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Abstra
t

We derive formulas for the Coulomb matrix within the full-potential linearized augmented-plane-wave (FLAPW)

method. The Coulomb matrix is a 
entral ingredient in implementations of many-body perturbation theory, su
h as

the Hartree-Fo
k and GW approximations for the ele
troni
 self-energy or the random-phase approximation for the

diele
tri
 fun
tion. It is represented in the mixed produ
t basis, whi
h 
ombines numeri
al mu�n-tin fun
tions and

interstitial plane waves 
onstru
ted from produ
ts of FLAPW basis fun
tions. The interstitial plane waves are here

expanded with the Rayleigh formula. The resulting algorithm is very e�
ient in terms of both 
omputational 
ost

and a

ura
y and is superior to an implementation with the Fourier transform of the step fun
tion. In order to allow

an analyti
 treatment of the divergen
e at k = 0 in re
ipro
al spa
e, we expand the Coulomb matrix analyti
ally

around this point without resorting to a proje
tion onto plane waves. Without additional approximations, we then

apply a basis transformation that diagonalizes the Coulomb matrix and 
on�nes the divergen
e to a single eigenvalue.

At the same time, response matri
es like the diele
tri
 fun
tion separate into head, wings, and body with the same

mathemati
al properties as in a plane-wave basis. As an illustration we apply the formulas to ele
tron-energy-loss

spe
tra (EELS) for ni
kel at di�erent k ve
tors in
luding k = 0. The 
onvergen
e of the spe
tra towards the result

at k = 0 is 
learly seen. Our all-ele
tron treatment also allows to in
lude transitions from 3s and 3p 
ore states in

the EELS spe
trum that give rise to a shallow peak at high energies and lead to good agreement with experiment.

Key words: Coulomb matrix, many-body perturbation theory, diele
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tros
opy

PACS: 71.15.Qe, 71.45.Gm

1. Introdu
tion

For the ab initio 
al
ulation of ele
troni
 ex
itations and spe
tros
opi
 fun
tions, where variational ground-

state s
hemes like Kohn-Sham density-fun
tional theory [1℄ are not stri
tly appli
able, many-body pertur-

bation theory has now be
ome the method of 
hoi
e in appli
ations to solids and their surfa
es. It is based

on a Green-fun
tion formalism and an adiabati
 swit
hing-on of the Coulomb intera
tion [2℄. In this way

the Green fun
tion of the fully intera
ting many-ele
tron system 
an be expanded in powers of the Coulomb

potential, generating a series of Feynman diagrams with in
reasing 
omplexity. Pra
ti
al approximations


an be designed by terminating the series at a given order or restri
ting the summation to 
ertain 
lasses
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of self-energy diagrams that des
ribe dominant s
attering pro
esses. A prominent example is the ex
hange-

only Hartree-Fo
k approximation, whi
h in
ludes all ele
troni
 intera
tion e�e
ts up to linear order in the

Coulomb potential, while additional 
orrelation e�e
ts resulting from dynami
 s
reening in an itinerant ele
-

tron system are taken into a

ount in the GW approximation [3℄. The latter has been su

essfully applied

to a variety of materials, espe
ially semi
ondu
tors, and generally yields ele
troni
 band stru
tures and

quasiparti
le properties in very good agreement with experimental data [4℄. The diele
tri
 fun
tion, whi
h

already appears as an intermediate quantity in the GW approximation, 
an be expanded in a similar manner

and is itself the key quantity for the theoreti
al des
ription of opti
al absorption and related spe
tros
opies.

For a numeri
al evaluation of self-energies or diele
tri
 fun
tions in diagrammati
 terms it is ne
essary to

proje
t the Coulomb potential, as well as Green fun
tions and all other relevant propagators, onto a suitable

basis set. Within the diagrammati
 expansion the Coulomb intera
tion des
ribes the elasti
 s
attering of

two ele
trons or holes, with a possible momentum transfer between initial and �nal states. The basis for

the matrix representation of the Coulomb potential must hen
e be able to properly des
ribe produ
ts of

initial-state and �nal-state wave fun
tions. So far most pra
ti
al implementations have employed a plane-

wave basis set in 
ombination with norm-
onserving pseudopotentials. As the produ
t of two plane waves is

again a plane wave, this approa
h has the advantage that produ
ts of wave fun
tions 
an easily be expressed

in the same basis as the original wave fun
tions themselves. In addition, fast Fourier transformations may

be exploited, and the Coulomb matrix in re
ipro
al spa
e is known analyti
ally. For semi
ondu
tors, in

parti
ular, sophisti
ated theoreti
al 
al
ulations of opti
al absorption [5℄ and ele
tron-energy-loss spe
tra

[6℄, whi
h also in
lude ex
itoni
 
ontributions, have been performed in this way.

While the plane-wave pseudopotential approa
h works well for sp-bonded semi
ondu
tors and simple

metals, it be
omes ine�
ient for transition metals and rare earths, where a large number of plane waves

are needed to a

urately des
ribe the lo
alized d or f orbitals. A similar problem o

urs in oxides and

other 
ompounds involving �rst-row elements due to the hard pseudopotentials that only 
ontain minimal

s
reening of the ioni
 
ore by the innermost 1s ele
trons. Therefore, these materials are best studied within

an all-ele
tron s
heme that treats 
ore and valen
e shells on an equal footing and already in
orporates

the rapid os
illations of the wave fun
tions 
lose to the nu
lei in the basis fun
tions themselves. Here we

fo
us on the full-potential linearized augmented-plane-wave (FLAPW) method [7℄, whi
h is widely used for

ele
troni
-stru
ture 
al
ulations of su
h materials. It divides spa
e into nonoverlapping mu�n-tin spheres


entered at the atomi
 positions and into the interstitial region. Inside the mu�n-tin spheres the basis

fun
tions are 
onstru
ted from numeri
al solutions of the radial S
hrödinger equation with �xed energy

parameters, whose produ
ts lie outside the ve
tor spa
e spanned by the original basis fun
tions. Therefore,

produ
ts of the original basis fun
tions may instead be used to 
onstru
t a mixed produ
t basis [8℄, in whi
h

the matrix elements of the Coulomb potential with initial and �nal states are then a

urately represented.

While the Coulomb matrix is diagonal in a plane-wave basis and given by a simple analyti
al expression, its

evaluation in the mixed produ
t basis of the FLAPW s
heme is mu
h more 
umbersome. First, the matrix is

no longer diagonal, and all elements must be 
al
ulated numeri
ally. This requires an e�
ient 
omputational

pro
edure. Se
ond, due to the long-range nature of the Coulomb potential v(r) = 1/r in real spa
e, the matrix

diverges in the limit of small wave ve
tors k → 0. Whereas this divergen
e is 
on�ned to the single head

element in the 
ase of a plane-wave basis, all matrix elements now 
ontain divergent terms proportional to

1/k2 and 1/k. Previous all-ele
tron implementations [9,10℄ of many-body perturbation theory have often

bypassed this problem by reverting to a plane-wave basis for the Coulomb potential and related propagators,

su
h as the diele
tri
 fun
tion, but the proje
tion leads to a loss of a

ura
y, be
ause the rapid os
illations

of the orbitals 
lose to the atomi
 nu
lei 
annot be resolved then. As a 
onsequen
e, physi
al e�e
ts like 
ore

polarization are inadequately des
ribed. An alternative approa
h, the so-
alled o�set-Γ method, employs an

auxiliary k-point mesh that is shifted from the origin by a small but �nite amount [8,11℄. In this way it avoids

the singularity, but the use of additional meshes in
reases the numeri
al 
ost; even in the most favorable


ase, for 
ubi
 symmetry, the number of k points must at least be doubled. Furthermore, the 
onvergen
e

of Brillouin-zone (BZ) integrals involving the Coulomb matrix, for example for the GW self-energy, may be

slow with respe
t to k-point sampling due to the approximate treatment of the quantitatively important

region near the zone 
enter.

