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We present an algorithm for the derivation of Dyson-Shwinger equations of general theories that is

suitable for an implementation within a symboli programming language. Moreover, we introdue

the Mathematia pakage DoDSE

1

whih provides suh an implementation. It derives the Dyson-

Shwinger equations graphially one the interations of the theory are spei�ed. A few examples

for the appliation of both the algorithm and the DoDSE pakage are provided.
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Nature of problem: Derivation of Dyson-Shwinger equations for a theory with given interations.

Solution method: Implementation of an algorithm for the derivation of Dyson-Shwinger equations.

Unusual features: The results an be plotted as Feynman diagrams in Mathematia.

Running time: Less than a seond to minutes for Dyson-Shwinger equations of higher vertex funtions.

I. INTRODUCTION

Correlation funtions are the basi quantities in loal quantum �eld theories and enode all physial information

about the theory. They ful�ll quantum equations of motion, onventionally alled Dyson-Shwinger equations (DSEs)

[1, 2℄ whih are related among eah other and form a set of in�nitely many oupled equations. Derived from the

translational invariane of the path integral they are genuinely non-perturbative and desribe the physis of the system

on all sales. This makes them a very useful tool for investigating aspets on whih some alternative approahes fail.

Perhaps the most prominent example is perturbation theory, whih is not valid in the strong oupling regime. Sine

DSEs are likewise appliable in the weak oupling region they suessfully extend the results of perturbation theory

into the strong oupling domain. An alternative non-perturbative tool, whih an be used omplementary to DSEs,

are Monte-Carlo lattie simulations. Due to the disretization of spae-time they have their limits for very low and

very high momenta, the former being restrited by the size of the lattie and the latter by �nite lattie spaings.

DSEs, in ontrast, are formulated in ontinuous spaetime and allow to study also the analyti struture and the

infrared regime whih is partiularly important in an asymptotially free but on�ning gauge theory like quantum

hromodynamis (QCD).
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However, DSEs also have their hallenges. They represent strongly non-linear integral equations that are numerially

involved. Moreover, as they form an in�nite tower of equations, they have to be trunated. Reently it turned out

in the ontext of Landau gauge QCD that the leading order trunation based only on the propagator DSEs an miss

important qualitative features that are enoded in the equations for the verties. In partiular, the quark-gluon vertex

provides a novel mehanism for on�nement and hiral symmetry breaking [3℄, as well as anomalous mass generation

[4℄ in QCD. Yet, the DSEs for the verties beome inreasingly ompliated and orrespondingly hard to obtain

algebraially. Another ompliation is given by the neessity of gauge �xing and the additional degrees of freedom

and interations arising from the orresponding onstraints. In partiular, in non-ovariant gauges, like Coulomb

gauge or non-linear gauges like the maximally Abelian gauge, this inreases the e�ort to derive the DSEs already at

the propagator level onsiderably, see for example [5, 6℄, and alls for an algorithmi way to derive these fundamental

equations. This is espeially useful when working with ations that ontain many di�erent �elds and interations,

as arise e.g. when symmetries are not manifestly realized or in the ase of neessary additional terms in the ation.

Examples for the latter are the four-ghost interation required to ensure renormalizability in maximally Abelian gauge

[7, 8℄ or generalized onstrutions of Lagrangians allowing additional terms as in ghost-antighost symmetri gauges

[9, 10℄. A onvenient way to derive DSEs also simpli�es the omparison of di�erent gauges required to obtain a more

gauge independent piture of the basi underlying mehanisms. Finally, it is partiularly useful in the ontext of an

IR analysis where the IR saling, whih is important for long-range properties like on�nement, an be abstrated

from mere power ounting.

The aim of this paper is to present suh an algorithmi derivation of Dyson-Shwinger equations. A similar aim

has been extensively followed in perturbation theory where it resulted in the basially automati omputation of

numerous physial proesses to a given order, f. e.g. [11, 12, 13, 14, 15℄. Here we partially extend this idea to

the non-perturbative regime were suh an automati solution of the reated equations is surely beyond our sope.

