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Abstract

For finite-size scaling studies of second-order phase transitions the critical energy range of interest is usually larger than the energy range
covered by a canonical Monte Carlo simulation close to the critical temperature. The desired extended energy range can be covered, in principle,
by performing a Wang–Landau recursion for the density of states followed by a multicanonical simulation with fixed weights. But in the conven-
tional approach one loses the advantage due to cluster algorithms. We show that a cluster version of the Wang–Landau recursion together with
a subsequent multibondic simulation improves for 2D and 3D Ising models the efficacy of the conventional approach by power laws in the lattice
size. By using finite-size scaling theory for suitably adapting the extended energy range to the system size, in our simulations real gains in CPU
time reach two orders of magnitude.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Critical phenomena; Multibondic simulations; Wang–Landau recursion
1. Introduction

In numerical studies of statistical physics systems in the
Gibbs canonical equilibrium ensemble, a single Markov chain
Monte Carlo (MCMC) simulation [1] at a given temperature
combined with standard reweighting techniques [2] can, the-
oretically, cover the full temperature range. In practice, how-
ever, due to finite run lengths, the reliable temperature interval
is severely limited by the insufficient statistics in the tails of
the simulated energy density. In principle this situation can be
improved by patching canonical simulations from several tem-
peratures together, relying on a multi-histogram approach. Be-
sides that dealing with many simulations is tedious, weaknesses
of these approaches are that the histograms fluctuate indepen-
dently and that their patching has to be done in regions where
the statistics is reduced due to the decline of the number of his-
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togram entries. It has turned out that in realistic applications
more stable estimates can be obtained by constructing a “gener-
alized ensemble” [3–6], which allows to cover the entire region
of interest in a dynamical way [7,8].

While the power of generalized ensembles is well docu-
mented for first-order phase transitions and complex systems
such as spin glasses and peptides (small proteins) [9], this is not
the case for second-order phase transitions where one ideally
wants to cover the full scaling region in which many physical
observables diverge with increasing lattice size. The usefulness
of generalized ensembles for this purpose was previously dis-
cussed in Ref. [10], but the specific implementation lost the cru-
cial advantage which cluster algorithms [11,12] provide. Here
we discuss such a generalization to cluster algorithms [13],
starting from the multibondic (MUBO) [14] cluster version of
the multicanonical (MUCA) [4] ensemble.

This framework is generally valid for models allowing for
cluster algorithms. After a careful study of the scaling prop-
erties which is crucial for our approach, we illustrate the per-
formance of the algorithm for 2D and 3D Ising models which
capture typical behaviors.
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2. Scaling at second-order phase transitions

Close to the transition temperature Tc of a second-order
phase transition many observables exhibit singularities which
can be parametrized for an infinite system as

(1)S(T ) ∼ |t |−σ ,

where t = T/Tc −1 = βc/β −1 is the reduced temperature and
σ is the critical exponent of S. By comparing the size L of a
finite system with the correlation length ξ ∼ |t |−ν , finite-size
scaling (FSS) theory implies at Tc [15]

(2)SL(Tc) ∼ Lσ/ν,

or more generally in the scaling region t → 0

(3)SL(T ) ∼ |t |−σ f (L/ξ),

where f is a scaling function. As SL(Tc) is finite, f (L/ξ)

has to eliminate the singularity of |t |−σ , implying f (L|t |ν) ∼
(L|t |ν)σ/ν for t → 0 and, therefore, Eq. (2).

The specific heat per site is given via the fluctuation–
dissipation theorem by CL = β2LD(�e)2, where �e =√〈(e − 〈e〉)2〉 with e = E/LD denoting the energy density.
A Taylor expansion around Tc gives

(4)〈e〉(T ) = 〈e〉(Tc) + CL(Tc)(T − Tc) + · · · .
Requiring that |〈e〉(T ) − 〈e〉(Tc)| < �e(Tc), implies for the
canonical reweighting range

(5)|T − Tc|/Tc <
1√

LDCL(Tc)
.

