
ar
X

iv
:0

70
9.

33
31

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 2

1
Se

p
20

07

Parallel TREE code for two-component

ultracold plasma analysis

Byoungseon Jeon a,b,∗ Joel D. Kress a Lee A. Collins a

Niels Grønbech-Jensen b

aTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

bDepartment of Applied Science, University of California, Davis, CA 95616

Abstract

The TREE method has been widely used for long-range interaction N-body prob-
lems. We have developed a parallel TREE code for two-component classical plasmas
with open boundary conditions and highly non-uniform charge distributions. The
program efficiently handles millions of particles evolved over long relaxation times
requiring millions of time steps. Appropriate domain decomposition and dynamic
data management were employed, and large-scale parallel processing was achieved
using an intermediate level of granularity of domain decomposition and ghost TREE
communication. Even though the computational load is not fully distributed in fine
grains, high parallel efficiency was achieved for ultracold plasma systems of charged
particles. As an application, we performed simulations of an ultracold neutral plasma
with a half million particles and a half million time steps. For the long temporal
trajectories of relaxation between heavy ions and light electrons, large configura-
tions of ultracold plasmas can now be investigated, which was not possible in past
studies.

Key words: ultracold plasma, two-component plasma, TREE, domain
decomposition, intermediate granularity, ghost TREE, dynamic memory
management, hybrid parallel computing
PACS: 52.65.-y, 52.65.Yy

∗ Corresponding author

Preprint submitted to Elsevier 15 November 2018

http://arxiv.org/abs/0709.3331v1

1 Introduction

For N-body problems in gravitational and electrostatic phenomena, significant
computing resources are required due to the long range interactions. Despite
advances in computing speed, it is still difficult to obtain sustainable results
of realistically large configurations for many physical applications.

An ultracold plasma (UCP) is extensively studied in plasma physics, and is a
typical example of long-range interactions for an open boundary. Experimen-
tally, it is generated by photoionization of laser-cooled heavy atoms, and the
system has a low temperature (T = µK to mK) compared to a conventional
hot plasma (T = 103 to 107K) [1]. By the initial disorder of particles, ions
are heated, and active momentum transfer occurs between electrons and ions.
We shall study the behavior of charged particles and the physical properties
of ultracold neutral plasmas.

Studying electron-ion coupling relaxation, it was found that several millions of
time steps are required for ultracold plasma evolution. This is a huge comput-
ing load, and the required time frame restricts the size of problems that can be
considered. We first implemented a molecular dynamics (MD) method with all
pair-wise calculations of long-range interactions. However, such an approach,
while accurate, scales with the square of the number (N) of charged particles.
Thus, it allowed only simulations of 103 to 104 particles over sufficiently long
time [2,3,4]. In experiments, common sizes of ultracold plasmas are reported
as more than 106 particles [1,5,6], and larger computing capacity is therefore
imperative for realistic simulations.

Consequently, an approximate method for evaluating the electrostatic forces
is necessary in order to accelerate computing speed and increase the simu-
lation capacity. One of the candidates is the TREE method [7], which has
been widely used in astrophysical problems due to its N logN scaling of the
computing cost. The basic idea is that particle interactions are calculated ex-
plicitly at close range while effective, averaged properties are considered for
far-field interactions. Gravitational problems have a potential of 1/r, where
r is the distance between two points, and are similar to a Coulomb system.
Therefore we will be able to apply all the methods, which have been developed
for astrophysics, to electron and ion interactions.

In addition to the serial TREE method, a parallel version has been constructed
in order to distribute the computing load and thereby accelerate computation.
A specific shape of particle ensembles is considered from experimental data
[5,6]: charged particles are distributed non-uniformly, but the overall shape is
roughly symmetric. Particles are located inside of a certain spherical volume,
and this confirms simple and balanced domain decompositions for parallel

2

computing of ultracold neutral plasmas. With the help of dynamic memory
management and effective TREE communication, a highly efficient parallel
code has been built. Finally, we demonstrate that the program works well for
ultracold plasma analysis. The following describes how the TREE method is
implemented for a two-component plasma (TCP) simulation, and how it is
parallelized. Basic applications are also presented.

