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Abstract

It is known that the anomalous transport in fusion devices is governed by gradient-
driven instabilities and is characterised by an offset linear dependence of the heat
and particle fluxes on the corresponding gradients. The dependence is very strong
so that a small change in gradients causes a huge variation of fluxes thus giving rise
to the so called stiff transport. This feature makes the standard numeric schemes for
a parabolic equation strongly unstable so that plasma simulations with transport
codes require very small time steps. In this paper, a modification of the standard
finite difference scheme is suggested that eliminates this kind of numerical instabil-
ity. It is shown that the implementation of the technique allows the time step for
stiff transport models to be increased by several orders of magnitude. Generalisa-
tion to more advanced numeric schemes and to a system of parabolic equations is
straightforward.
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1 Introduction

Plasma confinement in fusion devices has been extensively studied for about
four decades, and the first numerical models were created at the end of six-
ties. From the very beginning it was understood that the particle and energy
losses observed in fusion devices were strongly underestimated by the classic
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transport theories based on the Coulomb collisions [1,2]. The enhanced non-
classic transport was attributed to a plasma turbulence and referred to as the
anomalous transport. The plasma turbulence is quite a complex and versatile
phenomenon [3] therefore various models and approaches have been tested, but
a consensus regarding the anomalous transport mechanism is not yet fully es-
tablished. Nevertheless, it is widely recognised that the particle and energy
transport in tokamaks is mainly determined by the gradient-driven drift-type
instabilities and many efforts are now invested in studies of this type of trans-
port.

Consistent computer simulation of the turbulent transport requires compli-
cated nonlinear codes that are based on a gyro-fluid or more sophisticated
plasma description in a real geometry. These codes are very time consuming,
so their results can be used either for direct comparison with experiment in a
quite limited space and time region or as a basis for building much more sim-
plified models that can be used on a wide parameter, time and space domain.
In the recent years, massive and correlated efforts were applied to construct
reduced transport models for tokamak plasmas [4-7].The common feature of
these models is that they are all based essentially on a first-principle descrip-
tion and, unlike early transport models, do not rely on any heuristic consid-
erations. However, the complicated background physics of these theory-based
models is substantially simplified in different ways, and different methods of
construction are employed. As a result, the physical effects taken into account
in different models are not exactly the same and, in addition, even similar
effects are sometimes treated differently.

For this reason one cannot concentrate on a single model. All, or most of them,
have to be studied in parallel and verified against the available experimental
data in order to find weak point of each model, identify missing physics and
then to construct a more complete and reliable model with higher predictable
capabilities. It is also accepted that the ITER project [8], presently based on
the phenomenological and empirical scaling laws, should be re-evaluated on
the basis of the theory-based models.

A computer tool for conducting this programme is called a tokamak trans-
port code. The code describes plasma behaviour in a tokamak device whose
magnetic structure is described by a set of enclosed torii. Most of these torii
are fully covered by a single magnetic field line and therefore they are called
magnetic surfaces. Because the equilibration along the magnetic field lines is
extremely fast, the plasma characteristics within each toroidal magnetic sur-
face are assumed to be homogeneous. Across these surfaces the plasma density,
temperature and other relevant plasma parameters obey diffusion equations.
The particle and energy fluxes are related to their gradients by the matrix
which is provided by the first-principle transport models as described above.
Therefore the core of a transport code is a set of 1D parabolic equations.



The set of equations is very simple and usually causes no problem. However,
when the theory-based transport models are employed, then a relevant sim-
ulation can become extremely time consuming. This is because the standard
numeric schemes applied to these transport models result in highly unstable
algorithms thus imposing severe limitations on the time step of integration.
The cause of this numerical problem is usually attributed to the physics of the
turbulence driven transport. The anomalous energy (or particle) flux associ-
ated with a given type of instability is zero when the instability is not excited
but it switches on and rapidly increases beyond the instability threshold. The
strong dependence of the diffusion coefficient on the driving gradient is re-
sponsible for the numerical instability. The transport models are called stiff
models by analogy with stiff ODE that are characterised by greatly different
eigenvalues and also require very small time steps unless special numerical
techniques are applied.

