arXiv:0709.4092v2 [hep-ph] 3 Dec 2007

MZ-TH/07-17

Resolution of singularitiesfor multi-loop integrals
Christian Bogne®? and Stefan Weinzief

a Institut fur Physik, Universitat Mainz,
D - 55099 Mainz, Germany

b Department of Mathematical Sciences, University of Durham
Durham DH1 3LE, United Kingdom

Abstract

We report on a program for the numerical evaluation of digatgnulti-loop integrals. The

program is based on iterated sector decomposition. We wegtee original algorithm of

Binoth and Heinrich such that the program is guaranteedrivitate. The program can be
used to compute numerically the Laurent expansion of damrgnulti-loop integrals regu-

lated by dimensional regularisation. The symbolic and tlmaerical steps of the algorithm
are combined into one program.

http://arxiv.org/abs/0709.4092v2

PROGRAM SUMMARY

Title of program sector_decomposition

Version 1.0

Catalogue number

Program obtained fromhttp://wwwthep.physik.uni-mainz.de/ " stefanw/software.html
E-mail: stefanw@thep.physik.uni-mainz.de,bogner@thep.physik.uni-mainz.de
License GNU Public License

Computersall

Operating systemJnix

Program languagec++

Memory required to execut®epending on the complexity of the problem.

Other programs calledGiNaC, available fronhttp://www.ginac.de,
GNU scientific library, available fromttp://www.gnu.org/software/gsl.

External files neededhone

Keywords Multi-loop integrals.

Nature of the physical problen€omputation of divergent multi-loop integrals.

Method of solutionSector decomposition.

Restrictions on complexity of the proble@®nly limited by the available memory and CPU time.
Typical running time Depending on the complexity of the problem.

1 Introduction

The calculation of higher-order corrections in perturbatineory in particle physics relies to a
large extent on our abilities to compute Feynman loop iratisgAny calculation of loop integrals
is complicated by the fact, that these integrals may comliziergences, ultraviolet or infrared in
nature. Dimensional regularisation is usually employe@tmlate the divergences and one seeks
the Laurent expansion of Feynman integral®ia- 4 — 2 dimensions in the small parameter

Automated numerical algorithms, which permit the compatabf the coefficients of the
Laurent series for certain phase space points are of greasian independent check of ana-
Iytical calculations. There are several methods availtd¢his task. All methods have to face
the challenge to disentangle overlapping singularitiaghis paper we focus on sector decom-
position [1-4]. Other possibilities include a method basedlifference equations [5-8] or the
evaluation of Mellin-Barnes integrals [9, 10].

Sector decomposition is a convenient tool to disentangélapping singularities. Binoth
and Heinrich [3, 4] gave an algorithm for the automated cawan of the Laurent series of
multi-loop integrals. The method has recently also beetiegho phase space integrals [11-13]
and complete loop amplitudes [14, 15].

However, the original formulation of Binoth and Heinrichsha drawback: The disentan-
glement of overlapping singularities is achieved througgursive sector decomposition. If this
process terminates, the algorithm gives the correct ansiet there is no guarantee that the
algorithm stops after a finite number of steps. In fact, onefeal relatively simple counter-
examples, where the original algorithm leads to an infirotgpl In this paper we improve the
method and present an algorithm, which is guaranteed tariaten This is possible, since we
can relate our problem to a well-known problem in algebraorgetry: The resolution of sin-
gularities of an algebraic variety over a field of charasterizero by a sequence of blow-ups.
In view of [16] a connection between Feynman integrals agelaiic geometry comes to no
surprise. The mathematical problem can be solved, whicHivgashown by Hironaka [17]. Al-
though the proof by Hironaka is non-constructive and tlmee€tannot be used as an algorithm,
in subsequent years constructive methods have been deddltf-28]. Let us mention for com-
pleteness that the mathematical problem is more geneeadlisentanglement of singularities of
multi-loop integrals corresponds to the sub-case, wheraltiebraic variety is generated through
a single polynomial. We have implemented three differeatsgies for the resolution of the sin-
gularities. All of them are guaranteed to terminate anddyibe correct answer. They differ in
the required CPU-time.

The algorithm for sector decomposition can be divided imto stages. The first stage in-
volves symbolic computer algebra, while the second stapased on a numerical integration.
Partially due to this “double nature” of the algorithm, ndopia program is available up to now.
Given the importance and the popularity of the algorithng tap should be closed. With this
article we provide such a program.

A user-friendly implementation of the algorithm would réguthat the different aspects of
the method, e.g. the symbolic and the numerical computstame treated within the same frame-
work. The library GiNaC [29] allows the symbolic maniputatiof expressions within the pro-
gramming language C++. It offers the tools to combine symstaotd numerical computations

3

in one program. Furthermore there exist specialised igsdor an efficient numerical Monte
Carlo integration [30—32]. Our implementation is therefar C++, using the libraries GiNaC
for the symbolic part and the GNU Scientific Library for thenmerical part. All stages of the
algorithm are implemented within one program.

