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Abstract
Analytical ultracentrifugation allows one to measure in real-time the concentration gradients arising
from the application of a centrifugal force to macromolecular mixtures in solution. In the last decade,
the ability to efficiently solve the partial differential equation governing the ultracentrifugal
sedimentation and diffusion process, the Lamm equation, has spawned significant progress in the
application of sedimentation velocity analytical ultracentrifugation for the study of biological
macromolecules, for example, the characterization of protein oligomeric states and the study of
reversible multi-protein complexes in solution. The present work describes a numerical algorithm
that can provide an improvement in accuracy or efficiency over existing algorithms by more than
one order of magnitude, and thereby greatly facilitate the practical application of sedimentation
velocity analysis, in particular, for the study of multi-component macromolecular mixtures. It is
implemented in the public domain software SEDFIT for the analysis of experimental data.
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Introduction
Analytical ultracentrifugation is one of the classic techniques of biophysics and physical
biochemistry. It derives its potential from the conceptual simplicity and from its firm theoretical
thermodynamic basis. In sedimentation velocity analytical ultracentrifugation (SV), an optical
system allows monitoring the evolution of macromolecular concentration gradients in free
solution caused by the application of a gravitational force. In the eight decades following
Svedberg's Nobel prize in 1926, it found wide-spread applications and is still an important
today tool in many traditional areas of protein biochemistry [1-3], synthetic polymer chemistry
[4], molecular biology [5], protein interactions [6], as well as more recently emerging fields
such as supramolecular chemistry [7], dendritic polymers [8,9], the characterization of
nanoparticles for drug or gene delivery and biomaterials [10-13], amyloid formation of proteins
[14], and the development of formulation conditions for protein therapeutics in pharmaceutical
industry [15-18]. In the last decade, the increasing potential for computational data analysis,
in particular, the highly detailed mathematical analysis of the sedimentation boundary shape
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has spawned a resurgence of interest and the development of many new applications. For recent
reviews and introductions, see [19-23 ].

In 1929, Lamm derived the partial differential equation (eq. 1) for the evolution of the
macromolecular concentration distribution in a sector-shaped solution column in the
centrifugal field: for an ideally sedimenting, non-interacting macromolecular component, the
concentration profile χ(r,t) as a function of distance from the center of rotation, r, and time, t,
follows

(1)

where s and D denote the macromolecular sedimentation and diffusion coefficient,
respectively, and ω is the rotor speed [24]. In the following decades, approximate analytical
solutions for several special cases that were of practical importance in the experimental study
of SV of macromolecular samples were found by Archibald [25], Faxen [26], Fujita [27], and
others [3,28-30]. In the 1960s, the advent of computers allowed the prediction of concentration
profiles in the general case including the description of sedimentation, diffusion, and chemical
reactions. Several groups used this tool to explore a variety of topics important in biochemical
applications, such as hydrodynamic non-ideality [31], effects of hydrostatic pressure [32],
density gradients [33], coupled sedimentation and chemical reaction for proteins with rapid
self- and hetero-association [34-36], and enzymatic activity [37].

At this time, also the modeling of experimental data with Lamm equation (LE) solutions was
envisioned and addressed to the extent possible [36]. With the resurging interest in analytical
ultracentrifugation since the 1990s, more approximate analytical [38-40] and numerical
[41-43] solutions of the LE were developed, and several software packages are currently
available that embed different approaches to the modeling of experimental SV data, including
BCPFIT [44,45], LAMM [39], SEDANAL [46], SVEDBERG [38], ULTRASCAN [47], and
from our own laboratory SEDFIT [41,48] and the multi-method global analysis platform
SEDPHAT [49,50]. The latter two are based on the concept of directly fitting (single or
multiple) data sets from the entire sedimentation process(es) in the original data space,
accounting explicitly for the characteristic systematic signal offsets of SV data acquisition by
algebraic separation of variables [51].

Recently, increasing computational power readily available in desktop computers enabled
more complex applications, some of which are currently widely used [21,52]. It allowed, for
example, using LE solutions to be used as the kernel in Fredholm integral equations, such as
in the sedimentation coefficient distribution c(s)

(2)

(where a(r,t) is the measured concentration evolution) [53-55], and multidimensional
extensions such as the two-dimensional size-and-shape distributions [56], and multi-
component sedimentation coefficient distributions for multi-protein complexes [57]. Fitting
these models to experimental data gives high-resolution, diffusion-deconvoluted
macromolecular size-distributions. This approach has been extended to the description of
macromolecular sedimentation in density gradients from sedimenting co-solutes [58], which
are frequently an obligate sample component, for example, to achieve sufficient protein
stability, or to study proteins stability in pharmaceutical formulation conditions.
Computationally, this latter case requires the kernel of integral equations to be a set of coupled
LEs with a cross-term describing the time-varying macromolecular buoyancy [58]. Further,
sets of coupled LEs are required to model sedimentation of multiple macromolecular
components that exhibit chemical reactions on the time-scale of the experiment [46,59].
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Clearly, the ability to very efficiently solve the LE is a key factor in these approaches, and can
still be limiting in some practical applications. Therefore, algorithms for solving the LE is an
important topic that directly relates to the biophysical study of macromolecules by
sedimentation velocity. It provides tools that are unique for studying interacting multi-
component mixtures in free solution [21,57].

The development of algorithms for the LE has been an active field for several decades. Solving
the LE is not trivial due to the large concentration range that is spanned by LE solutions (see
Figure 1), the steep gradients at the distal end (or ‘bottom’) of the solution column, and the
necessity for an accuracy sufficient to fully exploit the high experimental signal/noise ratio of
up to 1000:1. Numerical approaches currently appear to be advantageous compared to
approximate analytical solutions mainly due to their flexibility, which allows features like non-
uniform loading concentrations [41,60], density gradients [58,61], the acceleration phase of
the rotor [62], and – importantly – chemical reactions [34-37,46,59] to be incorporated naturally
into the model. Several different finite difference and finite element approaches have been
described. Finite difference approaches with fixed spatial grids were used in [41,63], but due
to effects of ‘numerical diffusion’ or ‘numerical dispersion’ [35,64,65] (graphically illustrated
in [65] and [66]), they are only applicable for conditions of small molecule sedimentation with
small sedimentation coefficient [41]. Alleviating this problem, time-dependent grids were
developed, either with regions of different grid intervals periodically remapped to maintain
fine grids at the position of the boundary [67], or by continuously adjusting the grid points
such as to provide a moving frame of reference [35,65].

Claverie has introduced the first finite element approach to solve the LE on a fixed set of
equidistant radial grid points [68]. It avoids the problem of ‘numerical diffusion’ due to the
higher-order approximation of spatial derivatives inherent in the finite difference method, and
provides very precise concentration profiles when applied with sufficiently fine spatial and
temporal discretization. Later, we have described an extension of the finite element method on
a grid with moving frame of reference, similar to the grid described in [65]. Translating the
grid points in time like sedimenting point particles generates a moving frame of reference on
which the LE reduces to an easier to solve diffusion problem [42]. This method naturally
imposes a logarithmically spaced grid with higher density closer to the meniscus [42,65].
Recently, in their adaptive space-time finite element algorithm (ASTFEM), Cao & Demeler
have combined the moving frame of reference approach with a region of stationary grid points
at high density close to the bottom of the cell, in order to permit the use of sparser grids without
compromising the numerical stability [43] (see below).

To our knowledge, all previous approaches used reflective boundary conditions at the meniscus
and the bottom of the solution column as suggested by the physical setup of the experiment
(with the exception of the algorithms by Cox and co-workers [36], which were not suitable for
incorporating boundary conditions and therefore simulated sedimentation starting from a
synthetic boundary on an infinite column). Also, to our knowledge, in all approaches the choice
of the total number (and average density) of grid points, which scales the computational effort
and the accuracy, was empirically chosen. Finally, in none of the computational methods was
use made of the trivial analytical solutions for the regions outside the sedimentation boundary.
These issues were examined in more detail in the present work, which, as will be shown,
precipitated the development of a novel algorithm that is far superior in accuracy or speed.