Since at a second-order phase transition CL(Tc) ∼ Lα/ν this
takes the scaling form

(6)|T − Tc|/Tc < L−(D+α/ν)/2 = L−1/ν,

where for the last equality hyperscaling was assumed to be
valid.

The desired reweighting range, on the other hand, should
cover the maxima Smax

L = SL(T max
L ) ∼ Lσ/ν of all divergent

observables measured. Reweighting has to cover a reasonable
range about the maximum, say in the interval [T r−

L ,T r+
L ] de-

fined by the two solutions of

(7)SL

(
T r±

L

) = rSmax
L , 0 < r < 1.

Usually one considers more than one observable. In this case
the desired reweighting interval is given by the smallest T r−

L

and the largest T r+
L .

In general the desired interval is not symmetric around Tc.
To simplify the notation we use in the following T r

L = Tc +
max{Tc − T r−

L ,T r+
L − Tc} and assume

(8)�T r
L = ∣∣T r

L − Tc

∣∣ = arL−κ ,

where ar and κ > 0 are constants (κ independent of r and ar

becomes large for r small). For sufficiently large L we suppose
that (A = const)

(9)SL

(
T r

L

) = Sreg + A
(
�T r

L

)−σ
Fig. 1. Canonical (indicated by “rwght”) versus desired (entire β axis) reweight-
ing range on an 803 lattice.

holds, where Sreg = Sreg(T ) is a regular background term.
Combining Smax

L ∼ Lσ/ν with (8) and (9) we find Lσ/ν ∼ Lσκ

and conclude

(10)κ = 1/ν,

i.e., the desired range (8) scales with the same exponent as
the canonical range (6). However, the proportionality factor ar

in (8) can be much larger than the one encountered for the
canonical range. With the modest value r = 2/3 this point is
made in Fig. 1 for the 3D Ising model on an 803 lattice, where
the expectation values of the specific heat CL(β) and first struc-
ture factor SL(β) (whose maximum scales ∼ Lγ/ν [16]) are
shown. The desired reweighting range is more than 17 times
larger than the canonical reweighting range from a simulation
at T max

L of the specific heat (in realistic applications one does
not know Tc a priori and T max

L of a suitable observable is a good
substitute).

Some special care is necessary when the observable S ex-
hibits a logarithmic singularity. Then the t → 0 multiplicative
cancellation (3) of the singularity is no longer possible, but be-
comes additive,

(11)SL(T ) = Sreg − A ln |t | + f (L/ξ),

such that

(12)f (L/ξ) = A

ν
ln

(|t |νL) = A ln |t | + A

ν
lnL,

(13)Smax
L = S

reg
max + Am

ν
lnL.

Since

rAm

ν
lnL ∼ rSmax

L = SL

(
T r

L

)

(14)= rS
reg
max − Am ln

∣∣t rL
∣∣ ∼ Amκ lnL

one finds in this case that the exponent κ in Eq. (8) is no longer
independent of r , but

(15)κ = r/ν.

While the canonical reweighting range scales still ∼ L−1/ν , the
desired reweighting range becomes ∼ L−r/ν , so that the ratio
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“desired/canonical” diverges ∼ L(1−r)/ν . With S = C the 2D
Ising model provides an example.

This shows that typically more than one canonical simula-
tion will be needed to cover the relevant part of the scaling
region of a second-order phase transition. Employing the static
multi-histogram approach [17] is one possibility to cope with
this problem. More stable estimates, however, are obtained by
constructing a generalized ensemble, which allows a random
walker to cover the entire region of interest in a single simula-
tion.

