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Abstract

A set of weakly interacting spin—% Fermions, confined by a harmonic oscillator po-
tential, and interacting with each other via a contact potential, is a model system
which closely represents the physics of a dilute gas of two-component Fermionic
atoms confined in a magneto-optic trap. In the present work, our aim is to present a
Fortran 90 computer program which, using a basis set expansion technique, solves the
Hartree-Fock (HF) equations for spin—% Fermions confined by a three-dimensional
harmonic oscillator potential, and interacting with each other via pair-wise delta-
function potentials. Additionally, the program can also account for those anharmonic
potentials which can be expressed as a polynomial in the position operators z, y, and
z. Both the restricted-HF (RHF), and the unrestricted-HF (UHF') equations can be
solved for a given number of Fermions, with either repulsive or attractive interac-
tions among them. The option of UHF solutions for such systems also allows us to
study possible magnetic properties of the physics of two-component confined atomic
Fermi gases, with imbalanced populations. Using our code we also demonstrate that
such a system exhibits shell structure, and follows Hund’s rule.
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Catalogue Identifier:

Program summary URL:

Program obtainable from: CPC Program Library, Queen’s University of Belfast,
N. Ireland

Distribution format: tar.gz

Computers : PC’s/Linux, Sun Ultra 10/Solaris, HP Alpha/Tru64, IBM/AIX
Programming language used: mostly Fortran 90

Number of bytes in distributed program, including test data, etc.: size of the
gzipped tar file 371074 bytes

Card punching code: ASCII

Nature of physical problem: The simplest description of a spin % trapped sys-
tem at the mean field level is given by the Hartree-Fock method. This program
presents an efficient approach of solving these equations. Additionally, this
program can solve for time-independent Gross-Pitaevskii and Hartree-Fock
equations for bosonic atoms confined in a harmonic trap. Thus the combined
program can handle mean-field equations for both the fermi and the bose par-
ticles.

Method of Solution: The solutions of the Hartree-Fock equation corresponding
to the fermi systems in atomic traps are expanded as linear combinations of
simple-harmonic oscillator eigenfunctions. Thus, the Hartree-Fock equations
which comprises of a set of nonlinear integro-differential equation, is trans-
formed into a matrix eigenvalue problem. Thereby, its solutions are obtained
in a self-consistent manner, using methods of computational linear algebra.
Unusual features of the program: None

1 Introduction

Over the last several years, there has been an enormous amount of interest
in the physics of dilute Fermi gases confined in magneto-optic traps[TI213|4l/5].
With the possibility of tuning the atomic scattering lengths from the repulsive
regime to an attractive one using the Feshbach resonance technique, there has
been considerable experimental activity in looking for phenomenon such as
superfluidity, and other phase transitions in these systems|I2]. This has led
to equally vigorous theoretical activity starting from the studies of so-called
BEC-BCS crossover physics|3], search for shell-structure in these systems|4],
to the study of more complex phases|b]. As far as the spin of the fermions
is concerned, most attention has been given to the cases of two-component
gases which can be mapped to a system of spin—% atoms|3/4]. Therefore, in our
opinion, a quantum-mechanical study of spin—% fermions moving in a harmonic
oscillator potential, and interacting via a pair-wise delta function potential,
can help us achieve insights into the physics of dilute gases of trapped fermionic
atoms.



With the aforesaid aims in mind, the purpose of this paper is to describe a For-
tran 90 computer program developed by us which can solve the Hartree-Fock
equations for spin—% fermions moving in a three-dimensional (3D) harmonic
oscillator potential, and interacting via delta-function potential. A basis set
approach has been utilized in the program, in which the single-particle orbitals
are expanded as a linear combination of the 3D simple harmonic oscillator ba-
sis functions, expressed in terms of Cartesian coordinates. The program can
solve both the restricted-Hartree-Fock (RHF), and the unrestricted Hartree-
Fock (UHF) equations, the latter being useful for fermi gases with imbalanced
populations. We would like to clarify, that as far as the applications of this
approach to dilute Fermi gases is concerned, at present it is not possible to
reach the thermodynamic limit of very large N, where N is the total number
of atoms in the trap. However, we believe that by solving the HF equations for
a few tens of atoms, one may be able to achieve insights into the microscopic
aspects such as the nature of pairing in such systems. This program is an
extension of an earlier program developed in our group, aimed at solving the
time-independent Gross-Pitaevskii equation (GPE) for harmonically trapped
Bose gases|6]. Thus the combined total program accompanying this paper can
now solve for both Bose and Fermi systems, confined to move in a harmonic
oscillator potential, with mutual interactions of the delta-function form. As
with our earlier boson program, because of the use of a Cartesian harmonic
oscillator basis set, the new program can handle trap geometries ranging from
spherical to completely anisotropic, and it can also account for those trap
anharmonicities which can be expressed as polynomials in the Cartesian coor-
dinates. The nature of interparticle interactions, i.e., whether they are attrac-
tive or repulsive, also imposes no restrictions on the program. We note that
Yu et al.[4] have recently described a Hartree-Fock approach for dealing with
two-component fermions confined in harmonic traps with spherical symmetry,
employing a finite-difference-based numerical approach. However, we would
like to emphasize that, as mentioned earlier, our approach is more general in
that it is not restricted to any particular trap symmetry. Apart from describ-
ing the program, we also present and discuss several of its applications. With
the aim of exploring the shell-structure in trapped fermionic atoms, using
our UHF approach we compute the addition energy for spherically trapped
fermions for various particle numbers, and obtain results consistent with a
shell-structure and Hund’s rule.