In this work we derive formulas for the Coulomb matrix in the mixed produ
t basis in
luding its math-
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emati
ally exa
t expansion around k = 0, whi
h involves terms proportional to 1/k2 and 1/k as well as


onstant terms. A proper treatment of the small-wave-ve
tor limit is espe
ially important for the theoret-

i
al des
ription of opti
al spe
tros
opies with zero momentum transfer, but also for the 
al
ulation of the

nonlo
al Hartree-Fo
k potential or the GW self-energy, whi
h both involve an integration over the BZ. In

a se
ond step, to simplify the numeri
al treatment we then apply a basis transformation that diagonalizes

the Coulomb matrix. This eliminates all 1/k terms and again restri
ts the 1/k2 divergen
e to a single di-

agonal element, belonging to a 
onstant eigenfun
tion. The �nal situation is thus on
e more analogous to

a plane-wave representation, where the diele
tri
 fun
tion naturally de
omposes into head, wing, and body

elements, but we retain the full a

ura
y of the FLAPW basis set. Furthermore, the present algorithm is

very e�
ient; the 
omputational time for a well-
onverged Coulomb matrix with 105 elements takes less

than a se
ond on a modern single-CPU personal 
omputer. The present algorithm is implemented in Spex

[12℄, a 
omputer 
ode for the 
al
ulation of ex
itation spe
tra and quasiparti
le energies within the GW
approximation.

This paper is organized as follows. Se
tion 2 shortly des
ribes the FLAPW method and the mixed produ
t

basis used in this work. The formulas for the Coulomb matrix at �nite wave ve
tors are derived in Se
tion 3.

We then dis
uss its expansion around k = 0 and the subsequent diagonalization in Se
tion 4. As a pra
ti
al

illustration, in Se
tion 5 we present ele
tron-energy-loss spe
tra of Ni 
al
ulated at �nite k ve
tors as well as

k = 0 within the random-phase approximation. Finally, Se
tion 6 summarizes our main 
on
lusions. Unless

stated otherwise we use Hartree atomi
 units.

2. Basis sets

2.1. FLAPW method

In the FLAPW method spa
e is divided into nonoverlapping atom-
entered mu�n-tin (MT) spheres

and the interstitial region (IR). The 
ore-ele
tron wave fun
tions, whi
h are (mostly) 
on�ned to the MT

spheres, are dire
tly obtained from a solution of the fully relativisti
 Dira
 equation. The valen
e-ele
tron

wave fun
tions with spin σ are expanded in interstitial plane waves (IPW) in the interstitial region and

numeri
al fun
tions uσ
almp(r) = uσ

alp(r)Ylm(er) inside the MT sphere of atom a with position ve
tor Ra. The

latter 
omprise solutions of the Kohn-Sham equation

[

−1

2
∇2 + V

σ

eff,a(r)

]

uσ
alm0(r) = ǫσalu

σ
alm0(r) (1)

for p = 0 and their �rst energy derivatives uσ
alm1(r) = ∂uσ

alm0(r)/∂ǫ
σ
al for p = 1, where V

σ

eff,a(r) is the

spheri
al average of the e�e
tive potential, ǫσal are suitably 
hosen energy parameters, and Ylm(er) denote
the spheri
al harmoni
s. The notation er = r/r with r = |r| indi
ates the unit ve
tor in the dire
tion of r.

In a given unit 
ell the Kohn-Sham wave fun
tion at a wave ve
tor k with band index n and spin σ is then

given by

ϕσ
nk(r) =























1√
N

lmax
∑

l=0

l
∑

m=−l

1
∑

p=0

Ankσ
almpu

σ
almp(r−Ra) if r ∈ MT(a)

1√
V

∑

|k+G|≤Gmax

cnkσG ei(k+G)·r
if r ∈ IR

(2)

with the 
rystal volume V , the number of unit 
ells N , and 
uto� values lmax and Gmax. The 
oe�
ients

Ankσ
almp are determined by the requirement that the wave fun
tion is 
ontinuous in value and �rst radial

derivative at the MT sphere boundaries. If desired, additional lo
al orbitals [14℄ or higher energy derivatives

[15℄ 
an also be in
orporated by allowing p ≥ 2.
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2.2. Mixed produ
t basis

The FLAPW method uses 
ontinuous basis fun
tions that are de�ned everywhere in spa
e but have a

di�erent mathemati
al representation in the MT spheres and the IR. For the expansion of wave-fun
tion

produ
ts, however, it is better to employ two separate sets of fun
tions that are de�ned only in one of the

spatial regions and zero in the other. In this way, linear dependen
es that o

ur only in one region 
an

easily be eliminated, whi
h overall leads to a smaller and more e�
ient basis. The resulting 
ombined set of

fun
tions is 
alled the mixed produ
t basis.

Inside the MT spheres the mixed produ
t basis must a

urately des
ribe the produ
ts

uσ ∗

almp(r)u
σ
al′m′p′(r) = uσ

alp(r)Y
∗
lm(er)u

σ
al′p′(r)Yl′m′(er) =

l+l′
∑

L=|l−l′|

L
∑

M=−L

Clml′m′LMUσ
aLP (r)YLM (er) , (3)

whi
h we expand in spheri
al harmoni
s with the Gaunt 
oe�
ients

Clml′m′LM =

∫

Y ∗
lm(er)Yl′m′(er)Y

∗
LM (er) dΩ . (4)

The index P 
ounts the radial produ
t fun
tions Uσ
aLP (r) = uσ

alp(r)u
σ
al′p′(r) for a given angular quantum

number L. We emphasize again that, in general, the latter lie outside the ve
tor spa
e spanned by the original

numeri
al basis fun
tions {uσ
almp(r)}. Initially, the set of radial produ
t fun
tions is neither normalized nor

orthogonal and usually has a high degree of (near) linear dependen
e. An e�e
tive pro
edure to remove these

(near) linear dependen
es is to diagonalize the overlap matrix and to retain only those eigenve
tors whose

eigenvalues ex
eed a spe
i�ed threshold value [13℄. In this way the MT fun
tions be
ome orthonormalized. By

using both spin-up and spin-down produ
ts in the 
onstru
tion of the overlap matrix we make the resulting

basis spin-independent. If desired, the basis set may be redu
ed further by introdu
ing an additional 
uto�

value Lmax for the angular quantum number. On the other hand, it must be supplemented with a 
onstant

MT fun
tion for ea
h atom in the unit 
ell, whi
h is later needed to represent the eigenfun
tion that


orresponds to the divergent eigenvalue of the Coulomb matrix in the limit k → 0. From the resulting

orthonormal MT fun
tions MaLMP (r) = MaLP (r)YLM (er) we formally 
onstru
t Blo
h fun
tions

Mk
aLMP (r) =

1√
N

∑

T

eik·(T+Ra)MaLP (|r−T−Ra|)YLM (er−T−Ra
) . (5)

The sum runs over all latti
e translation ve
tors T, and MaLP (r) = 0 if r is larger than the mu�n-tin radius

sa.
In the IR, sin
e the produ
t of two IPWs equals another IPW, we use the set

Mk
G(r) =

1√
V
ei(k+G)·rΘ(r) (6)

with the step fun
tion

Θ(r) =







0 if r ∈ MT

1 if r ∈ IR

(7)

and a 
uto� G′
max ≤ 2Gmax in re
ipro
al spa
e. Together with the MT fun
tions we thus obtain the mixed

produ
t basis

{

Mk
I (r)

}

=
{

Mk
aLMP (r),M

k
G(r)

