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Abstra
t

A set of weakly intera
ting spin-

1
2 Fermions, 
on�ned by a harmoni
 os
illator po-

tential, and intera
ting with ea
h other via a 
onta
t potential, is a model system

whi
h 
losely represents the physi
s of a dilute gas of two-
omponent Fermioni


atoms 
on�ned in a magneto-opti
 trap. In the present work, our aim is to present a

Fortran 90 
omputer program whi
h, using a basis set expansion te
hnique, solves the

Hartree-Fo
k (HF) equations for spin-

1
2 Fermions 
on�ned by a three-dimensional

harmoni
 os
illator potential, and intera
ting with ea
h other via pair-wise delta-

fun
tion potentials. Additionally, the program 
an also a

ount for those anharmoni


potentials whi
h 
an be expressed as a polynomial in the position operators x, y, and

z. Both the restri
ted-HF (RHF), and the unrestri
ted-HF (UHF) equations 
an be

solved for a given number of Fermions, with either repulsive or attra
tive intera
-

tions among them. The option of UHF solutions for su
h systems also allows us to

study possible magneti
 properties of the physi
s of two-
omponent 
on�ned atomi


Fermi gases, with imbalan
ed populations. Using our 
ode we also demonstrate that

su
h a system exhibits shell stru
ture, and follows Hund's rule.
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Catalogue Identi�er:

Program summary URL:

Program obtainable from: CPC Program Library, Queen's University of Belfast,

N. Ireland

Distribution format: tar.gz

Computers : PC's/Linux, Sun Ultra 10/Solaris, HP Alpha/Tru64, IBM/AIX

Programming language used: mostly Fortran 90

Number of bytes in distributed program, in
luding test data, et
.: size of the

gzipped tar �le 371074 bytes

Card pun
hing 
ode: ASCII

Nature of physi
al problem: The simplest des
ription of a spin

1
2
trapped sys-

tem at the mean �eld level is given by the Hartree-Fo
k method. This program

presents an e�
ient approa
h of solving these equations. Additionally, this

program 
an solve for time-independent Gross-Pitaevskii and Hartree-Fo
k

equations for bosoni
 atoms 
on�ned in a harmoni
 trap. Thus the 
ombined

program 
an handle mean-�eld equations for both the fermi and the bose par-

ti
les.

Method of Solution: The solutions of the Hartree-Fo
k equation 
orresponding

to the fermi systems in atomi
 traps are expanded as linear 
ombinations of

simple-harmoni
 os
illator eigenfun
tions. Thus, the Hartree-Fo
k equations

whi
h 
omprises of a set of nonlinear integro-di�erential equation, is trans-

formed into a matrix eigenvalue problem. Thereby, its solutions are obtained

in a self-
onsistent manner, using methods of 
omputational linear algebra.

Unusual features of the program: None

1 Introdu
tion

Over the last several years, there has been an enormous amount of interest

in the physi
s of dilute Fermi gases 
on�ned in magneto-opti
 traps[1,2,3,4,5℄.

With the possibility of tuning the atomi
 s
attering lengths from the repulsive

regime to an attra
tive one using the Feshba
h resonan
e te
hnique, there has

been 
onsiderable experimental a
tivity in looking for phenomenon su
h as

super�uidity, and other phase transitions in these systems[1,2℄. This has led

to equally vigorous theoreti
al a
tivity starting from the studies of so-
alled

BEC-BCS 
rossover physi
s[3℄, sear
h for shell-stru
ture in these systems[4℄,

to the study of more 
omplex phases[5℄. As far as the spin of the fermions

is 
on
erned, most attention has been given to the 
ases of two-
omponent

gases whi
h 
an be mapped to a system of spin-

1
2
atoms[3,4℄. Therefore, in our

opinion, a quantum-me
hani
al study of spin-

1
2
fermions moving in a harmoni


os
illator potential, and intera
ting via a pair-wise delta fun
tion potential,


an help us a
hieve insights into the physi
s of dilute gases of trapped fermioni


atoms.
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With the aforesaid aims in mind, the purpose of this paper is to des
ribe a For-

tran 90 
omputer program developed by us whi
h 
an solve the Hartree-Fo
k

equations for spin-

1
2
fermions moving in a three-dimensional (3D) harmoni


os
illator potential, and intera
ting via delta-fun
tion potential. A basis set

approa
h has been utilized in the program, in whi
h the single-parti
le orbitals

are expanded as a linear 
ombination of the 3D simple harmoni
 os
illator ba-

sis fun
tions, expressed in terms of Cartesian 
oordinates. The program 
an

solve both the restri
ted-Hartree-Fo
k (RHF), and the unrestri
ted Hartree-

Fo
k (UHF) equations, the latter being useful for fermi gases with imbalan
ed

populations. We would like to 
larify, that as far as the appli
ations of this

approa
h to dilute Fermi gases is 
on
erned, at present it is not possible to

rea
h the thermodynami
 limit of very large N , where N is the total number

of atoms in the trap. However, we believe that by solving the HF equations for

a few tens of atoms, one may be able to a
hieve insights into the mi
ros
opi


aspe
ts su
h as the nature of pairing in su
h systems. This program is an

extension of an earlier program developed in our group, aimed at solving the

time-independent Gross-Pitaevskii equation (GPE) for harmoni
ally trapped

Bose gases[6℄. Thus the 
ombined total program a

ompanying this paper 
an

now solve for both Bose and Fermi systems, 
on�ned to move in a harmoni


os
illator potential, with mutual intera
tions of the delta-fun
tion form. As

with our earlier boson program, be
ause of the use of a Cartesian harmoni


os
illator basis set, the new program 
an handle trap geometries ranging from

spheri
al to 
ompletely anisotropi
, and it 
an also a

ount for those trap

anharmoni
ities whi
h 
an be expressed as polynomials in the Cartesian 
oor-

dinates. The nature of interparti
le intera
tions, i.e., whether they are attra
-

