0811.2363v1 [cond-mat.mtrl-sci] 14 Nov 2008

arxXiv

Efficient calculation of the Coulomb matrix and its expansion
around k = 0 within the FLAPW method

Christoph Friedrich®* Arno Schindlmayr® Stefan Bliigel ®

aInstitut fir Festkorperforschung and Institute for Advanced Simulation, Forschungszentrum Jilich, 52425 Jilich, Germany
b Department Physik, Universitit Paderborn, 33095 Paderborn, Germany

Abstract

We derive formulas for the Coulomb matrix within the full-potential linearized augmented-plane-wave (FLAPW)
method. The Coulomb matrix is a central ingredient in implementations of many-body perturbation theory, such as
the Hartree-Fock and GW approximations for the electronic self-energy or the random-phase approximation for the
dielectric function. It is represented in the mixed product basis, which combines numerical muffin-tin functions and
interstitial plane waves constructed from products of FLAPW basis functions. The interstitial plane waves are here
expanded with the Rayleigh formula. The resulting algorithm is very efficient in terms of both computational cost
and accuracy and is superior to an implementation with the Fourier transform of the step function. In order to allow
an analytic treatment of the divergence at k = 0 in reciprocal space, we expand the Coulomb matrix analytically
around this point without resorting to a projection onto plane waves. Without additional approximations, we then
apply a basis transformation that diagonalizes the Coulomb matrix and confines the divergence to a single eigenvalue.
At the same time, response matrices like the dielectric function separate into head, wings, and body with the same
mathematical properties as in a plane-wave basis. As an illustration we apply the formulas to electron-energy-loss
spectra (EELS) for nickel at different k vectors including k = 0. The convergence of the spectra towards the result
at k = 0 is clearly seen. Our all-electron treatment also allows to include transitions from 3s and 3p core states in
the EELS spectrum that give rise to a shallow peak at high energies and lead to good agreement with experiment.
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1. Introduction

For the ab initio calculation of electronic excitations and spectroscopic functions, where variational ground-
state schemes like Kohn-Sham density-functional theory [I] are not strictly applicable, many-body pertur-
bation theory has now become the method of choice in applications to solids and their surfaces. It is based
on a Green-function formalism and an adiabatic switching-on of the Coulomb interaction [2]. In this way
the Green function of the fully interacting many-electron system can be expanded in powers of the Coulomb
potential, generating a series of Feynman diagrams with increasing complexity. Practical approximations
can be designed by terminating the series at a given order or restricting the summation to certain classes
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of self-energy diagrams that describe dominant scattering processes. A prominent example is the exchange-
only Hartree-Fock approximation, which includes all electronic interaction effects up to linear order in the
Coulomb potential, while additional correlation effects resulting from dynamic screening in an itinerant elec-
tron system are taken into account in the GW approximation [3]. The latter has been successfully applied
to a variety of materials, especially semiconductors, and generally yields electronic band structures and
quasiparticle properties in very good agreement with experimental data [4]. The dielectric function, which
already appears as an intermediate quantity in the GW approximation, can be expanded in a similar manner
and is itself the key quantity for the theoretical description of optical absorption and related spectroscopies.

For a numerical evaluation of self-energies or dielectric functions in diagrammatic terms it is necessary to
project the Coulomb potential, as well as Green functions and all other relevant propagators, onto a suitable
basis set. Within the diagrammatic expansion the Coulomb interaction describes the elastic scattering of
two electrons or holes, with a possible momentum transfer between initial and final states. The basis for
the matrix representation of the Coulomb potential must hence be able to properly describe products of
initial-state and final-state wave functions. So far most practical implementations have employed a plane-
wave basis set in combination with norm-conserving pseudopotentials. As the product of two plane waves is
again a plane wave, this approach has the advantage that products of wave functions can easily be expressed
in the same basis as the original wave functions themselves. In addition, fast Fourier transformations may
be exploited, and the Coulomb matrix in reciprocal space is known analytically. For semiconductors, in
particular, sophisticated theoretical calculations of optical absorption [5] and electron-energy-loss spectra
[6], which also include excitonic contributions, have been performed in this way.

While the plane-wave pseudopotential approach works well for sp-bonded semiconductors and simple
metals, it becomes inefficient for transition metals and rare earths, where a large number of plane waves
are needed to accurately describe the localized d or f orbitals. A similar problem occurs in oxides and
other compounds involving first-row elements due to the hard pseudopotentials that only contain minimal
screening of the ionic core by the innermost 1s electrons. Therefore, these materials are best studied within
an all-electron scheme that treats core and valence shells on an equal footing and already incorporates
the rapid oscillations of the wave functions close to the nuclei in the basis functions themselves. Here we
focus on the full-potential linearized augmented-plane-wave (FLAPW) method [7], which is widely used for
electronic-structure calculations of such materials. It divides space into nonoverlapping muffin-tin spheres
centered at the atomic positions and into the interstitial region. Inside the muffin-tin spheres the basis
functions are constructed from numerical solutions of the radial Schrodinger equation with fixed energy
parameters, whose products lie outside the vector space spanned by the original basis functions. Therefore,
products of the original basis functions may instead be used to construct a mixed product basis [§], in which
the matrix elements of the Coulomb potential with initial and final states are then accurately represented.

While the Coulomb matrix is diagonal in a plane-wave basis and given by a simple analytical expression, its
evaluation in the mixed product basis of the FLAPW scheme is much more cumbersome. First, the matrix is
no longer diagonal, and all elements must be calculated numerically. This requires an efficient computational
procedure. Second, due to the long-range nature of the Coulomb potential v(r) = 1/r in real space, the matrix
diverges in the limit of small wave vectors k — 0. Whereas this divergence is confined to the single head
element in the case of a plane-wave basis, all matrix elements now contain divergent terms proportional to
1/k? and 1/k. Previous all-electron implementations [9/10] of many-body perturbation theory have often
bypassed this problem by reverting to a plane-wave basis for the Coulomb potential and related propagators,
such as the dielectric function, but the projection leads to a loss of accuracy, because the rapid oscillations
of the orbitals close to the atomic nuclei cannot be resolved then. As a consequence, physical effects like core
polarization are inadequately described. An alternative approach, the so-called offset-I" method, employs an
auxiliary k-point mesh that is shifted from the origin by a small but finite amount [8/11]. In this way it avoids
the singularity, but the use of additional meshes increases the numerical cost; even in the most favorable
case, for cubic symmetry, the number of k points must at least be doubled. Furthermore, the convergence
of Brillouin-zone (BZ) integrals involving the Coulomb matrix, for example for the GW self-energy, may be
slow with respect to k-point sampling due to the approximate treatment of the quantitatively important
region near the zone center.