The difficulty of solving the LE is exacerbated for large macromolecules at high rotor speeds,
where the low diffusion coefficient also increases the steepness of the migrating sedimentation
boundaries (Figure 1). This makes it necessary to use a high density of radial grid points, which,
in turn, increase the computational cost. However, In SV experiments of large macromolecules,
the region of back-diffusion from the bottom of the solution column is customarily excluded
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from consideration in the data analysis for several experimental reasons: (1) the inability to
faithfully measure the steep concentration gradients with existing detection systems (chiefly
due to refractive index gradients); (2) the common observation of a phase transition of materials
at the high concentration in contact with the surface, leading to the formation of poorly
reversible surface films, which will substantially alter or even eliminate back-diffusion; (3) the
expectation that strong repulsive non-ideality will occur at the high concentrations close to the
bottom, making models of ‘ideally sedimenting’ interacting or non-interacting species models
inappropriate for this region, even when the ideal models apply at the significantly lower
concentration range observed throughout the rest of the solution column. In order to exploit
this observation, we have introduced recently the concept of solving the LE for a semi-infinite
solution column by implementing permeable boundary conditions at the bottom of the physical
solution column [56,59]. This eliminates entirely the back-diffusion gradients, and thereby
greatly simplifies and improves the stability and computational cost of solving the LE, in
particular for the more difficult cases of large macromolecule SV at high rotor speeds [56].
Despite the unphysical boundary condition at the bottom, it can be applied to the analysis of
experimental data from the region ‘above’ (i.e. at lower radii than) the back-diffusion range
without compromising accuracy [56].

In the current work, we reappraise the accuracy of the finite element algorithms for solving the
LE under these simplified boundary conditions of a semi-infinite solution column. We
demonstrate that, surprisingly, the dominant factor for the remaining numerical errors is caused
simply by the approximation of the curved concentration profiles as a sequence of linear
segments on a limited number of spatial grid points, and that this error scales with the ratio of
the local grid density and the width of the sedimentation boundary. Because the sedimentation
boundaries are steeper in the beginning and then continuously broaden due to diffusion, this
error is largest close to the meniscus. Based on this observation and from physical
considerations, we describe a new finite element approach with spatially varying grid density
that minimizes the discretization error throughout the solution column, and thereby
significantly improves the accuracy of the LE solution. A rational expression is given that
allows to determine the minimal grid necessary to achieve a pre-set accuracy, adaptively
adjusting according to the macromolecular sedimentation and diffusion coefficients, and also
considering the specific experimental conditions and fitting limits. Further, we introduce a new
concept of a dynamic division of the grid into active and inactive points, which eliminates
numerical computation for the regions of the solvent and solution plateaus (Figure 1) where
accurate analytical expressions are available. We describe results from this new algorithm,
which, in comparison to existing algorithms, we found to reduce by more than one order of
magnitude the computational cost for solving LE solutions.

Methods
Solutions of the Lamm equation

As initial condition for solving the LE, we assume uniform loading throughout the solution
column with the concentration c0. Unless noted otherwise, we assume an ideally sedimenting,
non-interacting macromolecule in a solution of constant density. The modifications to account
for chemical reactions or density gradients reported in [58,59] can be applied to the algorithm
described in the following without further complications. First, we recapitulate two important
special cases with relatively simple solutions:

(1) At infinite time, the distribution attains sedimentation equilibrium, which follows the well-
known Boltzmann exponential

(3)
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(with the abbreviation ξ(r)=ω2r2 / 2RT , the buoyant molar mass Mb = sRT/D , the gas constant
R and the absolute temperature T) [1]. For standard experimental configurations of uniform
initial loading (and also excluding flotation), at radii larger than the hinge-point of the
distribution [3], it is ceq(r) > χ(r,t) at all times, such that ceq(r) can be used as an upper limit
for the extent of back-diffusion encountered in a solution column for the sedimentation of
particles with given s and D [56].

(2) For finite times but in the limit of very large, non-diffusing particles (D = 0), Eq. 1 has the
simple analytical solution

(4)

This expression has been used, for example, in the apparent sedimentation coefficient
distribution ls-g*(s) [69], and can be generalized to account for solvent compressibility [61].
Eq. 4 describes the sedimentation boundary as a step-function. For D > 0, at any given time,
Eq. 4 is still an excellent approximation for the plateau regions where the concentrations are
radially constant (regions 4 and 5 in Figure 1).

In the general case, the finite element solution of the LE follows the methods by Claverie and
Schuck that were described earlier [42,59,68], as briefly outlined in the following. The
boundary shape is approximated as a linear combination

(5)

of basis functions

(6a)

for i = 2,...,N-1, and

(6b)

(termed chapeau- or hat-functions) with an underlying grid of radial points r1...rN , starting at
the meniscus (r1 = m) and ending at the bottom (rN = b) of the solution column. Because
Pi(r,t) are triangular, the concentration distribution χ(r,t) in Eq. 5 is approximated by piece-
wise linear segments. Inserting Eq. 5 into Eq. 1, multiplication with Pj and radial integration
leads to a matrix equation for the evolution of the coefficients ci(t).

(7a)

with the tridiagonal matrices
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(7b)

The values of the matrix elements depend on the boundary conditions and on the grid. Claverie
has used a static, equidistant grid, and the boundary condition of a vanishing transport flux (j
= sω2rc – D(dc/dr)) at the beginning and end of the solution column, leading to the conventional
LE solution for a finite solution column [68]. Cox and Dale have given expressions for B,
A(1), and A(2) for this case [36]. When a time-varying grid is used with grid-points that sediment
like point particles ri(t) = ri(0)exp{ω2s(t-t0)}, a moving frame of reference is established so
that simulation of sedimentation reduces to a diffusion problem, which can be solved with
greater stability for large particles [42]. The logarithmically spaced grid

(8)

(for k = 2,...,N-2) is unique in that the grid maps onto itself after time-intervals Δt = 1/[ω2s
(N-1)]×log(b/m), such that the evolution from sedimentation collapses into a simple
renumbering of indices. This makes this approach more stable and accurate for cases of high
sedimentation and low diffusion constants [42]. With the spacing Eq. 8, the density of grid
points increases from meniscus to bottom approximately by the factor b/m, i.e. for practical
conditions of analytical ultracentrifugation typically on the order of 15%. Values for B, A(1),
A(2), and A(3) for the case of non-equidistant, time-dependent grids are given in [42]. Recently,
a modification of the moving frame of reference method was described by Cao & Demeler
[43], where the grid points do not follow the spacing Eq. 8, but are chosen to strongly increase
in density towards the bottom of the cell (see discussion below).

We have shown recently that the boundary condition of a non-vanishing transport flux at the
bottom leads to slightly modified matrix elements, and allows the simulation of sedimentation
on a semi-infinite solution column [59]. As indicated above, the equilibrium expression Eq. 3
was used to judge for any given set of parameters, whether or not back-diffusion can be safely
excluded, considering the distance between the highest experimentally observed data point and
the bottom of the solution column [56,59]. This approach has been combined with the Claverie
and the moving hat finite element algorithm.

In the implementation in SEDFIT and SEDPHAT, an adaptive time increment was chosen,
and propagation was computed according to the second-order Crank-Nicholson scheme [42,
70]. This greatly stabilizes oscillations that otherwise may occur, in particular at coarse grids
at the bottom of the solution column. For considering the rotor acceleration, the rotor speed
was considered a linear function of time ω(t), with a slope  of 200 rpm/sec, and updated in
10 sec intervals [62]. (When modeling experimental data,  can be taken from the entries of t
and ∫ω2dt of the experimental data file.)