Instead we present an algorithm for the derivation of the equations that is suited for implementation into a symboli

programming language. This algorithm is presented below in Se. II and is implemented in the Mathematia pakage

DoDSE, whih stands for Derivation of Dyson-Shwinger Equations. An example of how to use the algorithm is

provided in Se. III. Details on the DoDSE pakage are presented in Se. IV. Whereas a diret algebrai derivation

an be quite a tedious task, with the symboli and graphial notations employed, one an obtain DSEs for general

ations with a relatively high number of interations. Moreover, the presented algorithm operates diretly on the

level of the e�etive ation and irumvents the tedious step to deompose onneted into proper verties neessary

in a derivation on the level of the generating funtional of full Green funtions. We implemented this algorithm

up to the diagrammati level into DoDSE. From the interations of the theory, given in symboli form, the ode

derives DSEs to the desired order. The outome are symboli representations of the Feynman diagrams enoding

their topologial struture and their symmetry fators. The last step, whih has to be done manually, to get the

full algebrai form of the DSEs is the replaement of the symboli form by the expliit integral expression involving

proper and bare orrelation funtions. For some appliations of DSEs it is not even neessary to proess the symboli

equations even further sine they an be used diretly, as is e.g. the ase for saling analyses. Finally, we note that

the presented algorithm is in priniple also appliable for the generation of a perturbative expansion by re-inserting

the Dyson-Shwinger equations for dressed verties and trunating at a given loop order.

II. DERIVING DYSON-SCHWINGER EQUATIONS IN SYMBOLIC NOTATION

The algorithm presented here involves several abstrations. The �rst is the use of a symboli notation that enables

us to keep expressions relatively short. Writing out the equations in full detail, i.e. Lorentz and internal group indies

as well as all oordinates in position spae or momenta, leads to expressions that an easily hide the underlying

basi struture. Seondly, we employ a super-�eld formalism that inludes all irreduible �elds of the theory into a

single reduible multiplet. Finally, we exploit the fat that a loal ation an be expanded in the �elds. Thereby the

expansion oe�ients, that an be operators in oordinate as well as internal spae, an be left unspei�ed during

the derivation and only have to be inserted in the end to obtain algebrai expressions for the graphial equations.

Thereby, the main steps an be done using diagrammati replaement rules. All the tehniques used in the following

are not new, but ombined they provide a powerful way of deriving DSEs onveniently and fast. As an expliit

example we demonstrate the proedure for the two inequivalent DSEs of the ghost-gluon vertex in Landau gauge

Yang-Mills theory in Se. III. Before we explain the atual algorithm in Subsetion II B we make a short summary

of used identities and employed onventions.
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A. Basi Identities and Conventions

The basi objet we will start from is the generating funtional of one-partile irreduible (1PI) Green funtions.

In the following we do not speify any partiular �elds but will rather use a more ompat notation with a super-

�eld denoted by φi. It represents a reduible multiplet ontaining all irreduible representations present in the

ation. We also introdue orresponding soures Ji. The multi-index i inludes the label of the partiular irreduible
representation, its internal indies and also the spae-time dependene of the �eld. For example in Landau gauge

QCD φi is the set of the gluon, ghost and quark �elds: {Aaµ(x), c
a(x), c̄a(x), qi(x), q̄i(x)}. Where appropriate the

Einstein onvention for summation is understood and amended by integration.

The e�etive ation is given by

Γ[Φ] = −W [J ] + ΦiJi , (1)

where W [J ] is the generating funtional of onneted Green funtions related to the funtional path integral by

Z[J ] =

∫

D[φ]e−S+φjJj = eW [J]
(2)

with S being the gauge-�xed ation. The e�etive ation Γ[Φ] depends on the averaged �elds Φ in the presene of

external urrents J ,

Φi ≡ 〈φi〉J =
δW

δJi
= Z[J ]−1

∫

D[φ]φie
−S+φjJj . (3)

For Grassmann variables terms like φjJj inlude the �elds and soures in the usual order

1

, i.e. for example in Landau

gauge QCD we have φjJj =
∫

dx(Aaµ(x)j
a
µ(x) + σ̄a(x)ca(x) + c̄a(x)σa(x) + η̄i(x)qi(x) + q̄i(x)ηi(x)).

For non-vanishing external soures (denoted by the index J) the propagator of the multiplet φ is

∆J
ij ≡

δ2W

δJiδJj
=

(

δ2Γ

δΦiδΦj

)−1

(4)

but for vanishing external soures only some elements remain. For instane in Landau gauge QCD these would be a

diagonal element for the gluon and o�-diagonal elements for ghosts and quarks, but also mixed propagators an arise

if allowed by the ation. For the derivation of DSEs it is important to keep the general expressions and only at the

end the external soures an be set to zero. Otherwise one would miss ontributions.