2 TCP analysis

For a fully ionized plasma, we describe the interactions as Coulomb forces
between well-defined charged particles. However, because the electron mass is
small compared to the ion, electrons will move faster than ions. This results
in much smaller numerical time steps and longer relaxation times when simu-
lating electrons compared to that of an ionic one-component plasma (OCP).

Since the dominating potential is Coulombic, each charged particle will inter-
act with all the other charged particles and the interaction between particles
cannot be truncated at a characteristic distance. Using a TREE method, this
extensive calculation can be achieved efficiently, and the computing load can
be balanced. The force on each charged particle is calculated from the inter-
action with the TREE. Velocity and position of particles are updated using
velocity Verlet [8] time integration once the force field has been evaluated.

2.1 Modified Coulomb potential

The Coulomb pair potential between two point-charges, separated by the dis-
tance r, is given by

Vij =
C

r
. (1)

C =
qiqje

2

4πǫ0
, (2)

where qi and qj are the fractional charges of particles i and j. e is the unit
charge, and ǫ0 is the vacuum permittivity. For the same kind of particles
(electron-electron and ion-ion), the forces are repulsive whereas attractive
forces are present for electron-ion interactions. Consequently, the bare Coulomb
potential will result in an attractive singularity for the electron-ion pair at close
distance (r ≈ 0). However, quantum diffraction between electrons and ions in

3

physical systems prevents such point wise collisions, thus requiring a modifi-
cation to the bare Coulomb potential. Several modified Coulomb interactions
have been proposed [9,10,11]; we implemented the Kelbg potential:

Vei =
C

r

[

1− exp
(

−
r

λei

)]

, (3)

where λei is the thermal de Broglie wavelength

λei =

√

2π~2

µeikBT
. (4)

At close distances (r < λei), the exponential term is dominant, and equation

(3) asymptotes as C
λei

[

1 − r
2λei

]

. The exponential term is negligible in the far

field (r ≫ λei) where the equation converges to C
r
. The thermal de Broglie

wavelength plays a key role for close encounters; however, the temperature is
not a well-defined quantity for these types of systems. A better criterion results
by setting λei to a fixed value rs based on an averaged closest-approach or the
lowest Rydberg state allowed in recombination. Considering Rydberg states,
20 − 180Å will be the range of the parameter, and we use λei = 100Å [2]
for our simulations. The basic properties of the TCP remain independent of
this cut-off parameter; its effect is merely to prevent very close encounters
that require very short time steps to resolve the dynamics accurately. For
the electron-electron and ion-ion interactions, the bare Coulomb potential is
applied.

3 TREE construction

Before explaining the parallel TREE method, we describe how to build a
TREE data structure for given particle sets. First, we assume a large cube
that encloses all particles. Then we evenly divide the cube into eight small
boxes, and each particle is associated with a box. Further subdividing each of
the small boxes into eight even smaller pieces, all of the particles are associated
with the smaller boxes again. This refining is repeated until every box contains
no more than one particle. This hierarchical procedure leads to the tree shaped
data structure.

The finest state of a TREE is called a leaf. Above leaves, there exist large inter-
mediate branches, referred to as twigs [12]. A pseudo-particle is an effectively-
charged particle of a twig, and the charge corresponds to the sum of the charges
of subordinate twigs and leaves. The position of the pseudo-particle is inter-
polated from the lower twig or leaf positions depending on the charge ratio.

4

When calculating the interactions between a particle and the TREE structure,
the distance between the particle and the twig, and the size of the box enclos-
ing the corresponding twig will be inspected. If the relation satisfies certain
criteria, the effective charge of the twig will be employed for the Coulomb
potential. If not, the twig is opened until the criterion is met. The opening
criterion, due to Barnes as described in [13], reads

s

θ
+ δ < d, (5)

where s is the size of box, d is the distance between a particle and a pseudo-
particle, and δ is the distance between a pseudo-particle and the center of the
box.