Estimating the maximal observed boundary spread
From fundamental considerations, we can expect that the diffusional spread of the
sedimentation boundary will be time-dependent, and approximately follow  (with τ
denoting the diffusion time). Of interest is the boundary spread at a radial point r1* adjacent
to the optical artifacts that arise when imaging the meniscus (Figure 1). r1* is usually removed
from the meniscus by a few tenth of a millimeter, as judged from visual inspection of the
superposition of scans. As implemented in SEDFIT, r1* is the smaller of the two fitting limits.
At a given sedimentation coefficient, the boundary will have the velocity dr/dt = sω2r, such
that the time required for the boundary to arrive at a given radial point r1* is on the order of
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τ∼(r1*-m)/sω2r* (neglecting the small radial-dependence of the force and velocity). It follows
that when the boundary has reached a radius r1*, the spread is approximately

(9)

, with the identity on the right-hand side using the Svedberg relationship [1] between s, D, and
the buoyant molar mass Mb. Straightforward corrections can be applied to account for the
slightly increased extent of diffusion arising from the time lag caused by the acceleration phase
of the rotor.

Estimating the minimum obligate error from the representation of a smooth boundary with
piece-wise linear segments

In the numerical solution of the LE, the continuous function χ(r,t) is represented by a piece-
wise linear function. If we take the maximum absolute deviation from the true, smoothly curved
χ(r,t) as a measure for the goodness of the approximation, the obligate minimal error that must
occur is that from linear segmentation, i.e. the deviation

(10)

(with r1* and r2* denoting again the radial fitting limits, and the radial grid given by ri = r0 +
(m – b) × (i – 1) /(N – 1) ). We expect this error to depend only on the relative dimensions of
the grid density and the boundary spread. In δo the amplitudes ci at the grid points may partially
compensate the error from linearization, as well as the relative location r0 relative to the
boundary midpoint. In practice, somewhat larger errors may be encountered since the ci are
computed by the propagation scheme for the LE solution (see above), and not by the
optimization problem Eq. 10. Therefore, we also estimated the following quantities δ1 and
δ2

(11)

, i.e., we assume that the concentration values of the approximations at the grid points are
identical to the LE solution. For computational purpose, we calculate these quantities for LE
solutions χF(x,t) either based on a numerical solution with a very fine grid or on the Faxen
analytical approximation [29]. δ1 and δ2 reflect the worst and best location of the grid relative
to the boundary. They will be slightly larger than the obligate minimal error δo, because of the
missing flexibilities to freely adjust each individual amplitude ci. δo, δ1, and δ2 were evaluated
using MATLAB (The Mathworks Inc., Nantucket, MA).

Generalization of the Claverie approach to spatially non-uniform grids
We examined a generalization of the Claverie approach with static, but non-equidistant grid.
We focused on the case with high ratio s/D (high molar mass) that is numerically more difficult
and time-consuming to solve, but for which in practice back-diffusion can usually be safely
neglected (and reliably predicted). We considered the notion that the obligate minimum
discretization errors Eqs. 10 and 11 will depend on the relative boundary spread, which takes
the form Eq. 9. The steepest boundary possibly encountered in the data analysis occurs when
the sedimentation boundary is at the left fitting limit r1*. We determined the spacing between
neighboring points at this point to be Δr0(r1*) = σ/α, where the σ is the boundary width
calculated by Eq. 9, and α is a factor that determines the number of grid points per boundary
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width. (We note that a constant value of α, the obligate segmentation error will remain
approximately constant independent of the experimental configuration: for example, values of
α = 5 provide ∼ 25 points across the central 90% of the boundary height, which can describe
boundaries usually with a relative accuracy on the order of ∼ 0.001, see below). At radial points
above r1*, in order to provide a constant ratio σ/α as the boundary moves through the solution
column, we chose the interval between neighboring points Δri to increase after that according
to

(12a)

with

(12b)

It follows that the grid positions are determined by

(12c)

and this recipe then determines the total number of grid-points N needed, based on the pre-set
choice of α. An example for the radial distribution of grid points generated by Eq. 12 can be
discerned from the pattern of vertical lines in Figure 2. The matrix elements B, A(1), A(2)

required for this choice of grid can be calculated with the expressions we reported previously
for nonuniform grids and the adjustments for semi-infinite solution columns [42,59].

Dynamic division of active and inactive grid points
With the grid according to Eq. 12, for experimental configurations commonly encountered in
practice, the increase in grid spacing can be ∼ 10-fold. Thus, once the sedimentation boundary
has moved further into the solution and has depleted the meniscus region, the majority of grid
points would remain at locations with negligible solute concentrations. The following strategy
can alleviate this computational inefficiency: We note that χ(r,t) without back-diffusion is
monotonically decreasing with time at all radius values, and at any point in time χ(r,t) is
monotonically increasing in radius. At a time-point t’, we search for the highest radial point
r’ where the concentration values has fallen below a threshold value that can be safely
considered to be zero without significant impact on accuracy (safely below the required
accuracy, e.g. c(r’) < c0×ε, with ε = 10−4 − 10−6). Because χ(r<r’,t>t’) < χ(r’,t’) all
concentration values at smaller radii and later times will be negligible. The range of radius
values r’ for which this condition is true will start near the meniscus and continuously grow to
higher radius values.

To take advantage of this, we devised modifications of the standard algorithms for the
tridiagonal matrix operations for the case that only the elements between N’ and N of the
concentration vectors are nonzero. This allows to eliminate most (though not all) of the matrix
operations for all grid points within ri < r’(t). Essentially, in this way, the computationally
utilized portion of the grid shrinks with time as the boundary moves away and leaves the region
close to the meniscus behind in the solvent plateau.

Analogously, it is possible to utilize the analytically trivial concentration value of the solution
plateau (Eq. 4): First, a consequence of the absence of back-diffusion is that for any radius
values r’’ where the concentration is within a pre-set accuracy from the solution plateau (i.e.,
cp(t) – χ(r’’,t) < c0×ε) it is χ(r>r’’,t) > χ(r’’,t) and therefore any radius value higher than r’’
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will be even closer to the plateau (i.e., cp(t) – χ(r>r’’,t) < c0×ε). Second, we note that with the
boundary condition for the semi-infinite solution column it is in fact irrelevant where the
simulated bottom position is located, as long as it is within the plateau region. Therefore, we
can shorten the simulation to the grid points at radii smaller than r’’ , i.e. to points ri with i <
N’’, by modification of the propagation matrix to permeable boundary conditions at N’’. This
eliminates all operations for i > N’’. Within the pre-set accuracy, the concentration values at
r > r’’ (i > N’’) can be substituted by the analytically calculated plateau value. With the progress
of sedimentation, this upper limit N’’ should be moved to larger values. This was implemented
so that once less than 10% of the solution column are within ε of the plateau value, N’’ will be
increased by 0.1×N. When time-dependent rotor speeds occur, due to the consideration of rotor
acceleration, the expression Eq. 4 for the solution plateau can be replaced by a differential form
for radial dilution per time-increment. Eq. 4 does also not apply for pressure-dependent
sedimentation in compressible solvents, but the analytic expressions for the solution ‘plateau’
in [61] could be used for the analytic extension of the dynamic grid.

As a consequence of the dynamic adjustment, only the portion of the grid will be
computationally utilized that is required for the non-trivial portion of the concentration profile.
This is illustrated in Figure 2. Initially, when the boundary is close to the meniscus and small
time-steps are required for stable solutions, most of the grid throughout the solution column is
switched off and only the high-density portion needed for precise simulation is active. As the
boundary migrates away from the meniscus, this region containing the density of grid points
will be continuously deactivated, and new points will be activated in a density such that the
broadened boundary encounters just sufficient grid points to maintain the preset accuracy of
simulation. Synchronized with the boundary movement, the computational limit of the semi-
infinite column will move ahead until the data analysis limit (or the real bottom of the cell) is
reached.

