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This paper presents the basics of the QQ-onia package, a software based upon the Nu-
merov 0(h6) method which can be used to solve the Schrödinger radial equation using a
suitable potential V (r) for the heavy quarkonium system. This package also allows the
analysis of relevant properties of those resonances such as the square of the wave functions
at the origin, their corresponding derivatives for l 6= 0 states, typical heavy-quark veloc-
ities, and mean square radii. Besides, it includes a tool to analyze the spin dependent
contributions to the heavy quarkonia spectrum, providing the splitting of n3S1−n1S0, as
well as the n3PJ −n1P1 energy levels. Finally a simple software implemented in QQ-onia
to compute E1 transition rates is presented.
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Nature of the problem: Software to solve the Schrödinger radial equation using a suitable
potential V (r) for the heavy quarkonium system, allowing to perform spectroscopy.
It also allows the analysis of relevant quantities of those resonances such as the
square of the wave functions at the origin, their corresponding derivatives for l 6= 0
states, typical heavy-quark velocities, and mean square radii. The package is a (user-
friendly) multipurpose tool for dealing with different heavy quarkonium systems,
providing a way to study the influence of a given potential on a series of relevant
physical quantities, by either varying parameterized values of a well-known potential
form, or by including new terms.

Solution method: Based upon the Numerov 0(h6) Method, we perform a matching proce-
dure to the reduced wave function at the cut point. We also perform a normalization
technique for for these wave functions taking into account the different domains when
we use a Numerov backward-forward technique. In the case of l ≥ 2 we present a
way to find the corresponding derivatives at the origin by only calculating the re-
duced radial wave function and first derivative. When estimating the heavy quark
velocity, we introduce an additional way to compute this quantity from the virial
theorem. The calculated reduced wave functions and radial wave functions at the
origin are later used to obtain the heavy quarkonia nL splitting and E1 transition
rates.

Additional comments: Using Windows, to optimize the edition of the files, please, open
it with MFC-WORDPAD.

Running time: It depends on the choice of the r range, and the number of energy steps.
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1. Introduction

Since the discovery of the charmonium and bottomonium families, much efforts have
been spent over 30 years trying to understand the nature of heavy quarkonium, (as a
summary see for example [1]); in the meantime various numerical tools have been created
in an almost “ad hoc” fashion with the aim of extracting important information about
their properties, such as their masses and partial widths.

This package was developed with the aim of providing a multipurpose (user-friendly)
tool for dealing with different heavy quarkonium systems, providing a way to study the
influence of a given potential on a series of relevant physical quantities, by either varying
parameterized values of a well-known potential form, or by including new terms.

The QQ-onia package handles the heavy quarkonium system within a non relativistic
framework, solving the Schrödinger radial equation (SRE ) with an appropriate potential
for heavy quarks/antiquarks. The basic reason for this choice derives from the Quark
Potential Model [2], which establishes a low value for the expected square velocity of the
quark for these heavy resonances (v2 ∼ 0.1 for bottomonia and v2 ∼ 0.3 for charmonia).
Besides, there is also another reason from a dual ultra-relativistic picture to provide a non
relativistic treatment for heavy quarkonium [3]. These low velocities v2 << 1 were also
responsible for the success of the Non Relativistic QCD (NRQCD) ([4], [5]), a rigorous
effective theory for strong interactions deriving from first principles.

The paper is organized as follows: the first section explains the basics of the heavy
quarkonium Non Relativistic potential and its spin-depedent part, according with the
Breit-Fermi Hamiltonian. Later we explain the underlying foundations to our way of
solving the Schrödinger equation. Although the arguments presented are already well-
known, we consider this introduction necessary to facilitate the understanding of the rest
of the article. We then look into the specific details about the calculation of the wave
functions of heavy quarkonia in our code.
We initially focus on a procedure for matching the reduced wave function at the cut

point and its normalization when we use a Numerov backward-forward technique. We
also explain how to extract useful quantities in order to analyze the heavy quarkonium
system such as mean square radius, and heavy quark velocity (introducing an additional
way to calculate this quantity from the virial theorem). For l = 0 states we also focus
on square of the wave functions at the origin, and, for l 6= 0 states, we examine their
corresponding derivatives; in the case of l ≥ 2 we present a way to find these values by
only calculating their corresponding reduced radial wave function and first derivative. It
follows an explanation on the spin-dependent terms in the bottomonia case and, finally,
we focus on the calculation of the E1 transition rates.

The software will be explained in more detail in the second part of the paper, where
we also present several results obtained using the programme to illustrate the procedure
and foreseen precision.
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Several potentials for the heavy quarkonium system are given as examples. Our first
(main) choice is the well-known funnel or Cornell potential, i.e. a Coulomb plus Lineal
static potential (CpL) [6],

V (r) = σr − CFαsh̄

r

with string tension σ and strong coupling constant αs; CF is a colour factor.

Nevertheless, other static and non-static potentials will also be used in this paper in
order to illustrate some results. Note that we will focus on the equal masses. Thus one
can write for bottomonium mQ = mQ̄ = mb ≡ m with reduced mass µ = mQ/2.

2. Physical Bases of the package

2.1. Heavy quarkonium potential and spin-dependent terms

If VNR stands for the Non Relativistic potential, one can split it in two terms consisting
of a vector (V ) and a scalar (S) contribution [7,8]

VNR(r) = VV (r) + VS(r) (1)

In our example with a funnel type potential (being k ≡ CFαsh̄)

VV (r) = −k/r ; VS(r) = σr

In accordance with literature (e.g. [7]), additional terms have been included in the
potential VNR to take into the account the spin orbital and the spin-spin interactions,
causing the splitting of the different mass levels. The additional potential reads [8]

V (r)spin−dependent = VLS + VSS + VT (2)

where VLS, VSS, and VT are the spin-orbit, the spin-spin, and the tensor terms, respec-
tively. The spin-orbit term, in the equal quark masses case, is

VLS(r) =
(L · S)
2 m2 r

[

3
d

dr
VV (r) − d

dr
VS(r)

]

(3)

where L is the relative angular momentum of the constituents (1 and 2),and S is the total
spin of the bound state, S ≡ S1 + S2 ( with J ≡ L+ S ); 〈(L · S)〉 for different j and l
values is shown in Table 1.

Table 1
〈(L · S)〉 coefficients (〈L · S〉 = 0 if l = 0 or S = 0).

j value (l + 1) l (l − 1)

〈L · S〉 l −1 −(l + 1)
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The spin-spin term can be written as

VSS(r) =
2 (S1 · S2)

3 m2 r

[

∆( VV (r) )
]

(4)

where the 〈S1 · S2〉 coefficients take the values:

(−3/4) for the spin-singlet case (S = 0), and (+1/4) for the spin-triplet case (S = 1).