An opening criterion of θ < 1.0 is commonly practiced. A high opening cri-
terion approximates force fields with upper branches of the TREE - thus it
accelerates simulations at the expense of accuracy. In contrast, a low opening
criterion demands fine calculations and results in higher accuracy with more
computing resources. Depending on the given problems and the required accu-
racy, an appropriate θ will be determined. As mentioned above, neighboring
particles will interact with each other but the interactions of remote parti-
cles will be replaced by approximate pseudo-particles. Finally, the algorithm
results in N logN scaling of computing cost, instead of N2 scaling of all pair-
wise calculations. More detailed explanations about TREE construction can
be found elsewhere [7,12].

4 Parallelization

Even though the TREE method is computationally more efficient than direct
evaluations of all pair-wise interactions for large configurations, a single pro-
cessor calculation still remains inadequate for the task at hand. Therefore, we
parallelized the TREE method onto multiple processors in order to distribute
the computational load and accelerate computing speed. There have been sev-
eral parallel schemes for TREE methods like hashed oct-tree [14], FLY [15],
and dynamic and adaptive domain decomposition [16]. We have developed a
simple domain decomposing parallel method using a ghost TREE communi-
cation. The problem domain is decomposed into coarse grains, rather than
fine segments, that still allows for large scale parallel processing. Details are
given below. The parallel routine was developed with the conventional mes-
sage passing interface (MPI) library [17], allowing applications across most
contemporary parallel computing platforms.

5

4.1 Domain decomposition

The basic configuration of the particles of ultracold plasmas maintains over
time a generally spherical and roughly symmetrical distribution having though
a highly non-uniform radial component as shown in Figure 1. The center of
the sphere can be placed at the origin, and we can assume that particles are
distributed randomly within the sphere. Using Cartesian coordinates, an eight
processor parallelization and domain decomposition can be defined as shown
in Figure 2. Each segment of geometrical space will be designated to each
processor, and they will communicate with each other. For more than eight
processors, a finer domain decomposition might be performed, but we still keep
the eight segment domain decompositions. We discuss the large-scale parallel
computing below.

4.2 Particle management

Due to the temporal evolution of particle positions during a simulation, some
particles will move between the spatial regions of the processors, and each pro-
cessor will have to manage the migrations. For effective memory management,
a dynamic memory allocation scheme has been implemented. After a Verlet
time integration step, new positions of all the particles are determined. Inves-
tigating the new positions, the particles which exceed the spatial range of their
processor will be identified. Their information will be stored in a buffer, and
each processor will remove these particles from memory. Then each processor
sends and receives migrating particle data. For newly imported particles, their
information is attached at the end of the memory block.

4.3 TREE communication

At the core of the parallel TREE algorithm is the communication between
processors, namely what and how to communicate. If we share the whole
TREE structure of all processors, communication will be operationally easy.
This scheme, though, requires huge data communication and management
resources. Hence, we need to be selective with communicating only necessary
information among processors.

Considering the basics of the TREE method, we need leaf information at close
range but only twig (pseudo-particle) information for larger distances. This
rule is also applied for parallel computing, and we employ pre-pruning before
communication [18,13]. If two processors are neighbors, a large fraction of

6

the TREE will be necessary whereas a small fraction will be enough if the
processors are remote.

After copying the local TREE into a buffer, each processor begins to com-
municate with the other processors. Asynchronously, each processor sends its
buffer and receives the TREE information of other processors, called the ghost
TREE [19]. Using ghost TREEs, the interactions with other particles of other
processors will be evaluated.

With a given opening criterion, a certain amount of the local TREE will be
sent to other processors, but we still need another step to convert the data. The
TREE data are managed by FORTRAN pointers, but they are not supported
by a common MPI library to send/receive. Therefore, we need to convert them
into combinations of MPI INTEGER and MPI REAL variables. Not only the
data component of each leaf and twig, but also the order and branch of the
TREE should be communicated, and we have developed a simple data array
to keep the order of the TREE structure.

