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Abstract

We report on a program for the numerical evaluation of divergent multi-loop integrals. The
program is based on iterated sector decomposition. We improve the original algorithm of
Binoth and Heinrich such that the program is guaranteed to terminate. The program can be
used to compute numerically the Laurent expansion of divergent multi-loop integrals regu-
lated by dimensional regularisation. The symbolic and the numerical steps of the algorithm
are combined into one program.

http://arxiv.org/abs/0709.4092v2


PROGRAM SUMMARY

Title of program: sector_decomposition

Version: 1.0

Catalogue number:

Program obtained from: http://wwwthep.physik.uni-mainz.de/˜stefanw/software.html

E-mail: stefanw@thep.physik.uni-mainz.de, bogner@thep.physik.uni-mainz.de

License: GNU Public License

Computers: all

Operating system: Unix

Program language: C++

Memory required to execute: Depending on the complexity of the problem.

Other programs called: GiNaC, available fromhttp://www.ginac.de,
GNU scientific library, available fromhttp://www.gnu.org/software/gsl.

External files needed: none

Keywords: Multi-loop integrals.

Nature of the physical problem: Computation of divergent multi-loop integrals.

Method of solution: Sector decomposition.

Restrictions on complexity of the problem: Only limited by the available memory and CPU time.

Typical running time: Depending on the complexity of the problem.
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1 Introduction

The calculation of higher-order corrections in perturbation theory in particle physics relies to a
large extent on our abilities to compute Feynman loop integrals. Any calculation of loop integrals
is complicated by the fact, that these integrals may containdivergences, ultraviolet or infrared in
nature. Dimensional regularisation is usually employed toregulate the divergences and one seeks
the Laurent expansion of Feynman integrals inD = 4−2ε dimensions in the small parameterε.

Automated numerical algorithms, which permit the computation of the coefficients of the
Laurent series for certain phase space points are of great use as an independent check of ana-
lytical calculations. There are several methods availablefor this task. All methods have to face
the challenge to disentangle overlapping singularities. In this paper we focus on sector decom-
position [1–4]. Other possibilities include a method basedon difference equations [5–8] or the
evaluation of Mellin-Barnes integrals [9,10].

Sector decomposition is a convenient tool to disentangle overlapping singularities. Binoth
and Heinrich [3, 4] gave an algorithm for the automated computation of the Laurent series of
multi-loop integrals. The method has recently also been applied to phase space integrals [11–13]
and complete loop amplitudes [14,15].

However, the original formulation of Binoth and Heinrich has a drawback: The disentan-
glement of overlapping singularities is achieved through recursive sector decomposition. If this
process terminates, the algorithm gives the correct answer. But there is no guarantee that the
algorithm stops after a finite number of steps. In fact, one can find relatively simple counter-
examples, where the original algorithm leads to an infinite loop. In this paper we improve the
method and present an algorithm, which is guaranteed to terminate. This is possible, since we
can relate our problem to a well-known problem in algebraic geometry: The resolution of sin-
gularities of an algebraic variety over a field of characteristic zero by a sequence of blow-ups.
In view of [16] a connection between Feynman integrals and algebraic geometry comes to no
surprise. The mathematical problem can be solved, which wasfirst shown by Hironaka [17]. Al-
though the proof by Hironaka is non-constructive and therefore cannot be used as an algorithm,
in subsequent years constructive methods have been developed [18–28]. Let us mention for com-
pleteness that the mathematical problem is more general, the disentanglement of singularities of
multi-loop integrals corresponds to the sub-case, where the algebraic variety is generated through
a single polynomial. We have implemented three different strategies for the resolution of the sin-
gularities. All of them are guaranteed to terminate and yield the correct answer. They differ in
the required CPU-time.

The algorithm for sector decomposition can be divided into two stages. The first stage in-
volves symbolic computer algebra, while the second stage isbased on a numerical integration.
Partially due to this “double nature” of the algorithm, no public program is available up to now.
Given the importance and the popularity of the algorithm, this gap should be closed. With this
article we provide such a program.

A user-friendly implementation of the algorithm would require that the different aspects of
the method, e.g. the symbolic and the numerical computations, are treated within the same frame-
work. The library GiNaC [29] allows the symbolic manipulation of expressions within the pro-
gramming language C++. It offers the tools to combine symbolic and numerical computations
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in one program. Furthermore there exist specialised libraries for an efficient numerical Monte
Carlo integration [30–32]. Our implementation is therefore in C++, using the libraries GiNaC
for the symbolic part and the GNU Scientific Library for the numerical part. All stages of the
algorithm are implemented within one program.

This article is organised as follows: In section 2 we review basic facts about multi-loop
Feynman integrals. Section 3 gives a brief description of the algorithm for sector decomposition.
In section 4 we discuss in detail strategies, which guarantee a termination of the iterated sector
decomposition. Section 5 gives an overview of the design of the program while section 6 is of a
more practical nature and describes how to install and use the program. This section provides an
example and compares the efficiency of the different strategies. Finally, a summary is provided in
section 7. In an appendix we describe technical details of the implementation and provide a proof
for one of the strategies (the proofs for the two other strategies can be found in the literature).