}

for the representation of wave-fun
tion produ
ts. In 
ontrast

to the MT fun
tions, whi
h were expli
itly orthonormalized, the IPWs are not orthogonal to ea
h other; the

elements of their overlap matrix 
an be 
al
ulated analyti
ally and are given by

〈

Mk
G|Mk′

G′

〉

= δkk′OGG′(k) = δkk′ΘG−G′ , (8)

where

ΘG =
1

V

∫

e−iG·rΘ(r) d3r =















1− 4π

3Ω

∑

a

s3a for G = 0

− 4π

ΩG3

∑

a

e−iG·Ra [sin (Gsa)−Gsa cos (Gsa)] for G 6= 0
(9)

4



are the Fourier 
oe�
ients of the step fun
tion (7) and Ω denotes the unit-
ell volume. We also de�ne a

se
ond set, the biorthogonal set

M̃k
I (r) =

∑

J

O−1
JI (k)M

k
J (r) (10)

with the overlap matrix OIJ (k) =
〈

Mk
I |Mk

J

〉

. It ful�lls the identities

〈

M̃k
I

∣

∣

∣
Mk

J

〉

=
〈

Mk
I

∣

∣

∣
M̃k

J

〉

= δIJ and

∑

I

∣

∣

∣
Mk

I

〉〈

M̃k
I

∣

∣

∣
=
∑

I

∣

∣

∣
M̃k

I

〉〈

Mk
I

∣

∣

∣
= 1 , (11)

where the 
ompleteness relation is only valid in the subspa
e spanned by the mixed produ
t basis, however.

As the MT fun
tions and the IPWs are de�ned in di�erent regions of spa
e and the MT fun
tions are

orthonormal, only the IPWs overlap in a nontrivial way. It should be noted that the overlap matrix is

k-dependent be
ause the size of the mixed produ
t basis varies for di�erent k ve
tors.

For the evaluation of the Coulomb matrix elements we have to �nd a numeri
ally tra
table expression for

the IPWs. A straightforward approa
h might employ the Fourier transform of the step fun
tion and rewrite

(6) as a sum over re
ipro
al latti
e ve
tors

Mk
G(r) = lim

GPW→∞

1√
V

∑

|G′|≤GPW

ΘG′ei(k+G+G′)·r , (12)

where GPW is a 
uto� radius in re
ipro
al spa
e, for whi
h we must of 
ourse 
hoose a �nite value in pra
ti
e.

Eq. (12) has a very simple mathemati
al stru
ture and is easy to implement. For example, the 
al
ulation of

the matrix elements IPW-IPW only involves Fourier 
oe�
ients of the step fun
tion Θ(r) and the Coulomb

intera
tion 1/r, whi
h are both known analyti
ally. As an alternative, we may exploit the Rayleigh expansion

eik·r =

∞
∑

l=0

4πiljl(kr)

l
∑

m=−l

Y ∗
lm(ek)Ylm(er) (13)

involving the spheri
al Bessel fun
tions jl(x) in order to subtra
t the plane waves inside the MT spheres

Mk
G(r) = lim

lPW→∞

1√
V

[

eiq·r − 4π
∑

T

∑

a

eiq·(T+Ra)θ(sa − r′)

lPW
∑

l=0

iljl(qr
′)

l
∑

m=−l

Y ∗
lm(eq)Ylm(er′)

]

, (14)

where we use the abbreviations q = k+G and r′ = r −T −Ra, and θ(r) denotes the Heaviside fun
tion.
In a pra
ti
al implementation we must use a �nite maximal angular momentum lPW, whi
h thus be
omes

the relevant 
onvergen
e parameter. Despite its more 
ompli
ated mathemati
al appearan
e, we have found

that this representation in fa
t fa
ilitates a 
onsiderably faster numeri
al evaluation be
ause of the slow


onvergen
e of the step fun
tion in (12) with respe
t to the number of Fourier 
oe�
ients. We illustrate this

point in Se
tion 5. In our subsequent derivation we hen
e employ expression (14).

3. Coulomb matrix at �nite k

In this se
tion we derive the formulas for the 
omputation of the Coulomb matrix elements

vIJ(k) =

∫∫

Mk
I

∗
(r)Mk

J (r
′)

|r− r′| d3r d3r′ (15)

for arbitrary �nite wave ve
tors; the limit k → 0 is dis
ussed in Se
tion 4. Due to the 
omposite basis

set

{

Mk
I (r)

}

, whi
h 
onsists of MT fun
tions with I = (aLMP ) and IPWs with I = G, the Coulomb

matrix is made of four distin
t blo
ks. As it is Hermitian, however, the two o�-diagonal blo
ks are 
omplex


onjugates of ea
h other, and thus we have to 
onsider only three blo
ks expli
itly, whi
h 
orrespond to the


ombinations MT-MT, MT-IPW, and IPW-IPW. Svane and Andersen [16℄ already examined the matrix

elements MT-MT for �nite k ve
tors in the 
ontext of the linearized mu�n-tin orbital (LMTO) method. In

the following we summarize the derivation in a somewhat di�erent notation and then give the expressions

for the additional matrix elements involving IPWs.

5



3.1. MT-MT

If we insert the Blo
h representation (5) for the MT fun
tions in

vaLMP,a′L′M ′P ′(k) =

∫∫

Mk ∗

aLMP (r)M
k
a′L′M ′P ′(r′)

|r− r′| d3r d3r′ , (16)

then the integral 
an be rewritten as

vaLMP,a′L′M ′P ′(k) =
∑

T

eik·(T+R
aa

′)
(17)

×
∫∫

MaLP (r)Y
∗
LM (er)Ma′L′P ′(|r′ −T−Raa′ |)YL′M ′(er′−T−R

aa
′
)

|r− r′| d3r d3r′ ,

where the di�eren
e ve
tor Raa′ = Ra′ −Ra points from one MT 
enter to another in the same unit 
ell.

The integrals in (17) 
orresponding to R = 0 and R 6= 0 with R = T+Raa′
give rise to two 
ontributions

vaLMP,a′L′M ′P ′(k) = δaa′v
(a)
aLMP,aL′M ′P ′ + v

(b)
aLMP,a′L′M ′P ′(k) , (18)

whi
h we evaluate separately in the following.

Let us �rst 
onsider the integral for R = 0. It 
an be simpli�ed 
onsiderably by inserting the identity

1

|r− r′| =
∞
∑

l=0

4π

2l + 1

rl<
rl+1
>

l
∑

m=−l

Ylm(er)Y
∗
lm(er′) , (19)

where r< and r> indi
ate the smaller and larger value of {r, r′}, respe
tively. After 
arrying out the angular
integrations we obtain

v
(a)
aLMP,aL′M ′P ′ (20)

= δLL′δMM ′

4π

2L+ 1

∫ sa

0

MaLP (r)

[

1

rL−1

∫ r

0

r′L+2MaLP ′(r′) dr′ + rL+2

∫ sa

r

MaLP ′(r′)

r′L−1
dr′
]

dr .

The remaining integrations 
an be easily performed by standard numeri
al te
hniques on a radial mesh.

For the integrals with R 6= 0 we may formally de�ne a multipole potential

Φ(r) =

∫

Ma′L′P ′(|r′ −R|)YL′M ′(er′−R)

|r− r′| d3r′ =
4π

2L′ + 1

Qa′L′P ′

|r−R|L′+1
YL′M ′(er−R) (21)

that a
ts in the �rst MT sphere as a result of a �
harge distribution� Ma′L′M ′P ′(r′−R) in the se
ond, where

Qa′L′P ′
denotes the multipole moments

Qa′L′P ′ =

∫ s
a
′

0

r′L
′+2Ma′L′P ′(r′) dr′ . (22)

Using the expansion theorem [17,18℄

4π

2L′ + 1

1

|r−R|L′+1
YL′M ′ (er−R) = (−1)L

′+M ′

∞
∑

l=0

l
∑

m=−l

cL′M ′,lm
rl

RL′+l+1
Ylm(er)Y

∗
(L′+l)(m−M ′)(eR) (23)

with the symmetri
 matrix

cL′M ′,lm = (−1)M
′

(4π)2
[2(L′ + l)− 1]!!

