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Abstract

The dispersive character of the Hall-MHD solutions, in particular the whistler waves,
is a strong restriction to numerical treatments of this system. Numerical stability
demands a time step dependence of the form ∆t ∝ (∆x)2 for explicit calculations. A
new semi–implicit scheme for integrating the induction equation is proposed and ap-
plied to a reconnection problem. It it based on a fix point iteration with a physically
motivated preconditioning. Due to its convergence properties, short wavelengths
converge faster than long ones, thus it can be used as a smoother in a nonlinear
multigrid method.
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1 Introduction

In many space-, astrophysical and high temperature plasma systems collisions
do not play the most important role in describing the departure from the ideal
magnetohydrodynamics (MHD)

∂tρ = −∇ · (ρ~v) (1)

∂t~v = − (~v · ∇)~v +
~j × ~B

ρ
−

∇p

ρ
(2)

∂t ~B = −∇× ~E (3)

~j = ∇× ~B , (4)

where ρ, ~v, ~B and p denote mass density, velocity, magnetic field and pres-
sure, respectively. Typical examples include filamentation and singularity for-
mation, collisionless reconnection and collisionless shocks [1,2,3,4,5,6,7,8,9].
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Therefore, on scales smaller than the ion inertia length additional processes
have to be taken into account in a generalized Ohm’s law

~E = η~j − ~v × ~B +
mi

Zeρ

(

~j × ~B −∇pe
)

. (5)

Numerically, the most difficult term is the Hall-term:

~EHall =
mi

Zeρ
~j × ~B =

di

ρ
~j × ~B . (6)

It allows for whistler wave solutions with a quadratic dispersion relation and
thus poses a severe time step restriction for a temporal explicit discretisation.

To introduce our treatment of the Hall-term, we simplify our system and use
only this electric field in the induction equation which decouples it from the
other part of the MHD equations and yields the following nonlinear equation

∂t ~B = −∇×

(

di

ρ

(

∇× ~B
)

× ~B

)

. (7)

Solutions of the linearized equations are the whistler waves mentioned above

which satisfy the dispersion relation ω = di| ~B|
ρ
k2, for a constant density ρ and

a guiding field magnitude | ~B|. Numerical approaches using explicit schemes
applied to this equation must ensure that the chosen time step fulfills ∆t ∝
(∆x)2, due to the Courant-Levy-Friedrichs criterion – ∆x denoting the grid
spacing. The CFL number is given by the ratio of the phase velocity to the
grid velocity

(

∆x
∆t

)

CFL =
ω(k)

k

∆t

∆x
=
di∆t

∣

∣

∣

~B
∣

∣

∣

ρ∆x2
=⇒ ∆t = CFL

ρ

di
∣

∣

∣

~B
∣

∣

∣

∆x2 ,

where k = kmax = 2π
∆x

is the maximum wave number. Thus resolving small
structures, e.g. the reconnection zone, results in large computation times, due
to the unavoidable small time steps.

Implicit schemes allow to avoid this restrictive condition by providing uncon-
ditional numerical stability. Much progress on implicit solvers has been done
by Harned and Mikić [10] and Chacón and Knoll [11]. However, the approach
of [10] requires a guiding magnetic field and the approach of [11] can’t eas-
ily be adopted for simulations with adaptive mesh refinements [12,13,14,15],
although work in this direction is in progress.

Here we present a simple physics based semi–implicit Crank-Nicolson type
scheme which due to its locality properties is suitable for parallel computations
as well as for use in adaptive mesh refinement simulations. This physics based
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solver uses a whistler wave decomposition to accelerate the fix-point iteration.
Due to its convergence properties it can act as a smoother for a nonlinear
multigrid scheme.

The first part of this paper presents the general numerical method which then
is specialized to one dimension. This allows us to show analytically its con-
vergence. After that the nonlinear two-dimensional case and its convergence
are presented, while in the last section our method is used to solve a two-
dimensional reconnection problem.