The tensor term can be written as

VT (r) =
1

12 m2
(S12)

[

1

r

d

dr
VV (r) − d2

dr2
VV (r)

]

(5)

where (S12) is the spin-dependent factor (for l 6= 0 and S = 1), shown in Table 2 for
different j and l values.

Table 2
Spin-dependent S12 factor. ( 〈S12〉 = 0 if l = 0 or S = 0 )

j value (l + 1) l (l − 1)

〈S12〉 − 2 l/(2l + 3) 2 − 2 (l + 1)/(2l− 1)

2.2. Schrödinger radial equation

Basically, our code has to solve the well known Schrödinger radial equation (SRE ):

d2

dr2
ul(r) +

2µ

h̄2

[

[E − V (r)]− h̄2l(l + 1)

2µr2

]

ul(r) = 0 (6)

where Ψ(r, θ, φ) = Rnl(r) Ylml
(θ, φ) is the complete wave function, r stands for the relative

radial coordinate, and ul(r) ≡ r Rnl(r) is the reduced radial wave function.

With respect to the boundary conditions, a regular solution near the origin for ul(r)
could be [9]

u(r → 0) → rl+1 (7)

Since asymptotically u(r → ∞) → 0 we can take:

u(r → ∞) → exp
[

−
√

2µ|E|
h̄

r
]

(8)

where |E|, as later will be seen, is an educated guess about the energy eigenvalue.

The normalization condition reads
∫ ∞

0
dr|ul(r)|2 =

∫ ∞

0
dr|Rl(r)|2r2 = 1 (9)
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3. Numerical solution of SRE

The SRE can be written as

d2u(r)

dr2
+ k(r) u(r) = s(r) (10)

Here (setting l = 0), k(r) ≡ 2µ
h̄2 [E − V (r)] is the kernel of the equation, and s(r) ≡ 0.

We can integrate these equations by means of the Numerov Algorithm [10] as follows:

First we split the r range into N points according to rn = rn−1+h (where h is the step);
then we write the wave function un ≡ u(rn) = u(rn−1+h), and kn ≡ k(rn) = k(rn−1+h).

Expanding u(r) around rn:

un+1 ≡ u(rn + h) = u(rn) + hu′(rn) +
h2

2
u

′′

(rn) +
h3

6
u

′′′

(rn) +
h4

24
u(iv)(rn) + 0(h5) (11)

un−1 ≡ u(rn − h) = u(rn)− hu′(rn) +
h2

2
u

′′

(rn)−
h3

6
u

′′′

(rn) +
h4

24
u(iv)(rn) + 0(h5) (12)

Then approximating the second derivative by the three-point difference formula, and
using it within the second-order differential equation we get the following recursive for-
mulas, with a local error 0 (h6):

a) Forward recursive relation

un =
2(1− 5h2

12
kn−1) un−1 − (1 + h2

12
kn−2) un−2

(1 + h2

12
kn)

(13)

b) Backward recursive relation

un−1 =
2(1− 5h2

12
kn) un − (1 + h2

12
kn+1) un+1

(1 + h2

12
kn−1)

(14)

Therefore, when we calculate our wave function using the backward-forward technique,
we should note that the recursive formulas imply having knowledge of two initial values
for each direction.

It is also necessary to know the first derivative at the appropriate order. Following the
above expansions, we then get:

u
′

n =
1

2h

[

(1 +
h2

6
kn+1) un+1 − (1 +

h2

6
kn−1) un−1

]

+ 0(h4) (15)
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4. Wave function and normalization

For the sake of simplicity, let us first focus on l = 0 states. The SRE reduces to

d2u(r)

dr2
+

2µ

h̄2 [E − V (r)] u(r) = 0 (16)

To illustrate this point we choose an harmonic oscillator potential V (r) ≡ βr2, with β a
constant. We then start, for instance, by using a forward calculation (with an appropriate
energy eigenvalue).

Since we are dealing with bound states, we find eigenfunctions at the classically al-
lowed region with E > V (r) and classically forbidden region where E < V (r), they are
separated at a turning point, rc, which can be estimated from the equality E = V (rc).
If we perform a forward calculation, its asymptotic solution at the forbidden region may
behave either as ∼ e±αr2 , where the positive value is non-physical. Thus, we have an
admixture of those solutions and then, with successive iterations, the integration would
be numerically unstable due to the dominance of the exponentially growing solution. As
a general rule [10], integration into a classical forbidden region tends to be inaccurate.

Hence, for a given energy eigenvalue, we consider a calculation using both forward
and backward solutions: from the allowed towards the forbidden region, with uout(r)
(outwards) eigenfunctions and from the forbidden towards the allowed region with uin(r)
(inwards) eigenfunctions .

Let us note here that, to avoid numerical overflows in the forward calculation, we do
not usually start with u(r = 0): once included the centrifugal barrier term, the 1/r2 piece
would originate an overflow at r = 0.

4.1. Bound state energy

Since both uout(r) and uin(r) satisfy an homogeneous equation, their normalization can
always be chosen so that they are set to be equal at the rc point. An energy eigenvalue is
then signaled by the equality of derivatives at this point [10]. At the matching point the
eigenfunctions uout(r) and uin(r) and first derivatives u′

out(r) and u′
in(r) must all satisfy

the continuity conditions:
(

uout

)

rc

=
(

uin

)

rc

(

u′
out

)

rc

=
(

u′
in

)

rc

(17)

thus, we can write the corresponding condition for the logarithmic derivative at rc as
[

u′
out

uout

]

rc

=
[

u′
in

uin

]

rc

(18)

and then we can define a G(E) function at rc whose zeros correspond to the energy
eigenvalues as

G(E) ≡
[

u′
out

uout

]

rc

−
[

u′
in

uin

]

rc

(19)
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Therefore we proceed numerically in the following way: we set a trial energy range
splitting this E range into N points, according to En = En−1 + ∆E , where ∆E is the
energy step. For each En we calculate their eigenfunctions uout and uin at the rc point;
and we build the G(E) function here, looking for a change of sign in it (which implies a
zero cross). Once we find it, we perform a fine tuning closing the energy range until the
required tolerance.

4.2. Matching eigenfunctions at the rc point

When we find the energy eigenvalue, the calculated inwards and outwards eigenfunc-
tions will tend not to match at the rc point. However we can look for a strategy to solve
this problem:

Denoting the outwards and inwards functions directly obtained from the recursive for-
mulas as Φ(r) and I(r), respectively, the physical uout(r) and uin(r) eigenfunctions can
be rewritten as

uout(r) = AΦ(r) uin(r) = BI(r) (20)

A and B are constants. Their respective derivatives are

u′
out(r) = AΦ′(r) u′

in(r) = BI ′(r) (21)

By substituting eqs. (20) and (21) into eq.(17):

(

AΦ
)

rc

=
(

BI
)

rc

(

AΦ′
)

rc

=
(

BI ′
)

rc

(22)

and performing the difference, we get

A =
[

I − I ′

Φ− Φ′

]

rc

B ≡ fc B (23)

where fc will be a scaling factor to be applied to uout(r). Therefore

uout(r) = B fc Φ(r) uin(r) = B I(r) (24)

and B is a global factor that must be taken into account in the normalization process.

