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Using extensive Brownian dynamics computer simulations, the long-time self-diffusion coefficient
is calculated for Gaussian-core particles as a function of the number density. Both spherical and rod-
like particles interacting via Gaussian segments are considered. For increasing concentration we find
that the translational self-diffusion behaves non-monotonically reflecting the structural reentrance
effect in the equilibrium phase diagram. Both in the limits of zero and infinite concentration, it
approaches its short-time value. The microscopic Medina-Noyola theory qualitatively accounts for
the translational long-time diffusion. The long-time orientational diffusion coefficient for Gaussian
rods, on the other hand, remains very close to its short-time counterpart for any density. Some
implications of the weak translation-rotation coupling for ultrasoft rods are discussed.

PACS numbers: 66.10.Cb; 61.20.Ja; 82.70.Dd

I. INTRODUCTION

Particles interacting via penetrable pair potentials ex-
hibit fascinating new clustering and reentrance effects
[1, 2, 3, 4, 5] which are absent for diverging potentials
such as hard spheres and inverse-power potentials. A
well-studied model for a penetrable interaction is a Gaus-
sian potential [3, 6, 7, 8, 9] which mimics the effective
interactions between two polymer coils in a good solvent
[10] and applies also to dendrimer solutions [11, 12, 13].
This potential can be generalized towards a Gaussian-
segment model for rod-like particles in order to describe
bottlebrush polymers with a stiff backbone [14], see also
[15]. In the Gaussian-core system, two particles pay a
finite energy penalty if they are sitting on top of each
other. If they overlap completely there is no repulsive
force any longer.

In the present paper we focus on equilibrium dynamical
correlations of Gaussian Brownian fluids. In particular
the long-time self-diffusion coefficient is simulated as a
function of the particle density. Recently the dynami-
cal behavior of spherical Gaussian particles has been ex-
plored by molecular dynamics studies [16] which is suit-
able for polymer melts but neglects the hydrodynamic
friction of a solvent. Here, we consider solutions of col-
loidal or polymeric particles and therefore overdamped
Brownian dynamics is appropriate where the friction of
the solvent is included. We further study the long-time
translational and orientational self-diffusion of Gaussian
segment rods in the isotropic phase as a function of rod
concentration.

As a result, we find that the long-time self-diffusion
coefficient behaves non-monotonically with density, both
for spheres and rods. For zero density (i.e. the sin-
gle particle limit) the long-time self-diffusion coefficient
is clearly identical to the short-time diffusion constant
which is entirely dominated by solvent friction. What is
less obvious is that for high densities with multiple over-
lap of particles the self-diffusion again tends to its short-
time counterpart. In fact in the limit of very high densi-

ties, a Gaussian particle feels many neighbors around a
distance where the Gaussian potential has its inflection
point and these give rise to a diverging number of inter-
action kicks. Therefore one could have expected a higher
diffusion coefficient than the short-time value. However,
we show that correlations between the neighboring par-
ticles enforce a normal diffusive behavior of an effective
ideal gas in this limit.
Between these two extreme limits, for finite densities,

the long-time self-diffusion coefficient is smaller than its
short-time counterpart. The minimal value is roughly
at the point of maximal fluid structure. A similar non-
monotonic behavior has been found for molecular dynam-
ics [16] where the ballistic limit of zero-density leads, of
course, to a diverging long-time self-diffusion coefficient.
Furthermore we find that the long-time orientational self-
diffusion coefficient practically coincides with its short-
time behavior. The latter fact implies that there is no
significant translation-rotation coupling in the Gaussian
segment model for penetrable rods.
We compare our simulation data with the microscopic

theory of Medina-Noyola [17, 18] which relates the long-
time self-diffusion coefficient to the fluid pair correlation
and find qualitative agreement for spheres. The same
holds for the translational diffusion of rods if the theory of
Medina-Noyola [17] is applied to the translational degrees
of freedom alone.
The paper is organized as follows: in Section II we

describe in detail the procedure of the Brownian dynam-
ics computer simulation. Results for the long-time self
diffusion are presented and discussed in Section III. Fi-
nally Section IV is devoted to more general remarks and
conclusions.