In this work we derive formulas for the Coulomb matrix in the mixed product basis including its math-
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ematically exact expansion around k = 0, which involves terms proportional to 1/k% and 1/k as well as
constant terms. A proper treatment of the small-wave-vector limit is especially important for the theoret-
ical description of optical spectroscopies with zero momentum transfer, but also for the calculation of the
nonlocal Hartree-Fock potential or the GW self-energy, which both involve an integration over the BZ. In
a second step, to simplify the numerical treatment we then apply a basis transformation that diagonalizes
the Coulomb matrix. This eliminates all 1/k terms and again restricts the 1/k? divergence to a single di-
agonal element, belonging to a constant eigenfunction. The final situation is thus once more analogous to
a plane-wave representation, where the dielectric function naturally decomposes into head, wing, and body
elements, but we retain the full accuracy of the FLAPW basis set. Furthermore, the present algorithm is
very efficient; the computational time for a well-converged Coulomb matrix with 10° elements takes less
than a second on a modern single-CPU personal computer. The present algorithm is implemented in SPEX
[12], a computer code for the calculation of excitation spectra and quasiparticle energies within the GW
approximation.

This paper is organized as follows. Section 2lshortly describes the FLAPW method and the mixed product
basis used in this work. The formulas for the Coulomb matrix at finite wave vectors are derived in Section [3
We then discuss its expansion around k = 0 and the subsequent diagonalization in Section [l As a practical
illustration, in Section Bl we present electron-energy-loss spectra of Ni calculated at finite k vectors as well as
k = 0 within the random-phase approximation. Finally, Section [6]l summarizes our main conclusions. Unless
stated otherwise we use Hartree atomic units.

2. Basis sets
2.1. FLAPW method

In the FLAPW method space is divided into nonoverlapping atom-centered muffin-tin (MT) spheres
and the interstitial region (IR). The core-electron wave functions, which are (mostly) confined to the MT
spheres, are directly obtained from a solution of the fully relativistic Dirac equation. The valence-electron
wave functions with spin o are expanded in interstitial plane waves (IPW) in the interstitial region and
numerical functions ug,,,,, (r) = ugp, (r)Yim (er) inside the MT sphere of atom a with position vector R,. The
latter comprise solutions of the Kohn-Sham equation

1 —0 -
_EVQ + Veﬂ',a(r) ualmO( ) - 6u,lru‘u,hnO( ) (1)

for p = 0 and their first energy derivatives uZ;,.,(r) = 0ug,,,(r)/0¢eZ, for p = 1, where Vzﬁﬁa(r) is the
spherical average of the effective potential, €7, are suitably chosen energy parameters, and Y, (e,) denote
the spherical harmonics. The notation e, = r/r with r = |r| indicates the unit vector in the direction of r.
In a given unit cell the Kohn-Sham wave function at a wave vector k with band index n and spin o is then
given by

\/—— Zo ZlZA‘”mP atmp(r = Rq) if r € MT(a)
\/— > et ter if r € IR

|k+G|<Gmax

Prc(r) = (2)

with the crystal volume V', the number of unit cells NV, and cutoff values l;,ax and Guax. The coefficients
Ag}jg are determined by the requirement that the wave function is continuous in value and first radial
derlvatlve at the MT sphere boundaries. If desired, additional local orbitals [14] or higher energy derivatives

[15] can also be incorporated by allowing p > 2.



2.2. Mized product basis

The FLAPW method uses continuous basis functions that are defined everywhere in space but have a
different mathematical representation in the MT spheres and the IR. For the expansion of wave-function
products, however, it is better to employ two separate sets of functions that are defined only in one of the
spatial regions and zero in the other. In this way, linear dependences that occur only in one region can
easily be eliminated, which overall leads to a smaller and more efficient basis. The resulting combined set of
functions is called the mixed product basis.

Inside the MT spheres the mixed product basis must accurately describe the products

I+ L
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ualmp (r)ual’m’p’ (I‘) - ualp(T)lem (ef‘)ual’p’ (T)le’m' (el‘) - Z Z Cthl’WI’L]WUVaLP (T)YLM(eY‘) ’ (3)
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which we expand in spherical harmonics with the Gaunt coefficients

Compmrian = [ V(o) Yioms (er)Vips(er) d2. (@
The index P counts the radial product functions UZ, p(r) = uglp(r)ugl,p, (r) for a given angular quantum

number L. We emphasize again that, in general, the latter lie outside the vector space spanned by the original
numerical basis functions {ug;,,. (r)}. Initially, the set of radial product functions is neither normalized nor
orthogonal and usually has a high degree of (near) linear dependence. An effective procedure to remove these
(near) linear dependences is to diagonalize the overlap matrix and to retain only those eigenvectors whose
eigenvalues exceed a specified threshold value [13]. In this way the MT functions become orthonormalized. By
using both spin-up and spin-down products in the construction of the overlap matrix we make the resulting
basis spin-independent. If desired, the basis set may be reduced further by introducing an additional cutoff
value Ly, .x for the angular quantum number. On the other hand, it must be supplemented with a constant
MT function for each atom in the unit cell, which is later needed to represent the eigenfunction that
corresponds to the divergent eigenvalue of the Coulomb matrix in the limit k — 0. From the resulting
orthonormal MT functions M,pap(r) = Marp(r)Yra(er) we formally construct Bloch functions