3. Multibondic cluster updating and Wang–Landau
recursion

Generalized ensemble simulations require two steps: (i) Ob-
tain a working estimate of the weight factors. (ii) Perform a
MCMC simulation with fixed weights. For step (ii) we follow
the extension to cluster algorithms [14,18] of MUCA simula-
tions [4], focusing on the MUBO version [14]. With “working
estimate” of step (i) we mean that the weights of the general-
ized ensemble are sufficiently accurate that the energy range in
question is sampled in step (ii). Several efficient general pur-
pose recursions for the weight determination were reported in a
number of papers [19], see also Refs. [7,8,18]. Here we adapt
the Wang and Landau (WL) approach [6] which differs funda-
mentally from the earlier approaches by iterating the weight at
energy E multiplicatively with a factor fWL > 1 rather than ad-
ditively. At a first glance the WL approach is counter-intuitive,
because the correct iteration of the weight factor close to the de-
sired fixed point is obviously proportional to the inverse number
of histogram entries, 1/H(E), and not to (1/fWL)H(E). How-
ever, what matters is a rapid approach to a working estimate.
The advantage of the WL over the other recursions is that it
moves right away rapidly through the targeted energy range.
When this range is sufficiently covered, the iteration factor is
refined by fWL → √

fWL, so that it approaches 1 rapidly.
We consider q-state Potts models with energy

(16)E = −2
∑

〈ij〉
δsisj ,

where the sum is over all nearest-neighbor pairs of a D-dimen-
sional cubic lattice of LD Potts spins, which take the values
si = 1, . . . , q , in a normalization where the special case q = 2
matches with the energy and β conventions of the standard Ising
model.

The Fortuin–Kasteleyn (FK) representation [20] of the Potts
model reads

(17)ZFK =
∑

{si }

∑

{bij }
Z

({si}, {bij }
)

with Boltzmann weight

(18)Z
({si}, {bij }

) =
∏

〈ij〉
[aδsisj δbij 1 + δbij 0],

where a = e2β −1. The bond variables bij (simply called bonds
in the following) take the values bij = 0 and 1, interpreted as
“broken” and “active” or “set” bonds, respectively. By summing
over the {bij }-configurations, one recovers the canonical Potts
Boltzmann factor:

(19)Z
({si}

) =
∏

〈ij〉
[aδsisj + 1] =

∏

〈ij〉
e

2βδsi sj

since (e2β − 1)x + 1 = e2βx holds for x = δsi sj = 0,1.
The Swendsen–Wang cluster update [11] starts from the FK

weight (18) and generates on links with δsisj = 1 new bonds
b′
ij = 1 with probability p1 = a/(a + 1) = 1 − e−2β and bonds

b′
ij = 0 with probability p0 = e−2β . On δsisj = 0 links one

always sets b′
ij = 0. A cluster is defined as a set of spins con-

nected by active bonds and in the subsequent spin update one
assigns randomly a new value s′ = 1, . . . , q to an entire cluster
of spins.

With B = ∑
〈ij〉 bij denoting the number of active bonds, the

MUBO partition function [14] is defined by

(20)ZMUBO =
∑

{si }

∑

{bij }
Z

({si}, {bij }
)
W(B),

where a bond weight factor W(B) has been introduced which
modifies the cluster update procedure as follows. If si 	= sj a
bond is never set, B does not change, and W(B) is irrelevant.
For si = sj there are two possibilities: The initial bond is not
set, bij = 0. Then B ′ = B for b′

ij = 0 and B ′ = B + 1 for b′
ij =

1. The updating probabilities are (a = e2β − 1)

(21)P1(0 → 0) = W(B)

W(B) + aW(B + 1)

and P1(0 → 1) = 1 − P1(0 → 0). If the initial bond is set,
bij = 1, then B ′ = B − 1 for b′

ij = 0 and B ′ = B for b′
ij = 1.

The updating probability P2(1 → 0) hence equals P1(0 → 0)

with B → B − 1. Once the configuration is partitioned into
clusters, the update of the spin degrees of freedom proceeds
as in the canonical cluster algorithm by assigning with uniform
probability a spin in the range 1, . . . , q to each cluster.