2 Feynman integrals

In this section we briefly recall some basic facts about multi-loop Feynman integrals. A generic
scalarl -loop integralIG in D dimensions withn propagators corresponding to a graphG is given
by

IG =

Z l

∏
r=1

dDkr

iπ
D
2

n

∏
j=1

1

(−q2
j +m2

j )
ν j
. (1)

The momentaq j of the propagators are linear combinations of the external momenta and the loop
momenta. After Feynman parameterisation one arrives at

IG =
Γ(ν− lD/2)

n
∏
j=1

Γ(ν j)

Z

x j≥0

dnx δ(1−
n

∑
i=1

xi)

(

n

∏
j=1

x
ν j−1
j

)

Uν−(l+1)D/2

F ν−lD/2
, (2)

with ν = ν1 + ...+ νn. The functionsU and F depend on the Feynman parameters. If one
expresses

n

∑
j=1

x j(−q2
j +m2

j ) = −
l

∑
r=1

l

∑
s=1

krMrsks+
l

∑
r=1

2kr ·Qr −J, (3)

whereM is a l × l matrix with scalar entries andQ is a l -vector with four-vectors as entries, one
obtains

U = det(M), F = det(M)
(

−J+QM−1Q
)

. (4)

Alternatively, the functionsU andF can be derived from the topology of the corresponding
Feynman graphG. Cutting l lines of a given connectedl -loop graph such that it becomes a
connected tree graphT defines a chordC (T,G) as being the set of lines not belonging to this
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tree. The Feynman parameters associated with each chord define a monomial of degreel . The
set of all such trees (or 1-trees) is denoted byT1. The 1-treesT ∈ T1 defineU as being the sum
over all monomials corresponding to the chordsC (T,G). Cutting one more line of a 1-tree leads
to two disconnected trees(T1,T2), or a 2-tree.T2 is the set of all such pairs. The corresponding
chords define monomials of degreel +1. Each 2-tree of a graph corresponds to a cut defined
by cutting the lines which connected the two now disconnected trees in the original graph. The
square of the sum of momenta through the cut lines of one of thetwo disconnected treesT1 or T2

defines a Lorentz invariant

sT =

(

∑
j∈C (T,G)

p j

)2

. (5)

The functionF0 is the sum over all such monomials times minus the corresponding invariant.
The functionF is then given byF0 plus an additional piece involving the internal massesmj . In
summary, the functionsU andF are obtained from the graph as follows:

U = ∑
T∈T1

[

∏
j∈C (T,G)

x j

]

,

F0 = ∑
(T1,T2)∈T2

[

∏
j∈C (T1,G)

x j

]

(−sT1) ,

F = F0+U
n

∑
j=1

x jm
2
j . (6)

In general,U is a positive semi-definite function. Its vanishing is related to the UV sub-
divergences of the graph. Overall UV divergences, if present, will always be contained in the
prefactorΓ(ν− lD/2). In the Euclidean region,F is also a positive semi-definite function of the
Feynman parametersx j . The vanishing ofF is related to infrared divergences. Note that this is
only a necessary but not sufficient condition for the occurrence of an infrared singularity. If an
infrared singularity occurs or not depends in addition on the external kinematics.

3 A review of the algorithm for sector decomposition

In this section we briefly describe the original algorithm ofBinoth and Heinrich for iterated
sector decomposition. A detailed discussion on strategiesfor choosing the sub-sectors is deferred
to section 4. The program calculates the Laurent expansion in ε of integrals of the form

Z

x j≥0

dnx δ(1−
n

∑
i=1

xi)

(

n

∏
i=1

xai+εbi
i

)

r

∏
j=1

[

Pj(x)
]c j+εd j . (7)

The integration is over the standard simplex. Thea’s, b’s, c’s andd’s are integers. TheP’s are
polynomials in the variablesx1, ..., xn. The polynomials are required to be non-zero inside the
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integration region, but may vanish on the boundaries of the integration region. Note that the
program allows a product of several polynomials and that it is not required that the polynomials
are homogeneous.

Step 0: We first convert all polynomials to homogeneous polynomials. Due to the presence
of the delta-function we have

1 = x1+x2+ ...+xn. (8)

For each polynomialPj we determine the highest degreeh j and multiply all terms with a lower
degree by an appropriate power ofx1+ x2+ ...+ xn. As a result, the polynomialPj is then ho-
mogeneous of degreeh j .

Step 1: We decompose the integral inton primary sectors as in
Z

x j≥0

dnx =
n

∑
l=1

Z

x j≥0

dnx
n

∏
i=1,i 6=l

θ(xl ≥ xi). (9)

In the l -th primary sector we make the substitution

x j = xl x
′
j for j 6= l . (10)

As each polynomialPj is now homogeneous of degreeh j we arrive at

Z

x j≥0

dnx δ(1−
n

∑
i=1

xi)

(

n

∏
i=1,i 6=l

θ(xl ≥ xi)

)(

n

∏
i=1

xai+εbi
i

)

r

∏
j=1

[

Pj(x)
]c j+εd j =

1
Z

0

(

n

∏
i=1,i 6=l

dxi xai+εbi
i

)(

1+
n

∑
j=1, j 6=l

x j

)c r

∏
j=1

[

Pj(x1, ...,x j−1,1,x j+1, ...,xn)
]c j+εd j , (11)

where

c = −n−
n

∑
i=1

(ai + εbi)−
r

∑
j=1

h j
(

c j + εd j
)

. (12)