In addition, one has to take into account that many plasma problems of inter-
est include different time scales and require very long runs, far beyond the time
required for the relaxation of fast anomalous transport processes. Moreover,
the wide variety of tokamak regimes and uncertainty of numerous additional
parameters adds to the complexity of the transport modelling. This requires
multiple runs for essentially the same physical cases in order to estimate a
sensitivity of the results to a number of insufficiently well known plasma char-
acteristics. All of these circumstances make the usage of the theory-based mod-
els impractical unless a drastic improvement of the usual numerical schemes
is developed and implemented in the code. This paper proposes such a modi-
fication of the standard numerical scheme for a parabolic equation that allows
the time step to be increased by orders of magnitude.

In Section 2 we formulate the problem and introduce a simple model equation
that reproduces all of the main properties of the stiff transport model. In
the next section, qualitative arguments are presented that should clarify a
reason of the numerical instability. Then a possible way of improvement is
discussed and a modification of the standard finite difference algorithm is
proposed. Numerical examples of the usage of the new algorithm are presented
in Section 4. The discussions, possible extensions and conclusions are given in
Section 5.



2 Formulation of the problem

2.1 Differential equation and difference scheme

Consider a simplified diffusion equation for the function u = wu(x,t) of the
space r and the time ¢ coordinates

uy = (Duy — Vu), + S, 0<z <1, t>0. (1)

The subscripts t and = denote partial derivatives with respect to time and
space, u is a generic plasma parameter as density, temperature, etc., D and
V' are the diffusion coefficient and the convective velocity, respectively, that
depend on z, u and u,, S = S(u,z) is a source term. The combination ¢ =
Vu — Du, in the brackets of Eq. (1) will be referred to as a flux of the quantity
u. We assume that appropriate boundary and initial conditions are provided.
It is also understood that u and S can be vectors, D and V' matrices but this
is immaterial for our consideration.

Without going in details we can write the numeric scheme for Eq. (1) in the
standard form

Uy — U L O =G o
T h

_ D Qit1/2Uir1 — Biv1/2U;
qi+1/2 = —Lit1)2 n )

i=0,1,...,N
(2)

where 7 and h are the time and space steps respectively. The integer subscript
i is related to the grid cell centre x; and the half-integer ¢ + 1/2 to the cell
boundary Z;11/2 = (%41 + ;)/2. The hat denotes quantities evaluated at the
next time step ¢ + 7. All other quantities are evaluated at the time ¢. The
approximation for the flux in Eq. (2) can be done in many different ways. In
this paper we use the exponential scheme proposed in [9] that gives very good
results for any reasonable values of D and V. In this scheme

RS _hV
Qjyr1/2 = Ol(fi+1/2), ﬂi+1/2 = Ot1/2 — fi+1/2,

where £ is called the grid Peclet number. For example, the finite difference
scheme (2)—(3) is exact for the steady state solution of Eq. (2) in regions
where D and V are constant and S = 0, for any value of the Peclet number
[9]. In general, the scheme has the aproximation order O(h?) in space and
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Fig. 1. Simplified model for the stiff transport. Partial fluxes are shown
with dashed lines, total flux with a solid line.

O(7) in time. The finite difference scheme also preserves the number of parti-
cles (energy) and thus complies with the conservation law. The only property
discussed below is the numerical stability that really has a crucial impact on
the usage of the theory-based transport models. All other numerical properties
that are very important in other contexts are not addressed here.

2.2 Model equation

As discussed in the introduction, the functions D, V', and S result from solving
complicated sets of equations that are essentially independent from Eq. (1).
Although it is not always correct physically, most of the theory-based transport
models return V' = 0. This happens because the models calculate the entire
fluxes as the combination ¢ = Vu — Du,. Separating this flux into the partial
components and, consequently, a separate calculation of D and V is possible
but requires additional computations. Moreover, often it is not clear if this
splitting is appropriate and really justified. Therefore it is usual to deal with
the effective diffusivity D, = —q/u, that under some circumstances can be
also negative.