1 .
M yrp(r) = Ve Z e (TR M pp(Jr = T — Ra|)Yors(er—1-R,) - (5)
T

The sum runs over all lattice translation vectors T, and M, p(r) = 0 if 7 is larger than the muffin-tin radius
Sq-
In the IR, since the product of two IPWs equals another IPW, we use the set

1 7 T
Mg(r) = Wi tt@re(r) (6)
with the step function
0 ifre MT
O(r) = (7)
1 ifrelR

and a cutoff G, < 2Gmax in reciprocal space. Together with the MT functions we thus obtain the mixed
product basis { M}(r)} = {MX, ,,p(r), ME&(r)} for the representation of wave-function products. In contrast
to the MT functions, which were explicitly orthonormalized, the IPWs are not orthogonal to each other; the

elements of their overlap matrix can be calculated analytically and are given by

<Mé|Mé//> = ok Oga (k) = dxiwOc-a, (8)
where
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are the Fourier coefficients of the step function (7) and €2 denotes the unit-cell volume. We also define a
second set, the biorthogonal set

=Y 057 (k)M¥(r) (10)
J
with the overlap matrix Oy, (k) = (M¥|M¥). It fulfills the identities
(N ) = (M| 01) =50y ana S |aal) (| = | (wk| =1, (11)
I 1

where the completeness relation is only valid in the subspace spanned by the mixed product basis, however.
As the MT functions and the IPWs are defined in different regions of space and the MT functions are
orthonormal, only the IPWs overlap in a nontrivial way. It should be noted that the overlap matrix is
k-dependent because the size of the mixed product basis varies for different k vectors.

For the evaluation of the Coulomb matrix elements we have to find a numerically tractable expression for
the IPWs. A straightforward approach might employ the Fourier transform of the step function and rewrite
([6) as a sum over reciprocal lattice vectors

ME(r)= i Qg !k tG+G)r 12
G(r) GPVIVHAOO \/_ |G’<ZG N ‘ , ( )
PW

where Gpw is a cutoff radius in reciprocal space, for which we must of course choose a finite value in practice.
Eq. (I2) has a very simple mathematical structure and is easy to implement. For example, the calculation of
the matrix elements IPW-IPW only involves Fourier coefficients of the step function ©(r) and the Coulomb
interaction 1/r, which are both known analytically. As an alternative, we may exploit the Rayleigh expansion

0o l
= amitii(kr) Y Vi (ex)Yim(er) (13)
=0

m=—I
involving the spherical Bessel functions j;(x) in order to subtract the plane waves inside the MT spheres

lpw

Mg(r) = lim —— f 4wZZezq (T+Ra)g Zul (') Z Yin(eq)Yim(er)| . (14)

where we use the abbreviations q =k+ G and r' =r — T — R, and 6(r) denotes the Heaviside function.
In a practical implementation we must use a finite maximal angular momentum [pw, which thus becomes
the relevant convergence parameter. Despite its more complicated mathematical appearance, we have found
that this representation in fact facilitates a considerably faster numerical evaluation because of the slow
convergence of the step function in (I2) with respect to the number of Fourier coefficients. We illustrate this
point in Section Bl In our subsequent derivation we hence employ expression (I4)).

m=—1

3. Coulomb matrix at finite k

In this section we derive the formulas for the computation of the Coulomb matrix elements

ot = | MEWMEE) o, o (15)

v —r/|

for arbitrary finite wave vectors; the limit k — 0 is discussed in Section @l Due to the composite basis
set {MF(r)}, which consists of MT functions with I = (aLMP) and IPWs with I = G, the Coulomb
matrix is made of four distinct blocks. As it is Hermitian, however, the two off-diagonal blocks are complex
conjugates of each other, and thus we have to consider only three blocks explicitly, which correspond to the
combinations MT-MT, MT-IPW, and IPW-IPW. Svane and Andersen [16] already examined the matrix
elements MT-MT for finite k vectors in the context of the linearized muffin-tin orbital (LMTO) method. In
the following we summarize the derivation in a somewhat different notation and then give the expressions
for the additional matrix elements involving IPWs.



3.1. MT-MT

If we insert the Bloch representation (@) for the MT functions in

M / ! 7’ /
VarmpPa LM p (k // aLMP | ,L| e () &rd’r, (16)
r—r
then the integral can be rewritten as
Varmpa L P (K) = Z otk (T+R,0) (17)

T
« // MaLP(r)YEM(eI‘)Ma’L’P’(|r/ - T — Raa’l)YL’M’ (er’—T—Raa/) dBTdBTI ,

v — 1/
where the difference vector R, = Ry — R, points from one MT center to another in the same unit cell.
The integrals in (I7) corresponding to R = 0 and R # 0 with R = T + R, give rise to two contributions

a b
VarMPar M P (K) = 6aa'vt(zl?MP,aL’M’P’ + vl(J,L)MP,a’L’M’P’ k), (18)

which we evaluate separately in the following.
Let us first consider the integral for R = 0. It can be simpliﬁed considerably by inserting the identity

<
|r—r’| 2214—1 I Z Yim(€e)Yim(er) (19)

where r- and r~ indicate the smaller and larger value of {r, r'}, respectively. After carrying out the angular
integrations we obtain

Ut(zaL)MP,aL’M’P’ (20)
A s 1 " Sa Ma A(r
e A L e A R e L
0 0 r

The remaining integrations can be easily performed by standard numerical techniques on a radial mesh.
For the integrals with R # 0 we may formally define a multipole potential

Ma/L/p/(|I‘/ — RD}/L/M/ (er/,R) 3 47 Qa'L/ p/
= der’ = — Y v (e 21
/ |r — 1’| " 21’/—1—1|r—R|LJrl e (0rx) =)

that acts in the first MT sphere as a result of a “charge distribution” M, 1 p/ (r' —R) in the second, where
Qo 1 pr denotes the multipole moments