II. BROWNIAN DYNAMICS COMPUTER

SIMULATIONS

The Brownian dynamics (BD) simulations are based
on a finite-difference integration of the overdamped
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Langevin equations for N interacting anisometric parti-
cles in three dimensions [19, 20]. The trajectory of each
particle i is characterized by its position ri(t) and orien-
tation ω̂i(t) at time t. If hydrodynamic interactions are
neglected, the update equation for the position of particle
i can be written in the following way

ri(t+∆t) = ri(t)+
∆t

kBT
D

T
0 ·Fi(t)+∆ri+O{(∆t)2}, (1)

with kBT the thermal energy and Fi(t) the total force
acting on the center-of-mass. The latter is derived from
the pair potential which will be specified later. Fur-
thermore, D

T
0 represents the short-time diffusion ten-

sor which in case of uniaxially symmetric particles (e.g.
cylinders) can be cast into the form

D
T
0 = D

‖
0(ω̂i ⊗ ω̂i) +D⊥

0

(

Î−ω̂i ⊗ ω̂i

)

, (2)

in terms of the translational diffusion coefficients parallel

(D
‖
0) and perpendicular (D⊥

0 ) to the particle axis, with

Î the unit tensor and ⊗ a dyadic product.
The contribution ∆ri denotes a random displace-

ment of the particle due to collisions with the solvent
molecules. Similar to Eq. (2), it is convenient to decom-
pose it into contributions parallel and perpendicular to
the particle axis. Introducing two orthogonal unit vec-
tors, ê1i and ê2i, perpendicular to ω̂i we can express the
noise term in Eq. (1) as

∆ri = ∆r‖ω̂i(t) + ∆r⊥(1)ê1i(t) + ∆r⊥(2)ê2i(t). (3)

Here, ∆r‖ and ∆r⊥(1,2) represent Gaussian random dis-

placements parallel and perpendicular to the symmetry
axis. Both stochastic quantities have zero mean and their

variance is 2D
‖
0∆t and 2D⊥

0 ∆t, respectively.
The orientational update equation for ω̂i(t) reads

ω̂i(t+∆t) = ω̂i(t)+
∆t

kBT
DR

0 Ti(t)×ω̂i(t)+∆ω̂i+O{(∆t)2}.

(4)
Here, DR

0 denotes the short-time rotational diffusion co-
efficient and Ti(t) the total center-of-mass torque acting
on particle i. The noise contribution,

∆ω̂i = x1ê1i(t) + x2ê2i(t), (5)

is generated by means of two uncorrelated random Gaus-
sian numbers, x1 and x2, both with zero mean and
variance 2DR

0 ∆t. After each step the new orientations
ω̂i(t+∆t) have to be renormalized to ensure that |ω̂i| = 1
at all times.
Obviously, for spherical particles the translational

Brownian motion is completely decoupled from the ori-
entations and the translational diffusion tensor Eq. (2)

becomes diagonal, i.e. DT
0 = DT

0 Î. In this case, we need
only consider the update equation for the positional co-
ordinates Eq. (1). All update equations are exact up

∆

L

FIG. 1: Soft rod of length L composed of NS = 3 segments
with intersegment distance ∆.

to order O(∆t) which suffices for the present purpose,
provided ∆t is chosen small enough. For a detailed dis-
cussion of a second order update algorithm the reader is
referred to Ref. [20].
The pair potential of the particles is given by an ultra-

soft Gaussian potential. For spherically symmetric par-
ticles we have:

v2(r) = ǫ exp
[

−(r/σ)2
]