This article is organised as follows: In section 2 we revieagib facts about multi-loop
Feynman integrals. Section 3 gives a brief description@gligorithm for sector decomposition.
In section 4 we discuss in detail strategies, which guaeaatermination of the iterated sector
decomposition. Section 5 gives an overview of the desigh®ptrogram while section 6 is of a
more practical nature and describes how to install and wsprtigram. This section provides an
example and compares the efficiency of the different strasegrinally, a summary is provided in
section 7. In an appendix we describe technical detailseoiftiplementation and provide a proof
for one of the strategies (the proofs for the two other sfjiatecan be found in the literature).

2 Feynmanintegrals

In this section we briefly recall some basic facts about matip Feynman integrals. A generic
scalar-loop integrallg in D dimensions witin propagators corresponding to a grdpis given

by

I der
/rlz! IT[2 I_L q]+m2 (1)

The momenta; of the propagators are linear combinations of the exterwahenta and the loop
momenta. After Feynman parameterisation one arrives at

|D/2 , qv—(+1)D/2
d'%8(1— Y X - 2
I_l r(/ le (I_l) _r;:v—ID/Z ()

Xj>0

lc =

with v =v1+ ...+ Vv, The functionst and ¥ depend on the Feynman parameters. If one
expresses

n I I
_2-|-rn2 = — MrSkS+ 2K, - I’_J7 3
> x(afemt) = =5 5 kMt 5 2-Q ®)

whereM is al x | matrix with scalar entries an@ is al-vector with four-vectors as entries, one
obtains

U=detM), F=detM)(-I+QM Q). (4)

Alternatively, the functionsti and & can be derived from the topology of the corresponding
Feynman grapl. Cutting!l lines of a given connecteldloop graph such that it becomes a
connected tree graph defines a chord’(T,G) as being the set of lines not belonging to this

4

tree. The Feynman parameters associated with each chong @efnonomial of degrele The

set of all such trees (or 1-trees) is denotedZpy The 1-treed € 7; definel as being the sum
over all monomials corresponding to the chod, G). Cutting one more line of a 1-tree leads
to two disconnected tre€3;, T,), or a 2-tree. 7> is the set of all such pairs. The corresponding
chords define monomials of degree 1. Each 2-tree of a graph corresponds to a cut defined
by cutting the lines which connected the two now disconretrees in the original graph. The
square of the sum of momenta through the cut lines of one dinbe&isconnected treég or T,

defines a Lorentz invariant
2
ST = < z pj) : (5)
jeC(T,0)

The function%g is the sum over all such monomials times minus the correspgridvariant.
The function# is then given byfg plus an additional piece involving the internal massgsin
summary, the functiongl and & are obtained from the graph as follows:

u= 3| M x|
TeT jeC(T,G)

Jo = Z [|_| XJ} (_STl))
(ML R)eD "jeC(T1,G)

n
=1

In general, U is a positive semi-definite function. Its vanishing is rethtto the UV sub-
divergences of the graph. Overall UV divergences, if pressill always be contained in the
prefactor (v —1D/2). In the Euclidean regiorff is also a positive semi-definite function of the
Feynman parametexs. The vanishing off is related to infrared divergences. Note that this is
only a necessary but not sufficient condition for the ocaweeof an infrared singularity. If an
infrared singularity occurs or not depends in addition andkternal kinematics.

3 Arreview of thealgorithm for sector decomposition

In this section we briefly describe the original algorithmBihoth and Heinrich for iterated
sector decomposition. A detailed discussion on stratégrefioosing the sub-sectors is deferred
to section 4. The program calculates the Laurent expansionfiintegrals of the form

. Z O d"x8(1 - iixi) (ij?“b‘)]Ifll [P, (x)] % @)

The integration is over the standard simplex. B b's, ¢'s andd’s are integers. The's are
polynomials in the variables,, ..., x,. The polynomials are required to be non-zero inside the

5

integration region, but may vanish on the boundaries of mtiegration region. Note that the
program allows a product of several polynomials and thatitat required that the polynomials
are homogeneous.

Step 0: We first convert all polynomials to homogeneous paityials. Due to the presence
of the delta-function we have
1 = Xi+X%X+...+Xn. (8)

For each polynomialP; we determine the highest degrieeand multiply all terms with a lower
degree by an appropriate powen@f+ X, + ... + X,. As a result, the polynomid?; is then ho-
mogeneous of degrésg.

Step 1: We decompose the integral intprimary sectors as in

n n
/ dx = 5 [d% [T 6 =x).)
X20 SSo =LA
In thel-th primary sector we make the substitution
Xj = xxj forj#l. (10)

As each polynomiaP; is now homogeneous of degregwe arrive at

[=50 (1 000z) (1) 1y sl -

Xj>0
1 n ¢ r
/(a‘+€b'> (1-1— Z x,-) I [Py (X, -, Xj— 1, L, X1, -, %) | 1500, (12)
o \i= 1|7él =14 =1

where
n r
c = —n—Z(aiJrsbi)—Zhj (cj+edj). (12)
i= =

Each primary sector is now(a — 1)-dimensional integral over the unit hyper-cube. Note that i
the general case this decomposition introduces an additpmtynomial factor

1+ X | . (13)
(= 3)

However for Feynman integrals of the form as in eq. (2) we gdaavec = 0 and this factor
is absent. In any case, this factor is just an additionalmatyial. In general, we therefore deal
with integrals of the form