Results
It is helpful to clarify first the measure of accuracy in the simulations to be used, as well as the
accuracy and useful radial range in the experimental data. The goal of modern sedimentation
velocity analysis by direct modeling of LE solution is not merely to determine the average
sedimentation rate and boundary midpoint, but to extract detailed information on the
sedimenting solutes from the shape of the sedimentation boundary. As a consequence, our
measure of goodness for the numerical approximation of the LE solutions will be the maximum
deviation from the true solution in the sedimentation boundary. This is superior as a measure
of error to the root-mean-square deviation (rmsd) across the whole concentration profile: The
latter can exhibit more than 90% of data points in the solvent and solution plateaus (Figure 1),
which are trivial to predict (Eq. 4), and therefore the rmsd value can be misleadingly low, even
though the errors in representing the boundary shape may be unacceptably far above the
experimental error (see also the discussion).

In typical SV experiments, the noise in the data acquisition is between 0.003 − 0.01 (OD units
for absorbance optical data, or fringe shift units for interference optical data), such that a
benchmark for the maximum deviation to remain below 0.001 seems to be a necessary
conservative criterion. The radial increments of digitally stored data points are > 0.0007 cm
(< 1,500 data points per scan for a 10 mm solution column), which sets an upper limit for the
smoothness in the curvature of the fitting functions required in the data analysis.

From the point of view having practical data analysis in mind, it is important to consider the
radial range for which reliable experimental data are available. Obviously, the theoretical errors
of the LE solutions will be irrelevant outside this radial range. Because of optical artifacts close
to the meniscus, the data analysis typically cannot start at values smaller than r* = m + 0.01
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cm, a value assumed in the following (see discussion below). For the maximum radius,
following common practice in sedimentation analysis we concentrated on the case where back-
diffusion is absent within the radial range of data analysis (except when dealing with very small
molecules), and chose the maximum radius accordingly. For medium and large proteins, the
extent of back-diffusion decays rapidly with increasing distance from the bottom of the solution
column. For example, in the configuration in Figure 4A below, the amplitude of signal arising
from back-diffusion at a radius b – 0.5 mm is 0.003, and it is below 0.001 at b – 0.6 mm. (As
described previously, the sedimentation equilibrium profiles Eq. 3 are upper limits for χF(r,t)
and can therefore be used to predict whether, at the maximum radius considered in the data
analysis, back-diffusion may need to be considered or the LE can be solved for a semi-infinite
solution column.)

A premise of all currently used numerical solutions of the LE is the approximation of the
concentration profiles by piece-wise linear segments. This is accomplished through the
approximation by piece-wise linear elements (e.g., triangular hat function, Eq. 5). This
motivated us to examine the error incurred with this segmented representation when applied
to a curve shaped like a sedimentation boundary. As a reference curve, we chose a smooth
boundary taken from the simulated sedimentation of a 100 kDa protein at t = 1770 sec (Figure
3A). Figure 3B shows the maximum error from a piece-wise linear approximation dependent
on the density of grid points. For convenience, we scaled the grid point density relative to our
measure of the boundary width σ defined in Eq. 9. The red lines in Figures 3A and B were
calculated allowing the concentration values at each grid point to freely minimize the maximum
deviation δ0 (Eq. 10), i.e. without any constraints from any context with LE solutions. The
solid red line shows the error encountered with the best relative lateral shift of the grid relative
to the boundary, and the dotted line represents the worst-case relative position of grid to
boundary. In order to explore what might happen if the concentration values at the grid points
are constrained to be computed from LE algorithm, we also calculated the analogous quantities
δ1 and δ2 encountered when the concentration values fall exactly on the ‘true’ curve (blue lines
in Figures 3A and 3B). Clearly, for a coarse grid, the errors are very significant and above the
noise in the ultracentrifugal data acquisition, while for finer grids with α-values greater than
approximately 5, the errors are below our threshold.

In order to examine the discretization error when solving the LE, we generated first a reference
solution with very fine grid (total number of grid points N = 10,000), using sedimentation
parameters and sample geometry as could be encountered in practice for the 100 kDa protein
(Figure 4A). Next, we examined the accuracy of the LE solution obtained at different time-
points with different grid spacings. Figure 4B shows the residuals to the reference solution
obtained when using a grid of N = 100. Very similar patterns are observed when using either
the Claverie or the moving hat method. It can be discerned that the largest deviations occur
closer to the meniscus and for scans that are earlier in time, i.e. scans exhibiting steeper
sedimentation boundaries. This observation holds true for all cases, except for very high N
where the maximum errors are < 0.001 throughout. Further, a scalloped pattern can be
discerned, suggesting the residuals to arise from the approximation of a curved line by piece-
wise linear segments. This suggests that the simple geometric constraints introduced when
using coarse grids may be a significant contributor to the observed deviations. To this end, we
calculated the obligate error from discretization δ0, as well as δ1 and δ2, for each time-point.
The bold dotted and dashed lines in Figure 4B show these errors across the boundaries when
plotted as a function of boundary midpoint. The close correspondence further supports that the
simple discretization errors may be the dominant limitations in the accuracy of the LE solution
at coarse grids.

We examined how the maximum deviation changes for different grids and different
sedimentation parameters. For the sedimentation parameters of Figure 4, the green dotted line
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in Figure 5A shows the observed values as a function of grid density. In order to maintain the
required accuracy indicated by the black dotted horizontal line, a grid interval of less than 0.004
cm (or a total grid number of N = 250 for the 10 mm column, see top axis) is required. A slightly
finer grid is required when sedimentation is simulated (for both the reference and the coarse
grid) considering the acceleration of the rotor (green solid and dashed lines). The Claverie
algorithm using the equidistant grid (solid line) and the moving hat algorithm with the
logarithmically spaced grid (dashed line) show very similar results. Analogously, we examined
the maximum deviations for a range of sedimentation parameters, mimicking particles of
increasing size and boundary steepness. For very small, rapidly diffusing particles, coarse grids
are sufficient (e.g., 0.016 cm for the 1 kDa particle), while for very large, slowly diffusing
particles that form steep boundaries, very fine grids are required (e.g., 0.0008 cm for the 1 MDa
particle). In practice, this poses the difficulty of automatically choosing an appropriate
discretization that neither is wasteful in computation time, nor leads to unacceptably large
errors.

Based on the hypothesis developed above that the major contributing factor to the deviations
are the obligate errors arising from the segmented piece-wise linear approximation, we plotted
the observed deviations from Figure 4A as a function of α, i.e. the ratio of smallest boundary
width (as determined from the fitting limit close to the meniscus, see Eq. 9 above) to the grid
interval, which determines the number of points available to describe the curvature of the
boundary. This is shown in Figure 4B. Consistent with our hypothesis, and remarkably similar
to the theoretical obligate error without solving the LE, for all sedimentation processes
simulated the deviation scales in a very similar way, with an acceptable maximum deviation
of 0.001 for values of α between 4 − 6. This corresponds to between 24 − 36 discrete points
that are required to describe the transition between the solvent and solution plateaus of the
smooth sedimentation boundary with sufficient accuracy. This observation can be used to
provide a rational prediction of the most efficient, yet still acceptable grid density. As
implemented in the program SEDFIT, the default value is α = 5.1

Since the major limiting factor for the accuracy of the numerical LE solution appears to be the
spatial discretization relative to the boundary width, we attempted to exploit this observation
to construct an optimal grid with a density that is adequate for the steepest boundary close to
the meniscus, and then continually decreases in density such that the diffusing boundary will
be modeled by approximately a constant number of grid points. The scheme Eq. 12 outlined
above has these properties. As can be anticipated from the significant drop in the obligate error
as a function of radius (dotted lines in Figure 4B), assuming an optical artifact close to the
meniscus covering 0.01 cm, in this scheme the grid spacing at the end of a 10 mm solution
column is 9.3-fold larger than in the beginning. This translates into a grid that for the same α-
value requires approximately fivefold fewer grid points. In combination with the scheme
described above to inactivate grid points once the boundary has migrated across and they are
not needed anymore, this algorithm will be more than fivefold faster. Conversely, when using
the same total number of grid points N, the improved spacing of the grid points provides an
increase in the α-value by a factor of five.