Qurp = / ' Y2 N ppe () di (22)
0
Using the expansion theorem [I7/1g]
47T 1 L'+M’ s ! ’rl "
2L’ +1 |I‘ - R|L/+1 YL/M/ (erfR,) = (_1) Z Z CL/M/’lmiRL’-‘rl-‘rl }/lm(er)}/(l/-‘rl)(m—M’)(eR) (23)
=0 m=—1
with the symmetric matrix
M2 200 +10) — 1!
CL/M/,lm = (—1) (47T) (2L/ T 1)”(21 T 1) CL’M’lm(L’Jrl)(m M’)
— (4m)2 1 (L'+14+m—M))(L'+1—m+ M) (24)
a VR T D)@+ 1) 2 + 1)+ 1] \| (I + ML — M) +m)l(l —m)!’

the multipole potential (2] created by a MT function at R can then be written in terms of radial functions
and spherical harmonics at the origin. The corresponding “electrostatic interaction energy” is given by
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// Marp(r)Yiy(er) Mo p (It = R|) Yo (er-R) Brdr’
v —r/|
1

= (—1)E M e LMQaLPQa’L’P’W}/(LJFL/)(M vy (er) - (25)

After performing the sum over lattice vectors in (I7) we eventually obtain

b ! e , aa’
t(zL)MP e (K) = (DE M e Raare 2MQarr P QarPS{T 41y (- (K) (26)
with
/ ) 1
Spe (k) => e T ———— V" (eryr,,.) (27)
; |T + Raar |l+1
where the sum runs over all lattice vectors excluding the case T + R,,» = 0. We note that Sla,fl, (k) is

closely related to the structure constant defined in the context of the LMTO method [17]; however, it is
not dimensionless and therefore not a constant of a given crystal structure. For the numerical evaluation of
Sfe (k) one must apply the Ewald summation technique.

3.2. MT-IPW

For the matrix elements in the off-diagonal block

M /
UaLMP,G // aLMP (I‘ ) d3T d3T/ (28)

Ir—r’l

we can again introduce a formal “charge distribution” given by M (r') that creates a potential
Mk r 1 i(k+G)r i(k+G)-r/
O(r) = el /) dr' = — 4#672 —/ 67, ar' ), (29)
Ir—r/| VV k + G| Mt [T =]
where the integral runs over the combined volume of all MT spheres, cutting out the plane waves inside
them. The “electrostatic interaction energy” arising from the first term in the brackets is given by

47 1 * - A1 27;L N o~ 1 Sa )
\/_q /M;(LMP(r)elq "dr = %YLM(QQ)elG Raq—g/o TQMaLP(T)]L(qT) dr, (30)

where we have again used the Rayleigh expansion (I3)) and the abbreviation q = k + G. If the exponential
function in the second term on the right-hand side of (29) is also replaced by the Rayleigh expansion, then
the resulting integrals are equivalent to those considered in Section B above. We can hence evaluate them
in the same way. The resulting final expression for the Coulomb matrix element

b
varmpc(k) = U((zaL)MP,G(k) + vz(zL)MP,G(k) + ”szL)MP,G(k) (31)

consists of three distinct terms, which are given by

a 1 L% er, 1 [ .
orir ) = = Vi (eq)e ™ [N (o)) (322)

(b) (k) o 1 (4 )2 -L}/ﬂ'< ( ) iG-Rg sa M ( ) IL(q; T) 4 L+2j ( ) d (32b)

aLMPG \/ﬁ ) v Yrp(€q)e 9L +1 0 aLP\T" 701/7—1 r aL\gq,T T,

(© 1 o

c —i o m’ iq-R, aa’

VaLapc (k) =— o R Qarp Z Z ) Z VR ey Lt QG ST 410y (1 -y (K) (32€)
=0m’'=-—1 a’

with the multipole moments

alm - 47” Il (q7 Sa)}/lm (eq) (33)
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and the integrals

T o " "n4+2 - / / o e jl(qu) ’
1(q,m) = ragr) drt and Ju(g,r) = S dr’, (34)
0 T

for which analytic expressions are given in appendix [Bl

3.3. IPW-IPW

The remaining integrals
ME (r)ME, (x")
vaa (k / G |r I'ET d3r d3r’ (35)

are evaluated in a similar manner. The subtraction of the plane waves inside the MT spheres now leads to
a decomposition of the matrix elements into four terms

a b c d
vae (k) = 05l (k) — vgg (k) — vie (k) + vad (k). (36)
The first three can be calculated analytically and yield
71(k+G T z(k+G )-r’ A
) d>r /d3 =dgg— 37a
vGe / r— 1’| ““lktra) (872)
—i(k+G)-r i(k+G’)-r’ 4
(b) 1 3 / 3, € e _ T
Vo (K) == d’r | d°r = (g’ —Og-¢/)——5 , 37b
GG( ) v MT |I‘—I‘/| ( GG G G)|k+G/|2 ( )
—i(k+G)-r i(k+G’)-r’ 4
&) d3r / &' & c — (baa — © T 37
’ = GG’ G-G’ ) c
vaa( V MT v —1| ( )|k+G|2 (87¢)

while we evaluate the fourth term

5 5, € i(k+G)rgi(k+G')r’
Ve ( / dr / dr p (37d)
MT MT v — 1/

by again replacing the exponential functions with the Rayleigh expansion (I3]) and following the procedure
outlined in Section [31] above. The subsequent summation over MT spheres and angular momenta yields

d 1 — .
vée (k)= g (Z e Z > Oy (eq) i Kol ) (38)
lpw lpw , . , )
+ Z Z Z Z l o Z e—ZCI'Ra ezq Rar Cl’m’,lmQaq;mQaq/l/m/ S&il/)(m—m’) (k))
=0 m=—1 U'=0m'=—I a,a’

with q =k + G, ¢’ = k + G’ and the double integral

,
Kai(q,q / / 1?51 (qr)ji(q'r )rlil drdr’. (39)

