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In this paper we present a new one dimensional full electromagnetic relativistic hybrid plasma
model. The full kinetic particle-in cell (PIC) and hydrodynamic model have been combined in the
single hybrid plasma code H-VLPL (hybrid virtual laser plasma laboratory). The semi-implicit
algorithm allows to simulate plasmas of arbitrary densities via automatic reduction of the highest
plasma frequencies down to the numerically stable range. At the same time, the model keeps the
correct spatial scales like the plasma skin depth. We discuss the numerically efficient implementation
of this model. Further, we carefully test the hybrid model validity by applying it to a series of physical
examples. The new mathematical method allows to overcome the typical time step restrictions of
explicit PIC codes.
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I. INTRODUCTION

Computer simulations are key tools in the study of laser-plasma interactions [1, 2]. Large full 3D parallel electro-
magnetic simulation codes like VLPL [3], OSIRIS [4], VORPAL [5], OOPIC [6], and others contributed remarkably in
our understanding of the complex laser-plasma physics. Adding new physical processes in the codes, as well as doing
large scale high density plasma simulations are becoming more and more computationally expensive. As a result new
algorithms and simulation techniques are being developed to cope with challenges of the laser-plasma physics.

One of the reasons why the classical explicit particle-in-cell (PIC) methods are extremely computationally expensive

is that they have to resolve the plasma frequency ωp =
√

4πnee2/me, which is the frequency of the plasma electrostatic
oscillations. Therefore, they are limited to be applied to systems with low plasma densities only.

On the contrary, there is a demand to simulate high density plasmas, e.g., in the experiments where the laser pulse
interacts with solid targets [7]. The solid state density plasmas densities vary over a range 100 − 1000 nc, where
nc = mω2/4πe2 is the critical plasma density. Here, m is the electron mass, −e is its charge, and ω is the laser
frequency. Other important applications include the Fast Ignition (FI) physics in the Inertial Confinement Fusion
(ICF) studies [8]. The FI plasma has a density of the 1000 times compressed solid hydrogen, i.e., of the order of
105 nc. Hence, the applicability of the classical PIC codes in this density range is facing a big question. In this
situation, one is forced to look for a more efficient numerical method to challenge those ultra-high densities. One of
the possibilities is to include hydrodynamic description of the high density plasma in the fully kinetic PIC code.

In last couple of years PIC-hydrodynamic hybrid techniques have emerged as an efficient solution to large scale ultra
high-density plasma simulations, e.g., FI physics, solid state density plasma interactions, high charge, high energy ion
generations etc [9, 12, 13]. Most of these codes work in the Darwin approximation and thus exclude the electromagnetic
wave propagation completely. They also exclude electrostatic waves keeping the collisional magnetohydrodynamics
(MHD) only. Further, implicit electrostatic particle-fluid hybrid plasma code has been developed by Rambo and
Denavit [10], which has been used to study interpenetration and ion separation in colliding plasmas [11]. There is
also the implicit electromagnetic PIC code LSP [14]. This code uses an implicit global scheme which leads to no such
restrictions over time-step. The LSP code also employs a field solver based on an unconditionally Courant-stable
algorithm[15] for electromagnetic calculations.

The newly developed code Hybrid Virtual Laser Plasma Laboratory (H-VLPL) is a hybrid code which unites a
hydrodynamic model for overdense plasmas and the full kinetic description of hot low-density electrons and ions. The
schematics of the code is shown in Fig. 1.
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Hybrid Code for Relativistic Laser-Plasma

kinetics

FIG. 1: (color) Schematics of the code H-VLPL. Low-density plasma is described kinetically using the explicit electromagnetic
PIC technique. The cold overdense background plasma is described hydrodynamically. The full electromagnetic field solver is
applied to the complete domain of simulations, also in the region of overdense plasma.

New matrix algorithms are developed to eradicate the time-step restrictions due to high plasma frequencies. Since
the density of hot electrons is typically rather low, hybrid codes are expected to be more efficient than direct PIC codes.
This allows for simulations with physically relevant solid state densities. Although the code H-VLPL automatically
reduces the highest numerical frequency to the stable range, the spatial description of the field distribution remains
correct. Even when the grid step is much larger than the plasma skin depth, the algorithm gives the correct exponential
decay of electromagnetic fields in overdense plasma layer (see Section V).

The paper is organized as follows. First, we describe the full hybrid method, Section II. Then, we write down
the implicit numerical scheme and provide the computationally efficient matrix algorithm to solve the implicit set of
equations, Section III. In Section IV, we study the numerical dispersion relation for the new scheme and check its
stability. Finally, we test the new code H-VLPL extensively on a number of well-known physical examples, Section
V.