As shown in Figure 3, the TREE structure and order can be represented by an
architecture series. Each natural number indicates the node array of a pseudo-
particle, which contains position and effective charge. A negative number (= -
1) means a back step, and all of the branches and orders of the TREE structure
can be represented by the architecture series. Conversely, received ghost TREE
data can be decoded into pointer forms using the received architecture series.
Corresponding pseudo code is shown below:

RECURSIVE SUBROUTINE REBUILD(POINTER, N)

N = N + 1

ALLOCATE POINTER

POINTER = NODE(ARCH(N))

IF ARCH(N+1)>0 THEN

CALL REBUILD(POINTER_Child_1, N)

N = N + 1

IF ARCH(N+1)>0 THEN

CALL REBUILD(POINTER_Child_2, N)

N = N + 1

END IF

......

IF ARCH(N+1)>0 THEN

CALL REBUILD(POINTER_Child_8, N)

N = N + 1

END IF

END IF

END SUBROUTINE

4.4 Large scale parallel processing

As mentioned earlier, the simulations of ultracold plasma evolution demand
a large number of time steps, typically of the order of 105 − 106. This time

7

frame and the available computing power mediate the largest configuration
which we can handle as around a million particles. The fine granularity of N
domain decompositions of N processors will reduce the size of the local TREE
to a system of less than 104 particles for which the TREE efficiency becomes
poor [12], for large scale parallel computing. But the intermediate granular
parallelism, which employs an intermediate granularity by administrating local
TREEs as a unit of a single segment of Figure 2, still keeps the local TREE
as 105 particles or more than that, providing higher efficiency. Also we can
expect easy book-keeping and simple data handling.

We maintain eight piece domain decompositions, as shown above, and apply
processors of multiples of eight. Then each segment of Figure 2 will have the
same number of local processors. All particles of each segment are distributed
evenly for each local processor for load balance. When the local TREE of
each segment is built, all local processors of each segment swap and share the
position of particles of the segment. Then the local TREE is built at every
local processor, without parallelism. However, particle interactions with the
local TREE, which consume most of the computing resources, are calculated
in parallel.

For the communication between segments, one of the local processors will be
assigned as the head processor. After calculating particle interactions with
the local TREE, the head processor of each segment will copy and send the
local TREE to other segments while receiving ghost TREEs from the corre-
sponding segments. This communication is performed only by the head pro-
cessor, and the communication burden can thereby be reduced. After commu-
nication between head processors, the received ghost TREEs are distributed
again on the local processors inside the segment. Ghost TREEs are handled
as the same way of local TREEs. The decoding is done in serial but particle
interactions are done in parallel.

The schematic flow of each segment is shown in Figure 4. Using this method,
multiples of eight processors can participate in the parallel computing. Even
though this method does not fully distribute the computing load with fine
granularity, it allows for easy book-keeping and reduces the communication
load. Although the experimental charge distributions of ultracold plasmas are
non-uniform, they retain an overall spherical and roughly symmetrical appear-
ance. Therefore eight-segment domain decomposition will divide the problem
domain quite evenly, and we can expect good load balance from the beginning.
Also divided particles are distributed uniformly for the local processors of each
segment. During simulations, some of particles will move between segments as
discussed above, and new particles are sent to a local processor, which has the
least particles in the segment. These procedures maintain good load balance
for each processor.

8

In addition to the message passing interface, OpenMP [20] has been imple-
mented in order to utilize shared memory processing. Basic operation of the
code is executed in a single thread, but particle interactions with the TREE
are forked along multiple threads and computation is thereby accelerated.

5 Computational experiments

As an example to illustrate the developed method, we investigate the dy-
namics of electrons and ions with initial conditions of previous work [2]. The
configuration has same electron/ion density (ρi = 4.32×109/cc), and particles
are distributed inside a sphere. The initial temperature is 3 K for electrons
and 1× 10−6 K for ions. A reduced ion mass simulation [2], which artificially
reduces the ion mass from 131 to 0.01 amu, is employed in order to expe-
dite momentum transfer between electrons and ions. A time step of 20 fs and
5× 105 time steps are employed for the plasma evolutions.