It follows that the typical dependence of the flux ¢ on the plasma parameters
has the form

q = —[Do(z,u) + Dan(z,u, ug)] ug (4)

where Dy is the classic (or so called neo-classic) collisional diffusion and D,
includes contributions from different anomalous processes. For simplicity we



consider here only one such an anomalous process and start with the discussion
of the simplest model

Dy (n=ne) /n, if 7 >ne >0,
D,, = (5)

0, if n<ne,

where 7 = —u,. The dependence (5) is illustrated by Fig. 1. The classical flux
is proportional to the gradient while the anomalous flux switches on when
the gradient exceeds the threshold. Once n > 7. the flux rapidly increases
because of D; > D,. This strong inequality dominates all properties of the
considered problem. It gives rise to the name stiff transport and is a cause
of the numerical instability studied below. Typically, the diffusion Dy is quite
low so that, in practice, the gradient 7 increases until it reaches the threshold
Ner- Above 7, a small enhancement of 7 drives a huge increase of the flux ¢
and prevents further growth of the gradient. As a result, the whole plasma
is beyond the threshold 7., although the actual gradient n is always close to
the value 7... As an exception, narrow space zones can exist that are called
transport barriers. These zones with a large variations in the slope 7 could
require a special treatment.

3 Numerical algorithm

3.1 Instability of the standard finite difference scheme

In practice, the dependence shown in Fig. 1 is not known. Neither 7., nor D
can be easily derived. Instead, in every space point x one knows the parameter

set {u, u;} and can calculate the classical flux g = —Dyu, and the anomalous
flux gqy, or, equivalently, Dy, = —¢un/u. Consequently, the diffusion equation
is simply

U = (Deffuw)w +5 (6)

where D¢/f = Dy + D,, is a known space function. The simplest difference
representation of Egs. (6) along the line of Eq. (2) is

Ui — Ui epp Uipr — Uy eff Ui — Uj—q .
=Dy Dty + 5 i=0,1,.

LN, (7)

We repeat that the accuracy of this numeric scheme with respect to the time
step is rather low and can be substantially improved. However, it is not the
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Fig. 2. Interpretation of the one-time-step advance for the unstable nu-
merical scheme (7). Successive time steps are given by 7g, 11, 72, etc. The
filled circle shows the current work point, cross shows the steady state
solution. The solid line is the same as in Fig. 1.

subject of the current paper because all features of difference schemes discussed
below are not directly related to the accuracy.

Consider now the properties of the solution given by Eq. (7) in more detail.
Assume that a current work point is given by 7, as shown with a filled circle
in Fig. 2. Assume also that the steady state flux for these conditions can
be achieved at 7, and is g, = D®/n. (cross in Fig. 2). The numerical
scheme Eq. (7) implies that the flux is a linear function of u,, ¢ = D/ (no)n.
The function is shown in Fig. 2 by the dashed line crossing the filled circle.
If the time step 7 in Eq. (7) is large enough then the scheme will predict
the gradient 7; such that g, =~ D®/(ny)n. Then the calculated flux ¢ =
D4J(ny)m (empty circle in Fig. 2) will exceed the expected flux g, by a factor
D¢ (ny) /D7 (mg) > 1. Tt is easy to see that the subsequent time step will
give 1o < 1o thus indicating a numerical instability that arises when the time
step 7 exceeds a certain threshold. By reducing the time step this instability
would be suppressed, however, in real situation, this condition limits the time
step to an extremely low value that is approximately a factor of 1075 smaller
than all physically relevant characteristic times of the problem. Under such a
constraint any realistic modelling becomes very time consuming.
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Fig. 3. Modified numerical scheme for Eq.(8). The sequence of time steps
Mo, M1, - - - is monotonic. The dashed line shows the modified flux in Eq.(8).
The solid line is the same as in Fig. 1.