1 n r
/dnxll—!xiai-i-sbi I—l [P] (XﬂCjJrde ‘ (14)
0 =

J=1

6

Step 2: We decompose the primary sectors iteratively inbesactors until each of the polyno-
mials is of the form

P = x".X"(1+P(x)), (15)

where P’(x) is a polynomial in the variables;. If P is of the form (15), we say tha® is
monomialised. In this case the monomial prefactBr...xTh can be factored out and the re-
mainder contains a constant term. To coniinto the form (15) we choose a subset
{ay, ..., 0k} € {1, ...n} according to one of the strategies outlined in section 4. ¥mohpose
thek-dimensional hypercube intosub-sectors according to

1

kK 1 K

/d”x _ Z/d”x M 80 >x,). (16)
=Y. N

In thel-th sub-sector we make for each elemen$dfie substitution

Xag = XXy fOri#l. (17)

This yields a Jacobian fact<xt§|_1. This procedure is iterated, until all polynomials are o th
form (15). The strategies discussed in section 4 guarahtgdhe recursion terminates. At the
end all polynomials contain a constant term. Each sub-settegral is of the form as in eq. (14),
where evenyp; is now different from zero in the whole integration domairertde the singular

behaviour of the integral depends on thendb;, thea; being integers.

Step 3: For every; with aj < 0 we have to perform a Taylor expansion aroupek O in order to
extract the possible-poles. If we consider for the moment only one paramggeve can write
the corresponding integral as

? b 1 b |ai|7lxp
/de x?‘+ ‘Sl(xj) :/de x?’+ i€ Z H]'I(p)—l—I(R)(Xj) (18)
0 0 p=0

. The remainder term

where we defined (P) = 9/0x"1(x)) .
Xj=

(R |aj|7lxlp (p)
I\V(x;) = I(X I 19
(Xj) (X)) p_EO ol (19)

does not lead te-poles in thexj-integration. The integration in the pole part can be cdraet
analytically:

(20)

1 P
/de NI (e ! 1
) J p! aj+bje+p+1 p!

This procedure is repeated for all variabkgdor whichaj < 0.

Step 4: All remaining integrals are now by construction &nitWe can now expand all ex-
pressions in a Laurent seriessn

_icisi +0 (SB) (21)

and truncate to the desired order.

Step 5: It remains to compute the coefficie@s These coefficients contain finite integrals,
which we evaluate numerically by Monte Carlo integration.

4 Strategiesfor choosing the sub-sectors

In this section we discuss strategies for choosing the $&shkich defines the sub-sectors, such
that the iterated sector decomposition terminates. BiaathHeinrich proposed to determine
a minimal subse® = {ay, ..., oy} such that at least one polynomRlvanishes foxy, = ... =

Xa, = 0. By a minimal set we mean a set which does not contain a psageset having this
property. IfScontains only one elemers= {a}, then the corresponding Feynman parameter
factorises fronP;j. A relative simple example shows, that this procedure mag te an infinite
loop: If one considers the polynomial

P (X1, X2, X3) = X1)X3 + X3 + XoXa, (22)

then the subse®= {1, 2} is an allowed choice, a(x; =0, x2 = 0, X3) = 0 andSis minimal.
In the first sector the substitution (17) reads= X}, X2 = X} X5, X3 = X5. It yields

PO e Xe) = X XEXP Xty =X (XX +3pk) = P (4,3,) . (29)

The original polynomial has been reproduced, which leadstimfinite recursion. The problem
of a non-terminating iteration has already been noted in[4¢f To avoid this situation we need
a strategy for choosin§, for which we can show that the recursion always terminakéss is a
highly non-trivial problem. It is closely related to the ofistion of singularities of an algebraic
variety over a field of characteristic zero. Fortunatelythmeanaticians have found a solution for
the latter problem and we can adapt the mathematical sokitmour problem. We will not go
into any details of algebraic geometry. Instead we presesection 4.1 the polyhedra game,
introduced by Hironaka to illustrate the problem of resiolutof singularities. The polyhedra
game can be stated with little mathematics. Any solutioméopolyhedra game will correspond
to a strategy for choosing the subs8tdn sections 4.2 to 4.4 we present three winning strate-
gies for the polyhedra game. All three strategies ensurtetlleaiterated sector decomposition
terminates and lead to the correct result. However, the eurabgenerated sub-sectors (and
therefore the efficiency of the method) will vary among thiéedent strategies. Common to all

8

strategies is a sequence of positive numbers associated pmtynomials. All strategies enforce
this sequence to decrease with each step in the iteratibrr@spect to lexicographical ordering.
As the sequence cannot decrease forever, the algorithmaraugieed to terminate. The actual
construction of this sequence will differ for differentatiegies.

The lexicographical ordering is defined as follows: A seaesof real number&y, ..., a) is
less than a sequendhy, ..., bs) if and only if there exists & € N such that; = bj for all j <k
anday < by, where we use the convention tlegt= 0 for j >r.

