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We derive the bias function that minimizes the statistical error of free energy differences calculated
in work-biased fast-switching simulations. The optimum bias function is compared to other bias
functions using a particle pulled through a viscous fluid as an illustrative example. Our analysis
indicates that the uncertainty in the free energy is smallest if both dominant and typical work values
are sampled with high frequency.

I. INTRODUCTION

Fast switching computer simulations based on Jarzyn-
ski’s non-equilibrium work theorem offer an interesting
way for the computation of free energies [1, 2, 3]. In this
approach, which is particularly relevant in the context of
recent mechanical single molecule experiments [4, 5, 6],
the free energy difference ∆F between two equilibrium
states is related to the work W done on the system dur-
ing non-equilibrium transformations [1, 2],

e−β∆F =
〈

e−βW
〉

, (1)

where β = 1/kBT is the reciprocal temperature. The
angular brackets 〈· · · 〉 imply an average over many tra-
jectories during which a control parameter is switched
at a finite rate between values corresponding to the two
equilibrium states. If the control parameter is switched
slowly such that the system remains close to equilibrium
at all times (in thermodynamics, this corresponds to a
reversible transformation), the work done on the system
differs little form the free energy difference, W ≈ ∆F .
If, on the other hand, the control parameter is switched
rapidly, the work values observed in different realizations
of the switching process may vary over a large range
and typically exceed the free energy difference. In other
words, the work distribution P (W ) is broad and peaked
at work values larger than ∆F in this case.
In fast switching computer simulations the exponen-

tial average of Equ. (1) may create numerical problems
particularly in the fast switching regime. The reason for
these difficulties is best appreciated if one rewrites the
Jarzynski equation (1) as integral over the work distri-
bution P (W ),

e−β∆F =

∫

dW P (W )e−βW . (2)

For strong driving, the work distribution P (W ) can have
a very small overlap with the integrand P (W ) exp(−βW )
of the above equation. Accordingly, typical work val-
ues from the peak of P (W ) contribute little to the av-
erage while the dominant work contributions to the av-
erage are very rare [7]. This results in large statistical
errors of the free energy difference estimated from a fi-
nite sample of non-equilibrium trajectories, an issue that

has been addressed repeatedly in the recent literature
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. One way to
overcome this difficulty consists in favoring the sampling
of trajectories with rare but important work values by in-
troducing a work dependent bias function Π(W ) [12, 13].
The bias function guides the simulation, in which fast
switching trajectories are harvested using transition path
sampling methods [18, 19], toward the important regions
of trajectory space. In this approach, Jarzynski’s identity
takes the form:

e−β∆F =

〈

e−βW /Π
〉

Π

〈1/Π〉Π
, (3)

where the angular brackets 〈...〉Π denote averages over the
biased path ensemble [12, 13]. In the present paper, we
derive an expression for the bias function that minimizes
the statistical error of the free energy estimate. When
then test the bias function for a simple one-dimensional
model and discuss implications for practical fast switch-
ing simulations.

II. OPTIMUM BIAS

In a biased fast switching simulation with bias func-
tion Π(W ) the free energy difference ∆F is estimated
according to Equ. (3) from a finite sample of N tra-
jectories. Accordingly, the free energy estimate ∆FN is
affected by a statistical error quantified by the fluctua-
tions ǫ2N = 〈(∆FN −∆F )2〉, where the angular brackets
denote an average over many realizations of the averaging
process [13, 20, 21]. For large sample sizes N and statis-
tically independent trajectories, the fluctuations ǫ2N are
given by [13]

ǫ2N =
k2BT

2

N
α2, (4)

where the unitless factor

α2[Π] = 〈Π〉
〈

(

e−β(W−∆F ) − 1
)2

Π

〉

(5)

depends only on the work distribution P (W ) and the
bias function Π(W ), but not on the sample size N . Also,
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α2[Π] equals the number NkT of trajectories required to
obtain a free energy accuracy of kT . The argument of
α2[Π] emphasizes that the factor α2, which determines
the size of the fluctuations for a given sample size N , is
a functional of the bias function Π(W ).
We now determine the bias Π∗ that minimizes α2[Π]

and do so by requiring that upon an infinitesimal varia-
tion δΠ of the bias function Π∗ the variation of α2 van-
ishes,