Each primary sector is now a(n−1)-dimensional integral over the unit hyper-cube. Note that in
the general case this decomposition introduces an additional polynomial factor

(

1+
n

∑
j=1, j 6=l

x j

)c

. (13)

However for Feynman integrals of the form as in eq. (2) we always havec = 0 and this factor
is absent. In any case, this factor is just an additional polynomial. In general, we therefore deal
with integrals of the form

1
Z

0

dnx
n

∏
i=1

xai+εbi
i

r

∏
j=1

[

Pj(x)
]c j+εd j . (14)
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Step 2: We decompose the primary sectors iteratively into sub-sectors until each of the polyno-
mials is of the form

P = xm1
1 ...xmn

n

(

1+P′(x)
)

, (15)

whereP′(x) is a polynomial in the variablesx j . If P is of the form (15), we say thatP is
monomialised. In this case the monomial prefactorxm1

1 ...xmn
n can be factored out and the re-

mainder contains a constant term. To convertP into the form (15) we choose a subsetS=
{α1, ..., αk} ⊆ {1, ...n} according to one of the strategies outlined in section 4. We decompose
thek-dimensional hypercube intok sub-sectors according to

1
Z

0

dnx =
k

∑
l=1

1
Z

0

dnx
k

∏
i=1,i 6=l

θ(xαl ≥ xαi) . (16)

In the l -th sub-sector we make for each element ofS the substitution

xαi = xαl x
′
αi

for i 6= l . (17)

This yields a Jacobian factorxk−1
αl

. This procedure is iterated, until all polynomials are of the
form (15). The strategies discussed in section 4 guarantee that the recursion terminates. At the
end all polynomials contain a constant term. Each sub-sector integral is of the form as in eq. (14),
where everyPj is now different from zero in the whole integration domain. Hence the singular
behaviour of the integral depends on theai andbi, theai being integers.

Step 3: For everyx j with a j < 0 we have to perform a Taylor expansion aroundx j = 0 in order to
extract the possibleε-poles. If we consider for the moment only one parameterx j we can write
the corresponding integral as

1
Z

0

dxj x
a j+b j ε
j I (x j) =

1
Z

0

dxj x
a j+b j ε
j





|a j |−1

∑
p=0

xp
j

p!
I (p)+ I (R)(x j)



 (18)

where we definedI (p) = ∂/∂xp
j I (x j)

∣

∣

∣

x j=0
. The remainder term

I (R)(x j) = I (x j)−
|a j |−1

∑
p=0

xp
j

p!
I (p) (19)

does not lead toε-poles in thex j -integration. The integration in the pole part can be carried out
analytically:

1
Z

0

dxj x
a j+b j ε
j

xp
j

p!
I (p) =

1
a j +b jε+ p+1

I (p)

p!
. (20)
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This procedure is repeated for all variablesx j for whicha j < 0.

Step 4: All remaining integrals are now by construction finite. We can now expand all ex-
pressions in a Laurent series inε

B

∑
i=A

Ciεi +O
(

εB) (21)

and truncate to the desired order.

Step 5: It remains to compute the coefficientsCi . These coefficients contain finite integrals,
which we evaluate numerically by Monte Carlo integration.

4 Strategies for choosing the sub-sectors

In this section we discuss strategies for choosing the subset Swhich defines the sub-sectors, such
that the iterated sector decomposition terminates. Binothand Heinrich proposed to determine
a minimal subsetS= {α1, ..., αk} such that at least one polynomialPj vanishes forxα1 = ... =
xαk = 0. By a minimal set we mean a set which does not contain a propersubset having this
property. IfScontains only one element,S= {α}, then the corresponding Feynman parameter
factorises fromPj . A relative simple example shows, that this procedure may lead to an infinite
loop: If one considers the polynomial

P(x1, x2, x3) = x1x2
3+x2

2+x2x3, (22)

then the subsetS= {1, 2} is an allowed choice, asP(x1 = 0, x2 = 0, x3) = 0 andS is minimal.
In the first sector the substitution (17) readsx1 = x′1, x2 = x′1x′2, x3 = x′3. It yields

P(x1, x2, x3) = x′1x′23 +x′21 x′22 +x′1x′2x′3 = x′1
(

x′23 +x′1x′22 +x′2x′3
)

= x′1P
(

x′1, x′3, x′2
)

. (23)

The original polynomial has been reproduced, which leads toan infinite recursion. The problem
of a non-terminating iteration has already been noted in ref. [4]. To avoid this situation we need
a strategy for choosingS, for which we can show that the recursion always terminates.This is a
highly non-trivial problem. It is closely related to the resolution of singularities of an algebraic
variety over a field of characteristic zero. Fortunately, mathematicians have found a solution for
the latter problem and we can adapt the mathematical solutions to our problem. We will not go
into any details of algebraic geometry. Instead we present in section 4.1 the polyhedra game,
introduced by Hironaka to illustrate the problem of resolution of singularities. The polyhedra
game can be stated with little mathematics. Any solution to the polyhedra game will correspond
to a strategy for choosing the subsetsS. In sections 4.2 to 4.4 we present three winning strate-
gies for the polyhedra game. All three strategies ensure that the iterated sector decomposition
terminates and lead to the correct result. However, the number of generated sub-sectors (and
therefore the efficiency of the method) will vary among the different strategies. Common to all
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strategies is a sequence of positive numbers associated to the polynomials. All strategies enforce
this sequence to decrease with each step in the iteration with respect to lexicographical ordering.
As the sequence cannot decrease forever, the algorithm is guaranteed to terminate. The actual
construction of this sequence will differ for different strategies.