In order to establish the correct implementation of this algorithm, we first verified that for all
simulations the results correctly converged to the previously calculated fine-grid reference
solutions when using a very high number of grid points (data not shown). Next, we tested its
performance by applying it to our reference sedimentation in Figure 4, using the same number
of total grid points (N = 100). While the traditional equidistant grid provides an α-value of 0.73

1It should be noted that the lower limit of grid interval for which this consideration applies is given by the interval between experimental
data points. However, the interval between experimental data points is typically smaller than the interval between grid points for adequate
numerical solutions of the Lamm equation.

Brown and Schuck Page 11

Comput Phys Commun. Author manuscript; available in PMC 2009 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and the residuals in Figure 4B, the optimized grid at N = 100 corresponds to α = 3.63 and
provides the residuals shown in Figure 4C. It can be discerned that the magnitude of the
residuals is much smaller. Whereas the standard Claverie algorithm has a maximum error ∼
0.0085, the new algorithm has a maximum error of ∼ 0.001. Interestingly, the residuals show
a more uniform distribution across the cell, with the scalloped residual pattern increasing in
distance but not in height (Figure 4C). This shows the grid design was successful in providing
constant discretization relative to the diffusionally broadened boundary. For the time range
shown in Figure 4, the simulation starts with 8% of the grid points active, never exceeding
70%, and for last concentration profile only 31% of the grid points remain active, which shows
that the dynamic reduction of grid size is also highly effective. This gain is independent of the
α-value.

We re-analyzed the sedimentation of different size particles using the new algorithm at different
α-values. For small particles, where back-diffusion is shallow and cannot be excluded, the new
algorithm performed slightly worse than the standard Claverie algorithm with equidistant grid.
(For example, for the 10 kDa particle, a grid with total size N = 145 provides a maximum
deviation of 0.0024 with the new algorithm, but 0.0018 with the equidistant grid.) The lack of
gain in accuracy is due to presence of back-diffusion, which produces similarly steep
boundaries close to the bottom as are encountered close to the meniscus, and this cannot be
appropriately matched by the continuously sparser grid in the new algorithm. Further, the
ability to scale the discretization according to α breaks down in the presence of back-diffusion.
This is a reminder that the error analysis and the grid design described in the present paper was
based on the absence of back-diffusion. However, the gradients in the sedimentation profiles
of small particles are relatively shallow throughout, and the standard algorithms pose no
difficulty and are already highly efficient (see the black and blue lines in Figure 5A).

In contrast, when back-diffusion is localized to the bottom of the cell and the boundary
conditions for semi-infinite column can be used, the theoretical predictions on which the new
algorithm is based hold true. As shown by the dash-dotted lines in Figure 5B, despite the
approximately fivefold reduction of grid size N throughout, for a given α value the accuracy
is similar to that with the larger equidistant grid, and the maximum deviation follows the
predicted values. When comparing grids of similar size N, again, the gain in accuracy is very
significant. For example, for the 1 MDa particle the simulated sedimentation with N = 269
using the new algorithm provides a maximum deviation of 0.001 (α = 5), whereas with the
moving hat algorithm a maximum deviation of 0.12 is obtained (α ∼ 1). At a slightly finer grid
with N = 385, the new algorithm generates a maximum deviation of 0.0007 (α = 7) versus 0.011
(α ∼ 1.5) with the standard moving algorithm. We conclude that the new optimized grid
eliminates the need for computationally very costly high total number of grid points, while
providing a predictably high accuracy.

Finally, we compared the results with the ASTFEM finite element approach proposed by Cao
& Demeler [43]. Instead of eliminating the steep back-diffusion region exhibited by large
macomolecules, Cao & Demeler placed a higher density of grid points into the back-diffusion
region. They observed that the ASTFEM method is stable for sedimentation of very large
particles even when using very coarse grids, such as N = 100 – numerical discretization
parameters for which both the standard Claverie and the moving hat methods are not designed
and show instabilities – while reporting only minor differences between the algorithms when
using larger grid sizes for the same sedimentation parameters. Because Cao & Demeler did not
consider the regions of steepest gradients in their measure of goodness of fit (excluding both
the 5 % of data points closest to the meniscus and the 5% closest to the bottom), we re-examined
their results in the light of the criteria developed in the present study and compared them to
the results with the new method proposed in the present study.
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As one benchmark model system, Cao & Demeler used a model system of a particle with s =
10 S and D = 2×10−7 cm2/sec sedimenting at 60,000 rpm, for which the sedimentation
boundaries at different grid sizes are shown in Figure 6 (which is reproduced from Figure 8B
in [43]). Although the ASTFEM approach provides stability at coarse grids, very large errors
are encountered (e.g. red line in Figure 6 for N = 101). Despite the exclusion of the first 0.035
cm from consideration, the maximum error at N = 101 was ∼0.03, dropping to ∼0.01 at N =
201 [43]. In none of the examples shown in [43] was the maximum error below our threshold
of acceptable accuracy. This result is consistent with our predictions on the obligate errors at
grids as coarse as those in [43].

Figure 7 shows the concentration profiles encountered for the same sedimentation parameters
using the new generalized dynamic Claverie method for semi-infinite solution column with
static, non-equidistant grid, with the left and right analysis limits r1* and r2* placed at 6.51 cm
and 7.165 cm, respectively. For this system, the standard accuracy of 0.001 (α = 5) for modeling
experimental data would require approximately N = 300 initial grid points. However, for
comparison with Figure 6B, we calculated the concentration profiles when the grid size was
constrained to the same N = 100 total points (red dotted line in Figure 7A and solid red line in
Figure 7B). This corresponds to α = 1.7, and resulted in a maximum error of 0.0043. From
visual comparison of Figure 6 and 7B over the same radial range, an improved accuracy by
more than an order of magnitude can be easily discerned. At the same time, the dynamic
reduction of grid points leads to the elimination of 80% of the grid points at the time point of
the last scan shown in Figure 7A, and the elimination of greater than 50% of the grid points at
any time-point.

Discussion
In the last decade, the ability to solve efficiently the partial differential equation for
sedimentation, diffusion, and chemical reactions in the centrifugal field has transformed
experimental approaches and the data analysis in analytical ultracentrifugation. It has
significantly improved detection limits and resolution, and our ability to quantitatively describe
complex sedimentation processes of macromolecular mixtures. In particular, the convenient
use of LE solutions as model function in non-linear regression and/or as kernels in Fredholm
integral equations enabled many new techniques, including direct boundary modeling with
distributions of LE solutions, and direct boundary modeling with systems of LEs with
chemically reacting species, which found wide-spread application in physical biochemistry,
for example, in the study of protein-protein interactions [46,49,59,71], the detection of
immunogenic oligomeric species of protein pharmaceuticals [10-13], global multi-signal
sedimentation velocity analysis of reversible multi-protein complexes [23,57,72-74], and other
applications [52].

