ymin, and ymax. Also, the parameter lambda corresponds here to g2DN
[21,22].

If the value of the input parameter guess from file is .true., a file named
guess2Dg.data must be present in the local directory. The format of the file is

11

similar to that of guess3Dg.data, presented in Sec. 4.1.2, with the exception
of data corresponding to coordinate y.

4.2.3 Output files

The order parameter is written out in file gs2Dg.data, with each line con-
taining the coordinates x and z, followed by ψ(x, z). If the algorithm has not
converged, the file will contain the function obtained at the last iteration. The
format of gs2Dg.data is the same as that of guess2Dg.data (see Sec. 4.2.2),
such that gs2Dg.data can be used as an initial guess for a new run, with for
instance a different value of λ2D (if the grid is changed, the function must be
interpolated to the new grid beforehand).

4.3 gpoda1Dg

This program solves the 1D GPE on a grid, corresponding to the 3D case
where motion along x and y is frozen. Atomic units are used throughout.

4.3.1 User-supplied routines

The double precision function potentialV(z) takes as input the double pre-
cision argument z, corresponding to the spatial coordinate z, and returns
Vtrap(z).

An FFT routine must also be supplied. The program is set up to work with
the dfftpack [23] transform of a real function, and can be linked directly to
this library. For use of another FFT routine, please see Sec. 4.1.1.

4.3.2 Input parameters

The input parameters are read from a namelist contained in a file named
params1Dg.in. The namelist ¶ms1Dg follows the same format as the
namelist ¶ms3Dg presented in Sec. 4.3.2, with the omission of variables
ng x, ng y, xmin, xmax, ymin, and ymax. Also, the parameter lambda corre-
sponds here to g1DN [20].

If the value of the input parameter guess from file is .true., a file named
guess1Dg.data must be present in the local directory. It contains the initial
guess for the order parameter, and must consist in ng z lines, each containing
the values of the coordinate z followed by ψ(z). Note that the program does not
check if the coordinates correspond to the grid defined by the input parameters.

12

The program will simply assign the first value of ψ to the first grid point, zmin,
then the second value to the second grid point in z, and so on.

4.3.3 Output files

The order parameter is written out in file gs1Dg.data, with each line con-
taining the coordinate z followed by ψ(z). If the algorithm has not converged,
the file will contain the function obtained at the last iteration. The format of
gs1Dg.data is the same as that of guess1Dg.data (see Sec. 4.3.2), such that
gs1Dg.data can be used as an initial guess for a new run, with for instance a
different value of λ1D (if the grid is changed, the function must be interpolated
to the new grid beforehand).

4.4 gpoda3Ds

This program solves the full 3D GPE (13) using a spectral method. Note that
the value of mu calculated is actually the rescaled µ̃ defined by Eq. (16).

4.4.1 User-supplied routines

The double precision function potentialV0(x,y,z) takes as input the three
double precision arguments x, y, and z, corresponding to the rescaled spatial
coordinates (x̃, ỹ, z̃), and returns Ṽ0(x̃, ỹ, z̃), defined by Eq. (14).

4.4.2 Input parameters

The input parameters are read from a namelist contained in a file named
params3Ds.in, with the following format (the variable type is indicated in
parenthesis, where dp stands for double precision):

¶ms3Ds

lambda = nonlinearity λ̃3D [Eq. (15)] (dp),
wxwz = trap frequency ratio ωx/ωz (dp),
wywz = trap frequency ratio ωy/ωz (dp),
n x = highest basis function in x, Nx̃ (integer),
n y = highest basis function in y, Nỹ (integer),
n z = highest basis function in z, Nz̃ (integer),
symmetric x = symmetric potential in x (logical),
symmetric y = symmetric potential in y (logical),
symmetric z = symmetric potential in z (logical),
critODA = convergence criterion for the ODA, εODA (dp),

13

critIP = convergence criterion for the inverse power, εIP (dp),
critCG = convergence criterion for the conjugated gradient, εCG (dp),
itMax = maximum number of iterations of the ODA (integer),
guess from file = read initial guess from file guess3Ds.data? (logical)
output grid = write final order parameter to file gs3Ds grid.data? (logical)
&end

The algorithm used to find the roots of the Hermite polynomial, needed for the
spectral method [19], limits the acceptable highest basis function to n ≤ 91.
The value of the parameters symmetric allow to reduce the size of the basis
set used, for the case where the additional trapping potential V0 [Eq. (7)] is
even along any of the axes. For instance, if V0(x, y, z) = V0(−x, y, z), setting
symmetric x = .true. will restrict the basis set along x to even functions
φ(x) [Eq. (18)], as the order parameter will present the same parity as the
trapping potential Vtrap. Note that in all cases the parameters n set the index
of the highest harmonic oscillator eigenfunction used, not the number of basis
functions used.