4.1 Hironaka'spolyhedra game

Hironaka'’s polyhedra game is played by two players, A and IBeyTare given a finite se
of pointsm= (my, ..., my) in N7, the first quadrant oR". We denote byA C R"} the positive
convex hull of the se. It is given by the convex hull of the set

U (m+R7). (24)

meM

The two players compete in the following game:

1. Player A chooses a non-empty sulSét {1, ..., n}.

2. Player B chooses one elemeput of this subse$.

Then, according to the choices of the players, the compeméat| (my, ..., my) € M are replaced
by new pointgn,, ..., m,), given by:

Moo=y, £

I'T"‘ = m; — G, (25)
gs j

where for the moment we set= 1. This defines the séfi’. One then setd = M’ and goes
back to step 1. Player A wins the game if, after a finite numibenaves, the polyhedrof is of
the form

A = m+R?, (26)

i.e. generated by one point. If this never occurs, pl&/Bas won. The challenge of the polyhe-
dra game is to show that play&rmalways has a winning strategy, no matter how pld&/ehooses
his moves.

Let us discuss the relation of Hironaka’s polyhedra gaméehéosector decomposition of
multi-loop integrals. Without loss of generality we canwasg that we have just one polynomial
Pineq. (7). (If there are several polynomials, we obtain glgipolynomial by multiplying them
together. As only the zero-sets of the polynomials are aglg\the exponents can be neglected.)
The polynomialP has the form

p i i i
P = Zlcixrln(l)xg](z)...xnm(“). (27)

9

Then-tuplem() = <m(1i), s m,@) defines a point il andM = { m®_ .. m(P) { is the set of all

such points. Substituting the parametgraccording to equation (17) and factoring out a tefm
yields the same polynomial as replacing the powaraccording to equation (25). In this sense,
one iteration of the sector decomposition correspondseomove in Hironaka's game. Reducing
P to the form (15) is equivalent to achieving (26) in the polgteegame. Finding a strategy which
guarantees termination of the iterated sector decompaogitirresponds to a winning strategy for
playerA in the polyhedra game. Note that we really need a stratedygtierantees player A's
victory for every choice player B can take, because the selgcomposition has to be carried
out in every appearing sector. In other words, we sampleal/possible decisions of B.

4.2 Strategy A

Zeillinger’s strategy [27, 28] for playeh is conceptionally the simplest. A drawback of this
strategy is that it leads to a large number of sub-sectorssahérefore quite inefficient. Denote
by Mc the set of corners oA, Mc C M. DefineW to be the set of vectors connecting these
corners:

W = {v: m® —m - m® ml) ¢ Mc}. (28)
We define the length(v) of the vectowv € W by

Liv) = 1rgiaS)r(\vi —fgilgnnvi. (29)

We define the multiplicityN(v) of the vectorv € W by the number of its components equal to its
minimal or maximal component:

N = #{isasisny=min ory= s} =0)

From the se¥V we single out one vectav for which the sequence of the two numbersv) and
N (w) is minimal with respect to lexicographical ordering:

(LW),NW)) <ex (L(V),N(V)), WeW. (31)
Player A chooses theé®= {k, | }, wherek andl are defined by

W = minw; and wj = maxw;. (32)
1<i<n 1<i<n

This choice reduces the sequence of the three numbers

b — {(O, 0,0) if Ais monomial, (33)

(#Mc,L(vm),N(vv)) otherwise,

with respect to lexicographical orderingMig denotes the number of corners/fA proof that
this strategy is a solution to Hironaka’s polyhedra gamebmfound in [27, 28].

10

4.3 Strategy B

Spivakovsky’s strategy [18] was the first solution to Hirkaa polyhedra game. To state the
algorithm, we need a few auxiliary definitions: We defin@\) € R"} as the vector given by the
minima of the individual coordinates of elementsin

w = min{vi|veA}, i=1..n. (34)
Furthermore we writd = A — w(A) and¥; = v; — wy. For a subseff C {1, ..., n} we define
d-(4) = min{ Zvj |v EA} and d(A) =dg, . 0 (D). (35)
IE
We then define a sequence of sets
(|07A07|17A17---7|I’7AI’) (36)
starting from
lo={1,....,n}, Ap=A (37)
For each we define a sdtl by
He = {j € lx| 3v e Agsuchthaty vi =d(Ay) andVj # O}. (38)
i€l
lk. 1 IS given by
k1 = K\Hk (39)

In order to define)y 1 we first define for the two complementary subddisandl ; of Ik the
set

My, = {veR'm v,-<1} (40)
j€Hk

and the projection

. It
PHk . MHk —>R++)

(o, B) = o acRYY BeRl = Y By (41)
JeRk

M1 = Py (MHkm<d(ATkk)uAk>>, (42)

whered, = A — w(L). The sequence in eq. (36) stops if eitddA,) = 0 orA; = 0. Based on
the sequence in eg. (36) player A chooses now th8 astfollows:

ThenAy 1 is given by

11

1. If Ay =0, player A chooseS= {1, ..., n}\lI,.

2. If A # 0, player A first chooses a minimal subsetC I;, such thaty jcr, vj > 1 for all
v e A and setS= ({1, ...,n}\I;)UT,.

To each stage of the game (i. e. to e&yhwe can associate a sequencerf2 numbers
8(8) = (d(B),#1,d(d1),....#,d(A),d(A)), (43)

adopting the conventiors= 0 andd (0) = «. The above strategy forc@§A) to decrease with
each move in the sense of a lexicographical ordering. Fuiitrean be shown thai(A) cannot
decrease forever. Hence player A is guaranteed to win. Téf & given in [18].