, (6)

where σ is the potential range which will henceforth
serve as our unit of length. The amplitude is fixed at
ǫ = 5kBT . According to [3], the associated reduced tem-
perature T ∗ = kBT/ǫ = 0.2 is much higher than the
upper freezing temperature T ∗ ∼= 0.01 which guarantees
a stable fluid state at any density.
Apart from ultrasoft spheres we will also consider sys-

tems of Gaussian rods [14]. Each rod has length L and is
composed of NS spherical segments placed at equidistant
positions along the rod main axis with segment-segment
distance ∆ = L/(NS − 1). The interaction potential be-
tween two segments from different rods is again a Gaus-
sian. The pair potential between two rods i and j is then
given by a sum over all segment interactions:

v2(ri, rj ; ω̂i, ω̂j) = ǫ

K
∑

α=−K

K
∑

β=−K

exp[−(|rαβ |/σ)
2], (7)

where K = (NS − 1)/2 and rαβ = (ri + α∆ω̂i) − (rj +
β∆ω̂j) the distance between segment α on rod i and β
on rod j (i 6= j). We will consider slightly anisometric
rods with NS = 3 segments and L = 2σ (see Fig. 1 for
a sketch). Furthermore the segment-segment potential
amplitude is ǫ = 5kBT . The short-time diffusion coeffi-
cients of the rods depend on one-particle hydrodynamic
effects. For these, we take the analytical results obtained
for hard ellipsoids of length L and aspect-ratio p > 1
reported by Tirado and co-workers [21]:

D⊥
0 =

3DT
0

2p
(ln p+ 0.839 + 0.185/p+ 0.233/p2), (8)

D
‖
0 =

3DT
0

p
(ln p− 0.207 + 0.980/p− 0.133/p2), (9)

DR
0 =

18

πp3
DT

0

σ2
(ln p− 0.662 + 0.917/p− 0.050/p2),(10)

with DT
0 = kBT/6πηsσ the short-time diffusion con-

stant of a sphere with radius σ and ηs the shear vis-
cosity of the solvent. In the above, we have implicitly
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identified L = pσ, with p the hydrodynamic aspect-ratio
of the Gaussian rods. In order to enforce a substantial
translation-rotation coupling we take a value p = 5 which
is larger than the interaction aspect-ratio L/σ = 2.
A natural unit of time is the Brownian time τB =

σ2/DT
0 defined as the typical time a Gaussian particle

needs to diffuse over a distance comparable to its own
dimension. Let us further introduce D̄T

0 = ||
∮

dω̂DT
i ||,

the isotropic orientational average of the diffusion tensor
Eq. (2). For the spheres D̄T

0 = DT
0 while for the rods

D̄T
0 =

1

3
D

‖
0 +

2

3
D⊥

0 . (11)

With this result, we may compute the ratio of the single-
rod rotational and translational relaxation times, i.e.
τR0 /τT0 = D̄T

0 /p
2σ2DR

0
∼= 0.264, showing that the short-

time orientational dynamics is much faster than the
translational. The quantity D̄T

0 also provides the natural
scale for the long-time translational self-diffusion coeffi-
cient DT

L , defined as

DT
L = lim

t→∞

1

6t

1

N

〈

N
∑

i=1

(ri(t)− ri(0))
2

〉

, (12)

where 〈· · · 〉 is a canonical average. An alternative defi-
nition is provided by a differential expression

DT
L = lim

t→∞

1

6

d

dt

1

N

〈

N
∑

i=1

(ri(t)− ri(0))
2

〉

. (13)

Both expressions should in principle yield identical re-
sults in the long-time limit. In practice however, they
will differ slightly and the difference can be used to as-
sess the error in DT

L .
Following Ref. [20] we can define the long-time rota-

tional diffusion coefficient DR
L as follows

DR
L = − lim

t→∞

Wn(t)

t
, (14)

where Wn(t) is an orientational correlation function mea-
suring the mean-square displacement on the unit sphere.
It is given by

Wn(t) =
1

n(n+ 1)
ln 〈Pn(ω̂(t) · ω̂(0))〉 , (15)

with Pn a Legendre polynomial. Similar to Eq. (13), we
may also employ the differential analogue. If the rota-
tional motion is a diffusion process on the unit sphere,
the dynamics is captured by the Debye diffusion equation
which predicts DR