Higher 1PI verties are de�ned as derivatives of the e�etive ation:

ΓJi1···in ≡ −
δΓ

δΦi1 · · · δΦin
. (5)

In the following we will need the derivatives of �elds, propagators and verties with respet to �elds. These are given

by

δ

δΦi
Φj = δij , (6a)

δ

δΦi
∆J
jk =

δ

δΦi

(

δ2Γ

δΦjδΦk

)−1

= −

(

δ2Γ

δΦjδΦm

)−1 (
δ3Γ

δΦmδΦiδΦn

)(

δ2Γ

δΦnδΦk

)−1

= ∆J
jmΓJmin∆

J
nk , (6b)

δ

δΦi
ΓJj1···jn = −

δΓ

δΦiδΦj1 · · · δΦjn
= ΓJij1···jn (6)

and are represented graphially in Fig. 1.

The physial orrelation funtions are obtained from the above expressions when evaluated at the vauum expe-

1

Another possibility would be the use of a metri as for example used in ref. [16℄.



4

δ
δ φi

=
i

δ
δ φi

=

i

δ
δ φi

=

i

FIG. 1: Diagrammati rules for di�erentiating an external �eld, a propagator or a vertex. The irle with the ross denotes an

external �eld, small blobs denote dressed propagators, and big blobs 1PI verties. The double line represents the super-�eld φ.

tation values of the �elds, orresponding to vanishing external urrents,

∆ij ≡ 〈φiφj〉 =

(

δ2Γ

δΦiδΦj

)−1
∣

∣

∣

∣

∣

Φ=Φ0

= ∆J
ij

∣

∣

Φ=Φ0 ,

Γi1···in ≡ 〈φi1 · · ·φin〉1PI = −
δΓ

δΦi1 · · · δΦin

∣

∣

∣

∣

Φ=Φ0

= ΓJi1···in
∣

∣

Φ=Φ0 ,

where the verties involve only proper, i.e. 1PI, diagrams. By onstrution the arising generating equations always

involve one bare vertex funtion

Si1···in ≡ 〈φi1 · · ·φin〉
0
1PI = −

δS

δφi1 · · · δφin

∣

∣

∣

∣

Φ=Φ0

, Φ0
i ≡

δW

δJi

∣

∣

∣

∣

J=0

. (7)

We omment on the inlusion of fermions in Subse. II C.

B. Algorithm

The funtional DSEs [17, 18, 19℄ are obtained by the invariane of the path integral with respet to variations of

the integration variable φ 2

:

δ

δφi
Z[J ] =

∫

D[φ]

(

−
δS

δφi
+ Ji

)

e−S+φjJj =

=



−
δS

δφ′i

∣

∣

∣

∣

∣

φ′

i=δ/δJi

+ Ji



Z[J ] = 0. (8)

Substituting Z[J ] by eW [J]
and using

e−W [J]

(

δ

δJi

)

eW [J] =
δW [J ]

δJi
+

δ

δJi
(9)

after multipliation of eq. (8) from the left with e−W [J]
we �nd

−
δS

δφi

∣

∣

∣

∣

∣

φi=
δW [J]
δJi

+ δ
δJi

+ Ji = 0. (10)

This is the funtional DSE for onneted orrelation funtions. To get the orresponding version for 1PI funtions we

perform the Legendre transformation of W with respet to all soures. Thereby δW [J ]/δJi hanges to Φi and δ/δJi
beomes

δ

δJi
=
δΦj
δJi

δ

δΦj
=

δ

δJi

δW

δJj

δ

δΦj
=

δ2W

δJiδJj

δ

δΦj
= ∆J

ij

δ

δΦj
. (11)

2

For a di�erent approah using equal time ommutation relations and Heisenberg's equation of motion see ref. [20℄.
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δ Γ =
δ φi

-1/2 -1/2 -1/3! -1/2 -1/3!

FIG. 2: The funtional DSE for 1PI funtions. Crosses in irles denote external �elds. All internal propagators are 1PI and

the big blob denotes a 1PI vertex funtion.