>

For the latter an analytic formula is derived in appendix

4. Expansion around k =0

Due to the long-range nature of the Coulomb interaction v(r) = 1/r in real space, its Fourier transform
47 /k? diverges for k — 0. As a consequence, the Coulomb matrix in the mixed product basis also diverges
with a leading term proportional to 1/k?. Since the MT functions contain nontrivial k-dependent coefficients,
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we further have additional terms proportional to 1/k. It is helpful to identify all relevant terms in advance.
For this purpose we formally represent the basis functions by their Fourier transforms

N % > cra (ke (40)
G

with the coefficients 1
cra(k) = Nid / eI kHG T K () @ (41)

The sum runs over all reciprocal lattice vectors G. For the IPWs the coefficients are k-independent and equal
ca'g(k) = Og_g for ME,(r), but for the MT functions they exhibit a nontrivial k dependence. Using the
expansion

1 1 ;
MF(r) ~ NG E <CIG +k-Veig + §kTch(;k> i+ G)r (42)
G

for k — 0 with crg = C[(;(k)|k:0, VC[G = VkC[G(k)|k:0 and AC]G = VkVEC[G(k) we can write

the Coulomb matrix elements in this limit as

‘k:O’

™ ™
vrs (k) ~ cjocso 15 + [cro(ex - Veso) + (e - Vego)eso] == + [(ex - Vo) (ex - Veso)
1 * T 1 T * * 4m
+§Cm(ek Acjoex) + 5(91‘ Acjoex)cio | 4T + Z CIGCJG@ . (43)
G0

Evidently, all matrix elements contain divergent contributions proportional to 1/k? in addition to a constant
term. Furthermore, if ¢;a(k) or ¢yg(k) are truly k-dependent, i.e., for matrix elements that involve MT
functions, we also have terms proportional to Y7%,(ex)/k and Y5, (ex) arising from the first and second
square bracket, respectively (compare (A5]) and (]El) . As a consequence, we can write

Vi (ex)
v (k NUIJ "’Z Z ”Isz [ (44)

=0 m=—1

and from (I3)) follows

0 0)x 1 m, (L)%
off = o) and 0y, = (S)™0 (45)

We will see in Section [£4] below that the terms corresponding to { > 0 can in fact be eliminated if we
perform a basis transformation to the set of eigenvectors of the Coulomb matrix. Nevertheless, for the sake
of completeness we will here give the appropriate formulas for UglJ)Jm with { > 0 in the original mixed
product basis as well. As in the previous section, we proceed by discussing the blocks MT-MT, MT-IPW
and [IPW-IPW individually.

41. MT-MT

The second term on the right-hand side of (8], explicitly given in (28), diverges for k — 0 and L+ L’ < 2,
because the leading term of Sl“m“/ (k) is proportional to k27!, which is seen in the following way: For small
k the sum over T in (27) is dominated by contributions belonging to large lattice vectors. Then one can
approximate the sum by an integral

aa’ “akr,, L [ T, 3 4rit —ik-Ry oy * 1-2
Sim (k) ~ e “'q | T Yim(eT)d'T = [ESNION o/ Y (ex)k 7, (46)
where we have used (I3), (B2), and (A4). The same expression appears in the first term of the reciprocal-
space sum corresponding to G = 0 in the Ewald summation. The remaining terms and the real-space sum

yield an additional constant term Sﬁi , so that we obtain

Spa’ (k) ~

4t

—ik-R, 7\ * -2 aa’
me Vi (ex)k™ + Siy (47)



for I < 2. After inserting this expansion into (26) we obtain

(0) L

VaLMP,a/L' M/ P’ = 5aa’”((1aL)MP,a/LfM'PI +(=1) CL’M’,LMQa’L’P’QaLPSgE;-L’)(M—M’) ; (48)
vl(llL)MP,a/L’M/P/;lm =01,0406m p—n (—1)" e @i%CL/M/,LMQa/L/P/QaLP (49)
with [ < 2.
4.2. MT-IPW

The case MT-IPW is more complicated, because higher orders in the multipole moments Q ; l/m/ must be

taken into account when multiplying with the divergent S/ +l’)( M—m)(K) in B2d). In particular, we need
k+G

the expansions of QXFS (QX1S,) up to second (first) order

. 1. 1 j2(Gs,
Qigo™ ~ V4 [Jl(GSa) — j2(Gsa)sak ex - eg + §J3(G5a)5§k2 (ex-ec)’ — 15 )S“kz] ,

2 G
(50a)
k+G s J2(Gsa)
QA18 ~ami e |V (o) (2(Go) — (Go)sab o) + V(e 202 (50)
For G = 0 these simplify to
VAT 4
1;00 ~ T (1 - 1_0 ik2> (51a)
dmi
aim ™ g Y (ew)sak. (51b)

Here we have used the identities (A))-(A77). In addition, (32a) contributes to ”leL)M p.q if G = 0. The final

: 0 1 . .
expression for vl(lL)MP e and UéL)MP ¢ 1s written as

0 a 0b
¢(1L)MP G~ ”szzz/[P et U£L134P,G ) (52)

where the quantity

Oa b
¢(1L12/[PG (1 —dgo)v aL)MPG(O) + Uz(zL)MP,G(O) (53)
lpw . _
QaLP Z Z l +m Ze'LG R,/ Cl'm/ LMQ a'l'm /S L+l’)(M—m’)
=0m'=-1l" a’

is directly obtained after replacing Sﬁf; (k) by the terms of zeroth order in the expansion ([@7). The second
term v((lOLbI?/[ p.c results from multiplying the divergent terms in (47) with the higher orders of (50) in (32d)

as well as, in the case G = 0, the term 1/¢? with the higher orders of j;(¢r) in ([B2al). After some algebra we
obtain

4m)5/2 2(Gsar)  j3(Gsar)sar ] .
—(93/2 QaOPZ G Ra 12(26' ) _ sl 6) ifG#0and L=0,
(4m)5/2 P |
a Sor + —— r*Maop(r)dr ifG=0and L=0,
SO0 ~ 30052 ¢ OPZ 6\/5 | op(r) -
aLMP,G (42 3 (Gswr)  d5(Gsur)sur]
™ iG-R, Sa’ .72 Sa’ J3\GSar )Sar | . .
— anpz G| e 5 | ifG#0and L=1,
0 otherwise ,
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as well as

e (4m)>/2" iG-R, G (47)*i" Qarp
Vol M P,Gitm = OLIOMm —m@zw Z e Qa0 + 5Gom : (55)