L to be independent of n [20].
In our simulations we used a cubic simulation box of

volume V with periodic boundary conditions in all three
directions. The number of particles depends on the num-
ber density. If we choose to cut off all segment-segment
pair interaction for which v2/ǫ < vcut2 /ǫ the length LB

of the simulation box must be at least twice the cor-
responding cutoff range and so LB/σ > −2 ln[vcut2 /ǫ].
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FIG. 2: Long-time translational self-diffusion coefficient di-
vided by its low-density limit DT

L/D
T
0 versus the density ρσ3

(on a log scale) for Gaussian spheres from BD simulations
and the theory of Medina-Noyola (MN). On the right vertical
axis, filled dots give the amplitude gmax

2 of the first maximum
of the equilibrium pair correlation function g2(r).

For a given density the number of particles must there-
fore obey N > (ρσ3)L3

B, while imposing a minimum of
N = 500 at small densities. Using vcut2 /ǫ = 10−6, a run
at ρσ3 = 10 requires N = 4000 and one at ρσ3 = 25
N = 13000. The time step must be reasonably small and
was fixed at 0.0005τB. Initial configurations were gener-
ated by putting the particles at random positions. For
the rod systems, a parallel nematic initial configuration
was adopted. After a long equilibration period of at least
10τB statistics were gathered (during a period of about
15τB) and the time-dependent correlations were moni-
tored during an interval of about 5τB. The latter turned
out to be sufficiently large to reach the long-time limit.

III. RESULTS FOR THE LONG-TIME

SELF-DIFFUSION COEFFICIENTS

Results for the long-time diffusion coefficient for
spheres are shown in Fig. 2. A clear non-monotonic be-
havior is observed. Both for very small and very high
densities, the diffusivity comes very close to that of a sin-
gle particle. At the highest density simulated (ρσ3 = 25)
the long-time diffusion constant has regained about 98
% of its short-time value indicating that the diffusion
has become virtually ideal in the high-density limit. The
density ρσ3 ∼= 0.3 at which the diffusivity becomes mini-
mal is in agreement with the results of Ref. [16], and lies
close to the density ρσ3 ∼= 0.23 for which the Gaussian
core model displays its ‘turning point’ in the reentrant
melting transition [3].
To compare our data with microscopic theory we have

included the prediction from the Medina-Noyola theory
for self-diffusion [17].The theory comprises an analysis
of the effective Langevin equation of a tagged spherical
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FIG. 3: Same as Fig. 2 for the Gaussian segment rods.

colloid in a medium of interacting neighbor particles. In
the absence of hydrodynamic interactions, the following
expression for DT

L is proposed:

DT
L = DT

0

(

1 +
ρ

6

∫

dr [g2(r) − 1]2
)−1

, (16)

where the only input is the static pair correlation func-
tion g2(r) which is obtained from the simulation. Al-
though the theory is certainly not reliable from a quan-
titative point of view, as we observe in Fig. 2, the non-
monotonic behavior is clearly recovered. This suggests
that there is a qualitative correspondence between the
long-time diffusive behavior and the static correlations
as embedded in g2(r). This becomes more explicit when
we compare the diffusion data with the maximum ampli-
tude in the pair correlation function, also shown in Fig. 2.
The behavior for the rods is qualitatively the same as for
spheres, see Fig. 3. Also here the translational diffu-
sion constant varies non-monotonically with density and
approaches the short-time limits at small and large den-
sities. The only notable difference is that the fluid struc-
ture is somewhat more pronounced here. As a result, the
normalized diffusion constant reaches a minimum value
that is smaller than that for spheres. Again, the the-
ory of Medina-Noyola now taken with the center-of-mass
pair correlations as an input overestimates the simulation
data but shows the correct trend.
Contrary to DT