3.2 Stable finite difference scheme

The discussion of Fig. 2 suggests a direct way to overcome this difficulty. First
of all consider a modification of Eq. (6)

u, = (D Muy + Duy — V), + S, V=D—. (8)

The new equation (8) is identical to Eq. (6) at arbitrary D because the sum
of added terms is identically zero. If the explicit numerical scheme is applied
to Eq. (8) then again it will be equivalent to Eq. (6). However, the difference
implementation for Eq. (8) along the line of (2)-(3) is not identical to that for
Eq. (6). Indeed, for Eq. (8) we obtain the scheme (2) when D is replaced with
D¢T 4+ D and £ with

hV

DI D )

&=

The difference arises because the quantities v and wu, in brackets of Eq.(8) are
calculated at ¢ 4+ 7 while all other terms including V' and ¢ at ¢. Numerical
properties of the new difference scheme are illustrated by Fig. 3. The dashed
line here shows the dependence of the flux ¢ = ¢(u,) in Eq. (8) at fixed
D¢/f. D and V. Provided the value of D is high enough the slope of the
dashed line D in the point 7, is higher than that of the solid line dq/dn, i.e.
D > Dy + D,, = D/,



The same qualitative consideration as before indicates that the time step
started with 7y ends up with n = n; that is in between 7y and 7. For the
simple model (5), the scheme (2), (9) is numerically stable. In more realistic
cases, this kind of analysis is not possible. Moreover, the actual behaviour can
be rather different. Nevertheless, the test runs described in the next section
show very robust behaviour at large D. Above some limit the quantity D can
be anything while the quantity V has to be adjusted at each grid point in line
with Eq.(8). In what follows we use D = Const although varying this quantity
can provide further improvements.

It is obvious that the different numerical stability of the same difference scheme
(2) as applied to the differentially equivalent equations (6) and (8) means that
a non-vanishing term is added in the latter case. The term can be easily found
analytically however its numeric computation is rather problematic since this
would require calculation of the flux first in the old and then in the new scheme.
Because the former can be made with very small time steps only, all advantage
will be lost. However, such a computation is important because it gives a
quantitative evaluation of the quality of the solution. In order to allow such
an evaluation we do essentially the same transform in the difference (7) rather
than in the differential (6) equation. The flux g;j11/2 = D:-{{ﬂ (4; — Giy1) /B in
Eq. (7) will be modified as

Gi+172  —  Qiv1/2 T Qit1/2,

qi+1/2 = _EDZ'—H/Z [a(fi+1/2)ui+1 - 5(&41/2)%’] ) §i+1/2 =In -
Ui+1

(10)

Using Eq. (3) one has

U; UiUig1 — Ui+1U4

(11)

1 -
Gi+1/2 = —7 Diy1/21n
iy RO = wi

So far the quantity D has been considered as arbitrary therefore one can save
computing time by replacing D with a very close quantity D

~ = Uit1/2 U; = 2
+1/2 11/2 ——— n Wirt +1/2 ( + O( )) (12)

It is seen that the difference between D and D is of higher order in h than
the accuracy of flux approximation in Eq. (10). Therefore in what follows we
will not distinguish between the two quantities. Now the additional term (11)
takes the form

_ —_D Uillip1 — Ui—i—lai_
Qi+1/2 = —Liy1)2 =

O(1) + O(h?). (13)

h Ui4-1/2



The quantity ;11/» is the difference approximation (2) of the zero flux Du, —
Vu included in Eq.(8). Unlike its differential prototype ¢ = D [u (u/u) — u,] =
0 the finite difference flux g;;1/2 is nonzero but, as shown in the next section,
it can be easily computed at each time step.