II. HYBRID MODEL

We begin with writing down the master equations on the fields and particle momenta:

∂ ~E

∂t
= c∇× ~B − 4π

∑

ℓ

~Jℓ, ℓ = e, i, h (1a)

∂ ~B

∂t
= −c∇× ~E (1b)

d~ph

dt
= qe

~E − νm~vh (1c)

d~pℓ

dt
= qℓ( ~E +

~vℓ

c
× ~B), ℓ = e, i (1d)

where

~Jℓ = qℓnℓ~vℓ, ~pℓ = mℓγℓ~vℓ, γℓ =

√

1 +
p2

ℓ

(mℓc)2
, ν = ηnh
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The index ℓ = e, i, h stays for electrons, ions, and hybrid particles respectively. ~E and ~B denote the electric and

magnetic field vectors, ~J denotes the current density, ~p is the momentum and n is the number density of particles.
The parameter ν stays for collision frequency that defines the cold plasma conductivity.

Eqs. (1a)-(1b) show that we use the unabridged Maxwell equations and thus include the full physics of electromag-
netic waves. Eq. (1d) corresponds to the fully kinetic algorithm for the low density electrons and ions.

We have to explain the meaning of Eq. (1c). The “hybrid particles” are assumed to be compound quasineutral
objects, i.e., the negative charge of electrons within the hybrid particles is fully compensated by the positive charge
of ions. The electrostatic force of “hybrid ions” is so strong that “hybrid electrons” cannot be separated and the
hybrid particle moves as a whole. At the same time, electrons within the hybrid particle are allowed to have non-zero
momenta ~ph and to generate currents ~jh = −enh ~vh . This kind of plasma description corresponds to the single fluid
MHD model [16]. Because the “hybrid electrons” are assumed to move slowly, vh ≪ c, and we are interested in their

response to fast electric fields only, hence, we neglect the ~v × ~B/c term in the Lorentz force (1c).
For the kinetic part we use the standard Cloud-In-Cell (CIC) interpolation scheme. On the other hand, the hybrid

particles are presently point like and are treated with Nearest Grid Point (NGP) interpolations. One has to mention
here that, the kinetic part of the code exploits the energy conservative scheme, which has been benchmarked later in
Section V.

III. THE NUMERICAL ALGORITHM OF H-VLPL

For simplicity, we rewrite the equations in dimensionless variables, t̃ = ω0t and x̃ = k0x, where ω0 denotes the laser
frequency and k0 = ω0/c. The new variables are then

Ẽ =
eE

mecω0
, B̃ =

eB

mecω0
, p̃ℓ =

pℓ

mℓc
, J̃ℓ =

Jℓ

jc
, jc = encc, ρ̃ =

n

nc
, q̃ℓ =

qℓ

qe
.

In Sections III and IV we choose the ρ notation instead of the usual n for the number densities of particles to avoid
a possible confusion with the time step number n.

In the following, we omit the tildes. Eq. (1) then reads

∂ ~E

∂t
= ∇× ~B −

∑

ℓ

~Jℓ, ℓ = e, i, h (2a)

∂ ~B

∂t
= −∇× ~E (2b)

d~ph

dt
= ~E − ν~vh (2c)

d~pℓ

dt
= qℓ( ~E + ~vℓ × ~B), ℓ = e, i. (2d)

Suitable boundary conditions for the simulation of a laser-plasma interaction are inhomogeneous, time dependent
Dirichlet boundary conditions for the incoming laser(s).

We consider the problem in one space dimension, i.e. all vectors are of the form

~V = [Vx(t, x), Vy(t, x), Vz(t, x)]T , x ∈ [0, L]

We thus have Bx(t, x) = 0.
Following [1] we define

F±
y =

1

2
(Ey ± Bz), F±

z =
1

2
(Ez ± By). (3)

Then (2a)–(2c) are equivalent to
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∂F±
y

∂t
= ∓

∂F±
y

∂x
−

1

2
ρhvh,y −

1

2
Je,y (4a)

∂F±
z

∂t
= ±

∂F±
z

∂x
−

1

2
ρhvh,z −

1

2
Je,z (4b)

dph,y

dt
= F+

y + F−
y − ηρhvh,y (4c)

dph,z

dt
= F+

z + F−
z − ηρhvh,z. (4d)

The boundary conditions are given by F+
y (0) = F−

z (0) = g(t) and F−
y (L) = F+

z (L) = 0.
For the numerical discretization we use an equidistant staggered grid in space and time with spatial step size

h = L/m for some positive integer m and temporal step size τ > 0. The fields at grid point j and time tn = nτ
are denoted by Fn

j , j = 0, . . . ,m, n ≥ 0. The field equations are integrated along the vacuum characteristics

(x ∓ t = constant) which implies h = τ . We discretize the fields E and B and the momenta ph, pe. The current ~Jh

and the velocity are computed via ~Jh = ρh~ph/γh = ρh~vh. Fig. 2 shows the staggered grid and the location of the
variables.