Many different algorithms for numerically solving the LE have been described over four
decades [34,36,41-43,46,59,63,75,76], and their further development is still a topic of active
investigation since it is critical for many practical applications [21]. Recently, we have noted
that the boundary conditions for a permeable bottom (leading to the model of a semi-infinite
solution column) can facilitate significantly the LE solution by removing numerical instabilities
in the steep gradient of the back-diffusion region. This was introduced first as a tool to stabilize
the system of LEs describing the sedimentation of chemically reacting mixtures of
macromolecules [59], but later also applied to simplify the LE solution of non-interacting,
ideally sedimenting species [56]. Clearly, back-diffusion cannot be excluded when describing
the sedimentation of small molecules, where the radial range of back-diffusion is broad and
extends significantly into the solution column. However, in this case the gradients are shallow
and pose no difficulty experimentally or computationally. For large particles, however, the
extent of back-diffusion is confined to a narrow region close to the bottom of the cell and has

Brown and Schuck Page 13

Comput Phys Commun. Author manuscript; available in PMC 2009 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to be excluded from consideration in the practical data analysis, because: (1) it cannot be
imaged reliably due to the refractive index gradients; (2) the high concentrations encountered
would make the consideration of repulsive forces between macromolecules indispensable; and
(3) the solubility limit of many proteins is exceeded, leading to a phase transition and generation
of surface films that will substantially alter the back-diffusion. The decision whether or not to
exclude back-diffusion is usually not further problematic, since its extent can be visually
discerned from the experimental traces, and in theory it can be easily predicted for any set of
sedimentation parameters and automatically compared to the radial range of experimental data
to be considered [56].2

Having eliminated one of the numerically problematic features of sedimentation profiles for
large macromolecules using the permeable boundary conditions, in the current paper we have
reappraised the accuracy of different finite element algorithms for the remaining problem of
simulating sedimentation in the semi-infinite column. Based on the findings, we propose a
series of modifications of the original Claverie approach that leads to approximately an order
of magnitude or more improved accuracy and efficiency for solving the LE in the absence of
back-diffusion.

Perhaps the most striking observation was that for the semi-infinite solution column, both finite
element models predict surprisingly accurate concentration values at the spatial grid points.
For the parameter range tested with particles up to 30 S (and with at least several grid points
available for the steepest boundary) few differences were observed between the performance
of the moving hat and the Claverie approach. This suggests that, at least for ideally sedimenting
non-interacting species, the advantage of the moving hat algorithm reported previously [42,
43] may be due to improved stability in the back-diffusion region, a factor removed in the
current study (see above).

Cao & Demeler have suggested that the Claverie finite element approach suffers from the
problem of ‘numerical diffusion’ [43]. This is in conflict with the results presented here. We
believe Cao & Demeler have misinterpreted their findings: Numerical diffusion is an effect
that occurs in finite difference schemes due to the combination of fast translation of the
boundary described with large spatial increments (i.e. high Péclet numbers) [41,64]. It is
noteworthy that the errors observed by Cao & Demeler were strongly dependent on the time
step Δt [43]. However, a hallmark of numerical diffusion is that it cannot be eliminated by
reducing the time-step. Indeed, an analytical expression for the excess ‘numerical diffusion’
ΔD = sωrΔr/2 encountered in naïve finite difference schemes has been given already by Goad
& Cann [35] (consistent with our observation ΔD ∼ sωΔr reported in [41]). Goad & Cann also
gave a prescription to minimize it either by diminishing the radial grid interval Δr, using higher-
order accuracy schemes for the gradients determining the fluxes, or using grids with moving
frame of reference [35]. We do see numerical diffusion with simple finite difference approaches
because of the low approximation of the spatial derivatives of the concentration profile [35,
41,64], however, this effect is absent in the finite element approach using hat functions, because
the latter naturally can describe the spatial derivatives much better, equivalent to a forth-order
compact finite difference approximation [64]. We believe the poor numerical results observed
by Cao & Demeler were caused by a poor choice of large time-steps causing negative
concentrations, an effect which we can reproduce (data not shown) but is easily eliminated by
appropriate adaptive time-step management.3

2Modeling a mixture of small and large macromolecules with a sedimentation coefficient distribution poses no difficulty in this regard.
The experimentally observed back-diffusion will be considered when solving the Lamm equation for the small species, but still can be
automatically ignored when solving the Lamm equation for the large species, dependent on fitting limits and the position of the bottom
of the solution column.
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In fact, we found the accuracy of the Claverie finite element propagation scheme is so high
that, for obtaining the accuracy required in experimental data analysis, the chief limitation
arises not from the properties of the LE, but rather from the simple error of approximating the
smooth boundary by piece-wise linear functions! This error is not at all dependent on the
algorithm for computing the evolution of concentration values at the grid points, but is an
obligate geometric consequence of using linear basis elements. Although it seems an obvious
concern in retrospect, to our knowledge, this source of error has previously not been
systematically appreciated in the LE literature, possibly because it has been masked by larger
numerical errors in the back-diffusion region – which are now removed in the semi-infinite
column. However, even in the study by Cao & Demeler where numerical errors in the back-
diffusion region were minimized [43], the large obligate errors obtained from too coarse grids
(e.g, Figure 6) were not recognized or addressed. It should be noted that this error is not
artificially introduced in this theoretical study but highly relevant in practice, since the typical
grid density used to compute the LE solutions are lower than the density of experimental data
points, and also lower than the radial resolution of the optical systems, and therefore are of
concern when the experiment involves conditions that lead to the observation of steep
concentration gradients. In regard to the latter, the new algorithm described in the present paper
adaptively adjusts the prediction of maximum concentration gradients that need to be
considered according to the relative location of meniscus and first data point r1* to be modeled.

In examining this obligate error of LE solutions from linear segmentation, we find it most
instructive to focus on the maximum deviation incurred in the sedimentation boundary, as
opposed to the overall rmsd, since the data points in the solvent and solution plateau are trivial,
and their contribution confounds the analysis and provides misleadingly low error values (see
below). This also corresponds well to the judgment of the quality of fit in practice, where the
bitmap representation of the residuals [55] has proven to be a highly useful tool to emphasize
the quality of fit at each time-point in the sedimentation boundaries. Clearly, computed LE
solutions that show excellent accuracy in the solvent and solution plateau, but exhibit large
numerical inaccuracies just in the representation of the boundary shape, will not be suitable
for use in detailed data analysis in practice. When analyzing experimental data, the accuracy
in the boundary shape is indispensable, for example, when deconvoluting diffusion in order to
achieve higher resolution sedimentation coefficient distributions [53,54], characterizing trace
species [15-18,77], determining molar masses and size-and-shape distributions [56], or when
studying chemically reacting species and their equilibria and kinetics [46,49,59,71].4

Our observation that the largest errors occur with the steepest boundaries near the meniscus
close to the beginning of the sedimentation seems to coincide with occasional reports of large
deviations in the fit of experimental scans from the beginning of the run close to the meniscus.
Whether or not the latter can be attributed to errors in the LE solution certainly depends on the
grid size used in the computation. While some of the grid sizes suggested recently by Cao &
Demeler [43] are too coarse for large macromolecules (Figure 6, see Results section above),
the default settings in SEDFIT are conservatively designed to lead to grid size that warrant a
default numerical accuracy in the sedimentation boundary better than the noise of data
acquisition. Considering that the steepest boundaries in the beginning of a run are also most
susceptible to experimental imperfections, chiefly convection, we believe experimental factors

3In reproducing the numerical results in (43), we found that the errors observed at coarse grids are caused by the too large fixed time-
steps causing negative concentrations when the boundary is peeling off the meniscus. The choice of time-steps in (43) was based on time-
steps designed for the moving hat algorithm (Eq. 14 in (43)), which is generally a poor choice for use with the Claverie algorithm. In our
hands, the errors observed in (43) are easily removed with appropriate adaptive time-steps, which are smaller initially and increase with
time (67). This pitfall of too large time-steps has been described, for example, by Goad & Cann (35).
4For cases where the shape of the diffusion broadened boundary is not of interest, such as extremely large particles that do not exhibit
significant diffusion on the time-scale of sedimentation, the representation of sedimentation by step-functions Eq. 3 is comparatively
trivial to calculate, and can be used for sedimentation coefficient distributions (69).
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to be usually limiting. This is corroborated by the observation that with SEDFIT fits within
the noise of data acquisition can be routinely achieved.