If the value of the input parameter guess from file is .true., a file named
guess3Ds.data must be present in the local directory. It contains the initial
guess for the order parameter and contains lines with the values of indices
i, j, and k (all integers), followed by the coefficient cijk (double precision),
see Eq. (18). If an index is greater than the value of N for the corresponding
spatial axis, or if its parity is not consistent with the chosen symmetry (see
above), it is ignored. If a set of indices ijk appears more than once, only the
last value of cijk is kept, and any cijk not specified in the file is taken to be
equal to zero.

If the value of the input parameter output grid is .true., a second namelist
will be read from the file params3Ds.in:

&grid3D

ng x = number of grid points in x̃, (integer),
ng y = number of grid points in ỹ, (integer),
ng z = number of grid points in z̃, (integer),
xmin = first point of the grid in x̃ (dp),
xmax = last point of the grid in x̃ (dp),
ymin = first point of the grid in ỹ (dp),
ymax = last point of the grid in ỹ (dp),
zmin = first point of the grid in z̃ (dp),
zmax = last point of the grid in z̃ (dp)
&end

(see next section for details on usage).

14

4.4.3 Output files

The order parameter is written out in file gs3Ds.data, with each line contain-
ing the indices i, j, and k, followed by the coefficients cijk of Eq. (18). If the
algorithm has not converged, the file will contain the function obtained at the
last iteration. The format of gs3Ds.data is the same as that of guess3Ds.data
(see Sec. 4.4.2), such that gs3Ds.data can be used as an initial guess for a
new run, with for instance a different value of λ̃.

If the value of the input parameter output grid is .true., the order param-
eter is also written out to the file gs3Ds grid.data, with each line containing
the coordinates x̃, ỹ, and z̃, defined by the namelist &grid3D, followed by
ψ̃(x̃, ỹ, z̃).

4.5 gpoda2Ds

This program solves the a 2D GPE using a spectral method. Note that the
value of mu calculated is actually the rescaled µ̃ defined by Eq. (16).

4.5.1 User-supplied routines

The double precision function potentialV0(x,z) takes as input the three
double precision arguments x and z, corresponding to the rescaled spatial co-
ordinates (x̃, z̃), and returns Ṽ0(x̃, z̃), defined by the 2D equivalent of Eq. (14).

4.5.2 Input parameters

The input parameters are read from a namelist contained in a file named
params2Ds.in. The namelist ¶ms2Ds follows the same format as the
namelist ¶ms3Ds presented in Sec. 4.4.2, with the omission of variables
wywz, n y, and symmetry y. Also, the parameter lambda corresponds here to
λ̃2D [Eq. (22)].

If the value of the input parameter guess from file is .true., a file named
guess2Ds.data must be present in the local directory. The format is the same
as the file guess3Ds.data (Sec. 4.4.2), except that only indices i and k are
present.

If the value of the input parameter output grid is .true., a second namelist
named &grid2D will be read from the file params2Ds.in. This namelist is the
same as &grid3D of Sec. 4.4.2, without the variables corresponding to ỹ.

15

4.5.3 Output files

The order parameter is written out in file gs2Ds.data, with a format similar
to file gs3Ds.data described in Sec. 4.4.3, except that only indices i and k
are present. If the value of the input parameter output grid is .true., the
order parameter is also written out to the file gs2Ds grid.data, in the same
manner as for file gs3Ds grid.data (Sec. 4.4.3), but without the ỹ coordinate.

4.6 gpoda1Ds

This program solves the a 1D GPE using a spectral method. Note that the
value of mu calculated is actually the rescaled µ̃ defined by Eq. (16).