3.8 Alternative view and interpretation

It is clear from our qualitative description that the main stabilisation effect
is achieved due to the large additional term in the diffusive flux. In order to
keep the total flux unchanged we added a compensating convective term. For
the numerical stability it is significant that the newly added diffusive term
is approximated implicitly. One can exploit the same idea in a different and
probably more transparent form.

Instead of compensating for the additional implicit diffusive flux with an op-
posing convective flux, we can just subtract an explicit diffusive flux. The es-
sential characteristics of the compensating term are the same in both schemes,
namely an explicit dependence on u, consistent with the offset linear depen-
dence depicted in Fig. 3, and a full cancellation in steady state. In this alter-
native form, because there is no convective term, the exponential scheme is
replaced with a central difference discretisation. Consequently, this approach
results in an additional flux that can be expressed as

Uip1 — Us Uit — Uz) (14)

Gi+1/2 = —Dit1/2 ( 5 5
at each grid point. A stabilising effect of the scheme Eq.(14) is comparable to

that of Eq. (13).

First of all, we apply the Taylor expansion to the expressions (13), (14) and
find

¢ = —1Du(Inu),, + O(h?) + O(1?) (15)

and

G = —TDug + O(R?) + O(7?), (16)
respectively. It is seen that the added terms act as a mixed space-time deriva-
tive. Its stabilizing mechanism can be explained in a simple way. Following

from our qualitative discussion in relation to Fig. 2, the considered numerical
instability manifests itself as local oscillations in the gradient wu,. Moreover,
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in the adjacent grid cells, these oscillations occur in the counter phase. There-
fore, the small term (15) or (16) effectively suppresses the short-scale numerical
instability. The relations (13) and (15) show that the artificially introduced
fluxes ¢ and § go to zero as 7 — 0 and when the solution u(zx,t) approaches
the steady state. After the initial phase of fast relaxation one can increase the
time step 7 still keeping the error small. As mentioned this is essential when
a problem includes different characteristic times which are much larger than
that for the quantity wu.

Second, it is seen that the error terms have a form of the flux of the quantity
u. Any of them can be represented as the source term

_ 1 .
S; = 5 (672'4-1/2 - %—1/2) = O(7), I<i<N. (17)

This difference source does not contribute significantly to the global source
J/Sdx. Moreover, in the usual case of the boundary conditions ¢,/ = 0 and
uy = Const the global source

N
R Si=qniie — Qe (18)
i=1

vanishes. The local error (17) (or a similar one obtained by replacing ¢ with
G) introduced by the numerical scheme modification (10) should be compared
with the local source S;. If it is found that the error is too high then the
time step has to be reduced. The final remark is that if needed the numerical
scheme can be modified by subtracting the term (17) from the right hand side
of Eq. (8) and employing iterations within each time step.

To conclude this section, we note that newly introduced terms do not change
the order of approximation of the original scheme (2), (3) that formally re-
mains O(7) + O(h?). This means that asymptotic properties of convergence to
the exact solution for small 7 and A remain unchanged so that the standard
techniques for accuracy control remain applicable. On the other hand, one
should be aware that local (in space) characteristics of the numerical scheme
accuracy can be noticeably spoiled and that a continuous control of the addi-
tional error terms like Egs. (15), (16) or Eq. (18) is indispensable.

4 Numeric examples

In this section we apply the proposed algorithm to a real tokamak simula-
tion. As an example we consider the reference ITER inductive scenario [8].
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The computations have been performed with the transport code ASTRA [10].
In order to highlight the numerical properties of the solution we reduce the
full problem to a set of three coupled equations for the electron and ion tem-
peratures and for the poloidal magnetic field. The plasma density profile is
prescribed and kept fixed. Energy transport coefficients are calculated on the
basis of the GLF23 transport model [6] that is currently considered as one of
the most advanced model of this kind. On the other hand, this model is one
of the most stiff and difficult for the numerical treatment. Therefore, if the
algorithm is capable of handling GLF23 it should cope with all other models.
Leaving aside the physics results of the simulation, we concentrate exclusively
on its numeric aspects. All results presented below were obtained with the dif-
ference scheme modification described in Section 3.2. The alternative scheme
Eq. (14) gives very similar results.