The lexicographical ordering is defined as follows: A sequence of real numbers(a1, ...,ar) is
less than a sequence(b1, ...,bs) if and only if there exists ak∈ N such thata j = b j for all j < k
andak < bk, where we use the convention thata j = 0 for j > r.

4.1 Hironaka’s polyhedra game

Hironaka’s polyhedra game is played by two players, A and B. They are given a finite setM
of pointsm= (m1, ..., mn) in N

n
+, the first quadrant ofNn. We denote by∆ ⊂ R

n
+ the positive

convex hull of the setM. It is given by the convex hull of the set
[

m∈M

(

m+R
n
+

)

. (24)

The two players compete in the following game:

1. Player A chooses a non-empty subsetS⊆ {1, ..., n}.

2. Player B chooses one elementi out of this subsetS.

Then, according to the choices of the players, the components of all(m1, ..., mn)∈M are replaced
by new points(m′

1, ..., m′
n), given by:

m′
j = mj , if j 6= i,

m′
i = ∑

j∈S

mj −c, (25)

where for the moment we setc = 1. This defines the setM′. One then setsM = M′ and goes
back to step 1. Player A wins the game if, after a finite number of moves, the polyhedron∆ is of
the form

∆ = m+R
n
+, (26)

i.e. generated by one point. If this never occurs, playerB has won. The challenge of the polyhe-
dra game is to show that playerA always has a winning strategy, no matter how playerB chooses
his moves.

Let us discuss the relation of Hironaka’s polyhedra game to the sector decomposition of
multi-loop integrals. Without loss of generality we can assume that we have just one polynomial
P in eq. (7). (If there are several polynomials, we obtain a single polynomial by multiplying them
together. As only the zero-sets of the polynomials are relevant, the exponents can be neglected.)
The polynomialP has the form

P =
p

∑
i=1

cix
m(i)

1
1 x

m(i)
2

2 ...xm(i)
n

n . (27)
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Then-tuplem(i) =
(

m(i)
1 , ..., m(i)

n

)

defines a point inNn
+ andM =

{

m(1), ...m(p)
}

is the set of all

such points. Substituting the parametersx j according to equation (17) and factoring out a termxc
i

yields the same polynomial as replacing the powersmj according to equation (25). In this sense,
one iteration of the sector decomposition corresponds to one move in Hironaka’s game. Reducing
P to the form (15) is equivalent to achieving (26) in the polyhedra game. Finding a strategy which
guarantees termination of the iterated sector decomposition corresponds to a winning strategy for
playerA in the polyhedra game. Note that we really need a strategy that guarantees player A’s
victory for every choice player B can take, because the sector decomposition has to be carried
out in every appearing sector. In other words, we sample overall possible decisions of B.

4.2 Strategy A

Zeillinger’s strategy [27, 28] for playerA is conceptionally the simplest. A drawback of this
strategy is that it leads to a large number of sub-sectors andis therefore quite inefficient. Denote
by MC the set of corners of∆, MC ⊆ M. DefineW to be the set of vectors connecting these
corners:

W =
{

v= m(i)−m( j) : m(i), m( j) ∈ MC

}

. (28)

We define the lengthL(v) of the vectorv∈W by

L(v) = max
1≤i≤n

vi − min
1≤i≤n

vi . (29)

We define the multiplicityN(v) of the vectorv∈W by the number of its components equal to its
minimal or maximal component:

N(v) = #

{

j : 1≤ j ≤ n, v j = min
1≤i≤n

vi or v j = max
1≤i≤n

vi

}

. (30)

From the setW we single out one vectorw for which the sequence of the two numbersL(w) and
N(w) is minimal with respect to lexicographical ordering:

(L(w) , N (w)) ≤lex (L(v), N(v)) , ∀v∈W. (31)

Player A chooses thenS= {k, l}, wherek andl are defined by

wk = min
1≤i≤n

wi and wl = max
1≤i≤n

wi . (32)

This choice reduces the sequence of the three numbers

b =

{

(0, 0, 0)
(#MC, L(vM) , N (vM))

if ∆ is monomial,
otherwise,

(33)

with respect to lexicographical ordering. #MC denotes the number of corners of∆. A proof that
this strategy is a solution to Hironaka’s polyhedra game canbe found in [27,28].
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4.3 Strategy B

Spivakovsky’s strategy [18] was the first solution to Hironaka’s polyhedra game. To state the
algorithm, we need a few auxiliary definitions: We defineω(∆) ∈ R

n
+ as the vector given by the

minima of the individual coordinates of elements in∆:

ωi = min{νi | ν ∈ ∆} , i = 1, ..., n. (34)

Furthermore we writẽ∆ = ∆−ω(∆) andν̃i = νi −ωi . For a subsetΓ ⊆ {1, ..., n} we define

dΓ (∆) = min

{

∑
j∈Γ

ν j | ν ∈ ∆

}

and d(∆) = d{1, ...,n} (∆) . (35)

We then define a sequence of sets

(I0,∆0, I1,∆1, ..., Ir,∆r) (36)

starting from

I0 = {1, ..., n} , ∆0 = ∆. (37)