This yields

−
δS

δφi

∣

∣

∣

∣

∣

φi=Φi+∆J
ij δ/δΦj

+
∂Γ

∂Φi
= 0. (12)

We stress again that here the summation over the index j inludes summation over di�erent �elds. To simplify the

proess of di�erentiating the ation we expand it in the �elds

3

. To stay as general as possible we again use the

super-�eld φ

S[φ] =
1

2!
Srsφrφs −

1

3!
Srstφrφsφt −

1

4!
Srstuφrφsφtφu. (13)

but for expliit alulations one an alternatively use an expansion in the �elds of the ation at this point. The Si...
are the expansion oe�ients and orrespond to bare quantities (or the inverse ones in ase of the propagators) of

whih for an expliit ation usually several vanish. Their signs have been hosen in aordane with eq. (7). For the

propagators as well as for all derivative interations these are operators in oordinate spae and may have a non-trivial

struture in the internal spae as well. We now di�erentiate one with respet to a �eld φi,

δS

δφi
= Sisφs −

1

2!
Sistφsφt −

1

3!
Sirstφsφtφu, (14)

and replae the �eld operators aording to eq. (12) by

φi → Φi +∆J
ij

δ

δΦj
. (15)

Performing the derivatives and employing eq. (6) we get the general generating DSE for 1PI Green funtions, depited

in Fig. 2:

δΓ

δΦi
=SisΦs −

1

2
Sist(ΦsΦt +∆J

st)+

−
1

3!
Sistu(ΦsΦtΦu + 3Φs∆

J
tu +∆J

sv∆
J
tw∆

J
uxΓ

J
vwx). (16)

from whih the DSEs of arbitrary Greens funtions an be obtained. This equation an be deomposed into generating

equations for the individual irreduible �elds whih by onstrution always involve one bare vertex funtion. If we had

alulated these equations by diret di�erentiation of the ation as given in eq. (12), it would have been a tedious task

to get the bare verties and propagators in the �nal expression. In partiular, in this ase derivatives on δ-funtions
our that have to be properly resolved by partial integration. This is the advantage the formal expansion in �elds

entails. In this formalism everything is hidden in a single index of the �elds and the details of the bare verties only

have to be spei�ed in the end in order to obtain algebrai expressions for the DSEs. We have heked by an expliit

omputation in the ase of non-Abelian gauge theory that both ways to ompute eq. (16) indeed reprodue the same

3

We restrit ourselves here to quarti interations sine they are renormalizable in four dimensions, but there is no restrition on the

order of the interations, like e.g. �ve-point verties, in the DoDSE pakage.
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-1

=

-1

-1/2 -1/2 -1/2 -1/3! -1/2 - -1/2

FIG. 3: The DSE for a generi two-point funtion.

result.

The orresponding DSEs for arbitrary orrelation funtions are obtained by further funtional derivatives of the

generating equation eq. (16) whih are omputed via eqs. (6). From now on we an proeed by use of the diagrammati

rules given in Fig. 1, where all internal lines denote dressed propagators. Here, a major advantage of the diagrammati

rules is that one does not have to take are of indies. We would like to stress again that the appearing super-

propagators have o�-diagonal omponents orresponding to mixing of the irreduible �elds. These mixed propagators

are important in the derivation proess, although they seem like an arti�ial ompliation. In "simple" ases as for

example the three-gluon vertex DSE in Landau gauge the result would not hange if we kept only "real" propagators.

However, for the ghost-gluon vertex (see Subse. III for details), for higher vertex funtions and in ertain gauges

already for the propagators, some ontributions would be missing.

The DSE for a generi two-point funtion is derived by performing another di�erentiation of the generating DSE

eq. (16) using the diagrammati replaement rules of Fig. 1 in the orresponding diagrammati representation Fig.

2 in all possible ways. The result is shown in Fig. 3. Proeeding to higher vertex funtions the number of diagrams

inreases rapidly: For three-point verties there are 15 generi diagrams and for four-point funtions 60. For real

appliations it is therefore reommendable to exploit possible simpli�ations. First, the �nal number and form of

graphs depend on the �rst di�erentiation in eq. (16) as the orresponding �eld determines whih bare verties appear

in the diagrams. For example the DSE of the ghost-gluon vertex in Landau gauge QCD has only four terms, when

the �rst derivative is performed with respet to a ghost �eld. In this ase one an drop all diagrams with bare gluoni

verties. On the other hand, if one starts with the gluon �eld, all verties have to be kept and one ends up with twelve

graphs. Seondly, one an skip some diagrams taking into aount where one is going. Simple examples are that for

a three-point funtion we do not have to drag along the bare four-point vertex or diagrams with an external �eld an

be dropped if no further derivatives with respet to this partiular �eld follow.