We suggest the following implicit finite difference scheme for solving (4):

(Ex)n+1
j − (Ex)n

j

τ
= −(ρhvh,x)

n+ 1

2

j − (Je,x)
n+ 1

2

j (5a)

(ph,x)n+1
j − (ph,x)n

j

τ
=

(Ex)n+1
j + (Ex)n

j

2
− η(ρhvh,x)n+1

j (5b)

(F+
y )n+1

j+1 − (F+
y )n

j+1

τ
= −

(F+
y )n

j+1 − (F+
y )n

j

h
−

1

2
(ρhvh,y)

n+ 1

2

j+ 1

2

−
1

2
(Je,y)

n+ 1

2

j+ 1

2

(5c)

(F−
y )n+1

j − (F−
y )n

j

τ
=

(F−
y )n

j+1 − (F−
y )n

j

h
−

1

2
(ρhvh,y)

n+ 1

2

j+ 1

2

−
1

2
(Je,y)

n+ 1

2

j+ 1

2

(5d)

(ph,y)n+1
j − (ph,y)n

j

τ
=

(F+
y )n+1

j + (F+
y )n

j + (F−
y )n+1

j + (F−
y )n

j

2

−η(ρhvh,y)n+1
j (5e)

(F+
z )n+1

j − (F+
z )n

j

τ
=

(F+
z )n

j+1 − (F+
z )n

j

h
−

1

2
(ρhvh,z)

n+ 1

2

j+ 1

2

−
1

2
(Je,z)

n+ 1

2

j+ 1

2

(5f)

(F−
z )n+1

j+1 − (F−
z )n

j+1

τ
= −

(F−
z )n

j+1 − (F−
z )n

j

h
−

1

2
(ρhvh,z)

n+ 1

2

j+ 1

2

−
1

2
(Je,z)

n+ 1

2

j+ 1

2

(5g)

(ph,z)
n+1
j − (ph,z)

n
j

τ
=

(F+
z )n+1

j + (F+
z )n

j + (F−
z )n+1

j + (F−
z )n

j

2

−η(ρhvh,z)
n+1
j , (5h)

Within this scheme, we approximate

(ρhvh,x)
n+ 1

2

j =
(ζh)n

j

2

(
(ph,x)n+1

j + (ph,x)n
j

)
(6a)

(ρhvh,s)
n+ 1

2

j+ 1

2

=
(ζh)n

j

4

(
(ph,s)

n+1
j + (ph,s)

n
j )
)

+
(ζh)n

j+1

4

(
(ph,s)

n+1
j+1 + (ph,s)

n
j+1

)
, s = y, z (6b)

(ρhvh,s)
n+1
j = (ζh)n

j (ph,s)
n+1
j , s = x, y, z, (6c)

where ζh = ρh/γh. This leads to the following scheme for the x-component
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n + 1

n + 1

2

n

j + 1j + 1

2
j

Ey,z, By,z, ph

Ey,z, By,z, ph

Ey,z, By,z, ph

Ey,z, By,z, ph

Je,y, Je,z Je,y, Je,z

Ex

Je,x

Ex

FIG. 2: Staggered grid for the finite difference scheme (5).

(Ex)n+1
j =

1

(K+)n
j

(
(K−)n

j (Ex)n
j −

τ(ζh)n
j (ph,x)n

j

2
(1 +

1

1 + τη(ζh)n
j

)

−τ(Je,x)
n+ 1

2

j

)
(7a)

(ph,x)n+1
j =

(ph,x)n
j + τ

2

(
(Ex)n+1

j + (Ex)n
j

)

1 + τη(ζh)n
j

, (7b)

where

K± = 1 ±
τ2ζh

4(1 + τηζh)
.