For each∆k we define a setHk by

Hk =

{

j ∈ Ik | ∃ ν ∈ ∆k such that∑
i∈Ik

νi = d(∆k) andν̃ j 6= 0

}

. (38)

Ik+1 is given by

Ik+1 = Ik\Hk. (39)

In order to define∆k+1 we first define for the two complementary subsetsHk andIk+1 of Ik the
set

MHk =

{

ν ∈ R
Ik
+ | ∑

j∈Hk

ν j < 1

}

(40)

and the projection

PHk : MHk −→ R
Ik+1
+ ,

PHk (α, β) =
α

1−|β|
, α ∈ R

Ik+1
+ , β ∈ R

Hk
+ , |β|= ∑

j∈Hk

β j . (41)

Then∆k+1 is given by

∆k+1 = PHk

(

MHk ∩

(

∆̃k

d
(

∆̃k
) ∪∆k

))

, (42)

where∆̃k = ∆k−ω(∆k). The sequence in eq. (36) stops if eitherd
(

∆̃r
)

= 0 or∆r = /0. Based on
the sequence in eq. (36) player A chooses now the setSas follows:
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1. If ∆r = /0, player A choosesS= {1, ..., n}\Ir .

2. If ∆r 6= /0, player A first chooses a minimal subsetΓr ⊆ Ir , such that∑ j∈Γr
ν j ≥ 1 for all

ν ∈ ∆r and setsS= ({1, ..., n}\Ir)∪Γr .

To each stage of the game (i. e. to each∆), we can associate a sequence of 2r +2 numbers

δ(∆) =
(

d
(

∆̃
)

, #I1, d
(

∆̃1
)

, ..., #Ir , d
(

∆̃r
)

, d(∆r)
)

, (43)

adopting the conventions̃/0 = /0 andd( /0) = ∞. The above strategy forcesδ(∆) to decrease with
each move in the sense of a lexicographical ordering. Further, it can be shown thatδ(∆) cannot
decrease forever. Hence player A is guaranteed to win. The proof is given in [18].

4.4 Strategy C

In this section we present a strategy inspired by the proof ofEncinas and Hauser [24, 26]. We
keep as much as possible the notation of the previous section. Similar to the previous section we
define a sequence

(c−1, I0,∆0,c0, I1,∆1, ...,cr−1, Ir ,∆r) (44)

starting from

c−1 = 0, I0 = {1, ..., n} , ∆0 = ∆. (45)

Compared to eq. (36) we added the numbersc−1,c0, ...,cr−1 to the sequence. Again we define
Hk by

Hk =

{

j ∈ Ik | ∃ ν ∈ ∆k such that∑
i∈Ik

νi = d(∆k) andν̃ j 6= 0

}

. (46)

We setck = d
(

∆̃k
)

and define for a set̃∆k a companion set̃∆C
k by

∆̃C
k =

{

∆̃k∪
(

ck
ck−1−ck

ω(∆k)+R
Ik
+

)

if 0 < ck < ck−1,

∆̃k otherwise.
(47)

Let Tk ⊆ Hk be a subset ofHk. The subsetTk is chosen according to a ruleR: Tk = R(Hk). The
only requirement on the ruleR is, that is has to be deterministic: If

T = R(H) and T ′ = R(H ′) and H = H ′ ⇒ T = T ′. (48)

We define

∆Tk = ck PTk

(

MTk ∩
∆̃C

k

ck

)

. (49)
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We then set

Ik+1 = Ik\Tk,

∆k+1 = ∆Tk. (50)

The sequence in eq. (44) stops if eitherd
(

∆̃r
)

= 0 or ∆r = /0. Based on the sequence in eq. (36)
player A chooses now the setSas follows:

1. If ∆r = /0, player A choosesS= {1, ..., n}\Ir .

2. If ∆r 6= /0, player A first chooses a minimal subsetΓr ⊆ Ir , such that∑ j∈Γr
ν j ≥ cr−1 for all

ν ∈ ∆r and setsS= ({1, ..., n}\Ir)∪Γr .

This strategy reduces the sequence

i(∆) =
(

d
(

∆̃0
)

,(#I0−#H0) ,d
(

∆̃1
)

, ...,(#Ir−1−#Hr−1) ,d
(

∆̃r
)

,d(∆r)
)

(51)

with respect to lexicographical ordering. The strategy C issimilar to strategy B, the major dif-
ferences are in the choice of the companion set eq. (47) as compared to eq. (42) and the freedom
to choose a subsetTk ⊆ HK instead ofHk. We provide a proof for this strategy in appendix B.

5 A description of the program

The program is written in C++. The main routine to compute an integral of the form as in eq. (7)
is the functiondo_sector_decomposition. The arguments are as follows:

monte_carlo_result do_sector_decomposition(

const integration_data & global_data,

const integrand & integrand_in,

const monte_carlo_parameters & mc_parameters,

int verbose_level = 0);

The input are three structures,integration_data, integrand, monte_carlo_parameters,
which are described in detail below, and an optional parameterverbose_level. With the help of
the optional parameterverbose_level one can choose the amount of information the program
prints out during the run. The function returns a structuremonte_carlo_result, which again
is described below. The strategy for the iterated sector decomposition is selected by the global
variableCHOICE_STRATEGY. The keywords for the available strategies are

STRATEGY_A, STRATEGY_B, STRATEGY_C, STRATEGY_X.

