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Abstract

The problem of stability of the triangular libration points in the planar circu-
lar restricted three-body problem is considered. A software package, intended
for normalization of autonomous Hamiltonian systems by means of computer
algebra, is designed so that normalization problems of high analytical com-
plexity could be solved. It is used to obtain the Birkhoff normal form of the
Hamiltonian in the given problem. The normalization is carried out up to
the 6th order of expansion of the Hamiltonian in the coordinates and mo-
menta. Analytical expressions for the coefficients of the normal form of the
6th order are derived. Though intermediary expressions occupy gigabytes
of the computer memory, the obtained coefficients of the normal form are
compact enough for presentation in typographic format. The analogue of
the Deprit formula for the stability criterion is derived in the 6th order of
normalization. The obtained floating-point numerical values for the normal
form coefficients and the stability criterion confirm the results by Markeev
(1969) and Coppola and Rand (1989), while the obtained analytical and ex-
act numeric expressions confirm the results by Meyer and Schmidt (1986)
and Schmidt (1989). The given computational problem is solved without
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constructing a specialized algebraic processor, i.e., the designed computer
algebra package has a broad field of applicability.
Keywords: Hamiltonian dynamics; Normal forms; Computer algebra; Circu-
lar restricted three-body problem; Lagrange solutions; Triangular libration
points.

1 Introduction

In 1772 Lagrange [1] discovered a periodic solution of the general three-
body problem (TBP), in which the bodies are situated at the apices of an
equilateral triangle and each body moves in a Keplerian orbit about the
center of mass of the system. In the circular restricted TBP, these periodic
solutions correspond to the triangular libration points.

Gascheau [2] found the necessary condition for the stability of the La-
grange periodic solutions in the general TBP:

(m1 +m2 +m3)
2

m1m2 +m2m3 +m1m3
> 27, (1)

where m1, m2, m3 are the masses of the bodies. In the circular restricted
TBP this condition reduces to the inequalities

0 < 27µ(1− µ) < 1, (2)

or, equivalently,

0 < µ < µ∗ =
9− 691/2

18
= 0.0385 . . . , (3)

where µ = m2/(m1 +m2), m2 < m1, m3 = 0.
Leontovich [3] proved that, in the planar circular restricted TBP, the

triangular libration points were stable for all µ values satisfying condition (2)
but a set of values of measure zero. Deprit and Deprit-Bartholomé [4] proved
that this exceptional set consisted of only three points. For these three points
µ1 = 0.0242 . . ., µ2 = 0.0135 . . ., and µ3 = 0.0109 . . . the stability problem
remained unsolved at that time.

The µ1 and µ2 values correspond to the resonances 2:1 and 3:1 between
the frequencies of the linearized system describing the motion in the neigh-
borhood of the libration points. The µ3 value correspond to a case when a
specific algebraic combination of the system frequencies and the coefficients
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of the 4th order normal form of the Hamiltonian of the considered problem
is equal to zero. In the general case of an arbitrary µ value, this expression
is usually expressed as a function of the linearized system frequencies, which,
in their turn, can be expressed through µ. Henceforth we call this expres-
sion, derived by Deprit and Deprit-Bartholomé [4] for the given problem, the
Deprit formula. In the notation adopted henceforth, it looks as follows [4]:

D4 =
644γ4 − 541γ2 + 36

16(4γ2 − 1)(25γ2 − 4)
, (4)

where γ = ω1ω2, and ω1 and ω2 are the frequencies.
Markeev [5, 6] performed approximate floating point computations of the

coefficients of the normal forms for the resonant values of µ, i.e., µ1 and
µ2, and for the non-resonant µ = µ3 case. He proved that the system was
unstable in the first two cases, and stable in the third case.

Sokolsky [7] derived an advanced normal form in the critical case, i.e.,
for the mass ratio µ∗, and by evaluating the normal form coefficients in ap-
proximate floating point computations proved that the system was formally
stable in this case.

Consideration of the problem of stability of the triangular libration points
in the planar circular restricted three-body problem was thus completed in
the middle of seventies; however, the necessary coefficients of the normal
forms were not known in the exact form at that time. Solely their floating-
point values were available. Their exact numerical representations were ob-
tained later on.