4.3. Normalization

Once the energy eigenvalue has been determined, we first insert it into the kernel,
k(r), thereby generating their corresponding Φ(r) and I(r) functions; subsequently we
calculate the fc factor. To find the remaining B factor, and therefore find the uout and
uin eigenfunctions, we use the normalization condition

∫ rmax

0
dr|ul(r)|2 = 1 (25)
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where, following the asymptotic requirement u(r → ∞) → 0, taking rmax as a cutoff value.

By separating the uout(r) and uin(r) domains in the above integral, we can write

∫ rmax

0
dr|ul(r)|2 =

∫ rc

0
dr|uout(r)|2 +

∫ rmax

rc
dr|uin(r)|2 = 1 (26)

Using the equations (24)

∫ rmax

0
dr|ul(r)|2 = (Bfc)

2
∫ rc

0
dr|Φ(r)|2 +B2

∫ rmax

rc
dr|I(r)|2 (27)

the normalization condition then reads

B2
[

(fc)
2
∫ rc

0
dr|Φ(r)|2 +

∫ rmax

rc
dr|I(r)|2

]

= 1 (28)

Denoting the result of the above integrals within brackets as N , we can write B = 1√
N
,

thereby deriving the normalized eigenfunctions

uout(r) =
1√
N

fc Φ(r) (29)

uin(r) =
1√
N

I(r) (30)

5. Integration and expectation values

When performing the integration with the QQ-onia package, we use the following pro-
cedure: If we name

TN ≡
∫ rN

r0
drf(r) ; fn ≡ f(rn)

from the Euler-McLaurin summation formula [11] with a given step h

TN = h
[

f0
2

+ f1 + f2 + ...+ fN−1 +
fN
2

]

− B2h
2

2!
(f ′

N − f ′
0)−

B2kh
2k

(2k)!
(f

(2k−1)
N − f

(2k−1)
0 )

where B2k are Bernouilli numbers. The first term of the r.h.s. in the above equality
corresponds to the extended trapezoidal rule.

If we set a number of steps to a multiple of 4, and apply the above formula for steps
h, 2h, and 4h we obtain

Th ≈ h
[

f0
2

+ f1 + f2 + f3 + ...+
fN
2

]

− h2

12
(f ′

N − f ′
0)−

h4

4!30
(f

′′′

N − f
′′′

0 ) + 0(h6)

T2h ≈ 2h
[

f0
2

+ f2 + f4 + ... + fN−2 +
fN
2

]

− (2h)2

12
(f ′

N − f ′
0)−

(2h)4

4!30
(f

′′′

N − f
′′′

0 ) + 0(h6)
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T4h ≈ 4h
[

f0
2

+ f4 + f8 + ... + fN−4 +
fN
2

]

− (4h)2

12
(f ′

N − f ′
0)−

(4h)4

4!30
(f

′′′

N − f
′′′

0 ) + 0(h6)

where TN = Th = T2h = T4h. If we solve this system to eliminate derivatives up to
0(h6) we arrive at the final formula of
∫ rN

r0
dr f(r) ≈ 64Th − 20T2h + T4h

45
+ 0(h6) (31)

that is used in our calculations.

Several expectation values are needed to be computed in our method. Once the eigen-
functions have been normalized, one can calculate the expectation value of a given oper-
ator O according to the definition

〈 O 〉 =
∫ rmax

0
dr u∗

l (r) O ul(r) (32)

by using the above 0(h6) integration. O can be r2 (if we want to obtain the mean square

radius of the state
√

〈r2〉), the potential or the derivative of the potential, etc.

5.1. Square of the radial wave function at the origin

We need to distinguish between the calculation of the square radial wave function at
the origin (WFO) for l = 0 states, |Rn(0)|2, and the calculation of the squared derivatives
of the radial wave function at the origin for l 6= 0 states, |R(l)

n (0)|2, with l = 1, 2, 3
respectively corresponding to the P,D and F states.

5.1.1. l = 0 states

From the well known calculation [3] derived from the Schrödinger equation we obtain

|Ψnlml
(0)|2 = µ

2π
〈 V ′(r) 〉 (33)

where 〈V ′(r)〉 is the expectation value of the derivative of the potential, and µ stands
for the reduced mass. If we are dealing with bb or cc systems: µ = mQ/2 where mQ is the
heavy quark mass.

For l = 0 states the wave function is: Ψn00(r) =
1√
4π

Rn0(r), then

|Rn(0)|2 = mQ 〈 V ′(r) 〉 (34)

Therefore, since the corresponding eigenfunctions have been already obtained, the eval-
uation of the radial WFO reduces to a calculation that gives the expectation value of the
derivative of the potential 〈V ′(r)〉.

Another method that can be used to evaluate the WFO is to extrapolate directly
from the normalized eigenfunctions, taking values of the square |Rn(r)|2 = [ |u(r)|2/r2 ]
from the region near to r = 0 using an appropriate interpolating function. Even so, the
previously stated technique yields a more accurate result, if the 〈V ′(r)〉 calculation is
reliable. Nevertheless both procedures can be employed together as a check.
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5.1.2. l 6= 0 states

Here we consider the SRE, eq.(6), containing the centrifugal barrier term. If we rename
the potential:

W (r) ≡ V (r) +
h̄2l(l + 1)

2µr2

the kernel of the SRE (see eq.(10)) now becomes: k(r) ≡ 2µ
h̄2 [E −W (r)].

l=1 CASE : The main goal here is to evaluate the square first derivative at r = 0,
|R′

n(0)|2. Since we have a tool for directly calculating the derivatives u′(r), according
to eq. (15), once we have the normalized eigenfunctions u(r), then using

R′
nl(r) =

[

u(r)

r

]′
=

u′(r) − R(r)

r
(35)

we can extrapolate the square of the derivative, taking those values from the region
near to r = 0 with an appropriate interpolation function.

l=2 CASE : We will obtain the second derivative at r = 0, |R′′

n(0)|2 but only in terms
of its radial wave function and first derivative. To do this we proceed as follows:
from SRE

u
′′

(r) = − k(r) u(r) (36)