4.6.1 User-supplied routines

The double precision function potentialV0(z) takes as input the three double
precision arguments z, corresponding to the rescaled spatial coordinate z̃, and
returns Ṽ0(z̃), defined by the 1D equivalent of Eq. (14).

A routine for calculating eigenvalues and eigenvectors must be supplied. The
program is set up to use the lapack [24] routine for the eigenvalue prob-
lem for a real symmetric matrix. To use another routine, file eigen1D.f90

has to be modified. The subroutine eigen(n,H,eigenval,eigenvec) takes
as input the integer n and the double precision array H(n,n). On output, the
double precision real eigenval and the double precision array eigenvec(n)

contain repectively the smallest eigenvalue of matrix H and the corresponding
eigenvector.

4.6.2 Input parameters

The input parameters are read from a namelist contained in a file named
params1Ds.in, with the following format (the variable type is indicated in
parenthesis, where dp stands for double precision):

¶ms1Ds

lambda = nonlinearity λ̃1D [Eq. (25)] (dp),
n = highest basis function, N (integer),
symmetric = spatially symmetric potential? (logical),
critODA = convergence criterion for the ODA, εODA (dp),
itMax = maximum number of iterations of the ODA (integer),
guess from file = read initial guess from file guess1Ds.data? (logical)
output grid = write final order parameter to file gs1Ds grid.data? (logical)

16

&end

See Sec. 4.4.2 for restrictions on the value of n and the use of symmetric.

If the value of the input parameter guess from file is .true., a file named
guess1Ds.data must be present in the local directory. The format is the same
as the file guess1Ds.data (Sec. 4.4.2), except that only index k is present.

If the value of the input parameter output grid is .true., a second namelist
named &grid1D will be read from the file params1Ds.in. This namelist is the
same as &grid1D of Sec. 4.4.2, without the variables corresponding to x̃ and
ỹ.

4.6.3 Output files

The order parameter is written out in file gs1Ds.data, with a format similar to
file gs1Ds.data described in Sec. 4.4.3, except that only index k is present. If
the value of the input parameter output grid is .true., the order parameter
is also written out to the file gs1Ds grid.data, in the same manner as for file
gs1Ds grid.data (Sec. 4.4.3), but without the x̃ and ỹ coordinates.

Acknowledgments

This research was conducted in part using the resources of the High Perfor-
mance Computing Center North (HPC2N).

References

[1] C. J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases,
Cambridge University Press, Cambridge, 2002.

[2] L. Pitaevskii, S. Stringari, Bose-Einstein Condensation, Oxford University
Press, Oxford, 2003.

[3] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell,
Observation of Bose-Einstein condensation in a dilute atomic vapor, Science
269 (1995) 198.

[4] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,
D. M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,
Phys. Rev. Lett. 75 (1995) 3969–3973.

17

[5] C. C. Bradley, C. A. Sackett, J. J. Tollett, R. G. Hulet, Evidence of Bose-
Einstein condensation in an atomic gas with attractive interactions, Phys. Rev.
Lett. 75 (1995) 1687–1690.

[6] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, C. E. Wieman,
Stable 85Rb Bose-Einstein condensates with widely tunable interactions, Phys.
Rev. Lett. 85 (2000) 1795–1798.

[7] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, R. Grimm, Bose-Einstein
condensation of cesium, Science 299 (2003) 232–235.

[8] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner,
T. J. Greytak, Bose-Einstein condensation of atomic hydrogen, Phys. Rev. Lett.
81 (1998) 3811–3814.

[9] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I.
Westbrook, A. Aspect, A Bose-Einstein condensate of metastable atoms,
Science 292 (2001) 461–464.

[10] F. Pereira Dos Santos, J. Léonard, J. Wang, C. J. Barrelet, F. Perales,
E. Rasel, C. S. Unnikrishnan, M. Leduc, C. Cohen-Tannoudji, Bose-Einstein
condensation of metastable helium, Phys. Rev. Lett. 86 (2001) 3459–3462.

[11] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin,
J. Hecker Denschlag, R. Grimm, Bose-Einstein condensation of molecules,
Science 302 (2003) 2101–2103.

[12] E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento
20 (1961) 454–477.

[13] L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13
(1961) 451–454.

[14] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Theory of Bose-Einstein
condensation in trapped gases, Rev. Mod. Phys. 71 (1999) 463–512.