The analytical treatment of the non-resonant µ = µ3 case is very compli-
cated in what concerns the volume of analytical computation, since attaining
of the 6th order of normalization is required. The values of the 6th order
normal form coefficients and the corresponding stability criterion were ob-
tained in the floating-point arithmetic with the help of especially designed
computer software by Markeev [5, 8]. Later on, they were calculated also in
the floating-point arithmetic by Coppola and Rand [9].

The analytical expression for the stability criterion in the µ = µ3 case was
obtained by Meyer and Schmidt [10] and Schmidt [11]. The exact numerical
expression for the stability criterion was calculated by Schmidt [11]. The
given computational tasks were solved by means of constructing specialized
algebraic processors, in PL/I and in MACSYMA. In [9], the software package
in MACSYMA was designed without constructing a specialized algebraic
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processor, but its ability in the given problem was limited solely to computing
the coefficients in the floating-point arithmetic.

The exact numeric expressions for the coefficients of the normal forms for
the resonances 2:1 and 3:1 (µ = µ1 and µ2) were obtained, to our knowl-
edge, only in the beginning of nineties [12, 13] by means of application of
a computer algebra package written in REDUCE. In both resonant cases
the exact numeric expressions for the normal form coefficients completely
agreed with Markeev’s approximate results to their accuracy (the latter re-
sults had been stated in [5, 6, 8] with the accuracy of 3–4 significant digits).
However, only the expression for the most complicated case, that of the 3:1
resonance, corresponding to the µ2 mass ratio, was published [12, 13], as
an example of application of the software package. Note that this resonant
value µ2 = 0.0135 . . . is close to the µ value in the Earth–Moon system,
µEarth−Moon = 0.0121 . . ..

The normal form for the critical mass ratio µ∗ was calculated analytically
by Schmidt [14] and Bruno and Petrov [15]. A significant (by an order of
magnitude) disagreement was evident with Sokolsky’s [7] approximate result
for a coefficient of the normal form; but the final theoretical inference on the
stability in this case remained unchanged, due to the fact that the sign of
the coefficient was correct. We should note that one of the reasons for this
discrepancy might be a severe loss of accuracy in the cumbersome floating-
point computations.

Bruno and Petrov [15] accomplished symbolic computations of the normal
forms for the 2:1 and 3:1 resonances. The obtained exact numeric expressions
for the normal form coefficients completely agreed with Markeev’s [5, 6, 8]
results to the accuracy of his computations. Bruno and Petrov [15] also
performed floating point computations of the coefficients of the normal form
for the non-resonant µ = µ3 case and found agreement with Markeev’s [5, 8]
results.

In this quite a technical paper, analytical expressions for the non-resonant
normal form coefficients and the analogue of the Deprit formula for the sta-
bility criterion in the 6th order of normalization are derived. A software
package, intended for normalization of autonomous Hamiltonian systems, is
designed in the language of the Maple computer algebra system [16] and
applied to the given problem. The obtained floating-point numerical values
for the normal form coefficients and the stability criterion confirm the re-
sults by Markeev [5, 6, 8] and Coppola and Rand [9], while the obtained
analytical and exact numerical expressions confirm the results by Meyer and
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Schmidt [10] and Schmidt [11]. The given computational problem is solved
without constructing a specialized algebraic processor, i.e., the designed com-
puter algebra package has a broad field of applicability.

2 Normal forms

Analysis of the local properties of the solutions of a Hamiltonian system can
be accomplished by the method of normal forms. The method allows one to
find the approximate general solutions in the neighborhood of the points of
equilibria as well as to analyze the motion stability. The complete procedure
of normalization of an autonomous Hamiltonian system in the neighborhood
of a point of equilibrium implies expansion of the Hamiltonian in the power
series of the canonical variables, linear normalization of the system, and its
nonlinear normalization.

We assume that the roots of the characteristic equation of the linearized
autonomous Hamiltonian system are exclusively imaginary, and that the res-
onances up to the second order inclusive are absent, i.e., there are no zero or
equal frequencies of the system. Then the quadratic part of the Hamiltonian
can be transformed to the normal form [17, 18, 8]:

H2 =
1

2

N
∑

k=1

λk(q
2
k + p2k), (5)

where qk and pk are the coordinate and momentum variables, N is the number
of degrees of freedom, λk = δkωk, δk = ±1. The positive constants ωk = |λk|
are the frequencies of the linearized system at the point of equilibrium.