δα2[Π∗] = α2[Π∗ + δΠ]− α2[Π∗] = 0. (6)

Expanding the right hand side of Equ. (5) and neglecting
all terms of order (δΠ)2 and higher we obtain

δα2[Π∗] =

〈

δΠ

[

α2[Π∗]

〈Π∗〉 − (e−β(W−∆F ) − 1)2

Π∗2

]〉

. (7)

Since δα2[Π∗] has to vanish for any arbitrary variation
δΠ, the expression in square brackets must be equal to
zero. Solving for Π∗ then yields

Π∗(W ) =
〈Π∗〉1/2
α[Π∗]

∣

∣

∣
e−β(W−∆F ) − 1

∣

∣

∣
, (8)

where the absolute value |...| is taken since the bias func-
tion has to be non-negative. Although the fraction on
the right hand side is a functional of the (at this point
still unknown) optimum bias function Π∗, it does not ex-
plicitly depend on the the work W and can therefore be
treated as an irrelevant multiplicative constant. Thus,
the optimum bias function can be written as

Π∗ =
∣

∣

∣
e−β(W−∆F ) − 1

∣

∣

∣
. (9)

This equation is the main result of this paper. Remark-
ably, the optimum bias function is very general and does
not at all depend on the particular switching protocol
used in the simulation. It does, however, depend on the
unknown free energy difference ∆F which limits the use-
fulness of the optimum bias function in practice. For the
optimum bias the fluctuations α2[Π] take the particularly
simple form

α2[Π∗] = 〈|e−β(W−∆F ) − 1|〉2. (10)

Thus, the statistical error in the free energy estimate
can be calculated from a single integral over the work
distribution.
Due to the non-linearity of the logarithm, the expecta-

tion value of the free energy difference estimated from a
small sample does not coincide with the true free energy
difference. The resulting bias, bN = 〈∆FN 〉 − ∆F , is
given by [13]

bN =
kBT

2N
〈Π〉

〈

e−2β(W−∆F ) − 1

Π

〉

. (11)

As noted earlier [8], for certain bias functions and work
distributions, the bias bN vanishes. In two situations,

this is true also for simulations done with the optimum
bias. Consider, first, a switching process for which the
work distributions is identical to that of the reverse pro-
cess. Then, the free energy difference ∆F = 0 and it fol-
lows from the Crooks theorem [22] that 〈(exp(−2βW )−
1)/| exp(−βW ) − 1|〉 = 0 and hence the bias bN also
vanishes. The other instance in which bN vanishes con-
cerns processes with Gaussian work distributions, usually
observed for slow switching (an exception are isolated
systems in which adiabatic invariants prevent the work
distribution from becoming Gaussian [13]). In this case,
the Jarzynski theorem implies that average work W and
work variance σ2

W are related by σ2
W = 2(W−∆F )/β [1],

and bN = 0 can be demonstrated by direct evaluation of
the integrals in Equ. (11).

III. MODEL

To illustrate the effect of the optimum bias we applied
it to a one dimensional particle dragged through a viscous
fluid by a harmonic trap of force constant k translated
with constant speed v. In this case, the control parameter
is the trap position, which changes by L during a time
τ = L/v. The particle, whose position is specified by the
coordinate q, evolves according to the Langevin equation
in the overdamped limit[23],

q̇ = −k

γ
(q − vt) + η, (12)

where the friction coefficient γ is related to the delta-
correlated Gaussian random noise η by 〈η(0)η(t)〉 =
2kBTγ

−1δ(t). For this model, the work distribution is
Gaussian, with mean

W = γLv
[

1 +
γv

kL
(e−kL/vγ − 1)

]

, (13)

and variance σ2
W = 2kBTW [24]. All following results

were obtained for the parameters β = 1, γ = 1, k = 1
and L = 5.