44 Strategy C

In this section we present a strategy inspired by the pro@&maiinas and Hauser [24, 26]. We
keep as much as possible the notation of the previous se&ionlar to the previous section we
define a sequence

(Cfl,|o,Ao,Co,|1,A1,...,Cr,1,|r,Ar) (44)
starting from
c.1=0, |o:{1,...,n}, Do =A. (45)

Compared to eq. (36) we added the numleers co, ..., ;1 to the sequence. Again we define
Hy by

H(= {j €l | v e g such thatZ vi =d(Ax) andVj # O}. (46)
iely

We setc = d (A) and define for a sdi, a companion sk by

i = [BU(gigemo+rY) ito<a<ac)
AVS otherwise

Let Ty C Hy be a subset oflx. The subsely is chosen according to a ruR Ty = R(Hk). The
only requirement on the rulR s, that is has to be deterministic: If

T=RH) andT'=R(H') andH=H' = T=T" (48)
We define
AC
At, = cPr [Mp.N C—: . (49)

12

We then set

Ik+1 = lk\Tk7
Dei1 = Dy (50)

The sequence in eq. (44) stops if eitded\,) = 0 or A, = 0. Based on the sequence in eq. (36)
player A chooses now the sgts follows:

1. If Ay =0, player A chooseS= {1, ..., n}\lI,.

2. If A # 0, player A first chooses a minimal sub$etC I, such thaty ;.1 vj > ¢, for all
v € Ay and setS= ({1, ...,n}\I,)UT,.

This strategy reduces the sequence
i(8) = (d(Bo),(#o—#Ho),d (Br),.... #r—1—#Hr—1),d (&) .d()) (51)

with respect to lexicographical ordering. The strategy Ginsilar to strategy B, the major dif-
ferences are in the choice of the companion set eq. (47) agaraahto eq. (42) and the freedom
to choose a subs@&t C Hk instead ofHx. We provide a proof for this strategy in appendix B.

5 A description of the program

The program is written in C++. The main routine to computerdgegral of the form as in eq. (7)
is the functiondo_sector_decomposition. The arguments are as follows:

monte_carlo_result do_sector_decomposition (
const integration_data & global_data,
const integrand & integrand_in,
const monte_carlo_parameters & mc_parameters,
int verbose_level = 0);

The input are three structuresptegration_data, integrand, monte_carlo_parameters,
which are described in detail below, and an optional parametbose_level. With the help of

the optional parameteterbose_level one can choose the amount of information the program
prints out during the run. The function returns a structwete_carlo_result, which again

is described below. The strategy for the iterated sectoomeosition is selected by the global
variableCHOICE_STRATEGY. The keywords for the available strategies are

STRATEGY_A, STRATEGY_B, STRATEGY_C, STRATEGY_X.

The first three strategies are described in detail in theipusvsection and are guaranteed to
terminate. The last one is a heuristic strategy, for whicmeither have a proof that it terminates,
nor do we know a counter-example which would lead to an irffingticursion. This strategy

13

chooses the smallest sesuch that the maximal power of a Feynman parameter can lordact

out in each sub-sector. It is included for the following @asIf this strategy terminates, the
number of the generated sub-sectors tends to be smalletith@orresponding numbers for the
other strategies. The default is

CHOICE_STRATEGY = STRATEGY_C;

The classintegration_data contains the data which will not be modified by the algoritlon f
the sector decomposition. It has a constructor of the form

integration_data(const std::vector<GiNaC::ex> & list_feynman_parameter,
GiNaC::ex epsilon, int order);

wherelist_feynman_parameter is a vector holding the symbols of the Feynman parameters,
epsilon is a symbol corresponding ®in eq. (7) ancbrder defines which term of the Laurent
series ire should be computed.

The integrand

(Iﬁ)(iai-i-sbi) ILll [P] (Xﬂ cj+edi (52)
i= j=

is encoded in the classitegrand. This class has a constructor of the form

integrand(const std::vector<exponent> & nu,
const std::vector<GiNaC::ex> & poly_list,
const std::vector<exponent> & c);

wherenu is a vector of sizen holding the exponents; 4+ €b;. poly_list is a vector of size,
holding the polynomial®; in the Feynman parameters. The corresponding exponergsoaes
in the vectorc, again of size. As exponents are generally of the foan- be, a special class is
available for them:

exponent (int a, int b);

In applications one encounters often integrands wherexpkcé powers of the Feynman pa-
rameters are missing. For integrands of the form

r
[Py (] (53)
n
there is a simpler constructor of the form

integrand(size_t n, const std::vector<GiNaC::ex> & poly_list,
const std::vector<exponent> & c);

14

Heren is the number of Feynman parameters.

Parameters associated to the Monte Carlo integration aafigal with the help of the class
monte_carlo_parameters. This class is constructed as follows:

monte_carlo_parameters(size_t iterations_low, size_t iterations_high,
size_t calls_low, size_t calls_high);

The program uses the Vegas-algorithm [33, 34] based on grtiaelgrid. The program does
first a Monte Carlo integration withterations_1low iterations withcalls_1low function eval-
uations each. This phase is solely used to adapt the grid.ntihverical result of the Monte
Carlo integration is then obtained from the second stage iitrations_high iterations of
calls_high function calls each.