However, for the y-component we obtain the implicit scheme

(F+
y )n+1

j+1 +
τ(ζh)n

j

8
(ph,y)n+1

j +
τ(ζh)n

j+1

8
(ph,y)n+1

j+1

= (F+
y )n

j −
τ(ζh)n

j

8
(ph,y)n

j −
τ(ζh)n

j+1

8
(ph,y)n

j+1 −
τ

2
(Je,y)

n+ 1

2

j+ 1

2

(8a)

(F−
y )n+1

j +
τ(ζh)n

j

8
(ph,y)n+1

j +
τ(ζh)n

j+1

8
(ph,y)n+1

j+1

= (F−
y )n

j+1 −
τ(ζh)n

j

8
(ph,y)n

j −
τ(ζh)n

j+1

8
(ph,y)n

j+1 −
τ

2
(Je,y)

n+ 1

2

j+ 1

2

(8b)

(1 + τη (ζh)n
j )(ph,y)n+1

j −
τ

2
(F+

y )n+1
j −

τ

2
(F−

y )n+1
j

= (ph,y)n
j +

τ

2
(F+

y )n
j −

τ

2
(F−

y )n
j . (8c)

Next we consider the efficient solution of the linear system for the y-component. For Y =[
(F+

y )1, . . . , (F
+
y )m, (F−

y )0, . . . , (F
−
y )m−1, (ph,y)0, . . . , (ph,y)m

]T
we obtain

AY n+1 = BY n + f(t), (9)

where f contains the boundary conditions and the electron currents (from the PIC code), and
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A =

[
I2m D

C G1

]
and B =




ST
m 0

0 Sm

−D

−C G2


 .

Here Ik denotes the k×k identity matrix and G1,2 = diag(1± τη(ζh)n
j ) ∈ R

(m+1)×(m+1). Sk represents the k×k shift

matrix with ones on the first upper diagonal and zeros elsewhere. C ∈ R
(m+1)×2m and D ∈ R

2m×(m+1) are given by

C = −
τ

2

[
0 Im

Im 0

]
, D =

τ

8

[
bidiag((ζh)n

j , (ζh)n
j+1)

m−1
j=0 ,

bidiag((ζh)n
j , (ζh)n

j+1)
m−1
j=0

]
,

where bidiag(aj , bj)j=1,m denotes an m × (m + 1) bidiagonal matrix with aj as the jth diagonal entry and bj as the
jth upper diagonal entry.

This large linear system can be solved efficiently by using block Gaussian elimination

A =

[
I2m D

C G1

]
=

[
I2m 0

C Im+1

][
I2m D

0 T

]
,

where T = G1 − CD is the tridiagonal matrix containing the Schur complement [17] of A. Thus the solution of (9)
can be reduced to solving a linear system with the tridiagonal matrix T of size m + 1.

Finally, the scheme for the z-component is given by

(F+
z )n+1

j +
τ(ζh)n

j

8
(ph,z)

n+1
j +

τ(ζh)n
j+1

8
(ph,z)

n+1
j+1

= (F+
z )n

j+1 −
τ(ζh)n

j

8
(ph,z)

n
j −

τ(ζh)n
j+1

8
(ph,z)

n
j+1 −

τ

2
(Je,z)

n+ 1

2

j+ 1

2

(10a)

(F−
z )n+1

j+1 +
τ(ζh)n

j

8
(ph,z)

n+1
j +

τ(ζh)n
j+1

8
(ph,z)

n+1
j+1

= (F−
z )n

j −
τ(ζh)n

j

8
(ph,z)

n
j −

τ(ζh)n
j+1

8
(ph,z)

n
j+1 −

τ

2
(Je,z)

n+ 1

2

j+ 1

2

(10b)

(1 + τη (ζh)n
j )(ph,z)

n+1
j −

τ

2
(F+

z )n+1
j −

τ

2
(F−

z )n+1
j

= (ph,z)
n
j +

τ

2
(F+

z )n
j −

τ

2
(F−

z )n
j . (10c)

The resulting linear system is solved analogously to the one for the y-component.

IV. NUMERICAL DISPERSION AND STABILITY

In this section we will derive the dispersion relations for the hybrid scheme (5) applied to the dimensionless equations
(2). In dimensionless variables the plasma frequency is given by

ω̃ℓ = ωℓ/ω0 =
√

ρ̃ℓ, ℓ = e, h. (11)

We again omit the tildes, set γℓ = 1 and ρℓ = const. The explicit PIC scheme is stable for step sizes

τ ≤
2

ωe
(12)

Therefore it is prohibitive to use this scheme for high densities.
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A. Dispersion relation for the x-component

Due to Bx(t, x) = 0 we have

∂ ~E

∂t
= −ρh~ph − ρe~pe (13a)

∂~ph

∂t
= ~E − ν~vh (13b)

∂~pe

∂t
= ~E (13c)

to obtain the dispersion relation for the x-component.
The finite difference scheme of (13) is given by

(Ex)n+1
j − (Ex)n

j

τ
= −ρh

(ph,x)n+1
j + (ph,x)n

j

2
− ρe(pe,x)

n+ 1

2

j (14a)

(ph,x)n+1
j − (ph,x)n

j

τ
=

(Ex)n+1
j + (Ex)n

j

2
− ηρh(ph,x)n+1

j (14b)