IV. RESULTS

To visualize the effect of the optimum bias Π∗(W ) we
depict the work distribution P (W ) for the particle in the
harmonic trap together with P (W )e−βW , the integrand
of Equ. (2), and P (W )Π∗(W ) in Fig. 1. Up to a nor-
malization factor, P (W )Π∗(W ) is identical to the work
distribution PΠ∗(W ) sampled in the biased ensemble,

PΠ∗(W ) = P (W )Π∗(W )
/

∫

dW P (W )Π∗(W ). (14)

For this model, PΠ∗(W ) is symmetric around W = 0,
as follows from the Crooks theorem [22] for a process
with identical work distributions in forward and back-
ward direction. It is interesting to note that according
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to the work distributions shown in Fig. (1), work values
from the peaks of P (W ) and P (W ) exp(−βW ) are sam-
pled with the same frequency in the biased ensemble. As
discussed in Sec. V, this property holds in general and
carries ramifications for the design of bias functions.

-15 -10 -5 0 5 10 15
W

0

0.05

0.1

0.15
P(W)

P(W) e
-βW

P(W)Π∗
(W)

FIG. 1: Work distribution P (W ) (solid line) along with the
functions P (W )e−βW (dashed line) and P (W )Π∗(W ) (dash-
dotted line) for the particle in the moving harmonic trap.
These curves were obtained for the parameter set β = 1,
γ = 1, k = 1 and L = 5.

We next calculate the statistical error of the free energy
estimate as quantified by the factor α2, i.e., the number
NkT of trajectories needed to obtain a free energy differ-
ence accurate to kBT . To estimate the error for differ-
ent bias functions, we do not carry out actual computer
simulations of our model system. Rather, we calculate
expected errors from the analytically known work distri-
bution P (W ) using Equ. (5). Since in our model the
initial and final states correspond to two different posi-
tion of the otherwise identical trap, the free energy dif-
ference vanishes. The expression for the error, Equ. (5),
therefore simplifies to:

α2[Π] = 〈Π〉
〈

(e−βW − 1)2

Π

〉

. (15)

Thus, for given bias function Π(W ), the error α2 can be
easily calculated by integration.
In addition to the optimum bias derived in this paper,

we also examine the exponential bias

Πe(W ) = e−βW/2 (16)

suggested by Ytreberg and Zuckerman [12], as well as the
inverse bias Πi(W ), which flattens the work distribution
in the biased ensemble in the interval [Wmin,Wmax],

Πi(W ) =







1/P (Wmin) for W ≤ Wmin,
1/P (W ) for Wmin < W < Wmax,
1/P (Wmax) for W ≥ Wmax.

(17)
To obtain a flat distribution in the important work range
that includes the typical and dominant work values we
choose Wmax,min = ±(βσ2

W /2 + 4σW ). The case without
bias, i.e., Π(W ) = 1, is also considered.

For all bias functions discussed here the expected error
can be calculated analytically from Equ. (15). For the
optimum bias one obtains

α2[Π⋆] = 4 erf 2
(

βσW

2
√
2

)

, (18)

while for the exponential bias and the inverse bias the
error is given by [16]

α2[Πe] = 2eβ
2σ2

W
/4

(

1− e−β2σ2

W
/2
)

, (19)

and

α2[Πi] =
Wmax −Wmin

σW
√
π

(

1− e−β2σ2

W
/4
)

, (20)

respectively. In calculating α2[Πi] we have assumed
that work values outside [Wmin,Wmax] do not signifi-
cantly contribute to the integrals (note that in Ref. [8]
the boundaries Wmin and Wmax were selected incorrectly
which lead to an erroneous α2[Πi] for small switching
rates). Without any bias the expected error is

α2[Π = 1] = eβ
2σ2

W − 1. (21)

The resulting values of α2 are depicted in Fig. 2 as a
function of the trap velocity v. The statistical error is
indeed smallest for the optimum bias Π∗. While the in-
verse bias Πi also performs well over the whole range
of trap velocities, large errors result for straightforward
sampling (no bias) and the exponential bias Πe at large
trap velocities. For small trap velocities all bias func-
tions lead to the same asymptotic behavior in which, as
for straightforward fast switching without bias, the error
depends linearly on the trap velocity as expected from
linear response theory.
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FIG. 2: The squared fluctuations α2 calculated for the particle
in the harmonic trap as a function of the trap velocity v for
the various bias functions described in the main text. These
curves were obtained for the parameter set β = 1, γ = 1,
k = 1 and L = 5.