In the non-resonant case (i.e., when the frequencies ωk are incommen-
surate with each other up to the resonance of order M), via the “polar”
canonical change of variables

qk = (2rk)
1/2 sinϕk, pk = (2rk)

1/2 cosϕk, (6)

where k = 1, . . . , N , the Hamiltonian normalized up to an arbitrary order
M of the Taylor expansion is expressed through the variables rk only. The
Birkhoff normal form [17, 18, 8] of order M is given by the following expres-
sion:
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K(M) =
N
∑

k=1

λkrk +
[M/2]
∑

n=2

∑

ℓ1+...+ℓN=n

cℓ1,...,ℓN r
ℓ1
1 . . . rℓNN , (7)

where [M/2] is the round part of M/2. The coefficients cℓ1,...,ℓN are invariants
of the Hamiltonian with respect to the choice of the normalizing transforma-
tion.

The Hamiltonian normalized up to the order M has the formK = K(M)+
h(≥M+1), where h(≥M+1) are the terms of degreeM+1 and higher in relation to
the variables qk, pk, or, equivalently, h

(≥M+1) are the terms of degree [M/2]+1
and higher in relation to the variables rk. When resonances are present, the
normal forms contain also angle variables in resonant combinations [8, 19].

3 Algorithms and computation methods

In the beginning of nineties the specialized computer algebra package “Norma”
[12, 20, 13] was developed for performing all analytical procedures necessary
for normalization of autonomous Hamiltonian systems in analytical form.
The programs were written in the language of the REDUCE [21] computer
algebra system. The package allows one to accomplish expansion of the ini-
tial Hamiltonian in power series, linear normalization of the system, and its
nonlinear normalization.

It is assumed that the roots of the characteristic equation of the linearized
system are exclusively imaginary, and that the resonances up to the second
order inclusive are absent, i.e., there are no zero or equal frequencies of the
system. Then the quadratic part of the Hamiltonian is reduced to the normal
form (5).

The basis of the algorithm of linear normalization consists in analytical
calculation of the eigenvectors of the matrix of the linearized system. In the
package programs, they are computed by means of calculation of the matrix
adjoint to the characteristic one. This approach provides the capability to
find the simplest (in the analytical sense) version of the formulae of linear
normalization.

The nonlinear normalization is accomplished by the Deprit–Hori method
[22, 23] in the Mersman modification [24]. The number of degrees of free-
dom and the order of normalization are arbitrary. The coefficients of the
initial Hamiltonian can be set numeric (in exact representation) or symbolic.
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The formulae of the direct normalizing canonical transformation of the vari-
ables and those of the inverse transformation are computed by means of
programs implementing the procedure of the Lie transformation. The pro-
gram of nonlinear normalization computes the normalized Hamiltonian and
the generating function of the normalizing transformation. The normalizing
transformation of the canonical variables is calculated as the Lie transforma-
tion with the generator equal to the newly found generating function.

Thus by means of the programs of the described package one can find
the Taylor expansion of the Hamiltonian, then normalize the quadratic part
of this expansion (i.e., accomplish linear normalization of the system), and,
finally, normalize the expansion up to the required order (i.e., accomplish
nonlinear normalization). This is the general scheme. Detailed descriptions
of the “Norma” algorithms and programs are given in [12, 20, 13].

The application of the “Norma” package to the analysis of the motion
near the triangular libration points in the planar circular RTBP provided
an opportunity to obtain the analytically simplest formulae of linear nor-
malization [20] and the resonant normal forms up to the 4th order of the
Hamiltonian expansion [12, 13] (see Introduction).

Application [25] of the normalization package “NF” written in the Maple
computer algebra system to the given problem produced practically the same
results. The “Norma” and “NF” packages did not allow one to perform nor-
malization in the non-resonant case of the given problem in the 5th and 6th
orders of the Hamiltonian expansion due to high memory consumption: the
increase in memory load at critical stages of the computation was too sharp,
because the time uniformity in memory consumption had not yet been algo-
rithmically accomplished. Such uniformity can be achieved mainly by means
of employing the “reinitialization” procedure (see below), pertinent choice of
routines of simplification of analytical expressions, excessive parametrization,
and combinations of these methods.