2 Numerical Method

The Richardson iteration [16] is the base of our solver. A Richardson iteration

is the most general fix point iteration for a nonlinear equation ~F (~x) = 0

~xk+1 = ~K(~xk) with ~K(~x) = ~x− α~F (~x) , (8)

where k is the iteration index. Given a contractive map ~K, the ~xk converge in
the limit k → ∞. The rate of convergence will in general depend on α. The
main task is to find a suitable preconditioner adapted to the Hall-term. This
can be realized as a matrix P

~K(~x) = ~x− αP~F (~x) . (9)

In the special case of the Newton iteration P is the inverse of the Jacobi matrix
of ~F . Here, we try to find a physics based preconditioner which is more local
and thus suitable for parallel and block-adaptive calculations.

For the Crank-Nicolson type discretisation, we obtain

~Bn+1 − ~Bn

∆t
= −∇×

(

di

ρ

(

∇× ~B∗
)

× ~B∗

)

(10)

with ~B∗ = 1
2
( ~Bn+1+ ~Bn) and where ~Bn is the magnetic field taken at the time

step n (time steps are indicated by the first upper index). The equation to be
solved reads now

~F ( ~Bn+1) =
~Bn+1 − ~Bn

∆t
+∇×

(

di

ρ

(

∇× ~B∗
)

× ~B∗

)

(11)

= 0 . (12)

Its solution with a given ~Bn is the magnetic field at the next time step n+ 1.
To determine a solution we iterate equation (11) following the method given
by (8). At this point we introduce an additional upper index which defines
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the iteration step. So that ~Bn+1,k is k-th iteration of the magnetic field for the
time step n+ 1.

As mentioned above, the important point in this iteration is the precondition-
ing. To motivate our preconditioner, we start with the one-dimensional version
of eqn. (7), where ~B depends only on x. In the one-dimensional case, we have
the special situation that the fix-point problem reduces to a linear one. In
this case, our physics based preconditioner reduces to the standard ω-Jacobi
iteration. In more than one dimensions the situation is genuinely nonlinear
but the smoothing properties of our preconditioner are still similar to that of
a Jacobi iteration for linear problems.

3 Linear 1D Case

Considering only the x direction results in the following system of equations

∂t















Bx

By

Bz















=















0

B0di
ρ
∂xx(Bz)

−B0di
ρ
∂xx(By)















(13)

The x component of ~B is initially set to a constant B0 in space and stays con-
stant. The discretised equations for ~F are needed for the iteration. Following
equation (11) and again using ~B∗ = 1

2

(

~Bn + ~Bn+1
)

these are given for each
grid point i

Fx( ~B
n+1
i ) =Bn+1

x,i −Bn
x,i

Fy( ~B
n+1
i ) =Bn+1

y,i −Bn
y,i − cx(B

∗
z,i−1 − 2B∗

z,i +B∗
z,i+1) (14)

Fz( ~B
n+1
i ) =Bn+1

z,i −Bn
z,i + cx(B

∗
y,i−1 − 2B∗

y,i +B∗
y,i+1)

with cx = B0di∆t
ρ(∆x)2

. To calculate the next time step ~Bn+1
i we consider the itera-

tion such that limk→∞
~Bn+1,k = ~Bn+1.

The usual choice for a preconditioning matrix would be the inverse of the
full Jacobian matrix. Even in the one-dimensional case this would lead to
an inversion of a 2N × 2N matrix (N is the number of grid points). In our
treatment of the Hall-term, we introduce a local approximation to the Jacobian
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matrix. The Richardson iteration (8) for ~F = 0 reads

Fx( ~B
n+1,k
i ) =Bn+1,k

x,i + rx,i

Fy( ~B
n+1,k
i ) =Bn+1,k

y,i −
cx

2
(Bn+1,k

z,i−1 − 2Bn+1,k
z,i +B

n+1,k
z,i+1 ) + ry,i

Fz( ~B
n+1,k
i ) =Bn+1,k

z,i +
cx

2
(Bn+1,k

y,i−1 − 2Bn+1,k
y,i +B

n+1,k
y,i+1 ) + rz,i , (15)

where rx,i, ry,i, rz,i are constants depending only on the values ~Bn.