L , the rotational counterpart in Fig. 4
seems to be weakly affected by the density. At the point
of maximum fluid structure (ρσ3 ∼= 0.12) the long-time
rotational diffusivity has dropped to only about 90 % of
the maximum i.e. short-time value. Moreover, an inves-
tigation of Wn(t) at minimum diffusivity shows that the
mean-square orientational displacement does not depend
on n. From this we may conclude that the rotational
relaxation on the unit sphere is purely diffusive for long
times. This behavior is not found in isotropic systems
with unbounded rod potentials such as hard spherocylin-
ders or Yukawa segment models [20]. The distinct dis-
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FIG. 4: (top) Mean-square displacement on the unit spheres
W2(t) [see Eq. (15) ] for Gaussian rods at various densities.
The corresponding long-time rotational diffusion coefficients
D = DR

L/DR
0 are indicated where the number in brackets

gives the error of the last digit. (bottom) Wn(t) for n = 1, 2, 3
for the system with density ρσ3 = 0.12.

crepancy between the density-dependence of the trans-
lational and rotational diffusivity suggests that the cou-
pling between orientational and translational degrees of
freedom is very small for the systems of ultrasoft rods
considered here.
Some insight as to the status of the translation-rotation

coupling can be gained by considering the effective inter-
action of a rod pair in a spatially homogeneous fluid:

v2(ω̂i, ω̂j) =

∫

drijv2(rij ; ω̂i, ω̂j), (17)

with rij = rj − ri. Inserting Eq. (7) and some algebra
leads to v2(ω̂i, ω̂j) = const. This result holds for any

bounded segment-segment potential and implies that, ir-
respective of the rod aspect-ratio, all static orientational
correlations are rendered zero by the random-phase ap-
proximation for the excess free energy [2, 3]. For a spa-
tially uniform rod fluid the latter is simply proportional
to a double orientational average of v2(ω̂i, ω̂j). This will
give the same outcome for any normalized orientational
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distribution. Since the ideal free energy of a nematic fluid
is always higher than that of the isotropic, the possibil-
ity of a stable nematic state is fully excluded. Of course
the above argument does not rule out a possible freezing
transition occurring within an isotropic rod fluid. In fact,
recent investigations for other soft rods such as parallel
Gaussian-core particles [15] and Yukawa rods [22] seem
to point to a pronounced stability of columnar liquid-
crystalline order in these systems. Finally, we remark
that for soft rods with large aspect-ratios a phase tran-
sition from an isotropic toward a nematic fluid may be
possible at low densities where rod correlations are much
better described by the Onsager functional [23] than the
random-phase approximation.

IV. CONCLUSIONS

In conclusion, we have simulated the long-time self-
diffusion in concentrated Brownian systems of rod-like
and spherical particles which interact via a Gaussian core
and are thus penetrable. As reflected by the statics, the
system is getting ideal in the high-density limit where
the random-phase approximation for the fluid structure
becomes asymptotically exact. We think that the trends
are independent of details in the interaction potentials

provided that clustering [2] is avoided.
We finish with a few remarks. First of all, one

should consider the hydrodynamic interactions mediated
by the solvent. These are neglected in the Brownian dy-
namics simulations, but can be treated using more so-
phisticated (and time-consuming) schemes like lattice-
Boltzmann, Stokesian or the stochastic rotation dynam-
ics [24, 25, 26, 27, 28]. Second, there is a need to de-
rive microscopic models for the Brownian motion of stiff
rods with soft interactions on the basis of the Smolu-
chowski equation involving mode-coupling approxima-
tions. These approaches then would go beyond a simple
effective Medina-Noyola theory in treating explicitly the
orientational degrees of freedom. Our simulation results
may provide benchmark data to test these theories. As to
the statics, it would be worthwhile to map out the freez-
ing behavior of Gaussian segment rods in the regime of
high density and low temperature. Finally, the existence
of a stable nematic phase for Gaussian rods with large
aspect-ratio remains an open question.
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[19] H. Löwen, Phys. Rev. E 50, 1232 (1994).
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