(pe,x)
n+ 1

2

j − (pe,x)
n− 1

2

j

τ
= (Ex)n

j . (14c)

Substituting plane waves

(Ex)n
j = E0e

i(ωnτ−kjh), (15a)

(ph,x)n
j = (ph)0e

i(ωnτ−kjh), (15b)

(pe,x)n
j = (pe)0e

i(ωnτ−kjh) (15c)

into (14) and using (11) leads to

iE0 sin
ωτ

2
= −

τω2
h

2
(ph)0 cos

ωτ

2
−

τω2
e

2
(pe)0, (16a)

i(ph)0 sin
ωτ

2
= −

τ

2
E0 cos

ωτ

2
−

τηω2
h

2
(ph)0e

i ωτ

2 , (16b)

i(pe)0 sin
ωτ

2
= τE0. (16c)

Solving (16b) for (ph)0, (16c) for (pe)0 and inserting into (16a) yields

sin2 ωτ

2
=

τ2ω2
h

4

cos2 ωτ
2 sin ωτ

2

sin ωτ
2 − i

τηω2

h

2 ei ωτ

2

+
τ2ω2

e

4
(17)

and for η = 0 we obtain

ω =
2

τ
arccos

√
1 − ( τωe

2 )2

1 + ( τωh

2 )2
. (18)

The numerical dispersion relation (18) shows that the scheme is unconditionally stable for τ ≤ 2/ωe, i.e. independent
of ωh. This step size restriction is due to the explicit PIC code. Note that in our hybrid model we have ωe ≪ ωh, so
this restriction is not severe.

For η 6= 0, the stability analysis is more involved since we have complex coefficients in the relation (18). In general,
this leads to complex valued solutions ω. Therefore, we verified numerically, that the scheme is stable for τ ∈ (0, 2/ωe)
and η ∈ [0, 1].
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B. Dispersion relation for the y- and the z-component

For the y-component we have

∂F+
y

∂t
= −

∂

∂x
F+

y −
1

2
ρhph,y −

1

2
Je,y (19a)

∂F−
y

∂t
=

∂

∂x
F−

y −
1

2
ρhph,y −

1

2
Je,y (19b)

∂ph,y

∂t
= F+

y + F−
y − ηρhph,y (19c)

∂pe,y

∂t
= Ey (19d)

The finite difference scheme then reads

(F+
y )n+1

j+1 − (F+
y )n

j+1 = −(F+
y )n

j+1 + (F+
y )n

j −
τ

2
ρh(ph,y)

n+ 1

2

j+ 1

2

−
τ

2
(Je,y)

n+ 1

2

j+ 1

2

(20a)

(F−
y )n+1

j − (F−
y )n

j = (F−
y )n

j+1 − (F−
y )n

j −
τ

2
ρh(ph,y)

n+ 1

2

j+ 1

2

−
τ

2
(Je,y)

n+ 1

2

j+ 1

2

(20b)

(ph,y)n+1

j − (ph,y)n
j =

τ

2

`

(F+
y )n+1

j + (F+
y )n

j + (F−
y )n+1

j + (F−
y )n

j

´

−τηρh(ph,y)n+1

j (20c)

(pe,y)
n+ 1

2

j − (pe,y)
n− 1

2

j = τ(Ey)n
j . (20d)

For the dispersion relation, we rewrite (20) in terms of the original fields E and B:

(Ey)n+1
j+1 − (Ey)n

j = −(Bz)
n+1
j+1 + (Bz)

n
j

−τω2
h

(ph,y)n+1
j + (ph,y)n

j + (ph,y)n+1
j+1 + (ph,y)n

j+1

4

−τω2
e

(pe,y)
n+ 1

2

j + (pe,y)
n+ 1

2

j+1

2
(21a)

(Ey)n+1
j − (Ey)n

j+1 = (Bz)
n+1
j − (Bz)

n
j+1

−τω2
h

(ph,y)n+1
j + (ph,y)n

j + (ph,y)n+1
j+1 + (ph,y)n

j+1

4

−τω2
e

(pe,y)
n+ 1

2

j + (pe,y)
n+ 1

2

j+1

2
(21b)

τ
(Ey)n+1

j + (Ey)n
j

2
=

(
1 + τηω2

h

)
(ph,y)n+1

j − (ph,y)n
j (21c)

τ(Ey)n
j = (pe,y)

n+ 1

2

j − (pe,y)
n− 1

2

j . (21d)