If we calculate the second derivative using the above identity

R
′′

nl(r) =
[

u(r)

r

]′′

= − k(r) R(r) − 2 R′(r)

r
(37)

we can again extrapolate the |R′′

n(0)|2 function. The main advantage of this pro-
cedure is that there is no need for any additional derivatives, and since u(r) and
u′(r) have already been calculated at the suitable order, the result holds with the
foreseen precision.

l=3 CASE : In the same way, using eq. (36), we can obtain the third derivative to
extrapolate

R
′′′

nl(r) =
[

u(r)

r

]′′′

=
(

2 k(r)

r
− k′(r)

)

R(r) +
(

6

r2
− k(r)

)

R′(r) (38)

where k′(r) stands for the derivative of the kernel, k′(r) = −2µ
h̄2 W ′(r).
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5.2. Calculating the heavy-quark velocity
To obtain the 〈 v2 〉 value we perform a double calculation as a check: the first is from

the Hamiltonian definition and the second uses the virial theorem.

i) If ~r = ~r1−~r2 is the relative radial coordinate between the quarks 1 and 2, with velocities
|~v1| = |~v2| ≡ |~vq|, its relative velocity ~v at the center of mass frame is
~v = 2~v1 = −2~v2. Then, we can obtain the quark velocity using the Hamiltonian,
E = 〈T 〉+ 〈V (r)〉, (where T represents the relative kinetic energy T = 1

2
µ(~v)2)

〈 (~vq)2 〉 = 1

2µ

[

E − 〈 V (r) 〉
]

(39)

ii) Taking relative spherical coordinates, the virial theorem implies

〈 T 〉 = 1

2
〈 r V

′

(r) 〉

Then, we derive the quark velocity from the expectation value of the product rV
′

(r)
according to:

〈 (~vq)2 〉 = 1

4µ
〈 r V

′

(r) 〉 (40)

in both calculations for bb or cc systems where 2µ = mQ.
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Table 3
AJ and BJ coefficients.

j value AJ BJ

3P0 −(16/3) +1
3P1 −(4/3) +(1/2)
3P2 +(28/15) −(1/2)

6. Bottomonia mass level splittings

In this section we address different splittings of the mass levels of bottomonia in accor-
dance with the expressions shown in section 2.1:

n3S1 − n1S0 splitting: In this case the only term that gives a non vanishing contribu-
tion is the spin-spin term. Since from QQ-onia package we can previously calculate
the nS state WFO, instead of eq.(4) we choose to use its final and well-known form
[12]

∆
[

M(3S1)− M(1S0)
]

= αs(µ
2)

8

9m2
|Rn0(0)|2 (41)

where we will evolve the αs(Q
2) to the appropriate scale [13]

Q2 = 〈P2〉 = 2 〈 T 〉 µ = mb 〈v2〉

where we know the quark-velocity 〈v2〉 for each nS state from QQ-onia.

n3PJ and n1P1 splitting: We have to take into account altogether the spin-orbit and
tensor terms, i.e. eqs. (3) and (5). Using a funnel potential, the explicit expressions
to be computed read

∆
[

M(3PJ)− M(centroid)
]

=
1

m2

[

AJ αs h̄
3 〈 1

r3
〉 + BJ σ h̄2 〈 1

r
〉
]

(42)

where AJ and BJ are the corresponding coefficients for each case, as can be seen
in Table 3; αs denotes again the evolved value up to the quarkonium scale. The
expectation values are calculated using the wave function ∀r corresponding to the
nP centroid from a previous calculation, as we will see later. Once the 3PJ masses
are calculated, the 1P1 value will be obtained according to [12], as

M(1P1) =
[

5 M(3P2) + 3 M(3P1) + M(3P0)
]

(43)
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7. Electric Dipole Transitions

QQ-onia package allows us to calculate the wave functions of different states. Therefore
one can calculate, e.g., the E1 transition rate initial (i) → final (f) + γ through the
well-known expression [12]

ΓE1(i → f + γ) =
4 α 〈eQ〉2

27
k3 (2Jf + 1) Sif |〈 f | r | i 〉|2 (44)

where α = 1/137, and 〈eQ〉 is the mean charge [ (−1/3) in the bottomonia case ]. In
the QQ-onia file-example we will focus on 3S1 →3 PJ radiative transitions with Sif = 1.
The photon energy, k is directly calculated from energy-momentum conservation law. If
mf and mi stands for the experimental [14] masses of the final resonance (nPJ) and the
initial one (nS), respectively, one has

k =
m2

i − m2
f

2 mi

(45)

〈 f | r | i 〉 (in GeV−1) is the matrix element connecting final and initial state; we will
evaluate it according to

〈 f | r | i 〉 =
∫ rmax

0
dr u∗

f(r) r ui(r) (46)

extracting the reduced wave functions of the nP and nS states from a previous calcu-
lation with QQ-onia.

8. The QQ-onia package

The QQ-onia package is written with PAW software (Physics Analysis Workstation),
which can be obtained for free from the CERN web site [15] for several operative systems.
This software contains a FORTRAN interface, called SIGMA. The QQ-onia package pro-
vides a version of this software named PAW-NT for WINDOWS. The package also runs
with UNIX-LINUX, pasting the bbnia-nl.kum files directly into any UNIX text editor.

The package contains the files prepared to work with each of the previously mentioned
cases. To illustrate how the machinery runs, and as a potential reference, we choose a
standard static potential for heavy quarkonium: the Coulomb plus linear potential [6],
and also as a further reference, we take a known set of parameters from [6], [16] with which
to perform spectroscopy (for a comparison of the Cornell model with other approaches of
the heavy quarkonium potential in the static limit, see [17]).

The files solve the SRE for: l = 0 states Υ(nS)(n = 1, 2, 3, 4), and their file names are
bbnia-ns.kum; the l = 1, χ(nP )(n = 1, 2) states, (bbnia-np.kum); and the l = 2, Υ(nD)
ones, (bbnia-1d.kum). The package also contains a file called bbnia-4f.kum which is pre-
pared for working with theoretical l = 3 (nF ) states. The differences between these files
is related to the centrifugal barrier and the calculation of either square of the radial wave
functions or square of the derivatives at the origin. Since there are parts that are common
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to both we will begin by explaining them.

It must be pointed out here that in some parts of the software it is necessary to type in
some analytic expressions (such as the derivative of the potential and the product rV ′(r)).
Although this procedure can be shortened, this is a good way to ensure control over the
different variables, useful to analyze partial results.