(2L′ + 1)!!(2l + 1)!!
CL′M ′lm(L′+l)(m−M ′)

= (4π)3/2
1

√

(2L′ + 1)(2l+ 1) [2(L′ + l) + 1]

√

(L′ + l +m−M ′)!(L′ + l −m+M ′)!

(L′ +M ′)!(L′ −M ′)!(l +m)!(l −m)!
, (24)

the multipole potential (21) 
reated by a MT fun
tion at R 
an then be written in terms of radial fun
tions

and spheri
al harmoni
s at the origin. The 
orresponding �ele
trostati
 intera
tion energy� is given by

6



∫∫

MaLP (r)Y
∗
LM (er)Ma′L′P ′(|r′ −R|)YL′M ′ (er′−R)

|r− r′| d3r d3r′

= (−1)L
′+M ′

cL′M ′,LMQaLPQa′L′P ′

1

RL+L′+1
Y ∗
(L+L′)(M−M ′)(eR) . (25)

After performing the sum over latti
e ve
tors in (17) we eventually obtain

v
(b)
aLMP,a′L′M ′P ′(k) = (−1)L

′+M ′

eik·Raa
′ cL′M ′,LMQa′L′P ′QaLPS

aa′

(L+L′)(M−M ′)(k) (26)

with

Saa′

lm (k) =
∑

T

eik·T
1

|T+Raa′ |l+1
Y ∗
lm(eT+R

aa
′
) , (27)

where the sum runs over all latti
e ve
tors ex
luding the 
ase T + Raa′ = 0. We note that Saa′

lm (k) is


losely related to the stru
ture 
onstant de�ned in the 
ontext of the LMTO method [17℄; however, it is

not dimensionless and therefore not a 
onstant of a given 
rystal stru
ture. For the numeri
al evaluation of

Saa′

lm (k) one must apply the Ewald summation te
hnique.

3.2. MT-IPW

For the matrix elements in the o�-diagonal blo
k

vaLMP,G(k) =

∫∫

Mk ∗

aLMP (r)M
k
G(r′)

|r− r′| d3r d3r′ (28)

we 
an again introdu
e a formal �
harge distribution� given by Mk
G(r′) that 
reates a potential

Φ(r) =

∫

Mk
G(r′)

|r− r′| d
3r′ =

1√
V

(

4π
ei(k+G)·r

|k+G|2
−
∫

MT

ei(k+G)·r′

|r− r′| d3r′

)

, (29)

where the integral runs over the 
ombined volume of all MT spheres, 
utting out the plane waves inside

them. The �ele
trostati
 intera
tion energy� arising from the �rst term in the bra
kets is given by

4π√
V

1

q2

∫

Mk ∗

aLMP (r)e
iq·rd3r =

(4π)2iL√
Ω

Y ∗
LM (eq)e

iG·Ra

1

q2

∫ sa

0

r2MaLP (r)jL(qr) dr , (30)

where we have again used the Rayleigh expansion (13) and the abbreviation q = k+G. If the exponential

fun
tion in the se
ond term on the right-hand side of (29) is also repla
ed by the Rayleigh expansion, then

the resulting integrals are equivalent to those 
onsidered in Se
tion 3.1 above. We 
an hen
e evaluate them

in the same way. The resulting �nal expression for the Coulomb matrix element

vaLMP,G(k) = v
(a)
aLMP,G(k) + v

(b)
aLMP,G(k) + v

(c)
aLMP,G(k) (31)


onsists of three distin
t terms, whi
h are given by

v
(a)
aLMP,G(k) =

1√
Ω
(4π)2iLY ∗

LM (eq)e
iG·Ra

1

q2

∫ sa

0

r2MaLP (r)jL(qr) dr , (32a)

v
(b)
aLMP,G(k) =− 1√

Ω
(4π)2iLY ∗

LM (eq)e
iG·Ra

1

2L+ 1

∫ sa

0

MaLP (r)

[IL(q, r)
rL−1

+ rL+2JaL(q, r)

]

dr , (32b)

v
(c)
aLMP,G(k) =− 1√

Ω
e−ik·RaQaLP

lPW
∑

l′=0

l
∑

m′=−l

(−1)l
′+m′

∑

a′

eiq·Ra
′ cl′m′,LMQq

a′l′m′S
aa′

(L+l′)(M−m′)(k) (32
)

with the multipole moments

Qq

alm = 4πilIl(q, sa)Y ∗
lm(eq) (33)
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and the integrals

Il(q, r) =
∫ r

0

r′l+2jl(qr
′) dr′ and Jal(q, r) =

∫ sa

r

jl(qr
′)

r′l−1
dr′ , (34)

for whi
h analyti
 expressions are given in appendix B.

3.3. IPW-IPW

The remaining integrals

vGG′(k) =

∫∫

Mk∗

G (r)Mk
G′(r′)

|r− r′| d3r d3r′ (35)

are evaluated in a similar manner. The subtra
tion of the plane waves inside the MT spheres now leads to

a de
omposition of the matrix elements into four terms

vGG′(k) = v
(a)
GG′(k)− v

(b)
GG′(k)− v

(c)
GG′(k) + v

(d)
GG′(k) . (36)

The �rst three 
an be 
al
ulated analyti
ally and yield

v
(a)
GG′(k) =

1

V

∫

d3r

∫

d3r′
e−i(k+G)·rei(k+G′)·r′

|r− r′| = δGG′

4π

|k+G|2
, (37a)

v
(b)
GG′(k) =

1

V

∫

MT

d3r

∫

d3r′
e−i(k+G)·rei(k+G′)·r′

|r− r′| = (δGG′ −ΘG−G′)
4π

|k+G′|2
, (37b)

v
(c)
GG′(k) =

1

V

∫

d3r

∫

MT

d3r′
e−i(k+G)·rei(k+G′)·r′

|r− r′| = (δGG′ −ΘG−G′)
4π

|k+G|2
, (37
)

while we evaluate the fourth term

v
(d)
GG′(k) =

1

V

∫

MT

d3r

∫

MT

d3r′
e−i(k+G)·rei(k+G′)·r′

|r− r′| (37d)

by again repla
ing the exponential fun
tions with the Rayleigh expansion (13) and following the pro
edure

outlined in Se
tion 3.1 above. The subsequent summation over MT spheres and angular momenta yields

v
(d)
GG′(k) =

1

Ω

(

∑

a

ei(G
′−G)·Ra

lPW
∑

l=0

∑

m

(4π)3

2l + 1
Ylm(eq)Y

∗
lm(eq′)Kal(q, q

′) (38)

+

lPW
∑

l=0

l
∑

m=−l

lPW
∑

l′=0

l
∑

m′=−l

(−1)l
′+m′

∑

a,a′

e−iq·R
aeiq

′·R
a
′ cl′m′,lmQq∗

almQq′

a′l′m′S
aa′

(l+l′)(m−m′)(k)

)

with q = k+G, q′ = k+G′
and the double integral

Kal(q, q
′) =

∫ sa

0

∫ sa

0

r2r′2jl(qr)jl(q
′r′)

rl<
rl+1
>

dr dr′ . (39)

For the latter an analyti
 formula is derived in appendix B.

4. Expansion around k = 0

Due to the long-range nature of the Coulomb intera
tion v(r) = 1/r in real spa
e, its Fourier transform

4π/k2 diverges for k → 0. As a 
onsequen
e, the Coulomb matrix in the mixed produ
t basis also diverges

with a leading term proportional to 1/k2. Sin
e the MT fun
tions 
ontain nontrivial k-dependent 
oe�
ients,

8



we further have additional terms proportional to 1/k. It is helpful to identify all relevant terms in advan
e.