Adding and subtracting (21a) and (21b) yields

(Ey)n+1
j+1 + (Ey)n+1

j − (Ey)n
j − (Ey)n

j+1 = (Bz)
n+1
j + (Bz)

n
j − (Bz)

n+1
j+1 − (Bz)

n
j+1

− τω2
h

(ph,y)n+1
j + (ph,y)n

j + (ph,y)n+1
j+1 + (ph,y)n

j+1

2

− τω2
e

(
(pe,y)

n+ 1

2

j + (pe,y)
n+ 1

2

j+1

)
(22a)

(Ey)n+1
j+1 + (Ey)n

j+1 − (Ey)n+1
j − (Ey)n

j =

− (Bz)
n+1
j + (Bz)

n
j − (Bz)

n+1
j+1 + (Bz)

n
j+1. (22b)

Analogously to (15) we substitute plane waves, which gives
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E0 sin
ωτ

2
cos

kτ

2
= −B0 cos

ωτ

2
sin

kτ

2
+ i(ph)0

τω2
h

2
cos

ωτ

2
cos

kτ

2
+ i

τω2
e

2
(23a)

E0 sin
kτ

2
cos

ωτ

2
= −B0 sin

ωτ

2
cos

kτ

2
(23b)

τE0 cos ωτ
2

2
= (ph)0

(
i sin

ωτ

2
+

ητω2
hei ωτ

2

2

)
(23c)

(pe)0 sin
ωτ

2
=

τE0

2i
. (23d)

Solving (23b) for B0, (23c) for (ph)0, (23d) for (pe)0 and inserting into (23a) yields

sin2 ωτ

2
cos2

kτ

2
= cos2

ωτ

2
sin2 kτ

2
+
(τωh

2

)2 cos2 ωτ
2 cos2 kτ

2 sin ωτ
2

sin ωτ
2 − i

τηω2

h

2 ei ωτ

2

+
(τωe

2

)2

cos2
kτ

2
,

from which we obtain

cos2
ωτ

2

(
1 +

τ2ω2
h

4

cos2 kτ
2 sin ωτ

2

sin ωτ
2 − i

τηω2

h

2 ei ωτ

2

)
= cos2

kτ

2

(
1 −

τ2ω2
e

4

)
. (24)

For cos2 kτ
2 = 1, this is the same dispersion relation as for the x-component. Again, we solved the relation numerically

and verified stability for τ ∈ (0, 2/ωe), and cos2 kτ
2 ∈ [0, 1].

For η = 0, the dispersion relation reads

cos2
ωτ

2
=

cos2 kτ
2 (1 − ( τωe

2 )2)

1 + ( τωh

2 )2 cos2 kτ
2

=: ξ2 (25)

and we obtain

ω =
2

τ
arccos ξ.

This shows that the scheme is unconditionally stable for τ ≤ 2/ωe.
In Fig. 3 analytical plots for the real and imaginary parts of k(ω) are presented for η = 0, ωe = 0, ωh = 31.6, τ = 0.05
and ω ∈ [0, π

2τ ].
Analogously, one can obtain the same relation for the z-component.

V. BENCHMARKING WITH PHYSICAL PROCESSES

The numerical scheme described in the previous sections is implemented in the code H-VLPL. This section describes
key benchmark tests to evaluate accuracy and applicability of the scheme. First, we check the reflection, transmission
and refraction of a laser pulse at a hybrid plasma slab. Second, we verify the validity of the energy conservation in the
present algorithm. Third, we check the well known process of Target Normal Sheath Acceleration (TNSA)[18, 19].
Fourth, we benchmark plasma skin fields at very high hybrid densities when the spatial grid cell size is much larger
than the plasma skin length. Lastly, we check absorption of a circularly polarized Gaussian laser pulse over a long
distance propagation in underdense hybrid plasmas. Wherever possible, we compare the numerical results with
existing analytic solutions.

A. Reflection and refraction of incident pulse

The first and the simplest trial one can think of is the full reflection of the incident laser pulse from the surface of
overdense plasma, as well as, transmission and reflection of the same when the plasma is underdense. In Fig. 4(a) a
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FIG. 3: (color) Plot of dispersion relation for real and imaginary part of k(ω) with η = 0, ωe = 0, ωh = 31.6, τ = 0.05 and
ω ∈ [0, π

2τ
]. The simulation for the same case with ωh = 31.6 will be discussed in Section V and corresponding Fig. 10.

30 fs Gaussian laser pulse propagates in the positive x direction towards an underdense (n = 0.85nc) plasma slab.
Here nc is the critical plasma density for the laser wavelength λ = 0.82µm. At time T > 0 a part of the incident
laser pulse transmits through the plasma and a significant reflection also occurs. On the contrary in Fig. 4(b) when
a similar pulse is incident on an overdense plasma surface of density n = 1.2nc one observes a full reflection from the
surface. It is essential to be mentioned here that in both the cases the plasma slabs have been treated with our new
hybrid method, i.e., all the plasma particles in this particular simulation were “hybrid particles”.