The first three strategies are described in detail in the previous section and are guaranteed to
terminate. The last one is a heuristic strategy, for which weneither have a proof that it terminates,
nor do we know a counter-example which would lead to an infinite recursion. This strategy
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chooses the smallest setSsuch that the maximal power of a Feynman parameter can be factored
out in each sub-sector. It is included for the following reason: If this strategy terminates, the
number of the generated sub-sectors tends to be smaller thanthe corresponding numbers for the
other strategies. The default is

CHOICE_STRATEGY = STRATEGY_C;

The classintegration_data contains the data which will not be modified by the algorithm for
the sector decomposition. It has a constructor of the form

integration_data(const std::vector<GiNaC::ex> & list_feynman_parameter,

GiNaC::ex epsilon, int order);

wherelist_feynman_parameter is a vector holding the symbols of the Feynman parameters,
epsilon is a symbol corresponding toε in eq. (7) andorder defines which term of the Laurent
series inε should be computed.

The integrand
(

n

∏
i=1

xai+εbi
i

)

r

∏
j=1

[

Pj(x)
]c j+εd j (52)

is encoded in the classintegrand. This class has a constructor of the form

integrand(const std::vector<exponent> & nu,

const std::vector<GiNaC::ex> & poly_list,

const std::vector<exponent> & c);

wherenu is a vector of sizen holding the exponentsai + εbi. poly_list is a vector of sizer,
holding the polynomialsPj in the Feynman parameters. The corresponding exponents arestored
in the vectorc, again of sizer. As exponents are generally of the forma+bε, a special class is
available for them:

exponent(int a, int b);

In applications one encounters often integrands where the explicit powers of the Feynman pa-
rameters are missing. For integrands of the form

r

∏
j=1

[

Pj(x)
]c j+εd j (53)

there is a simpler constructor of the form

integrand(size_t n, const std::vector<GiNaC::ex> & poly_list,

const std::vector<exponent> & c);
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Heren is the number of Feynman parameters.

Parameters associated to the Monte Carlo integration are specified with the help of the class
monte_carlo_parameters. This class is constructed as follows:

monte_carlo_parameters(size_t iterations_low, size_t iterations_high,

size_t calls_low, size_t calls_high);

The program uses the Vegas-algorithm [33, 34] based on an adaptive grid. The program does
first a Monte Carlo integration withiterations_low iterations withcalls_low function eval-
uations each. This phase is solely used to adapt the grid. Thenumerical result of the Monte
Carlo integration is then obtained from the second stage with iterations_high iterations of
calls_high function calls each.

The main functiondo_sector_decomposition returns the numerical results of the Monte Carlo
integration in the classmonte_carlo_result. This class has the methods

class monte_carlo_result {

public :

double get_mean(void) const;

double get_error(void) const;

double get_chi_squared(void) const;

};

which return the mean value of the Monte Carlo integration, the error estimate and the associated
χ2.

6 How to use the program

In this section we give indications how to install and use theprogram library. Compilation of
the package will build a (shared) library. The user can then write his own programs, using the
functions provided by the library by linking his executables against the library.

6.1 Installation

The program can be obtained from

http://wwwthep.physik.uni-mainz.de/˜stefanw/software.html

After unpacking, the library for sector decomposition is build by issuing the commands

./configure

make

make install
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There are various options which can be passed to the configurescript, an overview can be ob-
tained with./configure --help.

After installation, the shell scriptsector_decomposition-config can be used to determine
the compiler and linker command line options required to compile and link a program with
the library. For example,sector_decomposition-config --cppflags will give the path to
the header files of the library, whereassector_decomposition-config --libs prints out the
flags necessary to link a program against the library.

6.2 Writing programs using the library

The following test program computes the first terms of the Laurent series of the massless double-
box graph. The graph corresponds to the integral

Z

x j≥0

d7x δ(1−
7

∑
i=1

xi) U1+3εF −3−2ε, (54)

with

U = (x1+x2+x3)(x5+x6+x7)+x4(x1+x2+x3+x5+x6+x7), (55)

F = [x2x3(x4+x5+x6+x7)+x5x6(x1+x2+x3+x4)+x2x4x6+x3x4x5] (−s)+x1x4x7(−t).

The integral is computed for the point(s, t) = (−1,−1).

#include <iostream>

#include <vector>

#include <ginac/ginac.h>

#include "sector_decomposition/sector_decomposition.h"

int main()

{

using namespace GiNaC;

using namespace sector_decomposition;

CHOICE_STRATEGY = STRATEGY_X;

symbol eps("eps");

symbol s("s"), t("t");

symbol x1("x1"), x2("x2"), x3("x3"), x4("x4"), x5("x5"), x6("x6"), x7("x7");

const ex x[] = { x1,x2,x3,x4,x5,x6,x7 };

std::vector<ex> parameters(7);

for (int i=0; i<7; i++) parameters[i]=x[i];
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ex U = (x1+x2+x3)*(x5+x6+x7) + x4*(x1+x2+x3+x5+x6+x7);

ex F = (x2*x3*(x4+x5+x6+x7)+x5*x6*(x1+x2+x3+x4)+x2*x4*x6+x3*x4*x5)*(-s)

+x1*x4*x7*(-t);