The remainder of the paper is organized as follows. In the next section we
discuss the basic theoretical aspects of our approach. In section Bl we briefly
describe the most important subroutines that comprise the new enlarged pro-
gram. Section 4] contains a brief note on how to install the program and prepare
the input files. In section Bl we discuss results of several example runs of our
program for different geometries. In the same section, we also discuss issues
related to the convergence of the procedure. Finally, in section [0 we end this
paper with a few concluding remarks.



2 Theory

We consider a system of N identical spin—% particles of mass m, moving in
a 3D potential with harmonic and anharmonic terms, interacting with each
other via a pair-wise delta function potential. The Hamiltonian for such a
system can be written as

N

H=> h(r) —l—gZ(S r; —T,;), (1)
i=1

>

where r; represents the position vector of i—th particle, g represents the
strength of the delta-function interaction, and h(r;) denotes the one-particle
terms of the Hamiltonian

h2

1
h(r;) = —2—V2 + 2m(w x? + wyyZ + w22 4+ VO (v ), (2)

where w,, w, and w, are the angular frequencies of the external harmonic po-
tential in the z, y and z directions, respectively, and V" (z;, y;, z;) represents
any anharmonicity in the potential. In order to parametrize the strength of
the delta-function interactions, we use the formula g = 4“h 2 in our program,
where a is the s-wave scattering length for the atoms. Next we will obtain the

RHF and the UHF equations for the system.

Assuming that N = 2n, and that the many-particle wave function of the
system can be represented by a single closed-shell Slater determinant, the
RHF equations for the n doubly occupied orbitals {t;(r), i = 1,...,n} of the
system are obtained to be[7|

(h+ 9 [y (0) P)r) = exth(r). 3)

J=1

Similarly, for a system with n; up-spin («) fermions, and ny down-spin (5)
fermions (n; + ny = N), the UHF equations for the up-spin orbitals can be
written as|7|

(h +gz 87 (1)) (r) = e (x), (4)

where {1/12-(a)(r), i =1,...,n;} and {1/1](-5)(r), j = 1,...,ny}, represent the
occupied orbitals corresponding to the up and the down spins, respectively.
Similar to the the UHF equations for the down-spin orbitals can be deduced



easily from Eq. (). As in our earlier work on the bosonic systems[6], we
adopt a basis-set approach and expand the HF orbitals in terms of the 3D
Harmonic oscillator basis functions. This approach is fairly standard, and is
well-known as the Hartree-Fock-Roothan procedure in the quantum chemistry
community[7]. Thus, for the RHF case, the orbitals are expressed as

Nbasis Nbasis
@/),(I‘) = Z Cjicbnxj,nyj,nzj (I‘) = Z Cji¢nxj(x)¢nyj(y)¢nzj(z)> (5)
j=1 7j=1

where C); represents the coefficient corresponding to the j-th 3D harmonic
oscillator basis function ®,,,. , .. (r), in the expansion of the i-th occupied
orbital 1;(r), and Ny.ss is the total number of basis functions used. Note
that (Ianjmyjmzj(r) is itself a product of three linear harmonic oscillator eigen-
functions of quantum numbers n,;, n,;, and n.;. Therefore, a set of functions
D1,y ., (1), for different values of ng;, n,;, and n.;, will constitute an or-
thonormal basis set, leading to an overlap matrix which is identity matrix. For
the UHF case, the corresponding expansion for up-spin particles is