Attaining the 6th order of normalization in the given problem is the sub-
ject of the current paper. A new software package, “NP” (“Normalization
Package”), has been developed that allows one to solve normalization prob-
lems of high complexity level. The “NP” programs have been written in the
language of the Maple computer algebra system [16]. All computations have
been performed in the Maple system release 9.5.

The “NP” programs are intended for normalization of a Hamiltonian
system in the same assumptions on the kind of the Hamiltonian as in the case
of the “Norma” package. As in the latter case, the Deprit–Hori method [22,
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23, 24, 19], based on the Lie transformations, is applied for carrying out the
nonlinear normalization.

The employed normalization procedure is non-recurrent: the formulae
of normalization are programmed explicitly in each order of normalization.
This approach abandons the necessity to store the voluminous arrays of aux-
iliary analytical expressions. The calculation of the auxiliary polynomials
Gi, whose monomial analysis determines the homogeneous components Ki

of the normalized Hamiltonian K and the homogeneous components Si of
the generating function S (see [12, 13]), and whose analytical computation
involves a major part of the total memory consumption, is accomplished by
the following formulae, given in [19]:

G3 = H3,

G4 = H4 +
1

2
D1(H3 +K3),

G5 = H5 +
1

2
D2(H3 +K3) +

1

2
D1[H4 +K4 +

1

6
D1(H3 −K3)],

G6 = H6 +
1

2
D3(H3 +K3) +

1

2
D2[H4 +K4 +

1

6
D1(H3 −K3)] +

+
1

2
D1[H5 +K5 +

1

6
D1(H4 −K4) +

1

6
D2(H3 −K3)],

where the Lie differential operator with the generator S is defined by the
relations Dnf = D1Dn−1f , D1f = {f, S} (n = 2, 3, . . .); {f, S} denotes
the Poisson brackets of the functions f and S; Hi are the homogeneous
components of the linearly normalized original Hamiltonian H .

Apart from the tools decreasing the total memory load, an effective
method of minimizing the peak memory consumption is to make the mem-
ory load more uniform in time. This is achieved by using the reinitialization
procedure [26] for the coefficients of the polynomials in work. The use of the
reinitialization at key stages of the algorithm allows one to solve computer-
algebraic problems of high analytical complexity. The economy of the com-
puter memory is attained due to redistribution of memory load in time. The
reinitialization procedure is similar in some way to the “method of telescop-
ing compositions”, proposed and used in [9], in particular for calculation of
the multiple Poisson brackets.

The general procedure of reinitialization of the coefficients of any polyno-
mial at a memory-consuming step of the algorithm of normalization consists
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in creation of a file containing the coefficients of the given polynomial in
analytical form, temporary storing this file, while analytical operations with
the given polynomial with the undefined coefficients are carried out, and
subsequent resubstitution of the stored expressions for the coefficients in the
resulting expression. Only then the monomial simplification of the resulting
expression is accomplished. In the package, the reinitialization is performed
for the coefficients of the homogeneous components of the Hamiltonian and
the generating function directly before the calculation of the polynomials Gi.
Right after the calculation, the resubstitution and the monomial simplifica-
tion are carried out.

The package consists of three basic parts.
The first part contains programs for obtaining the expansion of the Hamil-

tonian in Taylor series. The file with the initial data contains a number of
degrees of freedom, an order of expansion, and a Hamiltonian as a function of
the coordinate and momentum variables, ~q and ~p. The procedure carries out
expansion of the Hamiltonian in Taylor series with the maximum economy of
memory, by an algorithm described in [20]. A file containing the expansion
of the Hamiltonian is created.

The second part of the package is intended for transforming the Hamilto-
nian to the linearly normalized form. However, the package does not contain
a procedure of linear normalization itself. Linear normalization can be car-
ried out with the help of the “Norma” package. Using the “Norma” output
file containing the linear normalizing transformation, the substitutions in all
components of the expansion of the initial Hamiltonian are carried out and
subsequent monomial simplification is accomplished. A file with the linearly
normalized Hamiltonian is created.