B. Energy Conservation

Another important point one would like to verify here, is the conservation of the total energy (Etot) in the scheme.
For this purpose, a test parameter sets with a very trivial laser pulse and plasma systems have been considered. It is
important here that we treat the plasma with the hybrid algorithm as well as with kinetic algorithm. The analytical
equation for the total energy of the whole system can be written as

Etot =
∑

ℓ

mℓc
2(γ − 1) +

1

8π

∫

V

(
E2 + B2

)
dV (26)

where, mℓ are the masses of all sort of particles and γ =

√
1 + (p/mℓc)

2
is the relativistic γ factor. The fields are

integrated over all the simulation domain. One can summarize as Etot = EEM + Epart, where, EEM and Epart are
total electro-magnetic (EM) and particles’ energy. Particles’ energy can be estimated as Epart = ne (γe − 1) mec

2 +
ni (γi − 1) mic

2 + nh (γh − 1) mhc2, where, e, i and h represent electrons, ions and hybrids respectively. Fig. 5 shows
the total energy of the whole laser-plasma system in a closed boundary against time, measured in units of laser
periods. The total energy Etot remains constant nearly up to single precision round off error as it is seen in the inset
in Fig. 5 over a significantly large time range. Hence, one can conclude that the total energy in this hybrid scheme is
conserved as that of a conventional PIC scheme.
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FIG. 4: (color) (a)Refraction of the incident laser pulse through the underdense (n = 0.85nc) plasma (hybrid model) target. (b)
Reflection through overdense (n = 1.2nc) plasma (hybrid model) target

C. Acceleration of ions from a target back surface (TNSA)

Fig. 6 shows the physical model of the generation of ultra-intense energetic protons from laser-solid interactions,
first described by Wilks et al.[18]. In the present case, the process has been examined with the new hybrid code. A 10
fs gauss pulse propagating along the positive X direction targeted to a 3.3 µm thin slab of plasma considered to be of
three components: electrons, ions (protons with mi/me = 1836) as well as hybrid particles. The density of the target
increases to 2nc over a ramp of ∼ 2 µm. This is to model a good amount of preplasma essentially present in real
experiments. In the back surface, there is a thin layer of protons around 1

10 th of a micron, where the density has been
ramped from 2nc to 0. In reality one can think of a sub-micron sized hydrogen layer pre-formed over the back surface
of the target. The dense part of the target was modeled using the hybrid particles with the density nh = 1000nc that
would correspond to the solid density. The laser pulse used here has dimensionless amplitude a0 = eE/mω0c = 2.0,
which corresponds to intensity of 5.5 × 1018 Wcm−2.

The ultra short laser pulse interacting with the target generates, in the blow off plasma region, a huge cloud of
hot electrons, which propagate through the target and ionize the thin proton layer on the backward surface of the
target. These generated protons are then knocked out of the surface by the electrostatic field of the hot electron cloud.
Eventually, the ions are accelerated to high energies. In Fig. 7 the energy spectrum of the accelerated ions from the
rear surface is graphed with the solid line. The maximum energy reached by these ions are around ∼ 1 MeV, which
is pretty remarkable energy with the intensity of laser used here.

At this point it is worthy to verify the kinetic nature of the code using a purely kinetic simulation i.e. no hybrid
particles. The simulation for the same physical parameters has been performed without the hybrid particles and
similar ion energy spectrum has been obtained as that with hybrid particles. This is compared with the hybrid
scheme in Fig. 7.

Thus, one can be sure that the hybrid code can be used for computationally efficient studies of very high density
plasmas e.g., how to produce mono-energetic ion beams manipulating the thickness of the target as well as the
hydrogen layer on the rear surface [20]. To get more insight into the mechanism of acceleration of ions, one can
consider looking into the phase space of the hot electron cloud in Fig. 8.

The phase space of the hot electrons (Fig. 8) at an earlier time T = ω0t/2π = 100 (time in laser period) clearly
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FIG. 5: (color) Total energy conservation in H-VLPL code. The total energy of the whole laser-plasma system has been plotted
against laser period. The inset figure is drawn in precision scale of 10−6 for total energy Etot with the same data set.

shows that the cloud of hot electrons circulates inside the target and pulls out the ions by significantly heating them
in recursion. To get a good amount of acceleration, H-VLPL allows to take as much as 200 particles per cell for such
kind of simulations. It is also supposed to get little amount of low energy ions from the front surface, but comparing
to that from the rear surface they are colder.