Npasis

@Z)(a Z ¢77/x] ¢ny1( )¢nzj(z)7 (6)

from which the expansion for the down-spin particles can be easily deduced.
Upon substituting Eqgs. (B) and (@), in Eqgs. [B) and (@), respectively, one
can obtain the matrix forms of the RHF /UHF equations|7]. As outlined in
our earlier work[6], numerical implementation of the approach is carried out
in the so-called harmonic oscillator units, in which the unit of length is the
quantity a, = ix , and that of energy is Aw,. The resulting matrix equation
for the RHF case is

~

FCu = &C (7)

where C’(i) represents the column vector containing expansion coefficients {C};, j =
1,..., Npasis } of 1;, € is the corresponding energy eigenvalue, and the elements
of the Fock matrix F' are given by

Npasis -

F;',j = b j + Vzajnh +9 > JijkiDry- (8)
k=1
Above
1 1 1
E; = (ngi + 5) + (nyz + 2)% + (2 + 2)%7 (9)



expressed in terms of aspect ratios vy, = Z—z and v, = Z—;, Vﬂ;‘h are the matrix
elements of the anharmonic term in the confining potential, Dy ; = >°7" ; Cr,Cy;
is a density-matrix element, and jm,w represents the 3D two-fermion repulsion
matrix defined as

Ji,]}k,l = aninzjnzkn:vl Jnymyjnyknylanmzjnzknzl~ (10)

Each one of the J matrices in Eq. (I0), corresponding to the three Cartesian
directions, can be written in the form

T = [ AE0u (€60, (€)n, (€)0n, (€), (11)

where £ is the corresponding Cartesian coordinate in the harmonic oscillator
units. An analytical expression for Jy,,;n,n, can be found in our earlier work|6].
In the UHF case, one obtains two matrix equations for the up/down-spin
particles of the form

PGS = d o) (12)

where the (@ represents the Fock matrix for the up-spin particles given by
F?i’j(a) = FE;0;; + VZ“J”h +g EkN‘l";l ~i,j7k,lD,(fl), €Z(~a) is the energy eigenvalue, and
Dlii) =y C’]gf )Cl(f ) are the elements of the down-spin density matrix. We
can easily deduce the form of the Fock equation for the down-spin particles
from Eq. (I2). In our program, HF Eqgs. (@) and ([I2)) are solved employing the
self-consistent field (SCF) procedure, which requires the iterative diagonaliza-
tion of the Fock equations|7].

3 Description of the program

In this section we briefly describe the main program and various subrou-
tines which constitute the entire module. As mentioned in the Introduction,
the present program is an extension of our earlier program for bosons|[6].
Thus the new program, which compiles as trap.z, can solve for: (a) time-
independent Gross-Pitaevskii equation for bosons, and (b) Hartree-Fock equa-
tions for fermions, confined in a trap. Therefore, most of the changes in the
present program, as compared the earlier bosonic program, are related to its
added fermionic HF capabilities. However, we have also tried to optimize the
earlier bosonic module of the program wherever possible. A README file as-
sociated with this program lists all its subroutines. Thus, in what follows, we



will describe only those subroutines which are either new (fermion related),
or modified, as compared to the older bosonic code[6]. For an account of the
older subroutines not described here, we refer the reader to our earlier work|6].
Additionally, with the aim of making the calculations faster, in the present
code, we use the diagonalization routines of LAPACK library|[8], which re-
quires the linking of our code to that library. Therefore, for this program to
work, the user must have the LAPACK/BLAS program libraries installed on
his/her computer system. The letter F or B has been included in parenthesis
after the name of each subroutine to show whether the subroutine is useful for
Fermionic or Bosonic calculations. If it is applicable for both, we denote this
by writing BF.

3.1  Main Program OSCL (BF)

This is the main program of our package which reads the input data, dynam-
ically allocates relevant arrays, and then calls other subroutines to perform
tasks related to the remainder of the calculations. The main modification in
this program, as compared to its earlier version[6], is that it now allows for
input related to fermionic HF calculations. Thus, the user now has to specify
whether the particles considered are bosons or fermions. If the particles con-
sidered are fermions, one has to further specify whether the RHF or the UHF
calculations are desired. For the case of UHF calculations, the user also needs
to specify the number of up- and down-spin orbitals. Because of the dynamic
array allocation throughout, no data as to the size of the arrays is needed from
the user. The program will stop only if it exhausts all the available memory
on the computer. There is one major departure in the storage philosophy in
the present version of the code as compared to the previous one[6] in that now
only the lower/upper triangles of most of the real-symmetric matrices (such
as the Fock matrix) are stored in the linear arrays in the packed format. This
not only reduces the memory requirements roughly by a factor of two, but
also leads to faster execution of the code.