tive or repulsive, also imposes no restri
tions on the program. We note that

Yu et al.[4℄ have re
ently des
ribed a Hartree-Fo
k approa
h for dealing with

two-
omponent fermions 
on�ned in harmoni
 traps with spheri
al symmetry,

employing a �nite-di�eren
e-based numeri
al approa
h. However, we would

like to emphasize that, as mentioned earlier, our approa
h is more general in

that it is not restri
ted to any parti
ular trap symmetry. Apart from des
rib-

ing the program, we also present and dis
uss several of its appli
ations. With

the aim of exploring the shell-stru
ture in trapped fermioni
 atoms, using

our UHF approa
h we 
ompute the addition energy for spheri
ally trapped

fermions for various parti
le numbers, and obtain results 
onsistent with a

shell-stru
ture and Hund's rule.

The remainder of the paper is organized as follows. In the next se
tion we

dis
uss the basi
 theoreti
al aspe
ts of our approa
h. In se
tion 3, we brie�y

des
ribe the most important subroutines that 
omprise the new enlarged pro-

gram. Se
tion 4 
ontains a brief note on how to install the program and prepare

the input �les. In se
tion 5 we dis
uss results of several example runs of our

program for di�erent geometries. In the same se
tion, we also dis
uss issues

related to the 
onvergen
e of the pro
edure. Finally, in se
tion 6, we end this

paper with a few 
on
luding remarks.
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2 Theory

We 
onsider a system of N identi
al spin-

1
2
parti
les of mass m, moving in

a 3D potential with harmoni
 and anharmoni
 terms, intera
ting with ea
h

other via a pair-wise delta fun
tion potential. The Hamiltonian for su
h a

system 
an be written as

H =
N
∑

i=1

h(ri) + g
N
∑

i>j

δ(ri − rj), (1)

where ri represents the position ve
tor of i−th parti
le, g represents the

strength of the delta-fun
tion intera
tion, and h(ri) denotes the one-parti
le
terms of the Hamiltonian

h(ri) = − ~
2

2m
∇2

i +
1

2
m(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i ) + V anh(xi, yi, zi), (2)

where ωx, ωy and ωz are the angular frequen
ies of the external harmoni
 po-

tential in the x, y and z dire
tions, respe
tively, and V anh(xi, yi, zi) represents
any anharmoni
ity in the potential. In order to parametrize the strength of

the delta-fun
tion intera
tions, we use the formula g = 4π~2a
m

in our program,

where a is the s-wave s
attering length for the atoms. Next we will obtain the

RHF and the UHF equations for the system.

Assuming that N = 2n, and that the many-parti
le wave fun
tion of the

system 
an be represented by a single 
losed-shell Slater determinant, the

RHF equations for the n doubly o

upied orbitals {ψi(r), i = 1, . . . , n} of the
system are obtained to be[7℄

(h+ g
n
∑

j=1

|ψj(r)|2)ψi(r) = ǫiψi(r). (3)

Similarly, for a system with n1 up-spin (α) fermions, and n2 down-spin (β)
fermions (n1 + n2 = N), the UHF equations for the up-spin orbitals 
an be

written as[7℄

(h+ g
n2
∑

j=1

|ψ(β)
j (r)|2)ψ(α)

i (r) = ǫiψ
(α)
i (r), (4)

where {ψ(α)
i (r), i = 1, . . . , n1} and {ψ(β)

j (r), j = 1, . . . , n2}, represent the

o

upied orbitals 
orresponding to the up and the down spins, respe
tively.

Similar to the the UHF equations for the down-spin orbitals 
an be dedu
ed
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easily from Eq. (4). As in our earlier work on the bosoni
 systems[6℄, we

adopt a basis-set approa
h and expand the HF orbitals in terms of the 3D

Harmoni
 os
illator basis fun
tions. This approa
h is fairly standard, and is

well-known as the Hartree-Fo
k-Roothan pro
edure in the quantum 
hemistry


ommunity[7℄. Thus, for the RHF 
ase, the orbitals are expressed as

ψi(r) =
Nbasis
∑

j=1

CjiΦnxj ,nyj,nzj
(r) =

Nbasis
∑

j=1

Cjiφnxj
(x)φnyj

(y)φnzj
(z), (5)

where Cji represents the 
oe�
ient 
orresponding to the j-th 3D harmoni


os
illator basis fun
tion Φnxj ,nyj,nzj
(r), in the expansion of the i-th o

upied

orbital ψi(r), and Nbasis is the total number of basis fun
tions used. Note

that Φnxj ,nyj,nzj
(r) is itself a produ
t of three linear harmoni
 os
illator eigen-

fun
tions of quantum numbers nxj, nyj , and nzj. Therefore, a set of fun
tions

Φnxj ,nyj,nzj
(r), for di�erent values of nxj, nyj , and nzj , will 
onstitute an or-

thonormal basis set, leading to an overlap matrix whi
h is identity matrix. For

the UHF 
ase, the 
orresponding expansion for up-spin parti
les is

ψ
(α)
i (r) =

Nbasis
∑

j=1

C
(α)
ji φnxj

(x)φnyj
(y)φnzj

(z), (6)

from whi
h the expansion for the down-spin parti
les 
an be easily dedu
ed.