The main functionlo_sector_decompositionreturns the numerical results of the Monte Carlo
integration in the classonte_carlo_result. This class has the methods

class monte_carlo_result {
public :
double get_mean(void) const;
double get_error(void) const;
double get_chi_squared(void) const;
i

which return the mean value of the Monte Carlo integratibe drror estimate and the associated

X2.

6 How tousethe program

In this section we give indications how to install and use fihagram library. Compilation of
the package will build a (shared) library. The user can thatewis own programs, using the
functions provided by the library by linking his executabbgainst the library.

6.1 Installation

The program can be obtained from
http://wwwthep.physik.uni-mainz.de/ stefanw/software.html

After unpacking, the library for sector decomposition iddbby issuing the commands

./configure
make
make install

15

There are various options which can be passed to the confsgupg, an overview can be ob-
tained with. /configure --help.

After installation, the shell scriptector_decomposition-config can be used to determine
the compiler and linker command line options required to pikgnand link a program with
the library. For examplesector_decomposition-config --cppflags will give the path to
the header files of the library, where@sctor_decomposition-config --1ibs prints out the
flags necessary to link a program against the library.

6.2 Woriting programsusing thelibrary

The following test program computes the first terms of thereatiseries of the massless double-
box graph. The graph corresponds to the integral

7
/ d7x6(1—zixi)‘lll+3sf B (54)
Xj>0 =
with
U = (Xg+X2+X3)(X5+Xg +X7) +Xa (X1 + X2 + X3+ X5 + X6 + X7), (55)
F = [XX3(Xa+ X5+ X6+ X7) + X5X6(X1 + X2 + X3+ Xa) + XoXaXe + X3XaXs] (—S) + X1 XaX7(—t).

The integral is computed for the poifgt) = (—1,—1).

#include <iostream>

#include <vector>

#include <ginac/ginac.h>

#include "sector_decomposition/sector_decomposition.h"

int main()

{
using namespace GiNaC;
using namespace sector_decomposition;

CHOICE_STRATEGY = STRATEGY_X;

symbol eps("eps");

symbol s("s"), t("t");

symbol x1("x1"), x2("x2"), x3("x3"), x4("x4"), x5("x5"), x6("x6"), x7("x7");
const ex x[] = { x1,x2,%x3,%x4,%x5,%x6,x7 };

std: :vector<ex> parameters(7);
for (int i=0; i<7; i++) parameters[i]=x[i];

16

ex U = (x1+x2+x3)* (x5+x6+x7) + x4* (x1+x2+x3+x5+x6+x7);
ex F = (x2*x3* (x4+x5+x6+x7) +x5*x6* (x1+x2+x3+x4) +x2*x4*x6+x3*x4*x5) * (-s)
+x1*x4*x7* (-t);

F =F.subs(lst(s ==-1, t ==-1));
std::vector<ex> poly_list (2);

poly_list[0] U;
poly_list[1] F;

std: :vector<exponent> c(2);
c[0] = exponent(1, 3);
c[1] = exponent(-3, -2);

integrand my_integrand(7, poly_list, c);
monte_carlo_parameters mc_parameters(5, 15, 10000, 100000);

for (int order=-4; order<=0; order++)

{

integration_data global_data(parameters, eps, order);

monte_carlo_result res =
do_sector_decomposition(global_data, my_integrand, mc_parameters);

std::cout << "Order " << pow(eps,order) << ": " << res.get_mean()
<< " +/- " << res.get_error() << std::endl;

return 0;

}
Running the program will print out the following result:

: 2.00001 +/- 9.25208e-05
: -5.99992 +/- 0.000359897
: -4.91623 +/- 0.00157598

Order eps)
)
)
): 11.4958 +/- 0.00681643
2

(
Order eps”(
Order eps” (-
Order eps” (-
Order 1: 13

The running time is about 40 minutes on a standard PC.

17

Integral Strategy A Strategy B Strategy C Strategy X
Bubble 2 2 2 2
Triangle 3 3 3 3
Tbubble 58 48 48 48
Planar double-box 755 586 586 293
Non-planar double-bo 1138 698 698 395

Table 1: The number of generated sub-sectors for diffecat integrals and different strategies.

6.3 Further examplesand performance

The program comes with several examples: The one-loop tim-pnd three-point functions, as
well as the following two-loop functions: The two-point fciion, the planar double-box and the
non-planar double box. The corresponding Feynman diagfambkese examples are shown in
fig. 1. For these examples the corresponding analytic eatdtknown and can be found for the

@

Bubble Triangle

TBubble Planar double-box Non-planar double-box

Figure 1: Feynman integrals included as examples in thalaision.

two-loop integrals in [35-37]. We have used these resuletify the correctness of our code.
The running time of the program is dominated by the numefitahte-Carlo integration.
The running time for the Monte-Carlo integration dependshtencomplexity of the integrand,
which in turn is related to the number of generated sub-secithe number of generated sub-
sectors is therefore a measure for the efficiency of the @ligor Note that although different
strategies lead to the same result for the Laurent expan$ionlti-loop integrals, the number of
generated sub-sectors may differ among the various sieatdg table 1 we compare the number
of generated sub-sectors for the different strategies andifferent loop integrals. We observe
that strategy A performs worse than strategies B or C. $fiegeA, B and C are guaranteed
to terminate. Strategy X, for which we have no proof that tinglarities are resolved after a
finite number of iterations, terminates for the examples/aland gives the lowest numbers for
the generated sub-sectors. For this reason it is includédteiprogram. A pragmatic approach

18

would try strategy X first. If the iterated sector decomgositerminates, one obtains the result
efficiently. If not, one uses as fall-back option one of thratsigiesA, B or C.