9. Getting ready to calculate energy levels: general settings

First we open the file section SETTINGS in which we can read (to insert) the character-
istic items:

v/cr igma(1) r 0.9255 creates and defines the string tension (in GeV/fm).

v/cr mq(1) r 5.18 creates and defines the b-quark mass.

v/cr alf(1) r 0.39 creates and defines the strong coupling constant.

v/cr hb(1) r 0.19732858 is the h̄c constant (in GeV fm units).

ni sets the number of total steps; h=0.001 (fm) is the step.

x0 sets the minimum r value, rmin: the h value is the default.

xm=[x0]+([ni]-1)*[h] sets the maximum r value, rmax

xc sets the cut r value rcut according to Best = V (rcut), where we use Best as an estimated
binding energy Best = Mexp − 2mb, and Mexp stands for the experimental mass of
the resonance. Sometimes, if needed, we can also set rcut as the point at which the
inwards integration has its first maximum.

v/cr ele(1) r ’’value’’ (with ele= 1, 2, 3) only appears in l 6= 0 files, where it cre-
ates and defines the eigenvalue of the angular momentum that needs to be inserted
into the centrifugal barrier term.

File section SIGMA APPLICATION BLCK1 calculates the r range and defines the poten-
tial:

x=array([ni],x0#xm) it calls sigma application (appl sigma) to establish the r range.
The numerical values of ni,x0,xm, must be inserted here.

POTENTIAL DEFINITION for l = 0 files The V (r) value, (vo variable) is calculated for the
full r-range. In our case vo=(igma*x)-(kfac1*(x**(-1))).

POTENTIAL DEFINITION for l 6= 0 files;
vo=(igma*x)-(kfac1*(x**(-1)))+(bfac2*(x**(-2))), which contains the cen-
trifugal barrier term, sets the W (r) value.
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ENERGY SETTINGS The programme calls the sigma application (appl sigma) to es-
tablish the energy range (using the variable e); here the numerical values of
[ne],E-min,E-max must be inserted as follows:
e=array(number of energy steps, minimum energy value# maximum energy value).

ENERGY BLCK2 to insert the number of energy steps (ne). The programme will calculate
the corresponding energy values, e, to cover the full energy range.

BOUNDARY CONDITIONS this section of the programme runs automatically, the default val-
ues are those previously discussed in section 2.2 u(r → 0) ∼ rl+1 and u(r → ∞) ∼
exp

[

−
√

2µ|Best|
h̄

r
]

.

those conditions are inserted into the two first values of uout(r) (uo variable) and
uin(r) (ui variable), respectively

In summary ,we set h, [ni], x0, xm, xc, [ne], E-min, E-max, the potential, and
the corresponding constants.

9.1. Starting and determination of the bound state energy level

Once we have inserted the previous settings, we write exec bbnia-nl.kum in the
PAW interface. The programme then automatically searches for bound states within
the [Emin, Emax] range. If there is any change of sign in the G(E) function the pro-
gramme stops, showing the new energy range [E ′

min, E
′
max] in which the bound state can

be found, and it asks for the next instruction
(Type <CR> to continue or Q to quit). We then proceed in an iterative way: to im-
prove the precision of the energy level, we skip the programme (by typing in q) and on
opening the file, we type in the new energy range in the ENERGY SETTINGS file section.
We then restart the programme and repeat this process until the energy level has the
desired tolerance.

Once the programme stops showing a suitable energy range [Elast
min, E

last
max], we push the

enter key. The programme will then ask for the final (ee(1)) energy eigenvalue, then we
type in this value (which could be the mean value of [Elast

min, E
last
max]), and it will calculates

automatically the eigenfunctions ∀r, showing at the screen the normalization proof.

As a final result we get:

1 The normalized reduced radial wave function, u(r) throughout the full range, stored as
a [ni]-dimensional vector (y1)

2 The u∗(r) u(r) product (in fm−1 units)which is also stored as a [ni]-dimensional
vector (fc). These values can be either displayed in a graph, by typing in v/dr fc,
or obtained numerically (v/wr fc).
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9.2. Mean square radius

File section **BEGINS SQR(<r2>) CALCULATION**. The software automatically calcu-

lates the mean square radius of the state (
√

〈r2〉) according to its expectation value. The

[ni]-dimensional variable (fi) to integrate is fi=fc*xx, where xx is the r2 variable. As
this is the final result, this value is stored at the rad variable (in fm units), and displayed.

9.3. Computing the heavy-quark velocity using the virial theorem

File section **1) <v2>/c2 calculation USING VIRIAL THEOREM**

1 The first step is to calculate the expectation value of the product ofX ·∇V , ( 〈 rV ′(r) 〉 );
to do this, BEFORE running the programme, we must TYPE in its corresponding
expression at the variable xdpot. Using our example we must insert:
xdpot=(igma*x)+(kfac1*(x**(-1)))

2 The programme integrates the variable fi=fc*xdpot and performs the velocity calcu-
lation. The result is displayed and stored at the variable v2.

9.4. Computing the heavy-quark velocity using the Hamiltonian

File section **2) <v2>/c2 calculation USING <H>=<T>+<V(r)>**.

1 The programme first calculates the expectation value of the potential 〈V (r)〉. The
variable to integrate is ffi, where ffi=vo*fc. The result is stored at the variable
vbar. If desired, it can be read by dropping the comment variable * at line:
*v/pr vbar.

2 It calculates the velocity value using the variables: vbar, the energy eigenvalue, ee,
and the inverse of the quark mass, inq, and displays the final result.

10. Computing the radial wave function squared and derivatives at the origin

Square of the radial WFO (For l = 0 states: bbnia-ns.kum files).
File section **BEGINS WAVE FUNCTION AT THE ORIGIN CALCULATION**. First the
expectation value of the derivative of the potential 〈V ′(r)〉 is calculated; to do this,
BEFORE the programme runs, we must type in its corresponding expression at the
variable dpot. Using our example, we must insert:
dpot=(igma)+(kfac1*(x**(-2)))

The variable to integrate is fi, where fi=dpot*fc. Later, the final calculation is
performed and the result is displayed (in GeV3 units) and stored at the wfo variable.

Square of the first derivative of the radial WFO (For l = 1 states:
bbnia-np.kum files).
File section WAVE FUNCTION DERIVATIVE CALCULATION. General settings are equal
than before by changing V (r) → W (r), then the centrifugal barrier term appears
(bfac2*(x**(-2))). As a result we obtain, according to eq.(35), the squared first
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derivative of the radial wave function |R′
n(r)|2 for all r value (in GeV5 units). The

result is stored at the [ni]-dimensional variable derc. Then, to obtain its value
at the origin, we must export the (derc) values in order to to extrapolate with an
appropriate tool (such as the PAW inner routine vector/fit). By typing in v/dr

derc, we can plot these values to select the range before exporting. To do this
numerically type in v/wr derc.

Square of the second derivative of the radial WFO (For l = 2 states:
bbnia-nd.kum files).
File Section WAVE FUNCTION DERIVATIVE(2) CALCULATIONWe obtain, by using the
eq.(37), the second derivative of the radial wave function (in GeV7 units) |R′′

n(r)|2
values for all r, these values are stored at the [ni]-dimensional variable sed2, and
ready to be extrapolated.