Upon substituting Eqs. (5) and (6), in Eqs. (3) and (4), respe
tively, one


an obtain the matrix forms of the RHF/UHF equations[7℄. As outlined in

our earlier work[6℄, numeri
al implementation of the approa
h is 
arried out

in the so-
alled harmoni
 os
illator units, in whi
h the unit of length is the

quantity ax =
√

~

mωx
, and that of energy is ~ωx. The resulting matrix equation

for the RHF 
ase is

F̂ Ĉ(i) = ǫ̃iĈ(i), (7)

where Ĉ(i) represents the 
olumn ve
tor 
ontaining expansion 
oe�
ients {Cji, j =
1, . . . , Nbasis} of ψi, ǫ̃i is the 
orresponding energy eigenvalue, and the elements
of the Fo
k matrix F̂ are given by

F̂i,j = Eiδi,j + V anh
i,j + g

Nbasis
∑

k,l=1

J̃i,j,k,lDk,l. (8)

Above

Ei = (nxi +
1

2
) + (nyi +

1

2
)γy + (nzi +

1

2
)γz, (9)
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expressed in terms of aspe
t ratios γy =
ωy

ωx
and γz =

ωz

ωx
, V anh

i,j are the matrix

elements of the anharmoni
 term in the 
on�ning potential,Dk,l =
∑n

i=1CkiCli

is a density-matrix element, and J̃i,j,k,l represents the 3D two-fermion repulsion

matrix de�ned as

J̃i,j,k,l = Jnxinxjnxknxl
Jnyinyjnyknyl

Jnzinzjnzknzl. (10)

Ea
h one of the J matri
es in Eq. (10), 
orresponding to the three Cartesian

dire
tions, 
an be written in the form

Jninjnknl
=

∞
∫

−∞

dξφnl
(ξ)φnk

(ξ)φnj
(ξ)φni

(ξ), (11)

where ξ is the 
orresponding Cartesian 
oordinate in the harmoni
 os
illator

units. An analyti
al expression for Jninjnknl

an be found in our earlier work[6℄.

In the UHF 
ase, one obtains two matrix equations for the up/down-spin

parti
les of the form

F̂ (α)Ĉ
(α)
(i) = ǫ̃

(α)
i Ĉ

(α)
(i) , (12)

where the F̂ (α)
represents the Fo
k matrix for the up-spin parti
les given by

F̂i,j

(α)
= Eiδi,j + V anh

i,j + g
∑Nbasis

k,l=1 J̃i,j,k,lD
(β)
k,l , ǫ̃

(α)
i is the energy eigenvalue, and

D
(β)
k,l =

∑n2

i=1C
(β)
ki C

(β)
li , are the elements of the down-spin density matrix. We


an easily dedu
e the form of the Fo
k equation for the down-spin parti
les

from Eq. (12). In our program, HF Eqs. (7) and (12) are solved employing the

self-
onsistent �eld (SCF) pro
edure, whi
h requires the iterative diagonaliza-

tion of the Fo
k equations[7℄.

3 Des
ription of the program

In this se
tion we brie�y des
ribe the main program and various subrou-

tines whi
h 
onstitute the entire module. As mentioned in the Introdu
tion,

the present program is an extension of our earlier program for bosons[6℄.

Thus the new program, whi
h 
ompiles as trap.x, 
an solve for: (a) time-

independent Gross-Pitaevskii equation for bosons, and (b) Hartree-Fo
k equa-

tions for fermions, 
on�ned in a trap. Therefore, most of the 
hanges in the

present program, as 
ompared the earlier bosoni
 program, are related to its

added fermioni
 HF 
apabilities. However, we have also tried to optimize the

earlier bosoni
 module of the program wherever possible. A README �le as-

so
iated with this program lists all its subroutines. Thus, in what follows, we

6



will des
ribe only those subroutines whi
h are either new (fermion related),

or modi�ed, as 
ompared to the older bosoni
 
ode[6℄. For an a

ount of the

older subroutines not des
ribed here, we refer the reader to our earlier work[6℄.

Additionally, with the aim of making the 
al
ulations faster, in the present


ode, we use the diagonalization routines of LAPACK library[8℄, whi
h re-

quires the linking of our 
ode to that library. Therefore, for this program to

work, the user must have the LAPACK/BLAS program libraries installed on

his/her 
omputer system. The letter F or B has been in
luded in parenthesis

after the name of ea
h subroutine to show whether the subroutine is useful for

Fermioni
 or Bosoni
 
al
ulations. If it is appli
able for both, we denote this

by writing BF.

3.1 Main Program OSCL (BF)

This is the main program of our pa
kage whi
h reads the input data, dynam-

i
ally allo
ates relevant arrays, and then 
alls other subroutines to perform

tasks related to the remainder of the 
al
ulations. The main modi�
ation in

this program, as 
ompared to its earlier version[6℄, is that it now allows for

input related to fermioni
 HF 
al
ulations. Thus, the user now has to spe
ify

whether the parti
les 
onsidered are bosons or fermions. If the parti
les 
on-

sidered are fermions, one has to further spe
ify whether the RHF or the UHF


al
ulations are desired. For the 
ase of UHF 
al
ulations, the user also needs

to spe
ify the number of up- and down-spin orbitals. Be
ause of the dynami


array allo
ation throughout, no data as to the size of the arrays is needed from

the user. The program will stop only if it exhausts all the available memory

on the 
omputer. There is one major departure in the storage philosophy in

the present version of the 
ode as 
ompared to the previous one[6℄ in that now

only the lower/upper triangles of most of the real-symmetri
 matri
es (su
h

as the Fo
k matrix) are stored in the linear arrays in the pa
ked format. This

not only redu
es the memory requirements roughly by a fa
tor of two, but

also leads to faster exe
ution of the 
ode.