3.2 BECFERMI DRV (BF)

This is the modified version of the old subroutine BEC DRV, and is called
from the main program OSCL. As its name suggests, it is the driver rou-
tine for performing: (a) calculations of the bose condensate wave function for
bosons, or (b) solving the RHF /UHF equations for fermions. Apart from allo-
cating a few arrays, the main task of this routine is to call either: (a) routines
BOSE SCF or BOSE STEEP depending upon whether the user wants to
use the SCF or the steepest-descent approach meant for solving the GPE[6],



or (b) routines FERMI RHF or FERMI UHF depending on whether the
RHEF or UHF calculations are to be performed.

3.3

FERMI RHF (F)

This subroutine solves the RHF equations for the fermions in a trap using the
SCF procedure, mentioned earlier. Its main tasks are as follows:

(1)
(2)

(3)

3.4

Allocate various arrays needed for the SCF calculations

Setup the starting orbitals. This is achieved by diagonalizing the one-
particle part of the Hamiltonian.

Perform the SCF calculations. For this purpose, the two-particle integrals
Ji kg (cf. Eq. (I0)) are calculated during each iteration|6]. If the user has
opted for Fock matrix/orbital mixing, it is implemented using the formula

RY = amiz RY + (1 — xmiz) ROV,

where R® is the quantity under consideration in the i-th iteration, and
parameter xmix quantifying the mixing is user specified. Thus, if Fock
matrix mixing has been opted, xmix specifies the fraction of the new
Fock matrix in the total Fock matrix in the ¢-th iteration. If the user
has opted for the orbital mixing, then each occupied orbital is mixed as
per the formula above. The Fock matrix constructed in each iteration is
diagonalized using the LAPACK routine DSPEVX|8|, which can obtain a
selected number of eigenvalues/eigenvectors of a real-symmetric matrix,
as against traditional diagonalizers which calculate the entire spectrum
of such matrices. We use DSPEVX during the SCF iterations to obtain
only the occupied orbitals and their energies, thereby, leading to a much
faster completion of the SCF process in comparison to using a diagonal-
izer which computes all the eigenvalues/vectors of the Fock matrix. The
occupied orbitals are identified according to the aufbau principle.

The total energy and the wave function obtained after every iteration are
written in various data files so that the progress of the calculation can
be monitored. This process continues until the required precision (user
specified) in the total HF energy is obtained.

FERMI_UHF (F)

In structure and philosophy this subroutine is similar to FERMI RHF, ex-
cept that its purpose is to solve the UHF equations for interacting spin—%
fermions confined in a harmonic potential. Because there are two separate
Fock equations corresponding to the up- and the down-spin fermions, the



computational effort associated with this subroutine is roughly twice that of
routine FERMI RHF.

3.5 BOSE_SCF (B)

This subroutine aims at solving the time-independent GPE for bosons us-
ing the iterative diagonalization approach, and was described in our earlier
paper[6]. The diagonalizing routine which was being used for the purpose ob-
tained all the eigenvalues and eigenvectors of the GPE, which is quite time
consuming for calculations involving large basis sets. Since the condensate cor-
responds to the lowest-energy solution of the GPE, using diagonalizing rou-
tines which obtain all its eigenvalues and eigenvectors is wasteful. Therefore, in
the new version of BOSE_SCF we now use the LAPACK]Jg| routine DSPEVX
to obtain the lowest eigenvalue and the eigenvector of the Hamiltonian during
the SCF cycles, leading to substantial improvements in speed.

3.6 BOSE_STEEP (B)

This subroutine aims at solving the time-independent GPE for bosons using
the steepest-descent method, and was also described in our earlier paper|6].
In this routine, the main computational step is multiplication of a trial vector
by the matrix representation of the Hamiltonian. In the earlier version of the
code, because the entire Hamiltonian was being stored in a two-dimensional
array, we used the Fortran 90 intrinsic subroutine MATMUL for the purpose.
However, now that we only store the upper triangle of the Hamiltonian in
a linear array, it is fruitful to use an algorithm which utilizes this aspect.
Therefore, we have replaced the call to MATMUL by a call to a routine called
MATMUL _UT written by us. This has also lead to significant speed improve-
ments.

3.7 MATMUL_UT (B)

As mentioned in the previous section, the aim of this subroutine is to multiply
a vector by a real-symmetric matrix, whose upper triangle is stored in a linear
array. This routine is called from the subroutine BOSE STEEP, and it utilizes
a straightforward algorithm for achieving its goals by calling two BLAS|S|
functions DDOT and DAXPY.