Going to a higher number of loops and more propagators, tireanerequirements become
an issue. However, the individual sub-sectors are indegerehd can be calculated once at a
time. This reduces significantly the memory requirement#h\Wis method we evaluated the
massless on-shell triple box in about two days CPU time oaradstrd PC.

6.4 Documentation

The complete documentation of the program is inserted asmarlines in the source code.
The documentation can be extracted from the sources withdaheof the documentation sys-
tem “doxygen” [38]. The program “doxygen” is freely availabIssuing in the top-level build

directory for the library the commands

doxygen Doxyfile

will create a directory “reference” with the documentatiomtml and latex format.

7 Summary

In this article we considered the numerical computationhef ¢oefficients of the Laurent ex-
pansion of a divergent multi-loop integral, regulated byeénsional regularisation. The method
is based on iterative blow-ups, also known as iterativeosetcomposition. The algorithms
we employed ensure that this recursive procedure terngndi®e implemented the algorithms
into a computer program, such that the symbolic and the nigalesteps of the algorithms are
contained in one program.

Acknowledgements
We would like to thank S. Miller-Stach and H. Spiesbergeuf®ful discussions.

A Detailson theimplementation

The numerical Monte Carlo integration is by far the most tioeasuming part of the program
and efficiency of the program in this part is of particular ortance.

The GiNaC-library provides a method for the numerical eatiin of a function, based on
arbitrary precision arithmetic. For Monte Carlo integoatiwhere a function needs to be evalu-
ated many times, this is quite slow and therefore inefficiténg also not needed, since statistical
errors and not rounding errors tend to dominate the errdreofihal result. Therefore a different
approach has been implemented for the numerical Monte @ddgration: The function to be
integrated is first written as C code to a file, this file is thempiled with a standard C compiler
and the resulting executable is loaded dynamically (e.@ ‘@bug-in”) into the memory space

19

of the program and the Monte Carlo integration routine ueesdompiled C function for the
evaluations.

The performance is further improved by optimising the C cofiéne function. This is done
by replacing subexpressions, which occur syntacticallyentivan once by temporary variables.
In addition, subexpressions with a large number of operanelsplit into smaller pieces. This
ensures that long expressions can be processed by the earipiése optimising techniques are
part of many commercial computer algebra systems, but @ngambof the GiNaC-library. They
have been added to this program.

B Proof of strategy C

In this appendix we provide a proof of strategy C. The stmectf the proof is modelled on
Spivakovsky'’s proof of strategy B. We keep the notationseation 4.

Lemma O:
d(dx) > Ck1. (56)

Proof by induction: The claim is obvious fér= 0, sincec_; = 0. Assume that the hypothesis
is true fork. With d (Ax) = d (Ax) + |0(Ax)| we deduce thad (AT) > ¢. Using this it follows
d(Ar,) > o for all Tx. Therefored (A1) > Ck.

Corollary: d (A) = d (AS). Forck > cc_1 there is nothing to prove. Fai < cc_1 we have
to consider the point,w(Ax) /(Ck-1 — C). From |w(Ay)| = d(Ay) —d (Ak) > Ce1 — C the
claim follows.

We call a se§ permissible for, if

%v,— > cxq forallv e Ay. (57)
j€

Lemma 1: IfS.; 1 is permissible foA, 1, then§, = S¢;1 U Tk is permissible fo\, andds, (Ak) =
d (Ax). To prove this lemma we first show

%wj > Ck—1—Ck, (58)
IE

wherew; are the components af(Ay). Forc, > c¢_1 thisis obvious, as the |.h.s. is non-negative.

Forc, < ck_1 we have
C ~
K () € AC. (59)
Ck—1—Ck

Then

Scr1 permissible fo\ 1 = Z vj>c forallv e AE = %wi >ck_1—Ck. (60)
j€S1UTk je

20

Therefore

Sc11 permissible fol\,. 1 = _ Z vj>cx forallv e AE
J€S1UTk
= %V]‘ZCk forallv € Ay
j€e
= ;VjZCk-i‘ wj forallv e Ay
j€ j€

= ;Vj >cx_1 forallv e A (61)
j€
From the second step above
évj >coc=d(Ay) forallve By (62)
j€

it follows immediately thatls, (Ax) > d (Ax).

Corollary: The seSas defined in section 4.4 is permissible forFor A, # 0 the sef; is per-
missible by construction. Then the repeated appllcatldhohbove lemma shows thats per-
missible forA. ForA, = 0 it follows thatds (1) > ¢—1 and thereforels , (Ar—1) > ¢_1.
ThereforeS _; is permissible fo\,_; and with the same argumentation as above it follows that
Sis permissible foA.