3.2 BECFERMI_DRV (BF)

This is the modi�ed version of the old subroutine BEC_DRV, and is 
alled

from the main program OSCL. As its name suggests, it is the driver rou-

tine for performing: (a) 
al
ulations of the bose 
ondensate wave fun
tion for

bosons, or (b) solving the RHF/UHF equations for fermions. Apart from allo-


ating a few arrays, the main task of this routine is to 
all either: (a) routines

BOSE_SCF or BOSE_STEEP depending upon whether the user wants to

use the SCF or the steepest-des
ent approa
h meant for solving the GPE[6℄,

7



or (b) routines FERMI_RHF or FERMI_UHF depending on whether the

RHF or UHF 
al
ulations are to be performed.

3.3 FERMI_RHF (F)

This subroutine solves the RHF equations for the fermions in a trap using the

SCF pro
edure, mentioned earlier. Its main tasks are as follows:

(1) Allo
ate various arrays needed for the SCF 
al
ulations

(2) Setup the starting orbitals. This is a
hieved by diagonalizing the one-

parti
le part of the Hamiltonian.

(3) Perform the SCF 
al
ulations. For this purpose, the two-parti
le integrals

Ji,j,k,l (
f. Eq. (10)) are 
al
ulated during ea
h iteration[6℄. If the user has
opted for Fo
k matrix/orbital mixing, it is implemented using the formula

R(i) = xmix R(i) + (1− xmix) R(i−1),

where R(i)
is the quantity under 
onsideration in the i-th iteration, and

parameter xmix quantifying the mixing is user spe
i�ed. Thus, if Fo
k

matrix mixing has been opted, xmix spe
i�es the fra
tion of the new

Fo
k matrix in the total Fo
k matrix in the i-th iteration. If the user

has opted for the orbital mixing, then ea
h o

upied orbital is mixed as

per the formula above. The Fo
k matrix 
onstru
ted in ea
h iteration is

diagonalized using the LAPACK routine DSPEVX[8℄, whi
h 
an obtain a

sele
ted number of eigenvalues/eigenve
tors of a real-symmetri
 matrix,

as against traditional diagonalizers whi
h 
al
ulate the entire spe
trum

of su
h matri
es. We use DSPEVX during the SCF iterations to obtain

only the o

upied orbitals and their energies, thereby, leading to a mu
h

faster 
ompletion of the SCF pro
ess in 
omparison to using a diagonal-

izer whi
h 
omputes all the eigenvalues/ve
tors of the Fo
k matrix. The

o

upied orbitals are identi�ed a

ording to the aufbau prin
iple.

(4) The total energy and the wave fun
tion obtained after every iteration are

written in various data �les so that the progress of the 
al
ulation 
an

be monitored. This pro
ess 
ontinues until the required pre
ision (user

spe
i�ed) in the total HF energy is obtained.

3.4 FERMI_UHF (F)

In stru
ture and philosophy this subroutine is similar to FERMI_RHF, ex-


ept that its purpose is to solve the UHF equations for intera
ting spin-

1
2

fermions 
on�ned in a harmoni
 potential. Be
ause there are two separate

Fo
k equations 
orresponding to the up- and the down-spin fermions, the

8




omputational e�ort asso
iated with this subroutine is roughly twi
e that of

routine FERMI_RHF.

3.5 BOSE_SCF (B)

This subroutine aims at solving the time-independent GPE for bosons us-

ing the iterative diagonalization approa
h, and was des
ribed in our earlier

paper[6℄. The diagonalizing routine whi
h was being used for the purpose ob-

tained all the eigenvalues and eigenve
tors of the GPE, whi
h is quite time


onsuming for 
al
ulations involving large basis sets. Sin
e the 
ondensate 
or-

responds to the lowest-energy solution of the GPE, using diagonalizing rou-

tines whi
h obtain all its eigenvalues and eigenve
tors is wasteful. Therefore, in

the new version of BOSE_SCF we now use the LAPACK[8℄ routine DSPEVX

to obtain the lowest eigenvalue and the eigenve
tor of the Hamiltonian during

the SCF 
y
les, leading to substantial improvements in speed.

3.6 BOSE_STEEP (B)

This subroutine aims at solving the time-independent GPE for bosons using

the steepest-des
ent method, and was also des
ribed in our earlier paper[6℄.

In this routine, the main 
omputational step is multipli
ation of a trial ve
tor

by the matrix representation of the Hamiltonian. In the earlier version of the


ode, be
ause the entire Hamiltonian was being stored in a two-dimensional

array, we used the Fortran 90 intrinsi
 subroutine MATMUL for the purpose.

However, now that we only store the upper triangle of the Hamiltonian in

a linear array, it is fruitful to use an algorithm whi
h utilizes this aspe
t.

Therefore, we have repla
ed the 
all to MATMUL by a 
all to a routine 
alled

MATMUL_UT written by us. This has also lead to signi�
ant speed improve-

ments.