The third part of the package contains procedures necessary for nonlinear
normalization of the Hamiltonian up to the 6th order in the coordinate and
momenta variables. The library contains the following procedures: (a) pro-
cedures for calculating the Poisson brackets employing various ways of sim-
plification of the expressions; these ways can be varied depending on the
considered problem; (b) a procedure for reinitialization of the coefficients of
polynomials; (c) procedures for allocation of the monomials for inclusion in
the generating function, the non-resonant and resonant parts of the Hamilto-
nian; (d) a basic procedure of normalization in the given order. This part of
the package produces a file with the components Si of the generating function
and the components Ki of the normalized Hamiltonian.
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4 The normal form coefficients and the ana-

logue of the Deprit formula

Now we apply the procedure of normalization in a study of the problem
of stability of the triangular libration points in the planar circular RTBP.
Consider the non-resonant case (i.e., the frequencies ωk are incommensurate
with each other to the high enough resonance order) of the motion close to
the triangular libration point L4 in the planar circular RTBP. The dynamical
system has two degrees of freedom. The libration point L4 is located at
the origin of the rotating reference frame. One of the axes of the frame is
directed towards the planet. The derivation of the Hamiltonian system of
the differential equations describing the motion is described in detail in [8].
The expansion of the Hamiltonian up to the 6th order has the form [8]:

H =
1

2
(p21 + p22) + p1q2 − q1p2 +

1

8
(q21 − 8kq1q2 − 5q22) +

+ 31/2
(

−
7

36
kq31 +

3

16
q21q2 +

11

12
kq1q

2
2 +

3

16
q32

)

+

+
37

128
q41 +

25

24
kq31q2 −

123

64
q21q

2
2 −

15

8
kq1q

3
2 −

3

128
q42 +

+ 31/2
(

23

576
kq51 −

285

286
q41q2 −

215

288
kq31q

2
2 +

345

128
q21q

3
2 +

555

576
kq1q

4
2 −

33

256
q52

)

−

−
331

1024
q61 +

49

128
kq51q2 +

6105

1024
q41q

2
2 −

35

64
kq31q

3
2 −

7965

1024
q21q

4
2 −

119

128
kq1q

5
2 +

383

1024
q62 ,

(8)

where qi, pi (i = 1, 2) are the canonical variables (the coordinates and
momenta in the chosen frames), and the constant denoted by k is k =
3 · 31/2(1−2µ)/4. We could as well expand the initial Hamiltonian by means
of our package and obtain the identical formula in seconds. The coefficients
can be parameterized through one of the frequencies of the linearized system
by means of the formulae

k = (23 + 4(ω2
1 − ω2

2)
2)1/2/4, (9)

ω2 = (1− ω2
1)

1/2, (10)

which can be easily deduced from basic relations given in [8]. In the proce-
dures of normalization, however, it is usually pertinent to retain an excessive
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parametrization, in order to avoid emergence of cumbersome radicals; see
notes on this matter in [10]. This is an important auxiliary tool to minimize
the memory load.

We linearly normalize the Hamiltonian and create a file with the initial
data for the subsequent nonlinear normalization. The file contains the num-
ber of degrees of freedom (equal to two), the order of normalization (equal
to six), and the linearly normalized Hamiltonian.

The program of nonlinear normalization produces the normalized Hamil-
tonian. The 4th order homogeneous component K4 of the obtained normal
form K(4) has the form

K4 = −
1

144

ω2
2(124ω

4
1 − 696ω2

1 + 81)

(2ω2
1 − 1)2(5ω2

1 − 1)
r21 +

+
1

6

ω1ω2(64ω
4
1 − 64ω2

1 − 43)

(2ω2
1 − 1)2(5ω2

1 − 4)(5ω2
1 − 1)

r1r2 +

+
1

144

ω2
1(124ω

4
1 + 448ω2

1 − 491)

(2ω2
1 − 1)2(5ω2

1 − 4)
r22. (11)

The variables r1, r2 are introduced by formulae (6). The discriminant D4 ≡
K4(r1 = ω2, r2 = ω1) = c20ω

2
2 + c11ω1ω2 + c02ω

2
1 is then

D4 =
644γ4 − 541γ2 + 36

16(4γ2 − 1)(25γ2 − 4)
, (12)

where γ = ω1ω2. This expression is identical to the formula obtained by
Deprit and Deprit-Bartholomé [4].