F = F.subs(lst( s == -1 , t == -1 ));

std::vector<ex> poly_list(2);

poly_list[0] = U;

poly_list[1] = F;

std::vector<exponent> c(2);

c[0] = exponent( 1, 3 );

c[1] = exponent( -3, -2 );

integrand my_integrand(7, poly_list, c);

monte_carlo_parameters mc_parameters( 5, 15, 10000, 100000 );

for (int order=-4; order<=0; order++)

{

integration_data global_data(parameters, eps, order);

monte_carlo_result res =

do_sector_decomposition(global_data, my_integrand, mc_parameters);

std::cout << "Order " << pow(eps,order) << ": " << res.get_mean()

<< " +/- " << res.get_error() << std::endl;

}

return 0;

}

Running the program will print out the following result:

Order eps^(-4): 2.00001 +/- 9.25208e-05

Order eps^(-3): -5.99992 +/- 0.000359897

Order eps^(-2): -4.91623 +/- 0.00157598

Order eps^(-1): 11.4958 +/- 0.00681643

Order 1: 13.8236 +/- 0.0207286

The running time is about 40 minutes on a standard PC.
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Integral Strategy A Strategy B Strategy C Strategy X

Bubble 2 2 2 2
Triangle 3 3 3 3
Tbubble 58 48 48 48
Planar double-box 755 586 586 293
Non-planar double-box 1138 698 698 395

Table 1: The number of generated sub-sectors for different loop integrals and different strategies.

6.3 Further examples and performance

The program comes with several examples: The one-loop two-point and three-point functions, as
well as the following two-loop functions: The two-point function, the planar double-box and the
non-planar double box. The corresponding Feynman diagramsfor these examples are shown in
fig. 1. For these examples the corresponding analytic results are known and can be found for the

Bubble Triangle

TBubble Planar double-box Non-planar double-box

Figure 1: Feynman integrals included as examples in the distribution.

two-loop integrals in [35–37]. We have used these results toverify the correctness of our code.
The running time of the program is dominated by the numericalMonte-Carlo integration.

The running time for the Monte-Carlo integration depends onthe complexity of the integrand,
which in turn is related to the number of generated sub-sectors. The number of generated sub-
sectors is therefore a measure for the efficiency of the algorithm. Note that although different
strategies lead to the same result for the Laurent expansionof multi-loop integrals, the number of
generated sub-sectors may differ among the various strategies. In table 1 we compare the number
of generated sub-sectors for the different strategies and for different loop integrals. We observe
that strategy A performs worse than strategies B or C. Strategies A, B and C are guaranteed
to terminate. Strategy X, for which we have no proof that the singularities are resolved after a
finite number of iterations, terminates for the examples above and gives the lowest numbers for
the generated sub-sectors. For this reason it is included inthe program. A pragmatic approach
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would try strategy X first. If the iterated sector decomposition terminates, one obtains the result
efficiently. If not, one uses as fall-back option one of the strategiesA, B or C.

Going to a higher number of loops and more propagators, the memory requirements become
an issue. However, the individual sub-sectors are independent and can be calculated once at a
time. This reduces significantly the memory requirements. With this method we evaluated the
massless on-shell triple box in about two days CPU time on a standard PC.

6.4 Documentation

The complete documentation of the program is inserted as comment lines in the source code.
The documentation can be extracted from the sources with thehelp of the documentation sys-
tem “doxygen” [38]. The program “doxygen” is freely available. Issuing in the top-level build
directory for the library the commands

doxygen Doxyfile

will create a directory “reference” with the documentationin html and latex format.

7 Summary

In this article we considered the numerical computation of the coefficients of the Laurent ex-
pansion of a divergent multi-loop integral, regulated by dimensional regularisation. The method
is based on iterative blow-ups, also known as iterative sector decomposition. The algorithms
we employed ensure that this recursive procedure terminates. We implemented the algorithms
into a computer program, such that the symbolic and the numerical steps of the algorithms are
contained in one program.
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A Details on the implementation

The numerical Monte Carlo integration is by far the most time-consuming part of the program
and efficiency of the program in this part is of particular importance.

The GiNaC-library provides a method for the numerical evaluation of a function, based on
arbitrary precision arithmetic. For Monte Carlo integration, where a function needs to be evalu-
ated many times, this is quite slow and therefore inefficient. It is also not needed, since statistical
errors and not rounding errors tend to dominate the error of the final result. Therefore a different
approach has been implemented for the numerical Monte Carlointegration: The function to be
integrated is first written as C code to a file, this file is then compiled with a standard C compiler
and the resulting executable is loaded dynamically (e.g. asa “plug-in”) into the memory space
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of the program and the Monte Carlo integration routine uses this compiled C function for the
evaluations.

The performance is further improved by optimising the C codeof the function. This is done
by replacing subexpressions, which occur syntactically more than once by temporary variables.
In addition, subexpressions with a large number of operandsare split into smaller pieces. This
ensures that long expressions can be processed by the compiler. These optimising techniques are
part of many commercial computer algebra systems, but are not part of the GiNaC-library. They
have been added to this program.

B Proof of strategy C

In this appendix we provide a proof of strategy C. The structure of the proof is modelled on
Spivakovsky’s proof of strategy B. We keep the notations of section 4.