Recognizing that, for the semi-infinite solution column, the grid density relative to the
boundary width (the α-value) is a factor that can scale uniformly the maximum errors involved
in the discretization, we have used simple physical considerations to rationally predict the
computationally most parsimonious grid size required to ensure a pre-set accuracy. We found
that for a given geometry of the solution column the product  or  scales the
total number of grid points required. This is different from the empirical scaling relationships
described by Cao & Demeler, suggesting that N be largely independent of s, but N ∼ D−1/4

[43]. The different observations may be due to the problematic choice of the rmsd (or more
precisely the L2 –norm over the central 90% of the solution column) as a measure of error, and
perhaps due to the effects that back-diffusion has on the numerical accuracy in their algorithm.

Although the finite element method as introduced by Claverie was described with equidistant
grid points, it can be naturally extended to arbitrarily placed spatial grid points, when the
general expressions for the matrix elements given in [42] are used. We have exploited this
possibility to generate a grid that has the highest density where the steepest gradients in the
semi-infinite column are encountered, following the expressions for the estimated increase in
boundary width as a function of radius. It is implemented in SEDFIT adaptively adjusting to
the given sedimentation and diffusion coefficients, rotor speed and acceleration, and radial
range to be modeled. Even though the moving hat method also exhibits a slightly higher density
closer to the meniscus, imposed by its inherent symmetry requirements, the change across the
solution column is much stronger in the new method, which uses the considerations of obligate
error from the approximation with piece-wise linear elements to predict the optimal grid
spacing. An alternative approach to strongly diminish the obligate error while maintaining
coarse grids would be the use of quadratic, or other curved, elements replacing the hat functions.
However, this would lead to more complicated band matrices to be solved at each time step,
offsetting some of the advantage [64].

Following the idea of Cao & Demeler [43], with the static non-equidistant grid approach one
could also place more grid points in the region close to the bottom region. However, we did
not pursue this since for the configurations exhibiting shallow back-diffusion, when a
description of back-diffusion is needed, the standard Claverie algorithm works very efficiently
and accurately in our hands, and for configurations exhibiting steep back-diffusion the
permeable boundary condition eliminates numerical problems in this region without extra
computational cost. In fact, the dynamic inactivation of grid points permits the entire leading
solution plateau to be dynamically eliminated from the computation and replaced by the trivial
analytical computation of solution plateaus.

We also did not further explore the application of more complex time-dependent grids. The
continuous dynamic inactivation of the higher density portion of the grid once the boundary
has passed is a new approach that has little computational overhead and provides very
satisfactory results. Similarly, the inactivation of points in the solution plateau facilitated by
the boundary condition for the semi-infinite solution column is straightforward, and in
combination, the two approaches generate a dynamically changing active set of grid points that
maintains an optimal density of points while co-migrating with the sedimentation boundary.

In conclusion, based on a detailed error analysis and simple physical principles, we have
developed a new finite element method for solving the LE on a semi-infinite solution column,
using a static, non-equidistant grid optimized for achieving a uniform pre-set accuracy, in
conjunction with adaptive time-steps in Crank-Nicholson scheme and in combination with a
novel approach for dynamic inactivation of grid points in the trivial regions of the solvent and
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solution plateau. From our experience so far, we believe it outperforms existing algorithms by
approximately an order of magnitude or more in computation time or accuracy, not in the least
because it can estimate the minimal grid size necessary to achieve a preset accuracy, if
measured by the maximum deviation in the sedimentation boundary. This can benefit several
areas where the computation of LE solutions is still posing constraints. For example, this
principle can be applied to systems of coupled LEs for chemically reacting species [46,49,
59,71], which are significantly more difficult to compute, and where the large computation
time for the LE solutions is currently still affecting practical non-linear regression in global
modeling. For using LE solutions as kernels in integral equations for sedimentation coefficient
distributions [53,54] and size-and-shape distributions [56], the operations connected to the
handling of the typically very large number of experimental data points are frequently the most
time consuming [53]. However, when radial pre-averaging is applied to reduce the number of
experimental data points, fast and precise LE solutions can become limiting. This is important,
for example, for embedding sedimentation coefficient distributions into non-linear regression
of additional parameters, such as one or more scaling parameters for the frictional ratio f/f0 for
mixtures of globular macromolecules, or the persistence length for distributions of linear
macromolecules, and/or geometric parameters of the solution column [54]. Other applications
where the calculation of LE solutions are still the limiting factor are the modeling of
macromolecular sedimentation in the presence of dynamic density gradients formed by
sedimenting co-solutes [58], and the modeling of sedimentation of macromolecular
distributions at high concentrations under non-ideal conditions (P. Brown and P. Schuck,
manuscript in preparation). The latter topics are of increasing interest in the characterization
by sedimentation velocity of protein therapeutics and their formulations with regard to trace
contents of immunogenic aggregates, which is an area of emerging importance [15-18,78].
They are of importance also, for example, for the detailed analysis of proteins in the presence
of high concentrations of co-solvents stabilizing or de-stabilizing the conformation. Since the
LE solutions are the key to the detailed quantitative interpretation of sedimentation velocity
experiments, their more efficient and accurate calculation may also facilitate other more
advanced applications of analytical ultracentrifugation to the study or macromolecules in
solution and their interactions.
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Figure 1.
Example for the shape of sedimentation velocity profiles of large macromolecules. The curves
shown are calculated for a large protein complex (1 MDa and 30 S) at unit concentration
sedimenting at 50,000 rpm. Steep slopes can be discerned in the sedimentation boundary, in
particular, at early times close to the meniscus at 6.2 cm (1), and close to the distal end (bottom)
of the solution column (2). The latter steep increase close to the end of the solution column is
referred to as back-diffusion region. It cannot be experimentally reliably imaged, and is
therefore customarily excluded from the data analysis (but until recently not from the computed
LE solutions). The inset shows the increase in concentration with time at the end of the solution
column (3), reaching concentrations > 100-fold the loading concentration, in the experiment
frequently leading to phase transitions and surface film formation. This back-diffusion region
can be excluded from the LE solution by using the boundary conditions for a semi-infinite
column (or permeable bottom). Except for very early and very late time-points, the boundary
enclosed by regions of the solvent plateau (4) and solution plateau (5). The concentration in
the solvent plateau is negligible (for example, < 10−30 from 6.2 to 6.3 cm at times > 600 sec),
and in good approximation is constant at zero. The concentration in the solution plateau is also
virtually constant, but decreasing with time due to the effect of radial dilution in the sector-
shaped solution column (see Eq. 4). Also shown are examples for the location of the fitting
limits r1* and r2* that exclude the regions of experimental optical artifacts and describe the
radial range of reliable data acquisition.