4.3. IPW-IPW

Finally, in the calculation of the IPW-IPW matrix elements we can use the fact that the square brackets

in ([@3) vanish. This simplifies the derivation considerably, because all angular-dependent contributions can
1)

be discarded from the outset, and hence we have vg g, = 0 for [ > 0. We again write
0 0 0b
VGe = vag T UGe
(0a)

where the first contribution vg g, is given by the nondivergent terms in (36) after replacing S’ﬁfl/( )b S’l‘ﬁfl ,
which yields

00, = (1 - dao) [vgg, (0) — vl (o)} (1 - dgr0)vlL (0)

lpw

+ % (Z (G’ -¢G Z Z Yim(ec) Vi, (ear)Kai (. q) (%)
" 1=0 m
lpw 1 lpw

Further, by inserting the expansions (50) and (GI) as well as the k-dependent terms of ([@7) into (B8)) one
obtains another constant contribution

(4m)° —iG-Rq ,iG' R , SaSar L. : L. ; 2
02 ;e € “ Neled _5]2(G5a).72(G/5a/)5a5a’ (ec -eq’) — EJI(GSa)JB(GISa/)Sa/
1 -7 v 5 J1(G8a)j2(G'sar)sar | j2(G8a)j1(G'sar)sa : ’
6]3(G3a).71(G Sar)Sy + Vel e if G # 0 and G’ # 0,
(4m)? ia'R,, Sasa [ Sa 1 2, 1)2(G'sar) : _ /
'U(ng)/ _ 02 ;8 @ 7 %jl(G ) — EJS(G )Sa/ + ETSG/ if G=0and G §£ 0,
(4m)® —-iGR, , SaSar [ S L. 2, 1j2(Gsar) :
a? ;;e ~“c %jl(GSa )= E]3(G8a/)8a/ + 6 o if G#0and G' =0,
QOQQZS (s2+s2) fG=G' =0
(57)
For the calculation of U(ci)c;/ oo We must take the divergent terms of (37) into account and eventually obtain
(1) (47T 5/2 —iG-R, ,iG" 'R,/ G’ 3/2 fe) 5 5 — dead
VGeGr,00 = Ze e 'Q%0QS 00 + (41)*/? [BG @ (6o + dar0) — daobaro] - (58)

4.4. Diagonalization

In a pure plane-wave representation response matrices and similar quantities decompose into head xoo,
wings xqo, xog’, and body xyeqg’ with G, G’ # 0. These behave differently for k — 0. For the density
response function, as an example, head and wing elements are quadratic and linear in k, respectively, while
the body elements remain finite but still exhibit an angular k dependence. As the mixed product basis is
related to the set of plane waves by means of a basis transformation, these matrix elements will now mix
in a complicated manner. It is hence desirable to make another transformation that restores the convenient
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mathematical properties of the plane-wave basis. For this purpose the basis must include a constant function,
which corresponds to the limit of e’/ V'V for k — 0 and is responsible for the decomposition into head,
wings, and body. Such a basis is given by the functions

Ef(r) =Y E}Mf(r), (59)
I

where E}fl is the Ith component of the uth eigenvector of vy (k). In this basis the Coulomb matrix v, (k)
becomes diagonal, which is also advantageous in matrix multiplications involving v, (k), e.g., for the calcu-
lation of the dielectric function. Furthermore, the eigenvalues are a direct measure for the probability of the
elastic scattering between two particles. Small eigenvalues thus identify less important scattering processes
that might be neglected, leading to a smaller and optimized basis set after removal of the corresponding
eigenvectors.

Because of the divergent terms in ([44) the diagonalization in the limit k — 0 is not trivial. The first
eigenvector EX corresponding to the divergent eigenvalue v (k) = 47 /k? is, however, easy to obtain from
the analytic projection of €’ /+/V on the biorthogonal mixed-product-basis functions

4l /Sa
- ) ciok) = —Y/,,(e r2in(krYM,rp(r)dr for I = (aLMP),
By = L[ ey | 000 = G e |t (aLMP)
Vv 0co for I = G,
(60)
which in the limit k — 0 becomes
VAams3/(3Q) for I = (a001),

EYr =% dco for =G, (61)

0 otherwise .

Here we have assumed that the constant MT function of atom a is normalized and identified with the index
(a001). The other eigenvectors Eg and eigenvalues v, (0) for ¢ > 1 are obtained by diagonalizing the last
term of the formal expansion (@3]

_ N 47

Vig = Z CIGCIG 73 » (62)

G+#0

which is unknown so far. The matrix vg(}), calculated in the previous section, contains 7y but also the
spherical average of the second square bracket in ([43]). If we denote this spherical average by wy s, then we
can write

U[J=v§(?,)—w1J. (63)

In order to evaluate w;; we introduce the natural basis

1

| 1 |
ko= olhe =ik, k= (ke i) ko= ke (64a)
D1 = = (0, +i0,), 0= —= (=0, +id,), do=0., (64b)

V2 V2

which allows us to write the k-dependent terms in the second bracket of (43)) in terms of spherical harmonics
according to
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1

1
er Acjoex = %ﬁ ;1 Z_: 1 Yy (ex)Yim (€k)0,Omicro (65)
1 nzi o - !
- 3 m;1 OmOmeso + 3 m;1 m;1 Clmllm2(m7ml)yz*(m*m’) (ex)0;,0mc0
1
(ex - Vi) (ex - Vego) = Z Z Y75 (ex)Yim (€x)0;, cloOm cio (66)
m=—1m/=—1 o 1
== mzl 05 C109mcio + 3 mglmgl ClmllmQ(m,m,)Yz*(mim,)(ek)a;lcjoam,cJo ,

where we define 0,,cro = Omcro(k)|_o and similar abbreviations. The last equation follows from the identity

1
|4
ex - Vecio = ? g Y1m(ek)3m010 . (67)
m=—1

When we take the spherical average, the harmonics with [ > 0 vanish, and we obtain

1

wry = ? [(6;0;0) (8cho) + icloamamCJo + ECJoamamCIO (68)
m=—1
with
VAars3/(3Q) for I = (a001),
cro=4 O_¢g for I =G, (69)
otherwise,
S L0am | o / r)dr for I = (alMP)
m a r I = (a s
B, cr0 = L10M 30 1p( (70)
otherwise,
) \/47/ r)dr for I = (aOMP)
M, r for I = (a ,
Z (9 8 'mCI0 = Lo OP (71)
m=—1 otherwise .