3.7 MATMUL_UT (B)

As mentioned in the previous se
tion, the aim of this subroutine is to multiply

a ve
tor by a real-symmetri
 matrix, whose upper triangle is stored in a linear

array. This routine is 
alled from the subroutine BOSE_STEEP, and it utilizes

a straightforward algorithm for a
hieving its goals by 
alling two BLAS[8℄

fun
tions DDOT and DAXPY.

9



3.8 Plotting Subroutines (BF)

We have also signi�
antly improved the 
apabilities of the program as far as

plotting of the orbitals and the asso
iated densities is 
on
erned. Now the or-

bitals, or 
orresponding densities, 
an be 
omputed both on one-dimensional

and two-dimensional spatial grids, along user-spe
i�ed dire
tions, or planes.

The driver subroutine for the purpose is 
alled PLOT_DRV, whi
h in turn


alls the spe
i�
 subroutines suited for the 
al
ulations. These subroutines

are PLOT_1D, and PLOT_1D_UHF for the one-dimensional plots, and

PLOT_2D and PLOT_2D_UHF for the planar plots. The output of this

module is written in a �le 
alled orb_plot.dat, whi
h 
an be dire
tly used in

plotting programs su
h as gnuplot or xmgra
e.

4 Installation, input �les, output �les

In our earlier paper, we had des
ribed in detail how to install, 
ompile, and run

our program on various 
omputer systems[6℄. Additionally, we had explained

in a step-by-step manner how to prepare the input �le meant for running the


ode, and also the 
ontents of a typi
al output �le[6℄. Be
ause, various aspe
ts

asso
iated with the installation and running of the program remain un
hanged,

ex
ept for some minor details, we prefer not to repeat the same dis
ussion.

Instead, we refer the reader to the README �le in 
onne
tion with various

details related to the installation and exe
ution of the program. Additionally,

the �le 'input_prep.pdf' explains how to prepare a sample input �le. Several

sample input and output �les 
orresponding to various example runs are also

provided with the pa
kage.

5 Cal
ulations and Results

In this se
tion we report results of some of the 
al
ulations performed by our


ode on fermioni
 systems. We present both RHF and UHF 
al
ulations for

various types of traps. Further, we dis
uss some relevant issues related to the


onvergen
e of the 
al
ulations.

5.1 RHF Cal
ulations: total energy 
onvergen
e

In this se
tion our aim is to investigate the 
onvergen
e properties of the total

HF energy of our program with respe
t to: (a) number of parti
les in the trap,

10



a = 0.1ax a = 0.2ax a = 0.4ax a = 0.8ax

nmax Nbasis EHF EHF EHF EHF

2 10 3.150676 3.285944 3.521934 3.906583

4 35 3.149708 3.283415 3.517600 3.904041

6 84 3.149568 3.283145 3.517392 3.904014

8 165 3.149546 3.283118 3.517390 3.903925

10 286 3.149543 3.283117 3.517388 3.903892

12 455 3.149543 3.283117 3.517386 3.903886

14 680 3.149543 3.283117 3.517385 3.903885

Table 1

Convergen
e of total HF energy (EHF ) for a spheri
ally symmetri
 trap 
ontaining

two parti
les, with respe
t to the size of the basis set, for various positive values

(repulsive intera
tions) of the s
attering length. Above, nmax is the maximum value

of the quantum number of the SHO basis fun
tion in a given dire
tion, and Nbasis

is the total number of basis fun
tions 
orresponding to a given value of nmax. In

some 
ases, Fo
k matrix mixing approa
h was used to a
hieve 
onvergen
e.

(b) symmetry of the 
on�ning potential, (
) nature and strength of intera
-

tions, and (d) number of basis fun
tions employed in the 
al
ulations. As far

as the number of parti
les is 
on
erned, we have 
onsidered two 
losed-shell

systems namely with two parti
les (N = 2), and with eight parti
les (N = 8).
For N = 2 
ase, 
al
ulations have been performed for all possible trap geome-

tries ranging from a spheri
al trap to a 
ompletely anisotropi
 trap. During

these 
al
ulations, we have 
onsidered both attra
tive and repulsive intera
-

tions, 
orresponding to negative and positive s
attering lengths, respe
tively.

The magnitude of the s
attering length (|a|) employed in these 
al
ulations

ranges from 0.01ax to 0.8ax. To put these numbers in perspe
tive, we re
all

that in most of the atomi
 traps, ax ≈ 1.0 µm, and for a two-
omponent

6
Li

trapped gas, the estimated value of the s
attering length is anomalously large

a ≈ −2160a0[9℄, where a0 is the Bohr radius. Thus, for this very strongly in-

tera
ting system, the s
attering length a ≈ −0.11ax, is well within the range

of the s
attering lengths 
onsidered in these 
al
ulations. Therefore, the sys-

tems 
onsidered here�ranging from weakly intera
ting ones to very strongly

intera
ting ones�truly test our numeri
al methods.