The matrix elements of the local preconditioner are calculated by differenti-
ating Eqs. (15) with respect to ~B

n+1,k
i ; this is a differentiation with respect to

the value of ~B at one grid point, e.g. the derivative of Bn+1,k
y,i+1 with respect to

B
n+1,k
y,i vanishes. This leads to the following local preconditioner

J∗
i =

∂ ~F ( ~Bn+1,k
i )

∂ ~B
n+1,k
i

=















1 0 0

0 1 cx

0 −cx 1















. (16)

The preconditioning matrix J∗ is now a block diagonal matrix containing only
the J∗

i . This local construction allows an easy inversion, which is again a block
matrix and thus (J∗)−1 is local. A fast inversion of the general Jacobian is
not easy and results in a non local matrix. Using (J∗)−1 as a preconditioner
results in the following local iteration for each grid point i.

~B
n+1,k+1
i = ~B

n+1,k
i −

α

1 + c2x















1 + c2x 0 0

0 1 −cx

0 cx 1















~F ( ~Bn+1,k
i ) . (17)

This iteration is the ω-Jacobi iteration, which in this case is known to converge.
This way we have created a well known iteration scheme, but it was motivated
by the physical properties of a whistler wave. While the Jacobi iteration cannot
be used for nonlinear problems, we can transfer our iteration to the nonlinear
two-dimensional case using the same strategy. The iteration obtained so far
has the desirable property that high wavenumbers converge fast and thus can
be used as a smoother in a multigrid scheme. We anticipate that this property
translates to the two-dimensional case.

5



4 Nonlinear 2D case

The strategy here will be the same as above:

~B
n+1,k+1
i,j = ~B

n+1,k
i,j − αJ∗−1

i,j
~Fi,j( ~B

n+1,k) . (18)

The local preconditioner is motivated by the one-dimensional calculation, tak-
ing into account the two directions x and y of whistler wave propagation. In
two dimensions the function ~F can be derived the same way as the in the
one-dimensional case and takes the form

Fx = Bn+1
x −Bn

x +
di∆t

ρ

(

B∗
y∂yyB

∗
z + ∂yB

∗
y∂yB

∗
z + ∂yB

∗
x∂xB

∗
z +B∗

x∂xyB
∗
z

)

Fy = Bn+1
y −Bn

y −
di∆t

ρ

(

B∗
y∂xyB

∗
z + ∂xB

∗
y∂yB

∗
z + ∂xB

∗
x∂xB

∗
z +B∗

x∂xxB
∗
z

)

Fz = Bn+1
z −Bn

z +
di∆t

ρ

(

(

∂xB
∗
x + ∂yB

∗
y

) (

∂xB
∗
y − ∂yB

∗
x

)

(19)

+B∗
x

(

∂xxB
∗
y − ∂xyB

∗
x

)

+B∗
y

(

∂xyB
∗
y − ∂yyB

∗
x

)

)

.

To obtain the local preconditioner, Eq. (19) has to be discretised in space and

derived with respect to ~Bn+1
ij which yields

J∗
i,j =















1 0 −cy,i,j

0 1 cx,i,j

cy,i,j −cx,i,j 1















(20)

with cx,i,j =
diB

n
x,i,j

∆t

ρ∆x2 and cy,i,j =
diB

n
y,i,j

∆t

ρ∆y2
. Note that the elements of this

Jacobian matrix are not constant anymore, but depend on Bn
x,i,j and Bn

y,i,j .
Thus again the preconditioning is it’s inverse

J∗−1
i,j =

1

1 + c2x,i,j + c2y,i,j















1 + c2x,i,j cx,i,jcy,i,j cy,i,j

cx,i,jcy,i,j 1 + c2y,i,j −cx,i,j

cy,i,j cx,i,j 1















. (21)

To show numerically the convergence properties of this iteration, a simple
numerical experiment is used. The two-dimensional computational domain is
a periodic box in x- and y-direction. The initial condition is a single whistler
wave with a wave number in x- and y-direction. This is done for all possible
modes (combinations of kx and ky) on a 64×64 mesh. The number of iterations
needed for a prescribed accuracy is plotted in Fig. 1 as a function of k =
√

k2x + k2y. As we already anticipated the convergence rate for the long and the
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Fig. 1. The number of iterations needed to reduce the error by two orders of mag-

nitude as a function of the norm of the wave vector k =
√

k2x + k2y .

short wavelengths show the same behavior as in the one-dimensional case.