For this purpose we formally represent the basis fun
tions by their Fourier transforms

Mk
I (r) =

1√
V

∑

G

cIG(k)ei(k+G)·r
(40)

with the 
oe�
ients

cIG(k) =
1√
V

∫

e−i(k+G)·rMk
I (r) d

3r . (41)

The sum runs over all re
ipro
al latti
e ve
torsG. For the IPWs the 
oe�
ients are k-independent and equal

cG′G(k) = ΘG−G′
for Mk

G′(r), but for the MT fun
tions they exhibit a nontrivial k dependen
e. Using the

expansion

Mk
I (r) ∼

1√
V

∑

G

(

cIG + k · ∇cIG +
1

2
kT∆cIGk

)

ei(k+G)·r
(42)

for k → 0 with cIG = cIG(k)|k=0, ∇cIG = ∇kcIG(k)|k=0 and ∆cIG = ∇k∇T
k cIG(k)

∣

∣

k=0
, we 
an write

the Coulomb matrix elements in this limit as

vIJ (k)∼ c∗I0cJ0
4π

k2
+ [c∗I0(ek · ∇cJ0) + (ek · ∇c∗I0)cJ0]

4π

k
+ [(ek · ∇c∗I0) (ek · ∇cJ0)

+
1

2
c∗I0(e

T
k∆cJ0ek) +

1

2
(eTk∆c∗I0ek)cJ0

]

4π +
∑

G 6=0

c∗IGcJG
4π

|G|2
. (43)

Evidently, all matrix elements 
ontain divergent 
ontributions proportional to 1/k2 in addition to a 
onstant

term. Furthermore, if cIG(k) or cJG(k) are truly k-dependent, i.e., for matrix elements that involve MT

fun
tions, we also have terms proportional to Y ∗
1m(ek)/k and Y ∗

2m(ek) arising from the �rst and se
ond

square bra
ket, respe
tively (
ompare (A.5) and (A.8)). As a 
onsequen
e, we 
an write

vIJ(k) ∼ v
(0)
IJ +

2
∑

l=0

l
∑

m=−l

v
(1)
IJ,lm

Y ∗
lm(ek)

k2−l
, (44)

and from (15) follows

v
(0)
JI = v

(0)∗
IJ and v

(1)
JI,lm = (−1)mv

(1)∗
IJ,l(−m) . (45)

We will see in Se
tion 4.4 below that the terms 
orresponding to l > 0 
an in fa
t be eliminated if we

perform a basis transformation to the set of eigenve
tors of the Coulomb matrix. Nevertheless, for the sake

of 
ompleteness we will here give the appropriate formulas for v
(1)
IJ,lm with l > 0 in the original mixed

produ
t basis as well. As in the previous se
tion, we pro
eed by dis
ussing the blo
ks MT-MT, MT-IPW

and IPW-IPW individually.

4.1. MT-MT

The se
ond term on the right-hand side of (18), expli
itly given in (26), diverges for k → 0 and L+L′ < 2,
be
ause the leading term of Saa′

lm (k) is proportional to k2−l
, whi
h is seen in the following way: For small

k the sum over T in (27) is dominated by 
ontributions belonging to large latti
e ve
tors. Then one 
an

approximate the sum by an integral

Saa′

lm (k) ∼ e−ik·R
aa

′
1

Ω

∫

eik·T

T l+1
Y ∗
lm(eT) d

3T =
4πil

(2l − 1)!!Ω
e−ik·R

aa
′Y ∗

lm(ek)k
l−2 , (46)

where we have used (13), (B.2), and (A.4). The same expression appears in the �rst term of the re
ipro
al-

spa
e sum 
orresponding to G = 0 in the Ewald summation. The remaining terms and the real-spa
e sum

yield an additional 
onstant term Saa′

lm , so that we obtain

Saa′

lm (k) ∼ 4πil

(2l − 1)!!Ω
e−ik·R

aa
′Y ∗

lm(ek)k
l−2 + Saa′

lm (47)
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for l ≤ 2. After inserting this expansion into (26) we obtain

v
(0)
aLMP,a′L′M ′P ′ = δaa′v

(a)
aLMP,a′L′M ′P ′ + (−1)L

′+M ′

cL′M ′,LMQa′L′P ′QaLPS
aa′

(L+L′)(M−M ′) , (48)

v
(1)
aLMP,a′L′M ′P ′;lm = δl,L+L′δm,M−M ′(−1)L

′+M ′ 4πil

(2l− 1)!!Ω
cL′M ′,LMQa′L′P ′QaLP (49)

with l ≤ 2.

4.2. MT-IPW

The 
ase MT-IPW is more 
ompli
ated, be
ause higher orders in the multipole moments Qk+G
a′l′m′ must be

taken into a

ount when multiplying with the divergent Saa′

(L+l′)(M−m′)(k) in (32
). In parti
ular, we need

the expansions of Qk+G
a′00 (Qk+G

a′1m′) up to se
ond (�rst) order

Qk+G
a00 ∼

√
4π

s2a
G

[

j1(Gsa)− j2(Gsa)sak ek · eG +
1

2
j3(Gsa)s

2
ak

2 (ek · eG)
2 − 1

2

j2(Gsa)

G
sak

2

]

,

(50a)

Qk+G
a1m ∼ 4πi

s3a
G

[

Y ∗
1m(eG) (j2(Gsa)− j3(Gsa)sak ek · eG) + Y ∗

1m(ek)
j2(Gsa)

G
k

]

. (50b)

For G = 0 these simplify to

Qk
a00 ∼

√
4π

3
s3a

(

1− 1

10
s2ak

2

)

, (51a)

Qk
a1m ∼ 4πi

15
Y ∗
1m(ek)s

5
ak . (51b)

Here we have used the identities (A.1)�(A.7). In addition, (32a) 
ontributes to v
(1)
aLMP,G if G = 0. The �nal

expression for v
(0)
aLMP,G and v

(1)
aLMP,G is written as

v
(0)
aLMP,G = v

(0a)
aLMP,G + v

(0b)
aLMP,G , (52)

where the quantity

v
(0a)
aLMP,G = (1− δG0)v

(a)
aLMP,G(0) + v

(b)
aLMP,G(0) (53)

− 1√
Ω
QaLP

lPW
∑

l′=0

l′
∑

m′=−l′

(−1)l
′+m′

∑

a′

eiG·R
a
′ cl′m′,LMQG

a′l′m′Saa′

(L+l′)(M−m′)

is dire
tly obtained after repla
ing Saa′

lm (k) by the terms of zeroth order in the expansion (47). The se
ond

term v
(0b)
aLMP,G results from multiplying the divergent terms in (47) with the higher orders of (50) in (32
)

as well as, in the 
ase G = 0, the term 1/q2 with the higher orders of jl(qr) in (32a). After some algebra we

obtain

v
(0b)
aLMP,G =



















































− (4π)5/2

Ω3/2
Qa0P

∑

a′

eiG·R
a
′
s3a′

G

[

j2(Gsa′ )

2G
− j3(Gsa′)sa′

6

]

if G 6= 0 and L = 0 ,

− (4π)5/2

30Ω3/2
Qa0P

∑

a′

s5a′ +
(4π)3/2

6
√
Ω

∫ sa

0

r4Ma0P (r)dr if G = 0 and L = 0 ,

− (4π)5/2

Ω3/2
Qa0P

∑

a′

eiG·R
a
′
s3a′

G

[

j2(Gsa′ )