In the next steps we obtain the normal forms of the 5th and 6th orders.
According to formula (7), the general expression for the 6th order homoge-
neous component K6 of the normal form K(6) is

K6 = c30r
3
1 + c21r

2
1r2 + c12r1r

2
2 + c03r

3
2. (13)

In view of immense computer memory consumption in the calculations, the
final expressions have been computed individually for each term of the normal
form. The peak memory load during the computation of the terms with the
coefficients c30 and c03 (the terms which are “homogeneous” with respect
to the kind of the variables) reached ≈ 0.9 GByte, and in the case of the
“mixed” terms (those with the coefficients c21 and c12) it reached ≈ 1.3
GByte. However, the resulting coefficients are quite compact:
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c30 = −1/62208/ω1 · (349789120ω
18
1 − 1262731648ω16

1 + 2425101616ω14
1 −

− 3030520672ω12
1 + 2222006908ω10

1 − 882757372ω8
1 + 207906387ω6

1 −

− 31372317ω4
1 + 2661813ω2

1 − 83835)/

/(2ω2
1 − 1)5/(10ω2

1 − 1)/(5ω2
1 − 1)3, (14)

c21 = −1/1728 · (3176280000ω24
1 − 19106816000ω22

1 + 63106722600ω20
1 −

− 141142031300ω18
1 + 213727654214ω16

1 − 215397500295ω14
1 +

+ 143749752195ω12
1 − 63768859339ω10

1 + 19069932231ω8
1 −

− 3889018750ω6
1 + 505561132ω4

1 − 32077584ω2
1 + 400896)/

/(2ω2
1 − 1)5/ω2/(10ω

2
1 − 1)/(5ω2

1 − 4)3/(5ω2
1 − 1)3, (15)

c12 = 1/1728 · ω1 · (3176280000ω
22
1 − 19008544000ω20

1 + 62566226600ω18
1 −

− 137831914700ω16
1 + 202885849514ω14

1 − 196481798617ω12
1 +

+ 124356412922ω10
1 − 51393703020ω8

1 + 14020325316ω6
1 −

− 2566329143ω4
1 + 291589800ω2

1 − 13993776)/

/(2ω2
1 − 1)5/(10ω2

1 − 9)/(5ω2
1 − 1)3/(5ω2

1 − 4)3, (16)

c03 = 1/62208 · ω2
1 · (349789120ω

16
1 − 1885370432ω14

1 + 4915656752ω12
1 −

− 7970990576ω10
1 + 8326473644ω8

1 − 5330237408ω6
1 + 1834402891ω4

1 −

− 221117724ω2
1 − 18522432)/

/(2ω2
1 − 1)5/ω2/(10ω

2
1 − 9)/(5ω2

1 − 4)3. (17)

Substituting for the values of the coefficients in the discriminant D6 ≡
K6(r1 = ω2, r2 = ω1) = c30ω

3
2 + c21ω1ω

2
2 + c12ω

2
1ω2+ c03ω

3
1, one has the Deprit

formula analogue in the 6th order of normalization:

D6 = 1/20736 · (−16096320 + 578209968γ2 − 5879019660γ4 +

+ 23361243081γ6 − 32843706320γ8 − 104264873152γ10 +

+ 481275622400γ12 + 94280800000γ14)/

/γ/(4γ2 − 1)5/2/(25γ2 − 4)3/(100γ2 − 9). (18)

This expression is in agreement with that obtained for D6 by Meyer and
Schmidt [10] and Schmidt [11].

Now consider a particular case of the planar circular RTBP, namely, the
case when the ratio of masses of the main gravitating bodies µ = µ3. The
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corresponding value of γ is found by equating the numerator of the Deprit
formula (12) to zero and solving the quadratic equation. This gives

γ =
(541− 1999451/2)1/2

2 · 3221/2
= 0.269931985621 . . . (19)

Then, discriminant (18) in exact numeric representation simplifies to

D6 = −
5 · 21/2(15711930947857 + 41876715371 · 1999451/2)(253 + 1999451/2)1/2

96703113019392
,

(20)
and in numeric form with fixed precision

D6 = −66.6297952504 . . . . (21)

The obtained floating-point numerical value confirm the results by Mar-
keev [5, 6, 8] and Coppola and Rand [9], while the obtained exact numeric
value (20) confirms the result by Schmidt [11]. Schmidt [11] gives this value
in a somewhat different algebraic representation.