To estimate the total computational cost of the sim-
ulation we need to take into account that the cost of
a single trajectory is approximately proportional to its
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length (neglecting any overhead cost, for instance for the
generation of initial conditions). Accordingly, we define
the computational cost as the product of the number of
trajectories NkT and their duration τ in time [13],

CCPU = NkT τ = α2L

v
. (22)

The computational effort CCPU is the total CPU-time re-
quired to obtain a free energy accurate to kT in units of
the CPU time necessary to compute a trajectory of length
1. As both NkT and τ depend on the switching rate (i.e.,
the trap velocity in our case), the benefit of short low-
cost trajectories may be compensated by a large number
of required trajectories or vice versa. The computational
costs resulting from application of the various bias func-
tions are shown in Fig. 3. For slow switching, the com-
putational cost is constant and very similar for all bias
functions implying that from an efficiency point of view it
does not matter if one generates a few long trajectories or
more but shorter ones (as long as one stays in the linear
regime) [25]. For larger switching rates, the computa-
tional cost declines steadily with the switching rate pro-
vided a good bias function is available. This result indi-
cates that the instantaneous switching limit, in which the
fast switching method turns into Zwanzig’s perturbative
approach [26], yields the most efficient simulations. Note,
however, that in this analysis we have neglected correla-
tions, which possibly depend on the switching rate, and
any computational overhead involved, for instance, in the
generation of initial conditions. Taking such effects into
account will abort the decline of CCPU for large switch-
ing rates and may well lead to a finite optimum switching
rate, but huge savings in computer time are not expected
in this case.
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FIG. 3: Computational cost CCPU calculated for the particle
in the harmonic trap with parameters β = 1, γ = 1, k = 1
and L = 5.

Since the optimum bias function depends on the un-
known free energy difference (in fact, this is the quantity
we wish to calculate), its application is not straightfor-
ward. It is therefore interesting to examine the perfor-
mance of bias functions of similar but more general form.
For this purpose, we introduce the bias function

Π̂(W ) =
∣

∣e−aβW − φ
∣

∣ + c, (23)

which depends on the parameters a, φ and c. In the case
of the particle in the harmonic trap, this bias function is
identical to the optimum bias function for a = 1, φ = 1
and c = 0, while for a = 0.5, φ = 0 and c = 0 it is
equal to the exponential bias. The constant c is added
to prevent a singularity in Equ. (15) for φ > 0. (Note
that for the optimum bias no singularity occurs even for
c = 0.) Figure 4 shows α as a function of φ and a for

the generalized bias Π̂ with a trap velocity of v = 1. The
rather shallow minimum of α is indeed located at φ = 1
and a = 1, the values corresponding to the optimum bias.
Also for the exponential bias (φ = 0, a = 0.5), the value
of α is low, but it is a minimum only on the φ = 0 axis.
Surprisingly, the α(φ, a)-surface has another minimum at
φ ≈ −1.55 and a ≈ 1.1 of almost the same depth as that
of the optimum bias function. This is a specific feature
of the model and for other models the minimum of α will
be located at different values of φ and a.
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FIG. 4: Isolines of α(a, φ) as a function of the parameters a

and φ of the generalized bias Π̂(W ) with c = 10−6 for the
particle in the harmonic trap moving at velocity of v = 1.