2G
− j3(Gsa′)sa′

6

]

if G 6= 0 and L = 1 ,

0 otherwise ,

(54)
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as well as

v
(1)
aLMP,G;lm = δLlδMm

[

− (4π)5/2iL

(2L+ 1)!!Ω3/2
QaLP

∑

a′

eiG·R
a
′QG

a′00 + δG0

(4π)2iLQaLP

(2L+ 1)!!Ω1/2

]

. (55)

4.3. IPW-IPW

Finally, in the 
al
ulation of the IPW-IPW matrix elements we 
an use the fa
t that the square bra
kets

in (43) vanish. This simpli�es the derivation 
onsiderably, be
ause all angular-dependent 
ontributions 
an

be dis
arded from the outset, and hen
e we have v
(1)
GG′,lm = 0 for l > 0. We again write

v
(0)
GG′ = v

(0a)
GG′ + v

(0b)
GG′ ,

where the �rst 
ontribution v
(0a)
GG′ is given by the nondivergent terms in (36) after repla
ing Saa′

lm (k) by Saa′

lm ,

whi
h yields

v
(0a)
GG′ = (1 − δG0)

[

v
(a)
GG′(0)− v

(c)
GG′(0)

]

− (1− δG′0)v
(b)
GG′(0)

+
1

Ω

(

∑

a

ei(G
′−G)·Ra

lPW
∑

l=0

∑

m

(4π)3

2l + 1
Ylm(eG)Y ∗

lm(eG′)Kal(q, q
′) (56)

+

lPW
∑

l=0

l
∑

m=−l

lPW
∑

l′=0

l
∑

m′=−l

(−1)l
′+m′

∑

a,a′

e−iG·RaeiG
′·R

a
′ cl′m′,lmQG∗

almQG′

a′l′m′Saa′

(l+l′)(m−m′)

)

.

Further, by inserting the expansions (50) and (51) as well as the k-dependent terms of (47) into (38) one

obtains another 
onstant 
ontribution

v
(0b)
GG′ =











































































(4π)3

Ω2

∑

a,a′

e−iG·RaeiG
′·R

a
′
s2as

2
a′

GG′

{

−1

3
j2(Gsa)j2(G

′sa′)sasa′(eG · eG′)− 1

6
j1(Gsa)j3(G

′sa′)s2a′

−1

6
j3(Gsa)j1(G

′sa′)s2a +
j1(Gsa)j2(G

′sa′)sa′

2G′
+

j2(Gsa)j1(G
′sa′)sa

2G

}

if G 6= 0 and G′ 6= 0,

(4π)3

Ω2

∑

a,a′

eiG
′·R

a
′
s3as

2
a′

G′

{

s2a
30

j1(G
′sa′)− 1

18
j3(G

′sa′)s2a′ +
1

6

j2(G
′sa′)

G′
sa′

}

if G = 0 and G′ 6= 0,

(4π)3

Ω2

∑

a,a′

e−iG·R
a
′
s3as

2
a′

G

{

s2a
30

j1(Gsa′)− 1

18
j3(Gsa′)s2a′ +

1

6

j2(Gsa′ )

G
sa′

}

if G 6= 0 and G′ = 0,

(4π)3

90Ω2

∑

a,a′

s3as
3
a′

(

s2a + s2a′

)

if G = G′ = 0 .

(57)

For the 
al
ulation of v
(1)
GG′,00 we must take the divergent terms of (37) into a

ount and eventually obtain

v
(1)
GG′,00 =

(4π)5/2

Ω2

∑

a,a′

e−iG·RaeiG
′·R

a
′QG ∗

a00Q
G′

a′00 + (4π)3/2 [ΘG−G′(δG0 + δG′0)− δG0δG′0] . (58)

4.4. Diagonalization

In a pure plane-wave representation response matri
es and similar quantities de
ompose into head χ00,

wings χG0, χ0G′
, and body χGG′

with G,G′ 6= 0. These behave di�erently for k → 0. For the density

response fun
tion, as an example, head and wing elements are quadrati
 and linear in k, respe
tively, while
the body elements remain �nite but still exhibit an angular k dependen
e. As the mixed produ
t basis is

related to the set of plane waves by means of a basis transformation, these matrix elements will now mix

in a 
ompli
ated manner. It is hen
e desirable to make another transformation that restores the 
onvenient
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mathemati
al properties of the plane-wave basis. For this purpose the basis must in
lude a 
onstant fun
tion,

whi
h 
orresponds to the limit of eik·r/
√
V for k → 0 and is responsible for the de
omposition into head,

wings, and body. Su
h a basis is given by the fun
tions

Ek
µ(r) =

∑

I

Ek
µIM

k
I (r) , (59)

where Ek
µI is the Ith 
omponent of the µth eigenve
tor of vIJ (k). In this basis the Coulomb matrix vµν(k)

be
omes diagonal, whi
h is also advantageous in matrix multipli
ations involving vµν(k), e.g., for the 
al
u-
lation of the diele
tri
 fun
tion. Furthermore, the eigenvalues are a dire
t measure for the probability of the

elasti
 s
attering between two parti
les. Small eigenvalues thus identify less important s
attering pro
esses

that might be negle
ted, leading to a smaller and optimized basis set after removal of the 
orresponding

eigenve
tors.

Be
ause of the divergent terms in (44) the diagonalization in the limit k → 0 is not trivial. The �rst

eigenve
tor Ek
1 
orresponding to the divergent eigenvalue v1(k) = 4π/k2 is, however, easy to obtain from

the analyti
 proje
tion of eik·r/
√
V on the biorthogonal mixed-produ
t-basis fun
tions

Ek
1I =

1√
V

∫

V

M̃k∗

I (r) eik·r d3r =











c∗I0(k) =
4πiL√

Ω
Y ∗
LM (ek)

∫ sa

0

r2jL(kr)MaLP (r) dr for I = (aLMP ) ,

δG0 for I = G ,

(60)

whi
h in the limit k → 0 be
omes

E0
1I =



















√

4πs3a/(3Ω) for I = (a001) ,

δG0 for I = G ,

0 otherwise .

(61)

Here we have assumed that the 
onstant MT fun
tion of atom a is normalized and identi�ed with the index

(a001). The other eigenve
tors E0
µ and eigenvalues vµ(0) for µ > 1 are obtained by diagonalizing the last

term of the formal expansion (43)

vIJ =
∑

G 6=0

c∗IGcJG
4π

G2
, (62)

whi
h is unknown so far. The matrix v
(0)
IJ , 
al
ulated in the previous se
tion, 
ontains vIJ but also the

spheri
al average of the se
ond square bra
ket in (43). If we denote this spheri
al average by wIJ , then we


an write

vIJ = v
(0)
IJ − wIJ . (63)

In order to evaluate wIJ we introdu
e the natural basis

k−1 =
1√
2
(kx − iky), k1 =

1√
2
(−kx − iky), k0 = kz , (64a)

∂−1 =
1√
2
(∂x + i∂y) , ∂1 =

1√
2
(−∂x + i∂y) , ∂0 = ∂z , (64b)

whi
h allows us to write the k-dependent terms in the se
ond bra
ket of (43) in terms of spheri
al harmoni
s

a

ording to

12



eTk∆cJ0ek =
4π

3

1
∑

m=−1

1
∑

m′=−1

Y ∗
1m(ek)Y1m′(ek)∂

∗
m∂m′cJ0 (65)

=
1

3

1
∑

m=−1

∂∗
m∂mcJ0 +

4π

3

1
∑

m=−1

1
∑

m′=−1

C1m′1m2(m−m′)Y
∗
2(m−m′)(ek)∂

∗
m∂m′cJ0 ,

(ek · ∇c∗I0) (ek · ∇cJ0) =
4π

3

1
∑

m=−1

1
∑

m′=−1

Y ∗
1m(ek)Y1m′(ek)∂

∗
mc∗I0∂m′cJ0 (66)