Brown and Schuck Page 21

Comput Phys Commun. Author manuscript; available in PMC 2009 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Spatial distribution of the radial grid and the evolution of active and inactive grid points. The
grid is taken from the example discussed in Figure 7, where N = 100 points are used to describe
sedimentation of a 10 S, 450 kDa protein in a solution column from 6.5 to 7.2 cm. For the data
analysis limits at 6.51 cm and 7.165 cm (blue dashed lines), Eq. 12 results in grid points
indicated by the vertical lines. Dependent on the position of the sedimentation boundary, grid
points that are active (differing by more than 10−4 from both solvent and solution plateaus) are
shown in red. The inactive grid points, shown in black, do not require numerical computation.
The evolution of the concentration profile is indicated by the vertical axis, which denotes the
iteration steps (A) or time (B and C), respectively. The division of active and inactive is
dynamically adjusted (bold red lines), leaving less than half of the points active throughout the
simulation. In Panels B and C, the dotted line indicates the boundary midpoint. Panel C provides
an expanded view for early times and radii close to the meniscus. It should be noted that the
grid spacing between 6.5 cm and 6.51 cm is constant at Δr0 (Eq. 12b), before increasing in a
manner following diffusional broadening (Eq. 12a).
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Figure 3.
Theoretical deviation of a segmented piece-wise linear approximation to a smooth
sedimentation boundary. (A) As a reference boundary, the concentration profile of a 100 kDa,
6 S – species sedimenting for 1770 sec at a rotor speed of 50,000 rpm was computed with a
very fine grid (black line). Assuming a constant distance between neighboring grid points given
by the expression σ (Eq. 9) (which corresponds to value of α = 1, or approximately 6 points
available to describe the transition from solvent to solution plateau), the best possible boundary
approximation with piece-wise linear segments is shown as red dotted line (optimizing the
concentration values at each grid point to minimize the largest vertical deviation). The
maximum deviation at the most favorable lateral offset of the grid relative to the boundary is
termed δ0 (Eq. 10), and represents the obligate error, a lower limit that any numerical LE
solution will have to exceed. The blue line shows the segmented boundary representation when
the concentration values at the grid points are constrained to the true values at these grid points.
This deviation is δ1 or δ2 (Eq. 11), and is larger than δ0. The inset shows an expanded view of
the leading edge of the boundary. (B) The deviations from the smooth boundary change as a
function of grid interval, plotted in units of α. Shown are the maximum deviations when the
concentration values at the grid points are held at the ‘true’ value of the smooth curve, for the
best and worst possible relative position of grid and boundary midpoint (δ2 and δ1, blue solid
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and dotted lines), respectively. The obligate error δ0, when the concentration values are not
held to the smooth curve, is shown as red solid line. For comparison, also shown is this error
at the worst possible relative position of grid to boundary midpoint (dotted red line).
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Figure 4.
(A) Concentration profiles calculated for a 100 kDa protein with a sedimentation coefficient
of 6 S sedimenting at ω = 50,000 rpm in a 10 mm solution column (m = 6.2 cm, b = 7.2 cm).
Under these conditions, back-diffusion does not extend into the data range shown. In order to
serve as a reference solution, the LE was solved on a fine grid with N = 10,000 using the
standard Claverie algorithm without consideration of rotor acceleration. The time-intervals
between the boundaries shown are 300 sec, mimicking experimental data acquisition of scans
at discrete times. For clarity, the concentration profiles at selected times are highlighted: 300
sec (red), 600 sec (blue), 4500 sec (cyan), and 7800 sec (green). (B) Difference to the reference
solution when the LE solution is calculated on a coarse grid with N = 100, using the standard
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Claverie algorithm. The maximum deviation of ∼ 0.0085 occurs for the first ‘scan’ (red line),
the boundary with the highest slope. For comparison, the bold black lines show the theoretical
deviations from the representation of the boundaries as piece-wise linear segments, requiring
the concentrations at the grid points to be identical to the true solution (δ2 in Eq. 11, dotted
line), or to be freely optimized (δ0 in Eq. 10, dashed line). (C) On the same scale, the difference
to the reference solution when the LE solution is calculated with the new algorithm using the
placement of grid-points according to Eq. 12, at the same total number of initial grid points N
= 100. (With α = 3.63, this resolution does not quite at the more conservative goal of α = 5,
which would require N = 137 points and have a maximum deviation of 0.00065.) The dynamic
reduction of grid points in the solvent plateau leads to the use of only 31 grid points at the time
of the latest scan shown.
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Figure 5.
Errors of numerical LE solution for different sedimentation parameters and grids. (A)
Maximum deviation as a function of grid interval, or total grid size N for a 10 mm column,
respectively. Shown are simulations based on the Claverie algorithm with equidistant grid
(solid lines) and/or moving hat algorithm with logarithmically spaced grid following Eq. 8
(dashed lines) for particles with: 1 kDa, 0.3 S, 50,000 rpm (black); 10 kDa, 1.5 S, 50,000 rpm
(blue); 100 kDa, 6S, 50,000 rpm (green), 450 kDa, 10 S, 60,000 rpm (magenta), and 1 MDa,
30 S, 50,000 rpm (cyan). The simulated sedimentation included a rotor acceleration phase with
dω/dt = 200 rpm/sec, except for one comparison with the 100 kDa species indicated as thin
green dotted line, which did not include rotor acceleration. In all calculations, a LE solution
was calculated as a reference, with the same parameters on a very fine grid with N = 10,000.
The maximum deviation from coarse-grid simulation was observed in the radial range
excluding the 0.01 cm closest to the meniscus, and excluding the back-diffusion region (except
for the smallest species). The benchmark of the desired maximum error of 0.001 is indicated
as black dotted line. (B) The same data plotted as a function of α, the ratio between minimum
boundary width σ and grid interval. σ was determined as described in Eq. 9. The colors and
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linetypes are unchanged. Additionally, the bold dash-dotted lines are the maximum deviations
observed using the new algorithm with optimized non-equidistant grid Eq. 12.

Brown and Schuck Page 28

Comput Phys Commun. Author manuscript; available in PMC 2009 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Accuracy of simulated sedimentation obtained with Cao & Demeler's ASTFEM method for a
model system of a particle with s = 10 S, D = 2×10−7 cm2/sec (corresponding, for example, to
an elongated 450 kDa protein with f/f0 ∼ 2.0) sedimenting at 60,000 rpm in a 7 mm solution
column from 6.5 cm to 7.2 cm. This is Figure 8B from Cao & Demeler [43], reproduced with
permission. It shows the boundary approximations with the ASTFEM method at different grid
size values N for the same sedimentation parameters. The red line is the simulated boundary
at a value of N = 100. For comparison, the calculated sedimentation boundaries with the same
parameters using the new non-equidistant static grid finite element algorithm are shown in
Figure 6B.
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Figure 7.
Sedimentation profiles calculated for the same parameters as in Figure 6. (A) Reference
concentration profiles were computed with a very fine grid (N = 10,000) , shown in time-
intervals of 100 sec (black line). The concentration scale is truncated, and reaches values >
900 at the bottom, but quickly decays with increasing distance from the bottom, e.g. 1000-fold
within 0.01 cm of the bottom. Also shown as dashed red line is the LE solution with the new
non-equidistant, static grid algorithm with N = 100 (corresponding to α = 1.7) eliminating back-
diffusion by placing the left and right analysis limits r1* and r2* at 6.51 cm and 7.165 cm,
respectively. Over this radial range, the maximum error to the data shown is 0.0043. The
dynamic reduction of grid points in the solvent plateau leads to the use of only 20 points at the
time of the last scan shown. (B) Focusing on selected early time-points, this plot is showing
the ‘true’ boundary (bold black line) and the same LE solution at N = 100 and N = 200 with
the non-equidistant grid (red line and thin white line within the red, respectively). The
segmentation of even the red N = 100 line cannot be easily discerned visually (e.g. from the
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uneven thickness of the black rim in the leading shoulders caused by the piece-wise linear red
line within the black, and by the red rim caused by the thin white N = 200 line within the red
line). Nevertheless, as expected, for N = 100 at α = 1.7 the discretization is not yet regarded
sufficient as judged by the maximum deviation of 0.0043 between r1* and r2*. The standard
accuracy of 0.001 for modeling experimental data requires approximately N = 300 grid points.
The errors at N = 100 are approximately 20fold smaller at r1* than those seen in Figure 6 at
the same grid size with Cao & Demeler's ASTFEM method. The difference is due to the
placement of the highest density of the radial grid points in the latter method close to the bottom
to stabilize computation of the back-diffusion region, whereas in the generalized Claverie
method with non-equidistant grid the highest density is found where the steepest sedimentation
boundaries occur. For comparison, the step-functions Eq. 4 are shown as gray lines. These have
a maximum deviation of 0.49, but an rmsd of only 0.041.
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