3.8 Plotting Subroutines (BF)

We have also significantly improved the capabilities of the program as far as
plotting of the orbitals and the associated densities is concerned. Now the or-
bitals, or corresponding densities, can be computed both on one-dimensional
and two-dimensional spatial grids, along user-specified directions, or planes.
The driver subroutine for the purpose is called PLOT DRV, which in turn
calls the specific subroutines suited for the calculations. These subroutines
are PLOT 1D, and PLOT 1D UHF for the one-dimensional plots, and
PLOT 2D and PLOT 2D UHF for the planar plots. The output of this
module is written in a file called orb_plot.dat, which can be directly used in
plotting programs such as gnuplot or xmgrace.

4 Installation, input files, output files

In our earlier paper, we had described in detail how to install, compile, and run
our program on various computer systems|6]. Additionally, we had explained
in a step-by-step manner how to prepare the input file meant for running the
code, and also the contents of a typical output file[6]. Because, various aspects
associated with the installation and running of the program remain unchanged,
except for some minor details, we prefer not to repeat the same discussion.
Instead, we refer the reader to the README file in connection with various
details related to the installation and execution of the program. Additionally,
the file "input_prep.pdf’ explains how to prepare a sample input file. Several
sample input and output files corresponding to various example runs are also
provided with the package.

5 Calculations and Results

In this section we report results of some of the calculations performed by our
code on fermionic systems. We present both RHF and UHF calculations for
various types of traps. Further, we discuss some relevant issues related to the
convergence of the calculations.

5.1 RHF Calculations: total energy convergence

In this section our aim is to investigate the convergence properties of the total
HF energy of our program with respect to: (a) number of particles in the trap,

10



a=0.1a; | a=0.2a; | a=0.4a, | a =0.8a,

nmaz | Npasis Enr Eur Enr Eur
2 10 3.150676 | 3.285944 | 3.521934 | 3.906583
4 35 3.149708 | 3.283415 | 3.517600 | 3.904041
6 84 3.149568 | 3.283145 | 3.517392 | 3.904014
8 165 3.149546 | 3.283118 | 3.517390 | 3.903925

10 286 3.149543 | 3.283117 | 3.517388 | 3.903892
12 455 3.149543 | 3.283117 | 3.517386 | 3.903886

14 680 3.149543 | 3.283117 | 3.517385 | 3.903885
Table 1
Convergence of total HF energy (Epp) for a spherically symmetric trap containing
two particles, with respect to the size of the basis set, for various positive values
(repulsive interactions) of the scattering length. Above, nmax is the maximum value
of the quantum number of the SHO basis function in a given direction, and Npggs
is the total number of basis functions corresponding to a given value of nmax. In
some cases, Fock matrix mixing approach was used to achieve convergence.

(b) symmetry of the confining potential, (¢) nature and strength of interac-
tions, and (d) number of basis functions employed in the calculations. As far
as the number of particles is concerned, we have considered two closed-shell
systems namely with two particles (N = 2), and with eight particles (IV = 8).
For N = 2 case, calculations have been performed for all possible trap geome-
tries ranging from a spherical trap to a completely anisotropic trap. During
these calculations, we have considered both attractive and repulsive interac-
tions, corresponding to negative and positive scattering lengths, respectively.
The magnitude of the scattering length (|a|) employed in these calculations
ranges from 0.01la, to 0.8a,. To put these numbers in perspective, we recall
that in most of the atomic traps, a, ~ 1.0 um, and for a two-component 9Li
trapped gas, the estimated value of the scattering length is anomalously large
a ~ —2160a0]9], where ag is the Bohr radius. Thus, for this very strongly in-
teracting system, the scattering length a ~ —0.11a,, is well within the range
of the scattering lengths considered in these calculations. Therefore, the sys-
tems considered here—ranging from weakly interacting ones to very strongly
interacting ones—truly test our numerical methods.

The results of our calculations are presented in tables [[I-5l For N = 2 sys-
tem, we performed these calculations in order to understand the convergence
behavior of the total energy with respect to the basis set size, with the goal
of a high precision (six decimal digit convergence) in the total energy. Such
high accuracy on larger systems will be computationally much more expensive,
and, therefore, our aim behind the study of N = 8 system was to understand
the role of number of particles on our results. The next larger closed-shell sys-
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a=—0.1a; | a=-0.2a; | a=-0.3a; | a = —0.4a,

nmaz | Npasis Eur Eur Eur Enr
2 10 2.830199 2.637330 2.418234 2.171854
4 35 2.827878 2.622865 2.368604 2.045741
6 84 2.827266 2.617430 2.340043 1.935626
8 165 2.827091 2.615260 2.321750 1.816197

10 286 2.827038 2.614355 2.309079 1.662494
12 455 2.827021 2.613963 2.299711 1.448111
14 680 2.827016 2.613787 2.292337 1.115306
16 969 2.827014 2.613706 2.286104 0.767242

18 1330 2.827013 2.613667 2.280232 0.287303
Table 2
Convergence of total HF energy for a spherically symmetric trap containing two par-
ticles, with respect to the size of the basis set, for various negative values (attractive

interactions) of the scattering length a. Various symbols have the same meaning as
in table [

tem will correspond to N = 20, but we have not studied that here, because,
in our opinion, such calculations will not lead to any newer insights into our
approach. Next we discuss our results on these systems individually.