=
1

3

1
∑

m=−1

∂∗
mc∗I0∂mcJ0 +

4π

3

1
∑

m=−1

1
∑

m′=−1

C1m′1m2(m−m′)Y
∗
2(m−m′)(ek)∂

∗
mc∗I0∂m′cJ0 ,

where we de�ne ∂mcI0 = ∂mcI0(k)|k=0 and similar abbreviations. The last equation follows from the identity

ek · ∇cI0 =

√

4π

3

1
∑

m=−1

Y1m(ek)∂mcI0 . (67)

When we take the spheri
al average, the harmoni
s with l > 0 vanish, and we obtain

wIJ =
4π

3

1
∑

m=−1

[

(∂∗
mc∗I0) (∂mcJ0) +

1

2
c∗I0∂

∗
m∂mcJ0 +

1

2
cJ0∂m∂∗

mc∗I0

]

(68)

with

cI0 =



















√

4πs3a/(3Ω) for I = (a001) ,

Θ−G for I = G ,

0 otherwise ,

(69)

∂mcI0 =











−δL1δMm

√

4π

3Ω
i

∫ sa

0

r3Ma1P (r) dr for I = (a1MP ) ,

0 otherwise ,

(70)

1
∑

m=−1

∂m∂∗
mcI0 =











−δL0

√

4π

Ω

∫ sa

0

r4Ma0P (r) dr for I = (a0MP ) ,

0 otherwise .

(71)

5. Test 
al
ulations

Apart from the evaluation of (27), whi
h is easily 
onverged to high pre
ision by means of the Ewald

summation te
hnique, and the radial meshes for numeri
al integration inside the MT spheres, the 
uto�

value lPW is the only 
onvergen
e parameter in the 
onstru
tion of the Coulomb matrix elements presented

above. On the other hand, in an alternative implementation that uses the representation (12) rather than

the Rayleigh expansion for the IPWs the matrix elements must be 
onverged with respe
t to the re
ipro
al


uto� radius GPW. Figure 1 
ompares the 
onvergen
e behavior of these two approa
hes. The 
urves indi
ate

the root mean square deviation of the Coulomb matrix for bulk sili
on, averaged over all matrix elements

MT-IPW and IPW-IPW and over 64 k points, from the fully 
onverged results 
al
ulated with lPW = 26. In
both 
ases we employ the same 
uto� parameters G′

max = 3.6Bohr−1
and Lmax = 4 for the mixed produ
t

basis, the MT fun
tions are 
onstru
ted from produ
ts uσ
al0(r)u

σ
al′0(r) with l ≤ 2 and l′ ≤ 3. On average

this yields 411 basis fun
tions per k point. It is evident that the results obtained with the present method


onverge mu
h faster than those obtained with the Fourier transform of the step fun
tion. Furthermore, at

the same level of a

ura
y the present method is typi
ally by a fa
tor of 10�100 faster.

13



As an appli
ation we now 
onsider the simulation of experimental spe
tros
opies related to the 
omplex

diele
tri
 fun
tion, whi
h des
ribes many-body s
reening e�e
ts in a 
orrelated ele
tron system. In ele
tron-

energy-loss spe
tros
opy (EELS), for example, the measured di�erential s
attering 
ross se
tion is dire
tly

proportional to the imaginary part of a diagonal element of the inverse diele
tri
 fun
tion [19℄

ε−1(k, ω) =
1

V

∫∫

ε−1(r, r′;ω)eik·(r
′−r)d3r d3r′ , (72)

whereas in opti
al absorption one measures the imaginary part of [20℄

εM(ω) = lim
k→0

1/ε−1
M (k, ω) . (73)

In the framework of many-body perturbation theory the diele
tri
 fun
tion is written as

ε(r, r′;ω) = δ(r − r′)−
∫

v(r, r′′)P (r′′, r′;ω) d3r′′ (74)

with the polarization fun
tion P (r, r′;ω) and the Coulomb intera
tion v(r, r′) = 1/|r − r′|. We use the

random-phase approximation

P (r, r′;ω) =
∑

σ

occ
∑

n,q

unocc
∑

n′,k

ϕσ∗

nk(r)ϕ
σ
n′q+k(r)ϕ

σ
nk(r

′)ϕσ∗

n′q+k(r
′) (75)

×
(

1

ω + ǫσnk − ǫσn′q+k + iη
− 1

ω − ǫσnk + ǫσn′q+k − iη

)

,

where η is a positive in�nitesimal. As P (r, r′;ω) 
ontains produ
ts of wave fun
tions evaluated at r and r′,

it 
an be represented in the mixed produ
t basis as

P (r, r′;ω) =
∑

I,J

∫

BZ

PIJ (k, ω)M
k
I (r)M

k∗

J (r′) d3k (76)

with 
omplex 
oe�
ients

PIJ (k, ω) =

∫∫

P (r, r′;ω)M̃k∗

I (r)M̃k
J (r

′) d3r d3r′ . (77)

Next we transform this matrix to the basis given by (59). This yields Pµν(k, ω), whi
h in the limit k → 0

de
omposes into head, wing, and body elements as dis
ussed in Se
tion 4.4. We use the tetrahedron method

for integrations over the BZ.

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 4  6  8  10  12  14  16  18  20

∆v
 [

H
a]

lPW

(a)

10-5

10-4

10-3

10-2

 4  6  8  10  12  14  16  18  20

∆v
 [

H
a]

GPW [Bohr-1]

(b)

Figure 1. Average root mean square deviation ∆v from the 
onverged matrix elements (MT-IPW and IPW-IPW) as fun
tions

of (a) the 
onvergen
e parameters lPW and (b) the re
ipro
al 
uto� radius GPW for the Fourier transform of the step fun
tion

in (12). The mixed produ
t basis was optimized for Si bulk.
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Figure 2. EELS spe
tra of spin-polarized Ni for k = 2π/aNi(ξ, ξ, ξ) with ξ = 0 (solid line), ξ = 0.1 (dashed line), and ξ = 0.2
(dotted line).

In the long-wave-length limit k → 0 we must 
arefully expand the polarization fun
tion around k = 0,

sin
e it is multiplied with v(r, r′) in (74), whi
h diverges in this limit. Be
ause of the orthogonality of the

wave fun
tions the proje
tion 〈Ek
1ϕ

σ
nq|ϕσ

n′q+k〉 = 〈eik·rϕσ
nq|ϕσ

n′q+k〉/
√
V is linear in lowest order in k for

interband transitions with n 6= n′
. We 
al
ulate this leading term with k · p perturbation theory [21℄. For

a metalli
 system the sum in (75) also 
ontains 
ontributions from intraband transitions with n = n′
at

k = 0. It 
an be shown that these are nonzero only for the head element and given analyti
ally by the Drude

formula [22℄, whi
h is quadrati
 in k. The latter depends on the plasma frequen
y, whi
h we obtain by an

integration over the Fermi surfa
e. In 
on
lusion, the head and wing elements of Pµν(k, ω) are quadrati


and linear in k, respe
tively. If we use the symmetrized diele
tri
 matrix

ε̃µν(k, ω) = δµν − v1/2µ (k)Pµν (k, ω)v
1/2
ν (k) , (78)

where the vµ(k) are the eigenvalues of vIJ (k), then all elements of ε̃µν(k, ω) are �nite be
ause v
1/2
1 (k) =√

4π/k. We note that the diagonal quantities 
onsidered above remain un
hanged with this symmetrized

de�nition. As the �rst eigenve
tor of vIJ(k) 
orresponds to the proje
tion of eik·r/
√
V onto the biorthogonal

mixed produ
t basis, the head element ε̃−1
11 (k, ω) dire
tly equals the spe
tros
opi
 fun
tion (72).