5. Test calculations

Apart from the evaluation of ([27)), which is easily converged to high precision by means of the Ewald
summation technique, and the radial meshes for numerical integration inside the MT spheres, the cutoff
value lpw is the only convergence parameter in the construction of the Coulomb matrix elements presented
above. On the other hand, in an alternative implementation that uses the representation (I2)) rather than
the Rayleigh expansion for the IPWs the matrix elements must be converged with respect to the reciprocal
cutoff radius Gpw. Figure[ll compares the convergence behavior of these two approaches. The curves indicate
the root mean square deviation of the Coulomb matrix for bulk silicon, averaged over all matrix elements
MT-IPW and IPW-IPW and over 64 k points, from the fully converged results calculated with lpw = 26. In
both cases we employ the same cutoff parameters G, = 3.6 Bohr™! and Lax = 4 for the mixed product
basis, the MT functions are constructed from products uZ,,(r)ug, () with { < 2 and I’ < 3. On average
this yields 411 basis functions per k point. It is evident that the results obtained with the present method
converge much faster than those obtained with the Fourier transform of the step function. Furthermore, at
the same level of accuracy the present method is typically by a factor of 10-100 faster.
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As an application we now consider the simulation of experimental spectroscopies related to the complex
dielectric function, which describes many-body screening effects in a correlated electron system. In electron-
energy-loss spectroscopy (EELS), for example, the measured differential scattering cross section is directly
proportional to the imaginary part of a diagonal element of the inverse dielectric function [19]

1 (!
e (k,w) = v // e, r'; w)e™ T @By g3yt (72)
whereas in optical absorption one measures the imaginary part of [20]
o -1
em(w) = lll_r)r}) /ey (k,w). (73)

In the framework of many-body perturbation theory the dielectric function is written as
e(r,v;w)=0(r—1') — /v(r, VP’ v/ w) d®r” (74)
with the polarization function P(r,r’;w) and the Coulomb interaction v(r,r’) = 1/|r — r/|. We use the

random-phase approximation

OCC unocc

I‘ I‘ w ZZ Z @nk @n q+k( )‘Pnk( )@n/quk( /) (75)

o n,q n'k

1 1
X o o T o o : )
W+€nk_€n’q+k+“7 w—enk+en,q+k—zn

where 7 is a positive infinitesimal. As P(r,r’;w) contains products of wave functions evaluated at r and r’/,
it can be represented in the mixed product basis as

Pleti) = [ Pratk) MEGMY @) d% (76)

with complex coeflicients

Pry(k // v, v’ w) MK (o) MK (x') d3r dPr (77)

Next we transform this matrix to the basis given by (59). This yields P, (k,w), which in the limit k — 0
decomposes into head, wing, and body elements as discussed in Section .4l We use the tetrahedron method
for integrations over the BZ.

102 102
10 1
-6
10° 1
103 1
-8 | 1
g w0 £
g 100} 1 3
-4
10 1
10-12 L 1
101+ 1
10-16 . . . . . . . . . 10-5 . L L L L | | | |
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
L Gy [Bohr]

Figure 1. Average root mean square deviation Av from the converged matrix elements (MT-IPW and IPW-IPW) as functions
of (a) the convergence parameters lpw and (b) the reciprocal cutoff radius Gpw for the Fourier transform of the step function
in (I2). The mixed product basis was optimized for Si bulk.
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Figure 2. EELS spectra of spin-polarized Ni for k = 27 /an; (&, &,€) with & = 0 (solid line), £ = 0.1 (dashed line), and £ = 0.2
(dotted line).

In the long-wave-length limit k — 0 we must carefully expand the polarization function around k = 0,
since it is multiplied with v(r,r’) in (7)), which diverges in this limit. Because of the orthogonality of the
wave functions the projection (E{‘gazq|gaz/q+k> = (eik'r<pzq|<pz,q+k>/\/7 is linear in lowest order in k for
interband transitions with n # n/. We calculate this leading term with k - p perturbation theory [2]. For
a metallic system the sum in (7)) also contains contributions from intraband transitions with n = n’ at
k = 0. It can be shown that these are nonzero only for the head element and given analytically by the Drude
formula [22], which is quadratic in k. The latter depends on the plasma frequency, which we obtain by an
integration over the Fermi surface. In conclusion, the head and wing elements of P, (k,w) are quadratic
and linear in k, respectively. If we use the symmetrized dielectric matrix

Euw(k,w) = 0 — v/ (k) P (k,w)vp/ 2 (k) (78)

where the v, (k) are the eigenvalues of vr(k), then all elements of £,, (k,w) are finite because v}/2(k) =
V47 /k. We note that the diagonal quantities considered above remain unchanged with this symmetrized
definition. As the first eigenvector of vy ;(k) corresponds to the projection of ¢’ /+/V onto the biorthogonal
mixed product basis, the head element 51_11 (k,w) directly equals the spectroscopic function ([72)).