With the aim of a more detailed exposition of the convergence behavior for
repulsive and attractive interactions, for N = 2 system corresponding to an
isotropic trap, we present our results for the positive and negative scattering
lengths in separate tables [l and 21 For the rest of the cases, results for the
attractive and the repulsive interactions are presented in the same tables.
Upon examining our results for N = 2 case (cf. tables[I}-), we conclude that
for the case of repulsive interactions, calculations always exhibit convergence
from above on Egyp, with respect to the basis set size. In order to achieve
six-digit accuracy for repulsive interactions, one needs to use relatively large
basis sets, although a three-digit accuracy can be obtained using considerably
smaller basis sets. However, quite expectedly, a drastically distinct convergence
behavior is seen for the cases involving attractive interactions. It is obvious
that for the attractive interactions, for sufficiently large scattering length, the
HF method will not be applicable, and will exhibit instabilities because of pair
formation. For relatively weaker attractive interactions, one again encounters
convergence from above, as was the case for repulsive interactions. But, as the
strength of the attractive interactions increases, the convergence with respect
to the basis set size becomes more difficult to achieve, and for |a| > 0.3a,
(with a < 0), this property is completely lost, and the HF method begins to
exhibit unstable behavior.

12



a=—0.3a; | a=-0.1a; | a=0.1a, | a =0.2a, | a = 0.4a,
nxmaz | nzmax | Npesis FEygr Fygr FEgr Fygr Euyr
2 0 6 3.843213 4.540956 5.080053 | 5.303210 | 5.689668
2 2 18 3.776326 4.536093 5.077093 | 5.293658 | 5.662586
4 0 15 3.757823 4.536934 5.078865 | 5.300842 | 5.687999
4 2 45 3.652833 4.531485 5.075905 | 5.291342 | 5.660857
4 4 75 3.627775 4.530813 5.075670 | 5.290704 | 5.659490
6 2 84 3.566045 4.530250 5.075782 | 5.291219 | 5.660855
6 4 140 3.524613 4.529542 5.075548 | 5.290582 | 5.659487
6 6 196 3.510247 4.529419 5.075520 | 5.290518 | 5.659382
8 6 315 3.408095 4.529035 5.075508 | 5.290515 | 5.659352
8 8 405 3.396675 4.529008 5.075504 | 5.290508 | 5.659344
10 8 594 3.278208 4.528883 5.075503 | 5.290508 | 5.659332
10 10 726 3.265916 4.528877 5.075502 | 5.290507 | 5.659332
12 12 1183 3.091015 4.528832 5.075502 | 5.290506 | 5.659329
Table 3

Convergence of total HF energy for a cylindrical potential (v, = 1, 7, = V/8)
containing two particles, with respect to the size of the basis set, for various values
of the scattering length a. Above, nxmax is the maximum value of the quantum
number of the SHO basis function in z- and y—direction, nzmaz is the same number
corresponding to the z-direction. Rest of the quantities have the same meaning as
explained in the caption of table[Il In some cases, Fock matrix mixing was employed
to achieve convergence.

Inspection of tables B] and [ reveals that for a given value of interaction
length, the convergence requires the use of larger basis sets with increas-
ing trap anisotropy, ranging from the perfectly spherical traps, to completely
anisotropic traps. This behavior is expected for cases with aspect ratios v, and
7. > 1, because the effective interaction constant in such cases ¢ = /7,7.9 >

gl6].