With these configurations, a UCP system of 5 × 103 electrons (q = −1) and
5 × 103 ions (q = +1) has been tested with all pair-wise and TREE methods
in order to evaluate the developed parallel TREE code. The test machine is
grendel, a linux cluster at Los Alamos National Laboratory, which is composed
of 126 nodes of dual 2.4GHz Xeon processors with Myrinet interconnections.
2Gb of memory is equipped for each node. Los Alamos MPI (LAMPI) library
and OpenMP API of intel fortran compiler 9.1.036 were employed to com-
pile the code. As shown in Figure 5, the average kinetic energy (= 3kBT/2)
of the electrons (Te) and ions (Ti) approach the same asymptote. Therefore,
we conclude that the developed TREE code reproduces the energy transfer
well. As for computing cost, the all pair-wise method took 62 hours with 16
processors while the TREE code (θ = 0.4) used 26 hours with 64 processors.
Even though the TREE code efficiency is less than the all pair-wise calcula-
tions for this small set of particles, the TREE code scales as N logN , while
the all pair-wise method scales as N2 as discussed above. Consequently, the
TREE code is imperative for larger systems involving millions of particles.
For a one-million particle set, the all pair-wise method requires 104 times
more computing resources than above, and this is not practical.

To determine parallel performance, larger sets of particles were tested. Also
several opening criteria have been tested, and the corresponding errors were
found. Finally, simple applications of large ultracold plasmas are given below.

9

5.1 Parallel performance

Parallel performance was tested with 105 particles (5× 104 electrons and 5×
104 ions). Two kinds of opening criteria were tested, θ = 0.4 and 0.6. The
results below were achieved on flash, a linux cluster at Los Alamos National
Laboratory, which is composed of 300 nodes per segment, with dual Opteron
processors of 2.0-2.4GHz and Myrinet interconnections. 8-16Gb of memory is
equipped for each node. Los Alamos MPI (LAMPI) library and OpenMP API
of intel fortran compiler 9.1.037 were employed to compile the code.

The results are summarized in Figure 6. Scalability is the ratio between wall-
clock time of a parallel execution and the time of the corresponding serial
code. With a dual processor machine, 16, 32, and 64 nodes were used while
the number of processors are 32, 64, and 128 respectively. For 128 processors,
better than 80% parallel efficiency was achieved for both opening criteria.

Also a 106 particle set (5 × 105 electrons and 5 × 105 ions) was tested to
study parallel efficiency. Because the size is 10 times larger than above, we
simulated with up to 256 processors; the results are summarized in Figure 7.
Compared to a small system, the effect of the opening criteria is clear. A low
opening criterion imposes larger computing loads, showing efficient parallel
computing, and more wall clock time is consumed. A high opening criterion
shows less parallel efficiency, but completes a calculation faster. With current
computing resources and θ = 0.6, one million particle system with one million
time steps takes approximately 700 hours with 256 processors.

The effect of configuration size was tested. Systems with 0.1, 1.0, and 10
millions of particles (half electrons and half ions) have been tested with dif-
ferent number of nodes. 100 time steps were tested and wall-clock times were
examined per each section as shown in Table 1. First, using 8 nodes of 16 pro-
cessors, basic domain decomposition was tested. Even though 2 processors of
a single node share the same segment, parallel computing is done by OpenMP
only. Consequently, a single segment is taken care of by a single node only,
and the result will serve as a reference for the bare eight segment domain
decomposition, without the intermediate parallelism. Most of the computing
resource is devoted to particle interactions and updates. By pre-pruning, the
load of communication and ghost TREE management is affected by the open-
ing criterion. The relative cost of each section is quite consistent for the size
variations of systems. 64 nodes of 128 processors were also applied, employing
intermediate parallelism. Because 8 nodes share a single segment, the cost of
communication and TREE management is relatively high compared to 8 node
calculations. But it decreases as the number of employed particles increases,
providing better efficiency. For the 64 node results, wall-clock times and speed
ratios, calculated relative to the 1 million particle results, are shown in Figure