Lemma 0:

d(∆k) ≥ ck−1. (56)

Proof by induction: The claim is obvious fork= 0, sincec−1 = 0. Assume that the hypothesis
is true fork. With d(∆k) = d

(

∆̃k
)

+ |ω(∆k)| we deduce thatd
(

∆̃C
k

)

≥ ck. Using this it follows
d(∆Tk)≥ ck for all Tk. Therefored(∆k+1)≥ ck.

Corollary: d
(

∆̃k
)

= d
(

∆̃C
k

)

. For ck ≥ ck−1 there is nothing to prove. Forck < ck−1 we have
to consider the pointckω(∆k)/(ck−1 − ck). From |ω(∆k)| = d(∆k)− d

(

∆̃k
)

≥ ck−1 − ck the
claim follows.

We call a setSk permissible for∆k, if

∑
j∈Sk

ν j ≥ ck−1 for all ν ∈ ∆k. (57)

Lemma 1: IfSk+1 is permissible for∆k+1, thenSk =Sk+1∪Tk is permissible for∆k anddSk

(

∆̃k
)

=

d
(

∆̃k
)

. To prove this lemma we first show

∑
j∈Sk

ω j ≥ ck−1−ck, (58)

whereω j are the components ofω(∆k). Forck ≥ ck−1 this is obvious, as the l.h.s. is non-negative.
Forck < ck−1 we have

ck

ck−1−ck
ω(∆k) ∈ ∆̃C

k . (59)

Then

Sk+1 permissible for∆k+1 ⇒ ∑
j∈Sk+1∪Tk

ν j ≥ ck for all ν ∈ ∆̃C
k ⇒ ∑

j∈Sk

ω j ≥ ck−1−ck. (60)
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Therefore

Sk+1 permissible for∆k+1 ⇒ ∑
j∈Sk+1∪Tk

ν j ≥ ck for all ν ∈ ∆̃C
k

⇒ ∑
j∈Sk

ν j ≥ ck for all ν ∈ ∆̃k

⇒ ∑
j∈Sk

ν j ≥ ck+ ∑
j∈Sk

ω j for all ν ∈ ∆k

⇒ ∑
j∈Sk

ν j ≥ ck−1 for all ν ∈ ∆k (61)

From the second step above

∑
j∈Sk

ν j ≥ ck = d
(

∆̃k
)

for all ν ∈ ∆̃k (62)

it follows immediately thatdSk

(

∆̃k
)

≥ d
(

∆̃k
)

.

Corollary: The setSas defined in section 4.4 is permissible for∆. For ∆r 6= /0 the setΓr is per-
missible by construction. Then the repeated application ofthe above lemma shows thatS is per-
missible for∆. For∆r = /0 it follows thatdSr−1

(

∆̃C
r−1

)

≥ cr−1 and thereforedSr−1 (∆r−1)≥ cr−1.
ThereforeSr−1 is permissible for∆r−1 and with the same argumentation as above it follows that
S is permissible for∆.

Let now∆ ⊂ R
n
+. We define the transformation∆′ = σc

S,i (∆) by

ν′j = ν j for j 6= i,

ν′i = ∑
j∈S

ν j −c. (63)

Lemma 2:

(a) d
(

∆̃′
k

)

≤ d
(

∆̃k
)

.

(b) If d
(

∆̃′
k

)

= d
(

∆̃k
)

theni /∈ Hk andHk ⊆ H ′
k.

(c) If d
(

∆̃′
k

)

= d
(

∆̃k
)

andHk = H ′
k thenTk = T ′

k.

(d) If d
(

∆̃′
k

)

= d
(

∆̃k
)

andTk = T ′
k then the following diagram commutes:

∆k −−−→ ∆̃k −−−→ ∆̃C
k −−−→ ∆k+1





y

σ
ck−1
Sk,i





y

σck
Sk,i





y

σck
Sk,i





y

σck
Sk+1,i

∆′
k −−−→ ∆̃′

k −−−→ ∆̃′
k
C −−−→ ∆′

k+1
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Proof: (a) Leti ∈ Sk. If i ∈ Hk there is a pointν ∈ ∆̃k such that|ν| = d
(

∆̃k
)

andνi 6= 0. Then
|ν′| < d

(

∆̃k
)

. Assume nowi /∈ Hk and choose a pointν ∈ ∆̃k such that|ν| = d
(

∆̃k
)

. Then
|ν′|= d

(

∆̃k
)

.
(b) If i ∈ Hk then there would be a pointν ∈ ∆̃k with |ν′|< d

(

∆̃k
)

, which is in contradiction with
the assumptiond

(

∆̃′
k

)

= d
(

∆̃k
)

. Thereforei /∈ Hk. Further for all pointsν ∈ ∆̃k with |ν|= d
(

∆̃k
)

we have|ν′|= d
(

∆̃k
)

, thereforeHk ⊆ H ′
k.

(c) is a direct consequence of (48).
(d) is verified by a direct calculation.

Lemma 2 is the key to prove that the sequence (51) decreases: According to lemma 2(a),d
(

∆̃k
)

either decreases or remains constants. If it remains constant, lemma 2(b) states that(#Ik−#Hk)
either decreases or remains constant. If also this number remains constant, lemma 2(c) guar-
anteesTk = T ′

k and lemma 2(d) allows us to descend in dimension and to consider the simpler
problem for∆k+1.
It is an easy exercise to complete the proof and to show that ifd

(

∆̃r
)

= 0 the choice ofΓr forces
d(∆r) to decrease.
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