V. CONCLUSION

In this article we derived the optimum bias function
that leads to the smallest errors in the free energy calcu-
lated with work biased path sampling methods [13]. For
a one-dimensional model, we compared the accuracy ob-
tained with various bias functions functions confirming
that the optimum bias leads to the smallest statistical
errors. Remarkably, the optimum bias function is of a
very general form that is independent of the particular
switching process (in contrast, the inverse bias Πi(W )
is strongly model dependent). The optimum bias does,
however depend on the free energy difference, i.e., the
very quantity one wants to calculate. This limits the
practical applicability of the optimum bias. Neverthe-
less, some general conclusions can be drawn from the
form of the optimum bias function.
According to Equs. (9) and (14), for the optimum bias

function the work distribution in the biased ensemble is
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given by

PΠ⋆(W ) ∝ |PR(−W )− P (W )| , (24)

where we have used the Crooks theorem [22], PR(−W ) =
P (W )e−β(W−∆F ), to relate the work distribution P (W )
to that of the switching process carried out with time
reversed switching protocol, PR(W ). It has been noted
before [7, 27], that PR(−W ) is peaked at the dominant
work values, i.e, those work values that mostly contribute
to the exponential work average of Equ. (2). Thus, it
follows from Equ. (24) that both the dominant and the
typical work values are sampled with the same frequency
for the optimum bias. This is particularly apparent if
the peaks of P (W ) and PR(−W ) are far apart and the
overlap between the two distributions is small. Then,
PΠ⋆(W ) ≈ PR(−W ) around the dominant work values
and PΠ⋆(W ) ≈ P (W ) in the range of typical work values.
In this case, α2[Π∗] = (

∫

dW |PB(−W ) − P (W )|)2 ≈ 4,
such that the number NkT of required trajectories con-
verges to a constant value in the fast switching limit pro-
vided the optimum bias is used. Equation (24) also im-
plies that the work values between the dominan++t and
typical ones are relatively unimportant. In particular,
the work value W = ∆F does not need to be sampled at
all.
From this analysis of the optimum bias function one

may infer that the most important property of good
bias functions is that they lead to a biased ensemble in
which both dominant and typical trajectories occur with
high frequency. At first sight it seems easy to devise a
procedure that does exactly that even without explic-
itly using as bias function: just run an equal number of
trajectories in forward and backward direction starting
from the respective equilibrium initial conditions. Im-
plicitly, this procedure corresponds to a bias function
Π(W ) = exp{−β(W − ∆F )} + 1 and to the parame-
ters a = 1, φ = −1, and c = 0 of the generalized bias
function Π̂(W ). As can be seen in Fig. 4, α(a, φ) is very
low but not a minimum at these parameter values since
for slightly different parameters (a = 1.1, φ = −1.55)
dominant and typical work values are sampled equally
well, but work values in between are sampled less. Al-

though it is easy to generate work values according to
Π(W ) = exp{−β(W − ∆F )} + 1 using the procedure
lined out above (without knowing the bias function it-
self), problems appear somewhere else in this case. Ac-
cording to Equ. (3) each contribution in the biased en-
semble must be corrected by division through the bias
function. Since the bias function itself depends on the
unknown free energy difference ∆F , however, the correc-
tion cannot be carried out.
The above analysis makes also clear why the inverse

bias, Πi(W ) = 1/P (W ), works well: if all work val-
ues in a sufficiently large range are sampled with the
same frequency, the dominant and typical work val-
ues occur with approximately the same weight as re-
quired. The work values in between are sampled more
than needed, but that does not strongly affect the error.
For a Gaussian work distribution, the exponential bias
Πe(W ) = exp(−βW/2) leads to a preferred sampling of
the work values between the typical and dominant ones.
For slow driving both, typical and dominant work val-
ues are included, but for strong driving neither ones are
sampled with sufficient frequency leading to substantial
statistical uncertainties. Also the generalized bias Π̂(W )
of Equ. (23) leads to small errors if the resulting work
distribution in the biased ensemble spans both the dom-
inant and typical work values. The specific parameters
φ and a at which that happens are, however, strongly
model dependent such that no generally valid bias func-
tion can be deduced. In conclusion, to reduce statistical
errors bias functions for fast switching simulations must
be designed such that both dominant and typical work
values are sampled with high frequency. Devising such
bias functions without knowledge of the free energy is
challenging.
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