10

8. For the change of problem sizes, speed ratios show N logN scaling.

5.2 Opening criterion study

TREE code performance and accuracy depend on the opening criterion. 5 ×
104 electrons and 5 × 104 ions were tested with several opening criteria in
order to determine accuracy and efficiency differences under same computing
conditions. 1,000 time steps were employed with 64 nodes of 128 processors on
flash cluster. Figure 9 provides the results where the error of total energy was
measured against the all pair-wise results, and scaling ratio is relative wall-
clock time for θ = 0.1. For θ ≤ 0.6, energy errors are quite small (< 0.01%) and
converge to the result of all pair-wise calculations for smaller θ, accompanying
fluctuations. However, computing cost increases quite quickly as θ decreases;
θ = 0.1 demands three times the computing time of θ = 0.2, and θ = 0.2
costs three times that of θ = 0.4. Therefore a balance between accuracy and
efficiency needs to be determined. Also the energy error increases during the
long temporal relaxation of charged particles, and θ ≤ 0.7 will be required for
plasma relaxation simulations of our study.

5.3 Evolution of two-component ultracold plasmas

Using the above mentioned initial conditions and reduced ion masses, electron
and ion temperatures were investigated up to 10 ns with 2.5×105 electrons and
2.5×105 ions, along 5×105 time steps. Figure 10 provides the results, which are
consistent with previous work [2]. We can see that the average ion temperature
increases rapidly for early times and saturates after 2 ns. Compared to the
previous work (500 electrons and 500 ions), we employed much more particles,
resulting in higher initial potential energy and more heating of the ions. We
found periodic oscillations in the electron temperature evolution, which might
be the effect of an electron plasma wave. This will be studied extensively in
future work [21].

6 Concluding remarks

To analyze the relaxation behavior of ultracold plasmas, a TREE code has
been developed. Also, a parallel implementation has been conducted in order
to allow for simulations of sufficiently large systems over sufficiently long time.
Dynamic data management was implemented for efficient memory allocation
of data communication, and eight-segment domain decomposition was applied

11

with a ghost TREE method. A parallelism of an intermediate granularity
was developed for large scale parallel processing, and optimized for systems
with millions of charged particles. Finally, the developed code has been found
to work well with the given ultracold plasma systems and efficient parallel
performance has been demonstrated for various configurations.

As discussed above, a simulation of two-component ultracold plasmas requires
significant computing resources. Previously, only 103 to 104 particles could be
employed because of the long temporal trajectories of ultracold plasma relax-
ation. Here, with the developed parallel TREE code, we have increased the
computing capacity up to 106 interacting particles. This is a crucial achieve-
ment in the study of ultracold plasma dynamics. Much larger and realistic
configurations of ultracold plasmas can now be investigated.

Acknowledgments

We thank J. E. Barnes (University of Hawaii), M. Challacombe (LANL), and
Z. Wang (LANL) for valuable discussions about the TREE method. Requests
to the source code should be addressed to authors. This work was supported
by the Advanced Simulation Computing program of Los Alamos National
Laboratory, and was carried out under the auspices of the National Nuclear
Security Administration of the U.S. Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396.

References

[1] T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, S. L. Rolston,
Creation of an ultracold neutral plasma, Physical Review Letters 83 (23) (1999)
4776–4779.

[2] S. Mazevet, L. A. Collins, J. D. Kress, Evolution of ultracold neutral plasmas,
Physical Review Letters 88 (5) (2002) 055001.

[3] S. G. Kuzmin, T. M. O’Neil, Numerical simulation of ultracold plasmas: How
rapid intrinsic heating limits the development of correlation, Phys. Rev. Lett.
88 (6) (2002) 065003.

[4] S. G. Kuzmin, T. M. O’Neil, Numerical simulation of ultracold plasmas, Physics
of Plasmas 9 (2002) 3743–3751.