Let nowA C R} We define the transformatidi = og; (A) by

~

Vi = vj for j#Ii,

= Jgsvl' —C. (63)

—_

\Y

Lemma 2:
(@ d (&) < d (@),
(b) 1f d (&) = d (Ax) theni ¢ He andHy C H{.
(c) If d (&) =d(Ax) andHy = H] thenT = T}.
(d) If d (&) = d (&) and Ty = T, then the following diagram commutes:
Ay > Dy AC —— Nyq
[T
» I, NE —— N,

21

Proof: (a) Leti € Sc. If i € Hk there is a poinv € Ay such thatv| = d (A¢) andv; # 0. Then
V| < d (D). Assume nowi ¢ Hy and choose a point € A such thatv| = d (A). Then
V'] =d(Ay).))

(b) If i € Hc then there would be a pointe A, with V| <d (Ax), which is in contradiction with
the assumptiod (4}) = d (Ax). Thereford ¢ Hy. Further for all pointsy € A, with [v| =d (A)
we havelv'| = d (L), thereforeHy C Hy.

(c) is a direct consequence of (48).

(d) is verified by a direct calculation.

Lemma 2 is the key to prove that the sequence (51) decreasesrding to lemma 2(aj (A)
either decreases or remains constants. If it remains aun&ama 2(b) states thé#l, — #Hy)
either decreases or remains constant. If also this numbsing constant, lemma 2(c) guar-
anteesTy = T, and lemma 2(d) allows us to descend in dimension and to centié simpler
problem forAy. 1. N

It is an easy exercise to complete the proof and to show thia(rﬁf) = 0 the choice of ", forces
d(Ay) to decrease.

References

[1] K. Hepp, Commun. Math. Phy®, 301 (1966).

[2] M. Roth and A. Denner, Nucl. PhyB479, 495 (1996), hep-ph/9605420.

[3] T. Binoth and G. Heinrich, Nucl. Phy8585, 741 (2000), hep-ph/0004013.

[4] T. Binoth and G. Heinrich, Nucl. Phy8680, 375 (2004), hep-ph/0305234.

[5] S. Laporta, Phys. LetB504, 188 (2001), hep-ph/0102032.

[6] S. Laporta, Int. J. Mod. Phy#£15, 5087 (2000), hep-ph/0102033.

[7] S. Laporta, Phys. LetB523, 95 (2001), hep-ph/0111123.

[8] S. Laporta, Phys. LetB549, 115 (2002), hep-ph/0210336.

[9] M. Czakon, Comput. Phys. Commut¥5, 559 (2006), hep-ph/0511200.
[10] C. Anastasiou and A. Daleo, JHBEB, 031 (2006), hep-ph/0511176.

[11] A. Gehrmann-De Ridder, T. Gehrmann, and G. HeinrichcINBhys.B682, 265 (2004),
hep-ph/0311276.

[12] T. Binoth and G. Heinrich, Nucl. PhyB693, 134 (2004), hep-ph/0402265.
[13] G. Heinrich, Eur. Phys. X248, 25 (2006), hep-ph/0601062.

22

[14] A. Lazopoulos, K. Melnikov, and F. Petriello, Phys. R&76, 014001 (2007), hep-
ph/0703273.

[15] C. Anastasiou, S. Beerli, and A. Daleo, JHE®? 071 (2007), hep-ph/0703282.

[16] S. Bloch, H. Esnault, and D. Kreimer, Commun. Math. Ph87, 181 (2006),
arXiv:math/0510011.

[17] H. Hironaka, Ann. Math79, 109 (1964).

[18] M. Spivakovsky, Progr. Matt86, 419 (1983).

[19] O. Villamayor, Ann. Sci. Ecole Norm. Su@2, 1 (1989).

[20] O. Villamayor, Ann. Sci. Ecole Norm. Su@5, 629 (1992).

[21] E. Bierstone and P. Milman, Invent. Matt28, 207 (1997).

[22] S. Encinas and O. Villamayor, Acta MattB81, 109 (1998).

[23] S. Encinas and O. Villamayor, Progr. Mail&1, 147 (2000).

[24] S. Encinas and H. Hauser, Comment. Math. HEl.821 (2002).
[25] A. Bravo and . Villamayor, Proc. London Math. S@&8, 327 (2003).
[26] H. Hauser, Bull. Amer. Math. Sod0, 323 (2003).

[27] D. Zeillinger, (2005), Ph.D. thesis, Univ. Innsbruck.

[28] D. Zeillinger, Enseign. Mattb2, 143 (2006).

[29] C. Bauer, A. Frink, and R. Kreckel, J. Symbolic CompiataB3, 1 (2002), cs.sc/0004015.
[30] M. Galassiet al., http://www.gnu.org/software/gsl.

[31] S. Kawabata, Comp. Phys. Comm@8, 309 (1995).

[32] T. Hahn, Comput. Phys. Commut68, 78 (2005), hep-ph/0404043.
[33] G. P. Lepage, J. Comput. Phyg, 192 (1978).

[34] G. P. Lepage, CLNS-80/447.

[35] I. Bierenbaum and S. Weinzierl, Eur. PhysCB2, 67 (2003), hep-ph/0308311.
[36] V. A. Smirnov, Phys. LettB460, 397 (1999), hep-ph/9905323.

[37] J. B. Tausk, Phys. LetB469, 225 (1999), hep-ph/9909506.

[38] D.van Heersch, (1997), http://www.stack.nl/"diridoxygen.

23