Upon examining our results for N = 8 case (cf. table (), we again see very
monotonic convergence behavior for all calculations corresponding to repul-
sive interactions, and note that the high accuracy in Eypr can be achieved
with reasonably sized basis functions. However, as was the case for N = 2,
completely different behavior is encountered when the interactions are attrac-
tive. The calculations with a = —0.05a, exhibit systematic convergence in
Eyr with the increasing basis set size, but for the case with a = —0.1a,, no
trend towards the convergence emerges, pointing again towards an unstable
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a=—0.3a; | a=-0.1a; | a=0.1a; | a =0.2a, | a = 0.4a,
nxmax | nymax | nzmazr | Npgsis Egr Egr Egr Euyr Egr
2 0 0 3 4.665163 5.589854 6.372501 | 6.712470 | 7.323686
2 2 0 9 4.524297 5.577420 6.363976 | 6.683899 | 7.236946
2 2 2 27 4.377194 5.567347 6.358276 | 6.665811 | 7.185985
4 2 2 45 4.237680 5.562563 6.357536 | 6.664895 | 7.185950
4 4 2 75 4.141946 5.560272 6.356979 | 6.663649 | 7.184217
4 4 4 125 4.062610 5.558749 6.356555 | 6.662580 | 7.182201
6 4 4 175 3.914860 5.557403 6.356508 | 6.662569 | 7.182068
6 6 6 343 3.749314 9.556591 6.356406 | 6.662389 | 7.181903
8 8 8 819 3.344656 5.555972 6.356391 | 6.662373 | 7.181839
10 10 10 1331 2.746459 5.559775 6.356390 | 6.662370 | 7.181852
12 12 12 2197 1.871496 5.555707 6.356390 | 6.662369 | 7.181851
Table 4

Convergence of total HE energy for an anisotropic potential (v, = 2, 7, = 3) con-
taining two particles, with respect to the size of the basis set, for various values of
the scattering length. Above, nxmax, nymaz, and nzmax represent the maximum
values of the quantum number of the SHO basis function in z-, y—, and z— direc-
tions, respectively. Rest of the quantities have the same meaning as explained in
the caption of table[Il In some cases, Fock matrix mixing was employed to achieve
convergence.

behavior.

Finally, in Fig. [l we present the orbital density plots for the N = 2 case
with both attractive and repulsive interactions, corresponding to a = £0.2a,.
The noteworthy point in the graph is the accumulation of the density at the
center of the trap in case of attractive interactions, as compared to when
the interactions are repulsive. With increasingly attractive interactions, this
phenomenon becomes even more pronounced, possibly causing the instabilities
in the HF approach.

5.2 Unrestricted Hartree-Fock Calculations

In this section we describe the results of our UHF calculations. If one performs
a UHF calculation on a closed-shell system, one must get the same results as
obtained by an RHF calculation. Similarly, the total energy and orbitals of
a system with m up-spin and n down-spin particles should be the same as
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a=—0.1a, | a = —0.05a, | a =0.0la, | a =0.05a, | a =0.1a, | a = 0.2a,
nmaz | Npasis Eur Enr Eur Enr Enr Eur
1 4 13.05312 15.52656 18.49468 20.47344 | 22.94688 | 27.89377
3 20 11.11619 15.06420 18.47996 20.16365 | 21.92218 | 24.85687
5 56 9.55419 14.91302 18.47931 20.16099 | 21.91766 | 24.77399
7 120 7.88921 14.86390 18.47929 20.15984 | 21.91127 | 24.75854
9 220 5.87592 14.84991 18.47925 20.15895 | 21.90931 | 24.75772
11 364 3.37633 14.84676 18.47923 20.15863 | 21.90899 | 24.75771
13 560 0.32535 14.84615 18.47921 20.15854 | 21.90897 | 24.75767
Table 5

Convergence of total HF energy (Egr) for a spherical symmetric potential contain-
ing eight particles, with respect to the size of the basis set, for various values of the
scattering length. Different symbols above have the same meaning as explained in
the caption of table [Il In all the calculations presented above, Fock matrix mixing
was used to achieve convergence.
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Figure 1. Density p(r) = 2[i15(r)|? plotted along the z-axis, obtained from RHF
calculations on a two-particle system in an isotropic trap with a = 0.2a, (solid lines),
and a = —0.2a, (dashed lines). Distance r is in harmonic oscillator units.

that of a system with n up-spin and m down-spin particles. These properties
of the UHF calculations can be used to check the correctness of the underly-
ing algorithm. We verified these properties explicitly by: (a) performing UHF
calculations on closed-shell systems with various scattering lengths and ge-
ometries, and found that the results always agreed with the corresponding
RHF calculations, and (b) by performing UHF calculations on various open-
shell systems with interchanged spin configurations and found the results to
be identical. Therefore, we are confident of the essential correctness of our
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Figure 2. Calculated UHF values of addition energies (Au(N) = pu(N + 1) — u(N))
of a spherical trap (in the units of hw,) with scattering length a = 0.01a,, plotted
as a function of the particle number N, ranging from N =1 to N = 21.