To accelerate the convergence of the long wavelengths, this iteration is applied
as a smoothing function for the nonlinear multigrid scheme [17]. Using V-
cycles and two pre– and post–smoothings in the multigrid scheme one achieves
convergence already after two to three cycles.

5 GEM Reconnection

To verify the new iteration scheme, we choose a standard reconnection prob-
lem. A similar setup is used as in GEM reconnection challenge [7]. It is based
on a perturbed Harris sheet. A schematic plot and the computational domain
are shown in Fig. 2. The numerical parameter are chosen to: Lx = 2Ly = 5di
and Nx = 2Ny = 256. Symmetric or antisymmetric boundary conditions are
applied for all quantities and the initial conditions, including the perturbation,
are equal to the one in the GEM reconnection challenge [7].

We solve the full Hall-MHD equations explicitly except for the Hall part of
the induction equation. This splits the induction equation into the resistive
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Fig. 2. The GEM reconnection setup. The black lines indicate the magnetic field,
the blue ones the seperatrices and the red box is our computational domain.

MHD part (22) and the part including only the Hall term (23)

∂t ~BMHD = ∇×
(

~v × ~B
)

+ η∆ ~B (22)

∂t ~BHall = −∇×





di~j × ~B

ρ



 (23)

∂t ~B = ∂t ~BMHD + ∂t ~BHall . (24)

The time stepping was performed with a standard second order Runge-Kutta
method.

The maximum time step for the semi–implicit simulations is given by the
linear Alfvén wave dispersion relation ω = vAk. There is no possibility to use
larger time steps than these, because the Alfvén waves must be well resolved.

To compare the results obtained with the fully explicit simulation and with our
semi–implicit treatment of the Hall term, we choose as a physically relevant
measure the reconnected flux ψ given in our setup by

ψ =
∫ Lx

0
By dx. (25)

Four different simulation runs have been done, an explicit one, used as the
reference run, and three semi–implicit ones. The time steps and corresponding
CFL numbers are shown in Table 1.

Fig. 3 shows the developed structure of the z-component of the electric current
density ~j = ∇× ~B at time t = 12 obtained from a semi–implicit simulation.
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∆t · 10−3 CFL number
∆timp

∆texp

explicit 0.2 0.2 1

semi–implicit 2.0 2 10

semi–implicit 4.0 4 20

semi–implicit 8.2 8.2 41

Table 1
Time steps chosen for the simulations. The CFL number is based on the whistler
wave dispersion relation.

The corresponding reconnected flux (Fig. 4) obtained from the explicit refer-

Fig. 3. The z-component of the electric current density at t = 12.

ence simulation and the semi–implicit runs show that the the semi–implicit
simulations result in nearly identical reconnection rates and that, by reducing
the time step, they converge to the values obtained from the explicit simula-
tion.

6 Summary

We presented a semi–implicit iterative method for solving the Hall part of
the induction equation to overcome the time step restriction resulting from
the quadratic whistler wave dispersion relation. The method utilizes a simple
precondioner based on the whistler wave dispersion. The iteration scheme
based on this precondioner has the two desirable features of being local and
possessing strong high frequency smoothing. Therefore, this method can easily
be implemented in a nonlinear multigrid solver. Due to the locality property, it
is also best suited for adaptive and parallel simulations. The part of execution
time of Hall term turns out to be about 7 times longer than the time needed
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Fig. 4. The temporal evolution of the reconnected flux for different time steps and
schemes.

for ideal MHD part. Using a time step 40 times larger than necessary for an
explicit treatment, this results in an 80% reduction of the computation time
for the GEM setup achieving nearly identical results as an expensive explicit
simulation.
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