[15] S. Stenholm, Validity of the Gross-Pitaevskii equation describing bosons in a
trap, Phys. Rev. A 57 (1998) 2942–2948.

[16] E. H. Lieb, R. Seiringer, J. Yngvason, Bosons in a trap: A rigourous derivation
of the Gross-Pitaevskii energy functional, Phys. Rev. A 61 (2000) 043602.

[17] E. Cancès, C. Le Bris, Can we outperform the DIIS approach for electronic
structure calculations?, Int. J. Quantum Chem. 79 (2000) 82–90.

[18] E. Cancès, SCF algorithms for Hartree-Fock electronic calculations, in:
M. Defranceschi, C. Le Bris (Eds.), Mathematical Models and Methods for Ab
Initio Quantum Chemistry, Vol. 74 of Lecture Notes in Chemistry, Springer,
Berlin, 2000, pp. 17–43.

[19] C. M. Dion, E. Cancès, Spectral method for the time-dependent Gross-
Pitaevskii equation with a harmonic trap, Phys. Rev. E 67 (2003) 046706.

18

[20] M. Olshanii, Atomic scattering in the presence of an external confinement and
a gas of impenetrable bosons, Phys. Rev. Lett. 81 (1998) 938–941.

[21] D. S. Petrov, M. Holzmann, G. Shlyapnikov, Bose-Einstein condensation in
quasi-2D trapped gases, Phys. Rev. Lett. 84 (2000) 2551–2555.

[22] M. D. Lee, S. A. Morgan, M. J. Davis, K. Burnett, Energy-dependent
scattering and the Gross-Pitaevskii equation in two-dimensional Bose-Einstein
condensates, Phys. Rev. A 65 (2002) 043617.

[23] P. N. Swarztrauber, Vectorizing the FFTs, in: G. Rodrigue (Ed.), Parallel
Computations, Academic Press, New York, 1982, pp. 51–83.
URL http://www.netlib.org/fftpack/

[24] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,
LAPACK Users’ Guide, 3rd Edition, Society for Industrial and Applied
Mathematics, Philadelphia, 1999.
URL http://www.netlib.org/lapack/

19

TEST RUN OUTPUT

Considering a condensate of 104 87Rb atoms, in a harmonic trap of frequency
ωx = ωy = ωz/

√
8 = 2π × 90 Hz with the parameter file params3Ds.in as

follows:

¶ms3Ds

lambda = 368.8d0,

wxwz = 0.353553390593d0,

wywz = 0.353553390593d0,

n_x = 20,

n_y = 20,

n_z = 20,

symmetric_x = .true.,

symmetric_y = .true.,

symmetric_z = .true.,

critODA = 1.d-8,

critIP = 1.d-8,

critCG = 1.d-8,

itMax = 100,

guess_from_file = .false.,

output_grid = .false.

&end

the output will look like:

GPODA3Ds

Parameters:

omega_x / omega_z = 0.35355339E+00

omega_y / omega_z = 0.35355339E+00

Nonlinearity = 0.36880000E+03

Number of basis functions: 11 x 11 x 11 = 1331

Number of grid points: 41 x 41 x 41 = 68921

Symmetric in x y z

Initialization

Compute the ground state of H_0

Inverse Power converged in 2 iterations

--> mu = 0.853553390593000

20

Iteration 1

Compute the ground state of H(psi_in)

Inverse Power converged in 27 iterations

--> mu = 2.19942774785621

Optimal damping

slope -22.0705785783271

step 0.768246751736393

Eopt 4.08395470599574

[...]

Iteration 66

Compute the ground state of H(psi_in)

Inverse Power converged in 2 iterations

--> mu = 3.90057925938285

Optimal damping

slope -1.667024296381214E-008

step 3.537833144766566E-002

Eopt 2.87515659549269

Convergence achieved in 66 iterations

--> mu = 3.90057925938285

--> E = 2.87515659549269

Checking self-consistency

Inverse Power converged in 2 iterations

--> mu = 3.90057337542902

l1 norm of psi2out-psi2in: 0.171325E-01 for 68921 grid points

(0.248582E-06 per grid point)

(Running time: 14 min on a 2.5 GHz PowerPC G5 Quad.)

21