[5] C. E. Simien, Y. C. Chen, P. Gupta, S. Laha, Y. N. Martinez, P. G. Mickelson,
S. B. Nagel, T. C. Killian, Using absorption imaging to study ion dynamics in
an ultracold neutral plasma, Physical Review Letters 92 (14) (2004) 143001.

12

[6] Y. C. Chen, C. E. Simien, S. Laha, P. Gupta, Y. N. Martinez, P. G. Mickelson,
S. B. Nagel, T. C. Killian, Electron screening and kinetic-energy oscillations in
a strongly coupled plasma, Physical Review Letters 93 (26) (2004) 265003.

[7] J. Barnes, P. Hut, A hierarchical o(n log n) force calculation algorithm, Nature
324 (1986) 446–449.

[8] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford Science
Publications, 1987.

[9] V. G. Kelbg, Theorie des Quanten-Plasmas, Annalen der Physik 12 (1963)
219–224; Quantenstatistik der Gase mit Coulomb-Wechselwirkung, Annalen
der Physik 12 (1964) 354–360; Klassische statistische Mechanik der Teilchen-
Mischungen mit sortenabhängigen weitreichenden zwischenmolekularen W
echselwirkungen, Annalen der Physik 14 (1964) 394–403.

[10] C. Deutsch, Nodal expansion in a real matter plasma, Physics letters 60A (4)
(1977) 404–441.

[11] T. Pschiwul, G. Zwicknagel, MD-simulations of the dynamic properties of a
nonideal two-component plasma, Contribution to plasma physics 41 (2-3) (2001)
271–274.

[12] S. Pfalzner, P. Gibbon, Many-body tree methods in physics, Cambridge
university press, 1996.

[13] J. Dubinski, A parallel tree code, New Astronomy 1 (1996) 133–147.

[14] M. S. Warren, J. K. Salmon, A parallel hashed oct-tree n-body algorithm, in:
Supercomputing, 1993, pp. 12–21.

[15] U. Becciani, V. Antonuccio-Delogu, Are you ready to FLY in the universe? a
multi-platform n-body tree code for parallel supercomputers, Computer Physics
Communications 136 (2001) 54–63.

[16] P. Miocchi, R. Capuzzo-Dolcetta, An efficent parallel tree-code for the
simulation of self-gravitating systems, Astronomy and Astrophysics 382 (2002)
758–767.

[17] W. Gropp, E. Lusk, A. Skjellum, Using MPI, The MIT press, 1999.

[18] J. K. Salmon, Parallel hierarchical n-body methods, Ph.D. thesis, California
Institute of Technology (1991).

[19] Z. Wang, N. Ghoniem, S. Swaminarayan, R. LeSar, A parallel algorithm for 3d
dislocation dynamics, Journal of computational physics 219 (2006) 608–621.

[20] http://www.openmp.org/drupal/.

[21] B. Jeon, J. D. Kress, L. A. Collins, N. Grønbech-Jensen, Evolution of ultracold
plasmas: two-component plasma analysis, in preparation.

13

http://www.openmp.org/drupal/

Table 1
Computing resource (in seconds) for parallel TREE simulations in terms of em-
ployed particles and opening criterion. N is the number of particles. θ is the opening
criterion. n is the number of computing nodes.

section
particle

interactions local TREE ghost TREE commu-
n N θ and updates management management nication

8 0.1 million 0.4 314.0 1.5 17.8 2.5
0.6 139.2 1.5 8.0 1.7

1 million 0.4 6.6× 103 20.4 346.9 9.9
0.6 2.4× 103 20.4 141.0 6.3

10 million 0.4 9.1× 104 255.3 2.1× 103 42.1
0.6 3.1× 104 254.6 909.2 26.9

64 0.1 million 0.4 40.1 1.9 7.5 7.2
0.6 18.2 2.5 3.4 4.7

1 million 0.4 826.2 22.9 71.9 29.7
0.6 305.0 21.9 33.3 19.5

10 million 0.4 1.1× 104 270.6 469.5 130.0
0.6 4.0× 103 272.3 205.7 85.1

14

Fig. 1. Electron(5×103)/ion(5×103) distribution - 0 ns (left) and 10ns (right) with
reduced ion mass scheme.