It is proved that most of the acceleration of the ions from the rear surface occur in a short distance. This can also
be verified with H-VLPL from the pattern of the accelerating fields of the back surface shown in Fig. 9. In this case
this accelerating length is ∼ 4µm and this matches well with experimental and numerical findings observed so far.

At the end one can summarize as, the new hybrid approach of the code H-VLPL benchmarks efficiently well in
detail the physics of generation of energetic ions from the target back surface.

D. Scaling of the skin fields

To proceed further in benchmarking H-VLPL one can scale the fields at the skin depth (Es) to the reflected (or
incident) fields (Ei). For the present case we choose a range of highly overdense plasmas of densities n = 10, 100
and 1000nc with sharp boundaries. The incident laser is a circularly polarized Gaussian pulse of the dimensionless
amplitude a0 = 0.2. Its duration is 10fs. These parameters are chosen to avoid relativistic non-linearities occurring
during the interactions.

To benchmark the code we record the laser field at the plasma surface. According to the linear theory, the field Es

at the surface of a highly overdense plasma, ne ≫ nc, relates to the field of the incident laser Ei as

Es
2/Ei

2 =
4nc

ne
(27)

where we have neglected the absorption.
Fig. 10(a) shows the squared ratio of the field, Es

2/Ei
2 as a function of the normalized plasma density n = ne/nc.

The numerical results obtained from the H-VLPL code matches well with the analytical result (27).
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FIG. 6: (color) Physical model of ion acceleration mechanism for a short and ultra-intense pulse interacting with thin target.

On the other hand, we know that the laser fields must decay exponentially in the overdense plasma layer. Ana-
lytically, the electromagnetic field intensity decays as ln I = −2x/δs, where δs = c/ωp is the skin depth. We have
measured the field decay in the H-VLPL simulations and plotted them in Fig. 10(b). One gets excellent agreement
with the analytical expressions for the skin length even for the highest densities.

For the density ne = 1000nc, one finds the skin length δs/λ = 0.005. It is worth mentioning that this simulation
has been done with the grid cell size hx/λ = 0.05, i.e, the grid step was much larger than the skin length, hx = 10δs.
Yet, the field decay in plasma is accurately described.

E. Collisional Absorption

We have introduced the effects of collisional absorption into the implicit hybrid scheme of H-VLPL. This makes
the code versatile enough to handle extremely high density warm plasmas where electron-ion binary collisions cannot
be neglected. However, to test the accuracy of the collisional scheme we have chosen laser pulse absorption as it
propagates in underdense plasma. This is because there is a known analytic solution for the laser dynamics to
compare with.

Fig. 11 shows the change in laser amplitude as it propagates through a collisional underdense plasma of density
n = 0.04nc. The laser pulse is chosen to be weakly relativistic, a0 = 0.2, and relatively long Gaussian pulse of 50fs
duration. The longer duration is selected to avoid dispersion effects. The collisional frequency νei (described as η in
Section II) is 0.5. We calculated the logarithmic field amplitudes at various propagation lengths, x from H-VLPL and
compare the results with the analytical solution

ln(E/E0) = Re [−iωt + ikx − ∆x] , (28)
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FIG. 7: (color) Energy spectrum of the accelerated ions from rear surface of the target (solid line)as shown in Fig. 6 at a later
time T = ω0t/2π = 150. Ions’ kinetic energy is in MeV scale. The maximum kinetic energy of the ions is ∼ 1 MeV. The
broken line reproduces the similar ion spectrum in fully kinetic environment where no hybrid particles are present, at the same
reference time.

where

∆ ≈
1

2

ω2
p(νei/ω)

(ω2 − ω2
p)1/2

is the collisional absorption rate. The simulation gives an exponentially decreasing laser field E inside the bulk
plasma as it propagates along. These results are shown in Fig. 11(a). Also, the decreasing peak intensity over laser
propagation time (in laser period) in Fig. 11(b) confirms the effect of collisional absorption in agreement with the
analytic solution.

VI. CONCLUSIONS AND FUTURE PLANS

In conclusion, we have presented the implicit hybrid algorithm that allows to simulate laser-plasma interactions at
arbitrary plasma densities. It avoids the limitation on the time step present in explicit PIC codes. The numerical
scheme is analyzed, its dispersion relation is derived, and a numerically efficient matrix algorithm for solving the
implicit system of equations is presented.

The scheme is tested on a series of physically important examples. It is shown that the spatial field structure in
the highly overdense plasma is well described by the code H-VLPL even when the grid step size is much larger than
the plasma skin length.

The presented scheme is one dimensional. The next step will be to generalize this hybrid algorithm to the full three
dimensional geometry.
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