The results of our 
al
ulations are presented in tables 1�5. For N = 2 sys-

tem, we performed these 
al
ulations in order to understand the 
onvergen
e

behavior of the total energy with respe
t to the basis set size, with the goal

of a high pre
ision (six de
imal digit 
onvergen
e) in the total energy. Su
h

high a

ura
y on larger systems will be 
omputationally mu
h more expensive,

and, therefore, our aim behind the study of N = 8 system was to understand

the role of number of parti
les on our results. The next larger 
losed-shell sys-

11



a = −0.1ax a = −0.2ax a = −0.3ax a = −0.4ax

nmax Nbasis EHF EHF EHF EHF

2 10 2.830199 2.637330 2.418234 2.171854

4 35 2.827878 2.622865 2.368604 2.045741

6 84 2.827266 2.617430 2.340043 1.935626

8 165 2.827091 2.615260 2.321750 1.816197

10 286 2.827038 2.614355 2.309079 1.662494

12 455 2.827021 2.613963 2.299711 1.448111

14 680 2.827016 2.613787 2.292337 1.115306

16 969 2.827014 2.613706 2.286104 0.767242

18 1330 2.827013 2.613667 2.280232 0.287303

Table 2

Convergen
e of total HF energy for a spheri
ally symmetri
 trap 
ontaining two par-

ti
les, with respe
t to the size of the basis set, for various negative values (attra
tive

intera
tions) of the s
attering length a. Various symbols have the same meaning as

in table 1.

tem will 
orrespond to N = 20, but we have not studied that here, be
ause,

in our opinion, su
h 
al
ulations will not lead to any newer insights into our

approa
h. Next we dis
uss our results on these systems individually.

With the aim of a more detailed exposition of the 
onvergen
e behavior for

repulsive and attra
tive intera
tions, for N = 2 system 
orresponding to an

isotropi
 trap, we present our results for the positive and negative s
attering

lengths in separate tables 1 and 2. For the rest of the 
ases, results for the

attra
tive and the repulsive intera
tions are presented in the same tables.

Upon examining our results for N = 2 
ase (
f. tables 1�4), we 
on
lude that

for the 
ase of repulsive intera
tions, 
al
ulations always exhibit 
onvergen
e

from above on EHF , with respe
t to the basis set size. In order to a
hieve

six-digit a

ura
y for repulsive intera
tions, one needs to use relatively large

basis sets, although a three-digit a

ura
y 
an be obtained using 
onsiderably

smaller basis sets. However, quite expe
tedly, a drasti
ally distin
t 
onvergen
e

behavior is seen for the 
ases involving attra
tive intera
tions. It is obvious

that for the attra
tive intera
tions, for su�
iently large s
attering length, the

HF method will not be appli
able, and will exhibit instabilities be
ause of pair

formation. For relatively weaker attra
tive intera
tions, one again en
ounters


onvergen
e from above, as was the 
ase for repulsive intera
tions. But, as the

strength of the attra
tive intera
tions in
reases, the 
onvergen
e with respe
t

to the basis set size be
omes more di�
ult to a
hieve, and for |a| > 0.3ax
(with a < 0), this property is 
ompletely lost, and the HF method begins to

exhibit unstable behavior.
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a = −0.3ax a = −0.1ax a = 0.1ax a = 0.2ax a = 0.4ax

nxmax nzmax Nbasis EHF EHF EHF EHF EHF

2 0 6 3.843213 4.540956 5.080053 5.303210 5.689668

2 2 18 3.776326 4.536093 5.077093 5.293658 5.662586

4 0 15 3.757823 4.536934 5.078865 5.300842 5.687999

4 2 45 3.652833 4.531485 5.075905 5.291342 5.660857

4 4 75 3.627775 4.530813 5.075670 5.290704 5.659490

6 2 84 3.566045 4.530250 5.075782 5.291219 5.660855

6 4 140 3.524613 4.529542 5.075548 5.290582 5.659487

6 6 196 3.510247 4.529419 5.075520 5.290518 5.659382

8 6 315 3.408095 4.529035 5.075508 5.290515 5.659352

8 8 405 3.396675 4.529008 5.075504 5.290508 5.659344

10 8 594 3.278208 4.528883 5.075503 5.290508 5.659332

10 10 726 3.265916 4.528877 5.075502 5.290507 5.659332

12 12 1183 3.091015 4.528832 5.075502 5.290506 5.659329

Table 3

Convergen
e of total HF energy for a 
ylindri
al potential (γy = 1, γz =
√
8)


ontaining two parti
les, with respe
t to the size of the basis set, for various values

of the s
attering length a. Above, nxmax is the maximum value of the quantum

number of the SHO basis fun
tion in x- and y−dire
tion, nzmax is the same number


orresponding to the z-dire
tion. Rest of the quantities have the same meaning as

explained in the 
aption of table 1. In some 
ases, Fo
k matrix mixing was employed

to a
hieve 
onvergen
e.

Inspe
tion of tables 3 and 4 reveals that for a given value of intera
tion

length, the 
onvergen
e requires the use of larger basis sets with in
reas-

ing trap anisotropy, ranging from the perfe
tly spheri
al traps, to 
ompletely

anisotropi
 traps. This behavior is expe
ted for 
ases with aspe
t ratios γy and
γz > 1, be
ause the e�e
tive intera
tion 
onstant in su
h 
ases g′ =

√
γyγzg >

g[6℄.