Fig. 2. Schematic view of eight-segment domain decomposition.

15

1

2

3

4 5

6 7

8-1

-1

-1

-1

-1

-1

arch. array: 1 2 3 4 -1 5 6 -1 7 -1 -1 -1 -1 8 -1

-1

Fig. 3. Architecture array for a sample TREE.

2 n.......

local TREE

segment segmenti j

copy TREE

send/receive

rebuild ghost TREE

1 2 n.......

n.......

local TREE

copy TREE

send/receive

rebuild ghost TREE

n.......

1

3

3 1 2 3

1 2 3

1 1

Fig. 4. Calculation and communication flow of each segment.

16

0 2 4 6 8 10
Time (ns)

0.001

0.01

0.1

1

10

100

T
em

pe
ra

tu
re

 (
K

)

T
e
 - all pair-wise

T
i
 - all pair-wise

T
e
 - TREE

T
i
 - TREE

Fig. 5. Electron (Te) and ion (Ti) temperature by the all pair-wise evaluation and
the TREE method (5× 103 electrons and 5× 103 ions).

0 50 100 150
Number of processors

1×10
2

1×10
3

1×10
4

1×10
5

W
al

l-
cl

oc
k

tim
e

(s
ec

)

Wall-clock time for θ=0.4
Wall-clock time for θ=0.6

0

40

80

120

Sc
al

ab
ili

ty
Scalability for θ=0.4
Scalability for θ=0.6

Fig. 6. Performance using MPI and OpenMP hybrid parallel computing for 5× 104

electrons and 5 × 104 ions. Based on the result of a single processor calculation,
scalabilities were determined.

17

0 100 200 300
Number of processors

1×10
2

1×10
3

1×10
4

1×10
5

W
al

l-
cl

oc
k

tim
e

(s
ec

)
Wall-clock time for θ=0.4
Wall-clock time for θ=0.6

0

80

160

240

Sc
al

ab
ili

ty

Scalability for θ=0.4
Scalability for θ=0.6

Fig. 7. Performance using MPI and OpenMP hybrid parallel computing for 5× 105

electrons and 5 × 105 ions. Based on the result of a single processor calculation,
scalabilities were determined.

Fig. 8. Performance curves of the parallel TREE code for different sizes. Speed ratio
is the wall-clock time ratio for the 1.0 million particle results.

18

0 0.005 0.01 0.015 0.02
Time (ns)

165.2

165.4

165.6

T
ot

al
 e

ne
rg

y
(e

V
)

-0.2

0

E
rr

or
 (

%
)θ=0.1

θ=0.2
θ=0.4
θ=0.6
θ=0.8

0

2×10
3

4×10
3

6×10
3

8×10
3

W
al

l-
cl

oc
k

tim
e

(s
ec

)
Wall-clock time

0.1 0.2 0.4 0.6 0.8
 θ (opening criterion)

0

10

20

30

40

Sc
al

in
g

ra
tio

Scaling ratio

0.01 0.015
0

0.01

Fig. 9. Performance and energy curves in terms of opening criteria. Scaling ratios
are the wall-clock time ratios with respect to θ = 0.1, whereas the reference of error
estimations was from all pair-wise calculations. The inset shows fine differences for
θ = 0.1 − 0.6, where x-axis is time (ns) and y-axis is error(%).

0 2 4 6 8 10
Time (ns)

0.0001

0.01

1

100

T
em

pe
ra

tu
re

 (
K

)

T
e

T
i

Fig. 10. Evolution of electron and ion temperatures with 2.5 × 105 electrons and
2.5× 105 ions over 5× 105 time steps.

19

	Introduction
	TCP analysis
	Modified Coulomb potential

	TREE construction
	Parallelization
	Domain decomposition
	Particle management
	TREE communication
	Large scale parallel processing

	Computational experiments
	Parallel performance
	Opening criterion study
	Evolution of two-component ultracold plasmas

	Concluding remarks
	References