4.1  Time step control

In order to quantify the numerical stability of the algorithm we adopt the
following control procedure for the time step 7. First we evaluate the quantity

Dan - Dan

an

S Atol (19)

Ap = max
3

that is considered as a measure of the numerical instability. The maximum
in Eq. (19) is taken over all space grid nodes. If the quantity Ap exceeds a
maximum allowed value of A;, then the time step is repeated with a decreased
7. Otherwise, 7 is increased and simulation continues. The algorithm maintains
the approximate equality Ap(7) & Ayy. If Ayy is not very large the algorithm
(19) always pushes the time step 7 to the threshold of the numerical instability
and defines a maximum tolerable time step 73, for a simulation with the given
value of Ay, As Ay, is increased, the resulting increase in time step gives rise
to a numerical instability which manifests itself as a saw-like perturbation.
This first emerges locally and then propagates over the grid with the velocity
h/7. In the simulations presented below Ay, was always small enough to keep
the numerical instability at the marginal level. In this case, although a small
perturbation with the amplitude A;, is present it is localised at one or two
places on the grid but does not expand.

The quantity D,, was selected as a sensor of the instability in line with the dis-
cussion in the previous section. A similar result can be obtained if in Eq. (19)
D,, is replaced with the temperature gradient Vu, i.e. with u, in the nota-
tions of Section 3. It is worth noting that the quantity u(x,t) does not show
noticeable changes unless the numerical instability becomes uncontrollable.
For this reason, selecting a working point slightly beyond the threshold of the
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numerical instability is a reasonable choice for plasma applications.

4.2 Steady state phase

First we consider a steady state phase of a tokamak discharge. The code is
started with arbitrary initial conditions and then runs until a steady state
with respect to the plasma temperatures is achieved.! Since the constraint
(19) is applied, the time step 7y (Ayo) is adjsuted automatically, and its value
determined by the evolution of multiple plasma parameters in the selected
tokamak scenario. In order to isolate the numerical characteristics of interest
we consider the normalised quantity 7 = 73, /7Tpo Where 7pg is the time step
forced by Eq. (19) at D = 0. This quantity is plotted as a function of D in
Fig. 4. As expected, 7 increases with D. Moreover, above a certain threshold,
D > D, the condition Eq. (19) does not restrict the time step any more
so that a curve in Fig. 4 approaches a vertical asymptote. It means that the
particular instability discussed here becomes stabilised and does not show up
any more. Above this value of D the algorithm (19) does not limit the time
step that grows until another control algorithm comes into play. However,
this next limitation is usually related to numerical accuracy rather than to
numerical stability.

Quantitatively, the behaviour discussed depends on many particular details of
the simulation, but here we consider only the sensitivity of the algorithm to the
parameter A;,. If A, decreases then the limitation on 7 becomes more strict
and the total curve scales down as shown in Fig. 4 with the dashed line. The
“no-instability” threshold D, increases, however, the qualitative behaviour
does not change.

As seen from Fig. 4 a value of D > 50 m?/s is required in order to suppress
the numerical instability if the latter is understood in the sense of Eq. (19)
with a quite weak restriction for the relative variation. A stronger restriction
requires an even higher value of D. These quantities are much larger than the
effective diffusion in this simulation, which is no more than D¢/ = 1 m?/s,
indicating that D, has no relation to D*//. Our qualitative consideration in
Section 3.2 shows that a more appropriate characteristic for D is the slope
of the solid curve in Fig. 3 that is given by the derivative ¢, = 0q/0n. It
was suggested that D > g, was required for the numerical stability. In our
example, g, is a discontinuous function shown in Fig. 5. It is seen that g,
varies between 20 m?/s and 100 m?/s that roughly explains the order of D
required to enforce stability in accordance with the qualitative discussions

1 With respect to the poloidal magnetic field there is no steady state but almost
nothing changes in this time because the characteristic field diffusion time is more
than by two orders of magnitude larger.
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Fig. 4. Normalised time step 7 versus additional diffusion coefficient D.
The quantity 7 is plotted for two values of A4y, 10% (solid line) and 5%
(dashed line).

in Section 3. If D > g, is fulfilled everywhere in space then the instability
is not present. With decreasing D at a fixed time step, the instability first
arises locally in the regions where D < ¢n, then the regions extend and the
computation breaks down. As discussed the algorithm Eq. (19) keeps the time
step just above the instability threshold.