The frequencies and the mass ratio itself in the µ = µ3 case are evaluated
to

ω1 = 1/644 · ((51/2 · 399891/2 − 219)1/2 + 3221/2)1/2 · 21/2 · 3223/4 =

= 0.959622914235 . . . , (22)

ω2 = 1/644 · (−(51/2 · 399891/2 − 219)1/2 + 3221/2)1/2 · 21/2 · 3223/4 =

= 0.281289641605 . . . , (23)

µ3 =
1

2
−

1

6

(

3265 + 2 · 1999451/2

483

)1/2

= 0.0109136676772 . . . . (24)

We substitute the frequencies in the coefficients c30, c21, c12, c03, and evaluate
the coefficients in numeric form with fixed precision:

c30 = −0.219259187025 . . . , (25)

c21 = 7.79324843205 . . . , (26)

c12 = −209.933620500 . . . , (27)

c03 = −14.5264460461 . . . . (28)
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The obtained floating-point numeric values for the normal form coefficients
are in agreement with the floating-point computations by Markeev [5, 6, 8] to
3–5 significant digits, and with the floating-point computations, performed
much later on by Coppola and Rand [9], to 9 significant digits, i.e., to the
accuracy with which Coppola and Rand [9] stated their results.

Note that the exact numeric value of D6, given by formula (20), is ev-
idently nonzero; hence, Markeev’s theorem [5, 8] can be straightforwardly
applied to infer that the motion is stable. Evaluation of (20) to a number
with fixed precision is not necessary. It is interesting that the big number
41876715371 in formula (20) is prime, and 15711930947857 factors only in
two prime numbers, 2317052197 and 6781.

Intermediary analytical expressions in the procedure of nonlinear nor-
malization occupy gigabytes of the main memory, but the final expressions,
Eqs. (14)–(18) and (20), are compact enough to be presented in typographic
format. Of course, there exist ways of derivation of these formulae with less
memory consumption. On one hand, this can be done by utilizing specific
individual properties of the problem in constructing specialized algebraic
processors, as accomplished in [10, 11]. On the other hand, this problem
represents a promising field of application for the so-called method of nu-
meric deduction of analytical expressions, described in [27, 28]. In brief, the
method consists in exact numeric calculation of a derived expression on a set
of simple (rational) values of the parameters and in subsequent “restoration”
of the expression.

5 Conclusions

The problem of stability of the triangular libration points in the planar circu-
lar restricted three-body problem has been considered. A software package,
intended for normalization of autonomous Hamiltonian systems by means of
computer algebra, has been designed in the Maple language and has been
used to obtain normal forms of the Hamiltonian.

The normalization has been carried out up to the 6th order of expansion
of the Hamiltonian in the coordinates and momenta. Analytical expressions
for the coefficients of the Birkhoff normal form have been derived. Though
intermediary expressions occupy gigabytes of the computer memory, the ob-
tained coefficients of the normal form are compact enough for presentation in
the typographic format (Eqs. (14)–(17)). The analogue of the Deprit formula
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for the stability criterion has been derived in the 6th order of normalization
(Eq. (18)). The obtained floating-point numerical values for the normal form
coefficients and the stability criterion confirm the results by Markeev [5, 6, 8]
and Coppola and Rand [9], while the obtained analytical and exact numeric
expressions for the stability criterion in the 6th order of normalization con-
firm the results by Meyer and Schmidt [10] and Schmidt [11].

It is important that the given computational problem has been solved
without constructing a specialized algebraic processor; i.e., the designed com-
puter algebra package has a broad field of applicability.

The author is thankful to A.D.Bruno for valuable remarks. This work
was partially supported by the Russian Foundation for Basic Research (project
# 05-02-17555) and by the Programme of Fundamental Research of the Rus-
sian Academy of Sciences “Fundamental Problems in Nonlinear Dynamics”.
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