Upon examining our results for N = 8 
ase (
f. table 5), we again see very

monotoni
 
onvergen
e behavior for all 
al
ulations 
orresponding to repul-

sive intera
tions, and note that the high a

ura
y in EHF 
an be a
hieved

with reasonably sized basis fun
tions. However, as was the 
ase for N = 2,

ompletely di�erent behavior is en
ountered when the intera
tions are attra
-

tive. The 
al
ulations with a = −0.05ax exhibit systemati
 
onvergen
e in

EHF with the in
reasing basis set size, but for the 
ase with a = −0.1ax, no
trend towards the 
onvergen
e emerges, pointing again towards an unstable

13



a = −0.3ax a = −0.1ax a = 0.1ax a = 0.2ax a = 0.4ax

nxmax nymax nzmax Nbasis EHF EHF EHF EHF EHF

2 0 0 3 4.665163 5.589854 6.372501 6.712470 7.323686

2 2 0 9 4.524297 5.577420 6.363976 6.683899 7.236946

2 2 2 27 4.377194 5.567347 6.358276 6.665811 7.185985

4 2 2 45 4.237680 5.562563 6.357536 6.664895 7.185950

4 4 2 75 4.141946 5.560272 6.356979 6.663649 7.184217

4 4 4 125 4.062610 5.558749 6.356555 6.662580 7.182201

6 4 4 175 3.914860 5.557403 6.356508 6.662569 7.182068

6 6 6 343 3.749314 5.556591 6.356406 6.662389 7.181903

8 8 8 819 3.344656 5.555972 6.356391 6.662373 7.181859

10 10 10 1331 2.746459 5.555775 6.356390 6.662370 7.181852

12 12 12 2197 1.871496 5.555707 6.356390 6.662369 7.181851

Table 4

Convergen
e of total HF energy for an anisotropi
 potential (γy = 2, γz = 3) 
on-
taining two parti
les, with respe
t to the size of the basis set, for various values of

the s
attering length. Above, nxmax, nymax, and nzmax represent the maximum

values of the quantum number of the SHO basis fun
tion in x-, y−, and z− dire
-

tions, respe
tively. Rest of the quantities have the same meaning as explained in

the 
aption of table 1. In some 
ases, Fo
k matrix mixing was employed to a
hieve


onvergen
e.

behavior.

Finally, in Fig. 1 we present the orbital density plots for the N = 2 
ase

with both attra
tive and repulsive intera
tions, 
orresponding to a = ±0.2ax.
The noteworthy point in the graph is the a

umulation of the density at the


enter of the trap in 
ase of attra
tive intera
tions, as 
ompared to when

the intera
tions are repulsive. With in
reasingly attra
tive intera
tions, this

phenomenon be
omes even more pronoun
ed, possibly 
ausing the instabilities

in the HF approa
h.

5.2 Unrestri
ted Hartree-Fo
k Cal
ulations

In this se
tion we des
ribe the results of our UHF 
al
ulations. If one performs

a UHF 
al
ulation on a 
losed-shell system, one must get the same results as

obtained by an RHF 
al
ulation. Similarly, the total energy and orbitals of

a system with m up-spin and n down-spin parti
les should be the same as

14



a = −0.1ax a = −0.05ax a = 0.01ax a = 0.05ax a = 0.1ax a = 0.2ax

nmax Nbasis EHF EHF EHF EHF EHF EHF

1 4 13.05312 15.52656 18.49468 20.47344 22.94688 27.89377

3 20 11.11619 15.06420 18.47996 20.16365 21.92218 24.85687

5 56 9.55419 14.91302 18.47931 20.16099 21.91766 24.77399

7 120 7.88921 14.86390 18.47929 20.15984 21.91127 24.75854

9 220 5.87592 14.84991 18.47925 20.15895 21.90931 24.75772

11 364 3.37633 14.84676 18.47923 20.15863 21.90899 24.75771

13 560 0.32535 14.84615 18.47921 20.15854 21.90897 24.75767

Table 5

Convergen
e of total HF energy (EHF ) for a spheri
al symmetri
 potential 
ontain-

ing eight parti
les, with respe
t to the size of the basis set, for various values of the

s
attering length. Di�erent symbols above have the same meaning as explained in

the 
aption of table 1. In all the 
al
ulations presented above, Fo
k matrix mixing

was used to a
hieve 
onvergen
e.
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Figure 1. Density ρ(r) = 2|ψ1s(r)|2 plotted along the x-axis, obtained from RHF


al
ulations on a two-parti
le system in an isotropi
 trap with a = 0.2ax (solid lines),
and a = −0.2ax (dashed lines). Distan
e r is in harmoni
 os
illator units.

that of a system with n up-spin and m down-spin parti
les. These properties

of the UHF 
al
ulations 
an be used to 
he
k the 
orre
tness of the underly-

ing algorithm. We veri�ed these properties expli
itly by: (a) performing UHF


al
ulations on 
losed-shell systems with various s
attering lengths and ge-

ometries, and found that the results always agreed with the 
orresponding

RHF 
al
ulations, and (b) by performing UHF 
al
ulations on various open-

shell systems with inter
hanged spin 
on�gurations and found the results to

be identi
al. Therefore, we are 
on�dent of the essential 
orre
tness of our
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Figure 2. Cal
ulated UHF values of addition energies (∆µ(N) = µ(N + 1)− µ(N))
of a spheri
al trap (in the units of ~ωx) with s
attering length a = 0.01ax, plotted
as a fun
tion of the parti
le number N , ranging from N = 1 to N = 21.

UHF program, and in what follows, we des
ribe its appli
ations in 
al
ulat-

ing the addition energy of fermioni
 atoms 
on�ned in a spheri
al trap. The

aim behind this 
al
ulation is to explore whether su
h a system follows: (a)

shell-stru
ture, and (b) Hund's rule, in analogy with harmoni
ally trapped

ele
trons 
on�ned in a quantum dot. We also note that a study of Hund's rule

for fermioni
 atoms 
on�ned in an opti
al latti
e was 
arried out re
ently by

Kärkkäinen et al.[10℄.