It is worth noting that the condition D > gp is quite limited and gives rather a
rough estimate for a reasonable value of D. This is because the variation of the
flux ¢ at each time step depends not only on the gradient 7, but also on many
other plasma parameters as in example shown with the dashed line in Fig. 5.
In addition, changing the grid spacing can influence D. Moreover, during the
time evolution the spikes in Fig. 5 can move in space which drastically changes
the local stability properties. All of these additional complications make it
difficult to provide general recommendations for a suitable value of D, and
some investigation is required in differing applications.

4.8 Transient phase

In order to characterise the proposed numerical scheme in somewhat differ-
ent circumstances we also consider the starting phase of the same tokamak
simulation. This is a phase of the fast relaxation from artificial initial condi-
tions to a steady state distribution. Again the time step limiting algorithm
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Eq. (19) was applied. The computer time required to reach the steady state
is plotted in Fig. 6. As before, instead of the absolute magnitude we consider
the quantity normalised to its value at D = 0. In this case it is also possible
to achieve an essential increase in the speed of the calculations. However, the
gain in speed is not as large as for the steady state. This is because, during
this initial phase of the fast relaxation, the numerical instability is only one
of many reasons for time step limitation. Simultaneous variation of different
plasma parameters imposes additional restrictions on the time step.

There can be many reasons for violation the inequality Eq. (19) that have
nothing to do with the numerical stability of the difference scheme. The di-
versity of physics processes in a tokamak and the related complexity of in the
transport codes result in many interdependencies in the code that also require
controlling. Therefore, it is well to bear in mind that it does not make much
sense to reduce A, below 5%. This observation is mainly valid for evolution of
the discharge but is applicable also to its quasi-stationary phase. This usually
requires additional control variables to limit the time step of the simulation.
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5 Summary and discussions

As discussed the paper addresses a specific case of finite difference schemes for
a quasi-linear parabolic equation with a stiff transport. If applied to the energy
transport, the stiffness means that the heat conductivity depends not only on
the temperature but also has a strong dependence on the temperature gradi-
ent. In general, the tokamak plasma being a complex system shows a strongly
non-linear offset response to any external influence such as energy, momentum
and particle sources, etc. The discontinuity of the flux derivative with respect
to the gradient causes a violent numerical instability of the standard finite
difference scheme, both implicit and explicit.

A way of overcoming the difficulty is proposed that is based on including
an additional large implicit diffusion flux in the equation and simultaneous
subtracting the same flux in the form of convection or an explicit diffusion flux.
Differentially the two terms are equivalent and the sum of those is exactly zero.
However, the finite difference approximation introduces a non-zero correction
in the numeric scheme that makes the algorithm stable. The correction can be
thought of as a mixed space-time derivative with a small factor in front of it.
A numerical error introduced by this additional term can easily be evaluated
and used for monitoring the accuracy of the scheme.
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As regards accuracy, for the standard numerical schemes, as Egs. (2), (3), the
time-step limit enforced by the stability requirement is extremely severe, and
is typically many orders of magnitude more restrictive than that imposed by
the accuracy condition. The gap is so large that even increasing the time step
by a factor of 10? still does not bring the accuracy problem to the fore. In a
few special cases only, it really becomes an issue. One of those is the transport
barrier zone and its time evolution. Preliminary simulations show that the
two different approaches discussed in Section 3.3 affect the barrier in opposite
ways. Apparently a combination of both may be required to treat this problem
in the most accurate and efficient way [11]. In any case, the scheme properties
in this situation deserve a further detailed study. In other cases, the algorithm
(19) gives quite reasonable control of the time step both from the point of
stability and accuracy requirements.