Square of the third derivative of the radial WFO (For theoretical l = 3 states:
bbnia-nf.kum files)
File section WAVE FUNCTION DERIVATIVE(3) CALCULATION. Before starting the pro-
gramme, we must TYPE in the corresponding derivative W ′(r) expression into the
variable kerd0. Then the programme will calculate the derivative of the kernel,
k′(r). As a result, according to eq.(38), we have the [ni]-dimensional variable
thrd2, which stores the full r-range of the third derivative of the radial wave func-
tion |R′′′

n (r)|2 (in GeV9 units).

10.1. Wave function plot
When a bbnia-nl file stops, a plot of the dimensionless reduced wave function can

be obtained (from the same PAW screen), by running the routine graph-nl.kumac. We
obtain the plot of the u2 variable as output, which is the |u(r)|2 value multiplied by the
Böhr radius of the resonance, a0 = h̄/(CF αs µ).

11. QQ-onia package spin-dependent and E1

This part of the software is organized within QQ-onia package as follows: The file
SSplit-nS.kumac allows to calculate the n3S1 − n1S0 splitting for each n level. The files
Split-nP.kumac (n = 1, 2) calculate as example the n3PJ and n1P1 splitting. There is
also a file E1-2S1P.kumac, which analyzes the E1 2S → 1P transitions, which has two
subroutines named ini-2s.kum and final-1P.kum devoted to generate, respectively, the
initial and final states for the matrix element calculation.

SSplit-nS.kumac This file has mainly three blocks: the first one ask for the values of
the quark mass (the mq variable), the value of the wave function at the origin (wfo
variable), and the quark velocity of the nS state (v2q variable), whose values can
be previously found with the bbnia-ns.kum files. Once these values are entered the
programme runs automatically; it calculates the quarkonium scale and the αs value
(alf variable) through the alpha-s Evolution Block. Later using the eq.(41)
(the Delta-ss=[M(n3S1)-M(n1S0)]calculation block) it displays the result of
the energy splitting (in GeV ) through the variable deltss.
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Split-nP.kumac The first part of the file generates the centroid wave function,(the
GENERATION OF THE CENTROID WAVE FUNCTION-BLOCK. This implies to run first
the corresponding bbnia-np.kum in order to know the energy eigenvalue, the rmax

and rc values to be inserted here [We insert the energy eigenvalue (ee variable)
when the programme ask for it (EIGENVALUE?(GeV))]. This block can be performed
in other cases by pasting from the bbnia file the part corresponding to the block
labeled ONCE ENERGY LEVEL FOR BOUND STATE IS DETERMINED***************

WAVEFUNCTION CALCULATION. At the end of this part we have stored the normalized
wave function within the y1 variable. Later the programme will run automatically,
it calculates the < r−3 > and < r−1 > expectation values, evolves the αs, and
applies the final expression eq.(42). Finally it displays the energy differences and
the final 3PJ masses [Also the 1P1 mass using eq.(43)] by means of

M(3PJ) = ∆EJ +Mcentroid

where ∆EJ is the calculated energy difference of each J and Mcentroid is the
centroid mass previously calculated from the bbnia-np.kum file.

E1-2S1P.kumac This file, as a complementary tool, is an example of how to handle
QQ-onia with the E1 transition rates between 2S and the 3PJ states. First, the
programme calls the ini-2s.kum subroutine in order to create the initial 2S state,
which is performed by inserting the results found using the bbnia-2S.kum file: the
energy eigenvalue (at the Enter the energy eigenvalue line), the rmax and rc
values; then it generates its corresponding wave function. Later, the software calls
the final-1p.kum subroutine and, in the same way, it creates the wave function
corresponding to the final state. It must be pointed out that, when we want to
modify the common parameters used generating the final and initial states, we
perform it within the E1-2S1P.kumac file. The programme then runs automatically:
it calculates, using eq.(46), the matrix element < f |r|i > (stored at the me variable
in GeV−1), the photon energy for each final J (the kph0,1,2 variables, in GeV )
according to eq.(45), later it computes the final values, in keV , by means of the
eq.(44), the result is displayed for each J = 0, 1, 2 value through their respective
gma0,1,2 variables. The remaining factors and settings are explained and displayed
inside the E1-2S1P.kumac file.

12. Numerical accuracy

One important issue is determination of the numerical accuracy of the results. Since
no complete bottomonium wave function has yet been available, we can make our check
using an harmonic oscillator potential, which has a known analytical solution, but it is
numerically sensitive (as previously mentioned, this potential exhibits numerical instabil-
ities due to their exponentially growing solutions). It is therefore a good candidate for
checking our software.
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We test V (r) = 1
2
µ ω2 r2 by inserting it in the file block SIGMA APPLICATION BLCK1,

and by inserting in the SETTINGS file section µ = 100 MeV/c2; h̄c = 197.32858 MeVfm;
ω = 2 fm−1c. As boundary conditions [9] we use u(r → 0) ∼ rl+1 and for u(r → ∞) ∼
e−βr2, where β = µ ω

h̄c
.

The analytical energy levels are E(n, l) =
(

2n+ l + 3
2

)

h̄ω.

The reduced wave functions expressed in terms of the generalized Laguerre polynomials
[9] are:

unl(r) =
[

2n!α3

Γ(n + l + 3/2)

]1/2

r (αr)l Ll+1/2
n (α2r2) e−α2r2/2 (47)

We then analyze levels 1S ≡ (0, 0); 2S ≡ (1, 0) and 2D ≡ (1, 2). The results can be
found in Table 4.

Table 4
Harmonic oscillator results.

Energy level (MeV) Analytic Numeric

E(0, 0) 591.986 591.999

E(1, 0) 1381.330 1381.315

E(2, 1) 2170.614 2170.628

(0,0)LEVEL Taking rcut as the turning point (using E(0, 0) = V (rcut)), we find that
rcut = 1.72 fm with rmax = 5 fm and rmin = h, with a step h = 0.01 fm, thus
[ni] = 500. We start searching for the associated energy level through the range
E(0, 0) ∈ [400, 800]MeV, with an energy step of ∆E = 1 MeV, i.e. [ne] = 401.

(1,0)LEVEL We repeat the procedure, but now rcut = 2.6 fm with rmax = 5.6 fm, thus
[ni] = 560; starting with an energy range E(1, 0) ∈ [1100, 1500]MeV, and an energy
step of ∆E = 1 MeV.

(1,2)LEVEL First the centrifugal barrier term h̄2l(l+1)
2µr2

must be added to SIGMA APPLICATION

BLCK1. We use rcut = 1.08 fm, rmax = 6 fm, with an energy range
E(1, 2) ∈ [1900, 2300]MeV, ∆E = 1 MeV.