UHF program, and in what follows, we describe its applications in calculat-
ing the addition energy of fermionic atoms confined in a spherical trap. The
aim behind this calculation is to explore whether such a system follows: (a)
shell-structure, and (b) Hund’s rule, in analogy with harmonically trapped
electrons confined in a quantum dot. We also note that a study of Hund’s rule
for fermionic atoms confined in an optical lattice was carried out recently by
Kérkkéinen et ol [10].

The addition energy, i.e, the energy required to add an extra atom, to an
N-atom trap is defined as Ap(N) = u(N + 1) — u(N), where pu(N)/pu(N +
1) represents the chemical potential of an N/(N + 1) particle system. The
chemical potentials, in turn, are defined as u(N) = E(N) — E(N — 1), where
E(N)/E(N+1) represents the total energy of an N/(N +1) particle system. In
our calculations, the total energies were calculated using the UHF approach
for various values of the scattering length and our results for the addition
energy for an a = 0.01a, spherical trap are presented in Fig. 2l for the values
from N =1to N =21.

For the range of N values studied here, in a noninteracting model the charg-
ing energy acquires nonzero values Au(N) = hw,, only for N = 2, 8 and
20, corresponding to filled-shell configurations. In an interacting model, how-
ever, Au(N) should additionally exhibit smaller peaks at N = 5 N = 14,
corresponding to the half-filled shells. If the inter-particle repulsion is strong
enough to split 3s and 3d shells significantly, we will additionally obtain a
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peak at N = 18 corresponding to the filled 3d shell, while the peaks corre-
sponding to the half-filled shells will occur at N = 13, and N = 19, instead
of N = 14. Moreover, it is of considerable interest to examine whether the
Hund’s rule is also satisfied for open-shell configurations of such spherically
trapped fermionic atoms, as is the case, e.g., for electrons in quantum dots|LI].
From Fig. 2 it is obvious that major peaks are located at N = 2, 8, and 20,
while the minor ones are at N = 5, and 14, with no peaks at N = 13, 18, or
19. The heights of the major peaks are in the descending order with increasing
N, ranging from 1.003Aw, (N = 2) to 0.908hw, (N = 20). Additionally, for
all the open-shell cases, the lowest-energy configurations were consistent with
the Hund’s rule in that, a given shell is first filled with fermions of one (say
'up’) spin-orientation, and upon completion, followed by the fermions of other
(’down’) spin orientation. We note that these results are qualitatively similar
to the results obtained for spherical quantum dots|[II]. Thus, we conclude that
for the small number of particles considered by us, the shell structure and the
Hund’s rule are also followed by atoms confined in harmonic traps where the
mutual repulsion is through short-range the contact interaction.

We have performed a number of UHF calculations on traps of different ge-
ometries, and scattering lengths, whose results will be published elsewhere.
However, we would like to briefly state that as the scattering length is in-
creased, in several cases the ferromagnetic configurations violating the Hund’s
rule become energetically more stable. This implies that for large scattering
lengths the UHF mean-field approach may not be representative of the true
state, and inclusion of correlation effects may be necessary.

6 Conclusions and Future Directions

In this paper we reported a Fortran 90 implementation of a harmonic oscillator
basis set based approach towards obtaining the numerical solutions of both
the restricted, as well as the unrestricted Hartree-Fock equations for spin—%
fermions confined by a harmonic potential, and interacting via pair-wise delta-
function potential. The spin—% fermions under consideration could represent a
two-component fermi gas composed of atoms confined in harmonic traps. We
performed a number of calculations assuming both attractive, and repulsive,
inter-particle interactions. As expected, the Hartree-Fock method becomes
unstable with the increasing scattering length for attractive interactions, while
no such problem is encountered for the repulsive interactions. Additionally, we
performed a UHF study of atoms confined in a spherical harmonic trap and
verified the existence of a shell structure, and that the Hund’s rule is followed.
These results are in good qualitative agreement with similar studies performed
on harmonically confined electrons in quantum dots, interacting via Coulomb
interaction.
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In future, we intend to extend and improve the fermionic aspects of the
present computer program in several possible ways. As far as problems re-
lated to fermionic gases in a trap are concerned, we would like to implement
the Hartree-Fock-Bogoliubov approach to allow us to study such systems in
the thermodynamic limit, and at finite temperatures. With the aim of study-
ing the electronic structure of quantum dots, we plan to introduce the option
of using the Coulomb-repulsion for interparticle interactions, a step which will
require significant code writing for the two-electron matrix elements. Addition-
ally, we also aim to introduce the option of studying the dynamics of electrons
in the presence of an external magnetic field, which will also allow us to study
fermionic gases in rotating traps. Finally, we plan to implement the option
of including spin-orbit coupling in our approach, which, at present, is a very
active area of research. We will report results along these lines in the future,
as and when they become available.
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