Although the introduced error Eq.(13) (or Eq.(14)) increases with 7 and D it
usually remains unimportant as long as no developed instability is observed.
This is because the error source is strongly localised in space and has a short-
space-scale dipole nature. Therefore its integral is very close to zero not only
over the whole grid but also over any space domain that covers several grid
cells. As a result the total influence on the energy balance is negligible. More-
over, in many applications the details of the time evolution are not required,
and for the steady state solution the introduced error vanishes everywhere. In
addition, the sources and fluxes in transport modelling are often known only
to an accuracy of 10% or worse. If, nevertheless, the correction (17) is found
to be comparable with the physics source then, in order to avoid distortions
of the time evolution, the term D and/or the time step 7 have to be reduced
during this phase of simulation. After approaching the steady state both can
be increased again.

Conceptually, a similar technique was proposed in [12]. It was suggested to
split the total anomalous flux in two pieces in line with

aq an an
q(u,n) = q(no) + #(n —10) = V*u+ D",

— Dan
’ yan — 9(770) o )
on u

(20)

The distinction with our approach is that the quantity D introduced in Eq. (8)
is not directly linked to dq/0n.

However, this formal difference has far reaching consequences. The quantity
0q/0n is shown in Fig. 5. As one can see it has a quite peculiar space depen-
dence. Using the discontinuous function D as the diffusion coefficient can
be challenging in itself. Moreover, the derivative dq/0n does not encompass
all dependencies of the flux. Although the dependence ¢(u,) is usually the
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strongest one, g also depends on many other plasma parameters, and so the
Taylor expansion in Eq. (20) is incomplete. Under certain circumstances vari-
ation of any of those can cause fast local change of D" in space and time and
this will have a stronger influence on the numerical stability stronger than u,.
Vicinities of the discontinuities in Fig. 5 are very sensitive in this respect. If
a discontinuity moves over the grid then the time step of integration will be
strongly reduced. In addition, Eq. (20) requires derivation of the numerically
defined flux ¢ that is usually the most expensive part of the simulation. With
increasing complexity of the transport models the problem will become more
and more limiting.

Most of these problems do not arise if the diffusion coefficient is a prescribed
space function D that is taken independently of dq/0n. Nevertheless, one still
has to bear in mind that a monitoring of quality should be applied to the
solution. It means that the quantity S; given by Eq. (17) is to be computed
and compared with other sources and sinks in the equation. If it becomes
large then either D or 7 has to be reduced or a correction should be added
to the right hand side. An additional remark can be made as regards the
finite difference scheme. The compound flux in Eq. (8) consists of two large
opposed fluxes, convective and diffusive. In terms of finite difference scheme
the relative strength of the two fluxes is characterised by the Peclet number
P =hV/D = h/L, where L, = u/u, is the characteristic length of variation
of the parameter u. The estimate shows that P is usually rather small because
the discretisation is always done in the way that the grid size h is much smaller
than the characteristic size L,. It means that the requirements for the numeric
scheme are not very demanding.

In summary, a new numerical algorithm has been suggested for the stiff trans-
port models. It exploits splitting the net flux in mutually compensating diffu-
sive and convective components. The splitting includes a free parameter that
is used to suppress the numeric instability of the standard difference scheme
and allows the time step to be increased by several orders of magnitude. Dif-
ferential interpretation of the algorithm shows that a new term is added. The
term has a small factor and includes a mixed time-space derivative of the
unknown quantity. This derivative effectively suppresses possible numerical
instability. In this paper two versions of the approach are described for the
simplest possible finite difference scheme for a parabolic equation. General-
isation to more advanced numeric schemes, non-equidistant grids, system of
parabolic equations is straightforward.
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