Concerning the reduced radial wave functions u(r)nl, in all cases, we find a deviation of
less than 1% with respect to the exact value from eq.(47). Figure 1 shows the result for
the u(r)12 case; Figure 2 shows its corresponding ∆|u(r)|212/|u(r)|212 relative error (in %).
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Figure 1. Harmonic oscillator(n = 1, l = 2) reduced wave function.

13. An example: Numerical Results

To illustrate how to the QQ-onia package runs, all attached bbnia-nl.kum files can be
opened; their corresponding settings are listed inside. Here, we will focus on the Υ(1S)
case (bbnia-1s.kum file) in order to explain some relevant details.

We look for the lowest state of the bb family. First we estimate its energy eigenvalue,
B1S

est, from the experimental data [14], then B1S
est = M1S

exp − 2mb = −0.8997 GeV , (with
M1S

exp = 9.4603 GeV and mb = 5.18 GeV ). To ensure that we find the lowest state we set a
wide energy range below the B1S

est, thus we start typing at ENERGY SETTINGS section a trial
energy range B1S ∈ [−5., 0.] GeV with an energy step of ∆E = 0.5 GeV, i.e. [ne]= 11.

Using B1S
est = V (rcut), we find rc ≈ 0.1 fm (alternatively, instead of Best = V (rcut), we

can take the rc point where the inwards integration has its first maximum). To ensure
the asymptotic conditions we then take rmax = 1.0 fm; taking h = 0.001 fm, the number
of steps is [ni]= 1000.

We type in exec bbnia-1s.kum at PAW screen, then the programme runs until it stops
displaying:

bound state around

E(10) = -0.5

E(11) = 0

Type <CR> to continue or Q to quit

This is the new energy range (in GeV) within which we can find the eigenvalue of the
bound state. We then stop the programme (q) and insert these new values at the ENERGY
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Figure 2. Harmonic oscillator(n = 1, l = 2) relative error.

SETTINGS section and restart the programme. We repeat the procedure, and after five
iterations the screen displays:

bound state around

E(10) = -0.170209

E(11) = -0.170208

Type <CR> to continue or Q to quit

As there is sufficient precision, when we press the enter key, the screen shows:

BOUND STATE ENERGY?

EE(1)

We then take the mean value of the above quantities −0.1702085 (GeV) as the eigen-
value, and type it in at the screen.

EE(1) -0.1702085

As the calculated eigenvalue B1S
calc does not match the B1S

est value, we can establish a
scale factor (F ) to be applied to the whole spectrum:

F = M1S
exp − (2mb + B1S

calc)

(Alternatively, we can redefine the quark mass according to 2m′
b ≡ 2mb + F ). The

masses of the higher states Mnl
calc can therefore be obtained from

Mnl
calc = 2mb + Bnl

calc + F
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where, Bnl
calc stands for the calculated energy eigenvalue obtained from the software for

each higher state.

In Table 5 the results for the masses of several resonances can be found.

Table 5
Coulomb plus linear potential: mass results (in GeV units).

bb̄ LEVEL Experimental mass Mass from [6] Mass from QQ-onia

Υ(1S) 9.4603 9.4603a 9.4603a

χ(1P )b 9.9001 9.96 9.9584

Υ(2S) 10.02326 10.05 10.02772

Υ(1D) 10.1622 10.20 10.2080

χ(2P )b 10.2620 10.31 10.3125

Υ(3S) 10.3553 10.40 10.3971

bb̄(4F )c −−−− −−−− 10.3995

Υ(4S) 10.5794 10.67 10.6739

(a) used to set the ground level in both references
(b) χbJ (nP ) centroid (c) Theoretical level

After inserting the energy eigenvalue EE(1), the programme will calculate the remain-
ing quantities automatically: it first shows the normalization check and then displays a
plot of the fc value.

normalization proof

NNOR(1) = 1

It continues to show the value of the square of the wave function at the origin
RADIAL WAVEFUNCTION AT THE ORIGIN (in GeV3)

WFO(1) = 14.0927

If we run a l 6= 0 file, we do not see this screen but when the programme finishes we
can export the corresponding |R(l)

n (r)|2(∀r) and extrapolate.

Table 6 summarizes the results for the square of the WFO (or its derivatives).
After the WFO value, the calculation for the mean square radius calculation from the

1S file will show
SQR(<r2>) (in fm)

RAD(1) = 0.201043

The results for each resonance can be seen in Table 7.
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Table 6
Coulomb plus linear potential: |R(l)

n (0)|2 values in (GeV)(3+2l) units.

bb̄ LEVEL |R(l)
n (0)|2 from QQ-onia |R(l)

n (0)|2 from [16]

Υ(1S) 14.09 14.05

χ(1P ) 2.062 2.067

Υ(2S) 5.947 5.668

Υ(1D) 0.835 0.860

χ(2P ) 2.440 2.438

Υ(3S) 4.276 4.271

bb̄(4F )c 0.551 0.563

Υ(4S) 3.675 3.663

Table 7
Coulomb plus linear potential: mean square radius (in fm).

bb̄ LEVEL
√

〈r2〉 from QQ-onia
√

〈r2〉 from [6]

Υ(1S) 0.20 0.20

χ(1P ) 0.38 0.39

Υ(2S) 0.46 0.48

Υ(1D) 0.52 0.53

χ(2P ) 0.63 0.64

Υ(3S) 0.71 0.72

bb̄(4F )c 0.64 −−−−
Υ(4S) 0.91 0.92

Finally, the 1S file displays the velocity result obtained applying the two methods

(<v2>/c2) [virial theorem]

V2(1) = 0.0962335

(<v2>/c2) [<H>=<T>+<V>]

V2A(1) = 0.0962476

and the corresponding results for each case can be seen in Table 8.

Finally, as an illustrative example, one can observe in Figure 3 the dimensionless Υ(1S)
reduced wave function taken from the graph-nl.kumac file.
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Figure 3. Υ(1S) reduced wave function.

14. More results using another potential

As a further example, we present results obtained using a Leading Order potential for
a heavy quarkonia system

V LO = V (0) +
V (1)

mb

which contains a V (0) static term (which could be a Coulomb plus linear potential), and
an additional O(1/m) piece whose contribution is comparable to the static part. From
Lattice analysis [18,19], we set the explicit form of this potential as follows (the so called
Cornell-modified potential, see [20] and references therein for a complete description):

VCor−mod(r) = −c

r
− c′

r2
+ σr + µ (48)

The values of parametersmb, c, c
′, σ and µ were obtained by applying a fitting procedure

to the bottomonium spectrum (using Υ(1S) and Υ(2S) states), not from Lattice estimates.
From the fit we obtained the following values for the parameters of the potential:
mb = 4.7 GeV, (µ = 0)

σ = 0.217 GeV 2, c = 0.400, c′ = 0.010 GeV−1

Here, the quark mass redefinition according to 2m′
b ≡ 2mb + F was used.