In this cluster formulation the WL recursion generalizes
to [13,21]

(22)lnW(B) → lnW(B) − aWL, aWL = ln(fWL),

whenever a configuration with B bonds is visited. All recur-
sions are started with aWL = 1 and we iterate aWL → aWL/2
according to the following criteria: (i) The Markov chain just
cycled from Br−

L to Br+
L and back. Here Br−

L and Br+
L are bond

values corresponding to T r−
L and T r+

L , respectively, determined
by short canonical simulations. (ii) The bond histogram h(B),
measured since the last iteration, fulfilled a flatness criterion
hmin/hmax > cut, where cut was equal to 1/3 in most of our
runs.

We freeze the weights after a last iteration is performed with
the desired minimum value amin

WL.

4. Numerical results

After the weight recursions and a short equilibration run,
we performed MUBO simulations with the run length tuned
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Fig. 2. Integrated autocorrelation times τint(L) vs. lattice size L for the 3D (top)
and 2D (bottom) Ising model. Error bars are computed with the Jackknife
method.

to cover approximately 1000 cycling events. In all simulations,
the recursions never took more than 3% of the statistics used for
production runs. Similarly, also the initial canonical simulations
used to determine Br−

L and Br+
L took less than 3% (provided

they are started with an appropriate initial configuration).
The resulting integrated autocorrelation times τint are com-

pared in Fig. 2 with those of a MUCA simulation of similar
statistics. From the MUBO time series we calculated τint for
(a) energies and (b) bonds, which is slightly higher for the ener-
gies, but indistinguishable on the scale of the figure. For MUCA
the estimates are from energies. Up to a constant factor practi-
cally identical results are obtained from cycling times. In our
code one MUCA sweep was about three times faster than one
MUBO sweep.

The critical slowing down is described by τint ∼ Lz. For the
dynamical critical exponent we find z = 2.22(11) for MUCA
and z = 1.05(5) for MUBO. So the performance gain is a bit
better than linear with the lattice size L. The data in Fig. 2
scatter more than one might have expected about the fits be-
cause our T r−

L and T r+
L values are based on MCMC estimates,

which are by themselves noisy. The exponent for MUBO clus-
ter updating is significantly higher than the one estimated from
canonical simulations at Tc, z = 0.50(3), with the Swendsen–
Wang algorithm [22]. The reason is that the efficiency of the
cluster algorithm deteriorates off the critical point, even when
one is still in the scaling region. This is particularly pronounced
in the long tail of the specific heat for T < T max
L . Therefore, our

exponent z ≈ 1 should reflect the true slowing down in realistic
applications better than the small literature value at Tc .

The lower part of Fig. 2 shows τint from simulations of the
2D Ising model for which we adjusted our simulation para-
meter to cover the full width at half-maximum of the specific
heat. This corresponds to r = 1/2 in Eq. (15). The dynamical
critical exponent takes then the values z = 2.50(4) for MUCA
and z = 1.04(2) for MUBO. The MUCA value reflects that the
number of canonical simulations needed to cover the desired
energy range grows now ∼ L1/2, while the canonical critical
value is slightly above two [7,23].

5. Summary and conclusions

At second-order phase transitions, the energy range explored
by canonical MCMC simulations is often too small to allow ac-
curate reweighting analyses around the peak of a given quantity.
Generalized ensembles such as those generated with the multi-
canonical or Wang–Landau methods can provide specifically
tailored broader ranges but suffer in their conventional formu-
lations from large autocorrelation times due to the use of local
update algorithms. We first recall that much more efficient non-
local cluster algorithms can be employed in the multibondic
formulation and then propose a generalization of this method
to weight recursions of Wang–Landau type. When the desired
broad reweighting range is adjusted to the lattice size L ac-
cording to finite-size scaling theory, we obtain for the Ising
model with this cluster approach a gain in efficiency by power
laws in L (� L1.45 in 2D and � L1.15 in 3D) compared to the
conventional Wang–Landau multicanonical approach with lo-
cal updates.
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