The addition energy, i.e, the energy required to add an extra atom, to an

N-atom trap is de�ned as ∆µ(N) = µ(N + 1) − µ(N), where µ(N)/µ(N +
1) represents the 
hemi
al potential of an N/(N + 1) parti
le system. The


hemi
al potentials, in turn, are de�ned as µ(N) = E(N)−E(N − 1), where
E(N)/E(N+1) represents the total energy of an N/(N+1) parti
le system. In
our 
al
ulations, the total energies were 
al
ulated using the UHF approa
h

for various values of the s
attering length and our results for the addition

energy for an a = 0.01ax spheri
al trap are presented in Fig. 2, for the values

from N = 1 to N = 21 .

For the range of N values studied here, in a nonintera
ting model the 
harg-

ing energy a
quires nonzero values ∆µ(N) = ~ωx, only for N = 2, 8, and
20, 
orresponding to �lled-shell 
on�gurations. In an intera
ting model, how-

ever, ∆µ(N) should additionally exhibit smaller peaks at N = 5, N = 14,

orresponding to the half-�lled shells. If the inter-parti
le repulsion is strong

enough to split 3s and 3d shells signi�
antly, we will additionally obtain a

16



peak at N = 18 
orresponding to the �lled 3d shell, while the peaks 
orre-

sponding to the half-�lled shells will o

ur at N = 13, and N = 19, instead
of N = 14. Moreover, it is of 
onsiderable interest to examine whether the

Hund's rule is also satis�ed for open-shell 
on�gurations of su
h spheri
ally

trapped fermioni
 atoms, as is the 
ase, e.g., for ele
trons in quantum dots[11℄.

From Fig. 2 it is obvious that major peaks are lo
ated at N = 2, 8, and 20,
while the minor ones are at N = 5, and 14, with no peaks at N = 13, 18, or
19. The heights of the major peaks are in the des
ending order with in
reasing
N , ranging from 1.003~ωx (N = 2) to 0.908~ωx (N = 20). Additionally, for
all the open-shell 
ases, the lowest-energy 
on�gurations were 
onsistent with

the Hund's rule in that, a given shell is �rst �lled with fermions of one (say

'up') spin-orientation, and upon 
ompletion, followed by the fermions of other

('down') spin orientation. We note that these results are qualitatively similar

to the results obtained for spheri
al quantum dots[11℄. Thus, we 
on
lude that

for the small number of parti
les 
onsidered by us, the shell stru
ture and the

Hund's rule are also followed by atoms 
on�ned in harmoni
 traps where the

mutual repulsion is through short-range the 
onta
t intera
tion.

We have performed a number of UHF 
al
ulations on traps of di�erent ge-

ometries, and s
attering lengths, whose results will be published elsewhere.

However, we would like to brie�y state that as the s
attering length is in-


reased, in several 
ases the ferromagneti
 
on�gurations violating the Hund's

rule be
ome energeti
ally more stable. This implies that for large s
attering

lengths the UHF mean-�eld approa
h may not be representative of the true

state, and in
lusion of 
orrelation e�e
ts may be ne
essary.

6 Con
lusions and Future Dire
tions

In this paper we reported a Fortran 90 implementation of a harmoni
 os
illator

basis set based approa
h towards obtaining the numeri
al solutions of both

the restri
ted, as well as the unrestri
ted Hartree-Fo
k equations for spin-

1
2

fermions 
on�ned by a harmoni
 potential, and intera
ting via pair-wise delta-

fun
tion potential. The spin-

1
2
fermions under 
onsideration 
ould represent a

two-
omponent fermi gas 
omposed of atoms 
on�ned in harmoni
 traps. We

performed a number of 
al
ulations assuming both attra
tive, and repulsive,

inter-parti
le intera
tions. As expe
ted, the Hartree-Fo
k method be
omes

unstable with the in
reasing s
attering length for attra
tive intera
tions, while

no su
h problem is en
ountered for the repulsive intera
tions. Additionally, we

performed a UHF study of atoms 
on�ned in a spheri
al harmoni
 trap and

veri�ed the existen
e of a shell stru
ture, and that the Hund's rule is followed.

These results are in good qualitative agreement with similar studies performed

on harmoni
ally 
on�ned ele
trons in quantum dots, intera
ting via Coulomb

intera
tion.
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In future, we intend to extend and improve the fermioni
 aspe
ts of the

present 
omputer program in several possible ways. As far as problems re-

lated to fermioni
 gases in a trap are 
on
erned, we would like to implement

the Hartree-Fo
k-Bogoliubov approa
h to allow us to study su
h systems in

the thermodynami
 limit, and at �nite temperatures. With the aim of study-

ing the ele
troni
 stru
ture of quantum dots, we plan to introdu
e the option

of using the Coulomb-repulsion for interparti
le intera
tions, a step whi
h will

require signi�
ant 
ode writing for the two-ele
tron matrix elements. Addition-

ally, we also aim to introdu
e the option of studying the dynami
s of ele
trons

in the presen
e of an external magneti
 �eld, whi
h will also allow us to study

fermioni
 gases in rotating traps. Finally, we plan to implement the option

of in
luding spin-orbit 
oupling in our approa
h, whi
h, at present, is a very

a
tive area of resear
h. We will report results along these lines in the future,

as and when they be
ome available.
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