The values of the predicted masses, square of the WFOs (or their derivatives) , and
other parameters of interest for different bottomonium states obtained using this potential
are shown in Table 9. Its it possible to observe an excellent agreement with experimental
mass values.
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Table 8
Coulomb plus liner potential: velocities 〈 v2 〉.
bb̄ LEVEL 〈 v2 〉 from QQ-oniaa 〈 v2 〉 from [6]

Υ(1S) 0.096 0.096

χ(1P ) 0.065 0.065

Υ(2S) 0.078 0.076

Υ(1D) 0.067 0.067

χ(2P ) 0.075 0.076

Υ(3S) 0.085 0.085

bb̄(4F )c 0.073 −−−−−
Υ(4S) 0.096 0.097

a : Results doubly checked from Hamiltonian and Virial methods.

Table 9
Values of the predicted and experimental masses (in GeV), square of the WFO
(or derivative) in GeV3+2l, mean square radius (in fm) and the typical quark velocity
for the Υ(1S, 2S, 3S, 4S), χb(1P, 2P ) and Υ(1D) states for the Cornell-modified potential.

Resonance Mass Exp. |Rl
nl(0)|2 〈r2〉1/2 〈v2〉

Υ(1S) 9.4603 9.4603 12.65 0.23 0.094
χb(1P ) 9.8929 9.9001 1.409 0.40 0.071
Υ(2S) 10.0236 10.0233 6.444 0.51 0.091
Υ(1D) 10.1476 10.1622 0.562 0.53 0.078
χb(2P ) 10.2729 10.2600 1.854 0.63 0.089
Υ(3S) 10.3750 10.3552 5.404 0.71 0.103
Υ(4S) 10.6477 10.5794 5.194 0.88 0.120

15. Spin-dependent splittings and E1 width: Numerical Results

In this section we show some results from the above mentioned files. We would like to
stress that such results are not exhaustive, but just to illustrate how QQ-onia runs.

n3S1 − n1S0 splitting: In Table 10 we summarize the results obtained for the n3S1 −
n1S0 splitting running the SSplit.kumac file using different potentials. According to
section 6, the parameters involved in this calculation are: the heavy-quark mass,
its corresponding velocity, and the radial wave function at the origin (rWFO). We
present our results from QQ-onia using first the set of parameters from the Cornell
potential [6]. We also calculate the splitting employing the parameters from the
Buchmüller and Tye (B-T) QCD-motivated potential [21]. Lastly, we have reob-
tained as a final check the hyperfine splitting of a Coulomb plus Linear Potential of
Ref.[22] (for the particular case ν = 1) .
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Table 10
∆M = M(3S1)− M(1S0) values (in MeV).

nS level ∆MCornell ∆MB−T ∆MCpL−type ∆MExperimental

1S 135 74 66 71.4

2S 57 38 44 −−−−
3S 42 28 33 −−−−

Parameters employed [|Rn0(0)|2(GeV3) and mb(GeV) ]:
Cornell: mb = 5.18, |R10(0)|2 = 14.06, |R20(0)|2 = 5.668, |R30(0)|2 = 4.271
B-T: mb = 4.88, |R10(0)|2 = 6.477, |R20(0)|2 = 3.324, |R30(0)|2 = 2.474
CpL-type: mb = 5.1, |R10(0)|2 = 6.173, , |R20(0)|2 = 4.027, |R30(0)|2 = 3.080

A comment is in order here. Recently the BaBar collaboration has claimed the
discovery of the long-awaited ηb(1S) state [23]. Its observed mass (≃ 9.389 GeV)
is somewhat lower than expected yielding a somewhat large hyperfine splitting.
As can be seen in Table 10, the Cornell potential provides the largest deviation
(by excess!), obviously due to the fact that this potential yields the largest value
for the rWFO, while the rWFO values from the B-T and CpL-type potential are
considerably smaller. In fact, let us note that the Buchmuller-Tye model provides
an excellent agreement with the experimental result.

Table 11
n(3PJ) and n(1P1) Masses (in GeV); Cornell potential.

nS level QQ-onia Experimental

13P0 9.867 9.860

13P1 9.893 9.893

11P1 9.900 −−−−−
13P2 9.911 9.913

23P0 10.236 10.232

23P1 10.256 10.255

21P1 10.262 −−−−−
23P2 10.271 10.269

n3PJ and n1P1 splitting: In Table 11 we summarize the results obtained from the
Split-nP.kumac files using the Cornell potential, in accordance with eqs.(42, 43),
to be compared with the experimental data from [14].

E1 2(3S1) → 1(3PJ) Transitions: To illustrate this point we show in Table 12 the result
obtained from the E1-2S1P.kumac file, in accordance with eq.(44). The Cornell
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Potential was employed to generate the initial and final state wave functions. A
nice agreement with experimental data is found.

Table 12
E1 [2(3S1) → 1(3PJ)]. From QQ-onia < f | r | i >= 1.6915 GeV−1.

Final state Photon energy (MeV) Width (keV) Experiment (keV)

J = 0 162.48 1.47 1.22± 0.16

J = 1 129.63 2.25 2.21± 0.22

J = 2 110.44 2.32 2.29± 0.22

Experimental data obtained from [14].

16. Summary

The main goal of this work is to provide a multipurpose (user-friendly) package to ob-
tain the wave functions at the origin and other relevant properties of heavy-quarkonium
systems, assuming a basic knowledge of the PAW software by the interested reader.

Besides, we would like to stress some special peculiarities of our package, such as pro-
viding an easy procedure to normalize the resulting wave functions on account of the the
Numerov forward-backward framework. In addition, the calculations of the l-derivatives
at the origin for angular momentum l = 2, 3, ... only require a numerical computation of
the wave function and first derivative through the analytic expressions given in the main
text, thereby keeping the suitable precision for higher derivatives .

In addition, we present an alternative method to estimate the heavy-quark velocity
using the well-known virial theorem and a quick 6th-order integration, which can be con-
sidered as well as a check of the traditional calculation. In fact, this method can also
be interpreted as an indirect test of the goodness of the potential-probe together with
the (whole range) prior calculated wave function, since it uses the expectation value of r
times the derivative of the potential 〈 r V ′(r) 〉.

Moreover, some worked examples are presented for the bottomonium system using a
Cornell-type potential. Finally, an additional machinery has been implemented in the
code containing files to analyze the impact of the spin-dependent terms in the potential,
as well as a tool dealing with E1 transitions. Another set of worked examples is presented
in this regard.
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