In figure Bl we show EELS spectra Ime~!(k,w) for spin-polarized Ni at three k vectors 27 /ani(€, &, &)
with £ = 0.0, 0.1, 0.2 and the lattice constant an; = 6.66 Bohr We use the parameters lynax = 8, Grax =
3.57 Bohr™! for the FLAPW and Lax = 4, Gmax = 5.00 Bohr™! for the mixed product basis. The BZ is
sampled by 1661 points in its irreducible wedge, corresponding to a 40x40x40 k-point mesh in the full zone.
As the spectrum extends over a wide energy range up to 100 eV, we augment the FLAPW basis by second
and third energy derivatives as local orbitals to guarantee an accurate description of high-lying conduction
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Figure 3. EELS spectra of spin-polarized Ni for k = 27 /an;(0.25,0,0) with (solid line) and without (dashed line) core-state
contributions. The inclusion of transitions from core into conduction states gives rise to a shallow peak starting at 62 eV, which
is also seen in experiment (symbols) [23].

states [L5]. For the construction of the MT functions M, p(r) we employ products ug,,(r)ug,,,(r) with
1<2,1'"<3,and p =0, i.e., energy derivatives (p > 1) are neglected. In the calculation of (73) we take 118
conduction and the 10 valence states as well as the eight 3s and 3p core states into account. As we invert
the dielectric function, local-field effects are fully included. As seen from the figure, the spectra are very
similar for the three k vectors. When compared with the curves calculated at finite k points, the spectrum
for k = 0 clearly constitutes the limit k — 0.

As already pointed out, the spectra in figure [2] already include transitions from the 3s and 3p core states
into conduction states. Figure Bl shows a comparison of spectra calculated with (solid line) and without
(dashed line) these core-state contributions at k = 2m/ani(0.25,0,0). The largest difference between the
two curves is seen around 62 eV, which corresponds roughly to the threshold energy required to excite a
3p electron above the Fermi level. These additional transitions give rise to a shallow peak, which is also
observed in experiments with an onset at the same energy. The inclusion of transitions from 3s and 3p core
states into conduction states within our all-electron method thus brings the calculated spectrum very close
to experiment (symbols) [23].

6. Summary

In this work we have derived formulas for the Coulomb matrix elements within the all-electron FLAPW
method. As the Coulomb interaction couples two incoming and two outgoing states, a suitable basis set
must be capable of accurately represent wave-function products. Such a set is given by the mixed product
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basis, which contains MT functions as well as interstitial plane waves. We use the Rayleigh expansion for the
latter, because it makes a very efficient numerical implementation possible. Furthermore, we have derived
an exact expansion of the Coulomb matrix around k = 0 that isolates all divergent terms ~ k=2 and ~ £k~ 1.
Most of these vanish if we then make a basis transformation to the eigenvectors of the Coulomb matrix. The
properties of this new basis set are formally similar to those of a plane-wave basis. In particular, response
functions decompose into head, wing, and body elements with the same characteristic dependence on k.
However, the basis construction of this involves no approximation, and the accuracy of the FLAPW basis
set is completely preserved.

As an illustration we have shown EELS spectra for ferromagnetic Ni at different k vectors including k =
0. Very good agreement with experiment was achieved over a large energy window by taking core-electron
contributions into account.

Acknowledgements We gratefully acknowledge financial support from the Deutsche Forschungsgemein-
schaft through the Priority Program 1145.

Appendix A. Mathematical relations

In the derivations of Sections [3] and M we have used the following relations:

Ji-1(@) + Jipa(2) = 2L+ D)ji(z) /2, (A1)
L) = 2ile) — i (@), (a2)
L) =i () ~ "), (A3)
iZ?l ZZ?2
@) = G om (1 T 0(354)) ’ (4.4)
1
ex -eq = %” > Vim(ew)Yin(ea), (A.5)
m=—1
le771(621)}/1*"# (ea) = iémm’ + Clmlm’Q(m’fm)Y;m/—m(ea) ; (AG)
1
Vit (k) = Vin(ea) + e | Vi(ew) — 2m 3 Com¥imlea)Vilen)| +002) (A1
, 1 8T & .,
(ex-eq)" =5+ ¢ > Va(ex)Yam (eq), (A8)
m/=—2
Vio(eow) = ) o (A.9)
1
S 00 ()i (ex) = 1 ¥im(ex) [0 (04) — 10+ 1)] 7(k). (A.10)
m=—1

Appendix B. Integrals over spherical Bessel functions

The derivations in Section [ give rise to a number of integrals over spherical Bessel functions that can be
evaluated analytically. Explicit formulas for ([B34) follow from the recursion relations (AT)-(A3)
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P2 _
T]Hl(q?‘) ifqg#0,

Li(g,r) = 1 (B.1)
410 §r3 ifg=0,
1 1 1 .
- [ﬁjl—l(fﬁ) — o—5di-1(gsq)| ifq#0,
Jailg,r) =4 4L Sa (B.2)
5105 (si—r2) ifg=0.

We can also find an analytic expression for the double integral ([89)), because the above integration formulas
and the recursion relation (A)) lead to the solution

2A4+1 [ . , s3 .
Kala,q) = e / r25i(qr)i(q'r) dr — w‘]lJrl(an)]lfl(q/Sa)
0

53 q . . q. :
= W {;Jl-i—l(qsa)]l—l(qlsa) - ?]l—l(qsa)ﬂ-i-l (qlsa)} (B-3a)
_ Ji+1(q80) 7141 (¢ sa) n 20+ 1 jiv2(95a)1(9"sa) — Ji(gSa)i+2(q'sa) ’ (B.3b)
qq’ 20+ 3 7> —q”

where we used the symmetry of K4 (g, q’) with respect to ¢ and ¢’ to eliminate fOS“ r251(qr)ji1(¢'r)dr. The
expressions (B.3a) and (B.3L) are stable for large and small ¢, ¢/, respectively. The limiting cases are

3

. s . .
im Kai(q,q') = 0107% [45aj1(a3q) + j2(gsa)]  for ¢ #0 (B.4a)
q’'—0 3q
3
. ss . . .
ql,lglq Kal(g,q) = 2’ [(20 + 3)5i1(g5a) — (20 + 1)5i(gsa)div2(gsa)]  for g #0 (B.4b)
2
li " N — e} B.4
S Kar(g,4) = 00755 (B.4c)
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