In �gure 2 we show EELS spe
tra Im ε−1(k, ω) for spin-polarized Ni at three k ve
tors 2π/aNi(ξ, ξ, ξ)
with ξ = 0.0, 0.1, 0.2 and the latti
e 
onstant aNi = 6.66Bohr We use the parameters lmax = 8, Gmax =
3.57Bohr−1

for the FLAPW and Lmax = 4, Gmax = 5.00Bohr−1
for the mixed produ
t basis. The BZ is

sampled by 1661 points in its irredu
ible wedge, 
orresponding to a 40×40×40 k-point mesh in the full zone.

As the spe
trum extends over a wide energy range up to 100 eV, we augment the FLAPW basis by se
ond

and third energy derivatives as lo
al orbitals to guarantee an a

urate des
ription of high-lying 
ondu
tion
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Figure 3. EELS spe
tra of spin-polarized Ni for k = 2π/aNi(0.25, 0, 0) with (solid line) and without (dashed line) 
ore-state


ontributions. The in
lusion of transitions from 
ore into 
ondu
tion states gives rise to a shallow peak starting at 62 eV, whi
h

is also seen in experiment (symbols) [23℄.

states [15℄. For the 
onstru
tion of the MT fun
tions MaLP (r) we employ produ
ts uσ
alp(r)u

σ
al′p(r) with

l ≤ 2, l′ ≤ 3, and p = 0, i.e., energy derivatives (p ≥ 1) are negle
ted. In the 
al
ulation of (75) we take 118


ondu
tion and the 10 valen
e states as well as the eight 3s and 3p 
ore states into a

ount. As we invert

the diele
tri
 fun
tion, lo
al-�eld e�e
ts are fully in
luded. As seen from the �gure, the spe
tra are very

similar for the three k ve
tors. When 
ompared with the 
urves 
al
ulated at �nite k points, the spe
trum

for k = 0 
learly 
onstitutes the limit k → 0.

As already pointed out, the spe
tra in �gure 2 already in
lude transitions from the 3s and 3p 
ore states

into 
ondu
tion states. Figure 3 shows a 
omparison of spe
tra 
al
ulated with (solid line) and without

(dashed line) these 
ore-state 
ontributions at k = 2π/aNi(0.25, 0, 0). The largest di�eren
e between the

two 
urves is seen around 62 eV, whi
h 
orresponds roughly to the threshold energy required to ex
ite a

3p ele
tron above the Fermi level. These additional transitions give rise to a shallow peak, whi
h is also

observed in experiments with an onset at the same energy. The in
lusion of transitions from 3s and 3p 
ore

states into 
ondu
tion states within our all-ele
tron method thus brings the 
al
ulated spe
trum very 
lose

to experiment (symbols) [23℄.

6. Summary

In this work we have derived formulas for the Coulomb matrix elements within the all-ele
tron FLAPW

method. As the Coulomb intera
tion 
ouples two in
oming and two outgoing states, a suitable basis set

must be 
apable of a

urately represent wave-fun
tion produ
ts. Su
h a set is given by the mixed produ
t

16



basis, whi
h 
ontains MT fun
tions as well as interstitial plane waves. We use the Rayleigh expansion for the

latter, be
ause it makes a very e�
ient numeri
al implementation possible. Furthermore, we have derived

an exa
t expansion of the Coulomb matrix around k = 0 that isolates all divergent terms ∼ k−2
and ∼ k−1

.

Most of these vanish if we then make a basis transformation to the eigenve
tors of the Coulomb matrix. The

properties of this new basis set are formally similar to those of a plane-wave basis. In parti
ular, response

fun
tions de
ompose into head, wing, and body elements with the same 
hara
teristi
 dependen
e on k.

However, the basis 
onstru
tion of this involves no approximation, and the a

ura
y of the FLAPW basis

set is 
ompletely preserved.

As an illustration we have shown EELS spe
tra for ferromagneti
 Ni at di�erent k ve
tors in
luding k =
0. Very good agreement with experiment was a
hieved over a large energy window by taking 
ore-ele
tron


ontributions into a

ount.
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Appendix A. Mathemati
al relations

In the derivations of Se
tions 3 and 4 we have used the following relations:

jl−1(x) + jl+1(x) = (2l+ 1)jl(x)/x , (A.1)

d

dx
jl(x) =

l

x
jl(x)− jl+1(x) , (A.2)

d

dx
jl(x) = jl−1(x) −

l + 1

x
jl(x) , (A.3)

jl(x) =
xl

(2l+ 1)!!

(

1− x2

4l + 6
+ O(x4)

)

, (A.4)

ek · eG =
4π

3

1
∑

m=−1

Y1m(ek)Y
∗
1m(eG), (A.5)

Y1m(ea)Y
∗
1m′(ea) =

1

4π
δmm′ + C1m1m′2(m′−m)Y

∗
2,m′−m(ea) , (A.6)

Y ∗
1m(ek+G) = Y ∗

1m(eG) +
2k

3G

[

Y ∗
1m(ek)− 2π

1
∑

m′=−1

Cm′mY ∗
2,m−m′(eG)Y ∗

1m′(ek)

]

+O(k2) (A.7)

(ek · eG)2 =
1

3
+

8π

15

2
∑

m′=−2

Y ∗
2m′(ek)Y2m′(eG) , (A.8)

Y1m(ek) =

√

3

4π

km
k

, (A.9)

1
∑

m=−1

∂m∂∗
mf(k)Ylm(ek) =

1

k2
Ylm(ek)

[

∂k
(

k2∂k
)

− l(l + 1)
]

f(k) . (A.10)

Appendix B. Integrals over spheri
al Bessel fun
tions

The derivations in Se
tion 3 give rise to a number of integrals over spheri
al Bessel fun
tions that 
an be

evaluated analyti
ally. Expli
it formulas for (34) follow from the re
ursion relations (A.1)-(A.3)
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Il(q, r) =











rl+2

q
jl+1(qr) if q 6= 0 ,

δl0
1

3
r3 if q = 0 ,

(B.1)

Jal(q, r) =











1

q

[

1

rl−1
jl−1(qr) −

1

sl−1
a

jl−1(qsa)

]

if q 6= 0 ,

δl0
1

2

(

s2a − r2
)

if q = 0 .

(B.2)

We 
an also �nd an analyti
 expression for the double integral (39), be
ause the above integration formulas

and the re
ursion relation (A.1) lead to the solution

Kal(q, q
′) =

2l + 1

q′2

∫ sa

0

r2jl(qr)jl(q
′r) dr − s3a

qq′
jl+1(qsa)jl−1(q

′sa)

=
s3a

q2 − q′2

[

q′

q
jl+1(qsa)jl−1(q

′sa)−
q

q′
jl−1(qsa)jl+1(q

′sa)

]

(B.3a)

= s3a

[

jl+1(qsa)jl+1(q
′sa)

qq′
+

2l+ 1

2l+ 3

jl+2(qsa)jl(q
′sa)− jl(qsa)jl+2(q

′sa)

q2 − q′2

]

, (B.3b)

where we used the symmetry of Kal(q, q
′) with respe
t to q and q′ to eliminate

∫ sa
0 r2jl(qr)jl(q

′r)dr. The
expressions (B.3a) and (B.3b) are stable for large and small q, q′, respe
tively. The limiting 
ases are

lim
q′→0

Kal(q, q
′) = δl0

s3a
3q2

[qsaj1(qsa) + j2(qsa)] for q 6= 0 , (B.4a)

lim
q′→q

Kal(q, q
′) =

s3a
2q2

[

(2l + 3)j2l+1(qsa)− (2l + 1)jl(qsa)jl+2(qsa)
]

for q 6= 0 , (B.4b)

lim
q,q′→0

Kal(q, q
′) = δl0

2

15
s5a . (B.4
)
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