C. Inlusion of Grassmann Fields

Antiommuting �elds need slightly more are when performing derivatives to get the orret signs. In this subsetion

we denote Grassmann �elds by ψ and ψ̄ with soures η̄ and η, respetively. Let us �rst speify our onvention for the

derivatives with respet to Grassmann quantities. We hoose left- and right-derivatives:

δ

δψ
:=

←

δ

δψ
,

δ

δψ̄
:=

→

δ

δψ̄
. (17)

This entails that the proper de�nition of a Grassmann �eld propagator is

∆ψ̄ψ
ij =

δ2W

δη̄iδηj
=

(

δ2Γ

δψ̄iδψj

)−1

. (18)

In general derivatives always have to be ordered suh that derivatives with respet to Grassmann �elds are right of

those with respet to anti-Grassmann �elds. A quarti Grassmann interation then has the form

Γijkl = −
∂Γ

∂ψ̄i∂ψ̄j∂ψk∂ψl

∣

∣

∣

ψ̄=ψ=0
. (19)

For easier readability and also in orrespondene with DoDSE the indies of the Γ do not re�et the order of how the

derivatives are performed, but rather have the order in whih the derivatives appear, i.e. that the di�erentiation with

respet to ψ̄j has to be performed before that with respet to ψ̄i, but ψk omes before ψl.
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When using the algorithm desribed above derivatives always at from the orresponding diretion. Eqs. (6) have

to be amended by

δ

δψ̄i
∆J
jk = ∆J

jmΓJ,ψ̄ΦΦ
imn ∆J

nk, (20a)

δ

δψi
∆J
jk = ∆J

jmΓJ,ΦΦψ
mni ∆J

nk, (20b)

δ

δψ̄i
ΓJj1···jn = ΓJij1···jn , (20)

δ

δψi
ΓJj1···jn = ΓJj1···jni, (20d)

where here the supersript J denotes the dependene on all soures and the additional supersripts of the ΓJ denote

the �elds orresponding to the indies. This means in turn that at the end, when the external soures are set to zero

and the reduible multiplet is deomposed into the irreduible, physial �elds, some Grassmann derivatives an be

unordered. Ordering them gives the signs expeted normally for Feynman diagrams with fermion loops. However,

in some ases this algorithm is oversimpli�ed when several super-�elds are involved. Using diagrammati rules this

problem an be irumvented and the minus signs for losed fermion loops have to be added manually at the end.

Sine DoDSE needs spei� rules how to perform the derivatives, it may happen that the wrong sign appears for

two-loop graphs.

A simple example for the hange of sign is the quark respetively ghost loop in the gluon DSE of Landau gauge

where ψ = {q, c} . Replaing ψ̄r by ψ̄r +∆J,ψψ̄
rt

δ
δψt

in the orresponding part of the �rst derivative of the ation with

respet to Ai,

−SAψ̄ψirs ψ̄rψs → −SAψ̄ψirs

(

ψ̄rψs +∆J,ψψ̄
rs

)

, (21)

and di�erentiating one more with respet to Aj yields

δ2Γ

δAiδAj
= −SAψ̄ψirs ∆ψψ̄

rr′∆
ψψ̄
s′s

δΓ

δAiδψr′δψ̄s′
+ gluoni terms (22)

Ordering the derivatives hanges the sign of the expression and leads to the expeted relative minus sign of losed

fermion loops.

Finally we should omment on the expansion of the ation when Grassmann �elds are involved. First, we reommend

to order Grassmann interations suh that all anti-Grassmann �elds are left of the Grassmann �elds. Seond, the

expansion oe�ients are antisymmetri in the indies belonging to Grassmann �elds. This entails that we an

di�erentiate with respet to Grassmann �elds as usual, e.g.

δ

δψ̄i
Sψ̄ψ̄ψψrstu ψ̄rψ̄sψtψu = Sψ̄ψ̄ψψistu ψ̄sψtψu − Sψ̄ψ̄ψψritu ψ̄rψtψu = Sψ̄ψ̄ψψistu ψ̄sψtψu + Sψ̄ψ̄ψψirtu ψ̄rψtψu = 2Sψ̄ψ̄ψψistu ψ̄sψtψu. (23)

III. AN EXAMPLE: THE GHOST-GLUON VERTEX IN LANDAU GAUGE YANG-MILLS THEORY

For the derivation of the ghost-gluon vertex in Landau gauge [21℄ we start with Fig. 3. As mentioned above,

there are two DSEs for this vertex. These arise sine the DSEs are derived from the invariane of the initial path

integral under hanges of the �elds. The invariane for the individual �elds in the theory yields di�erent generating

equations from eq. (16) that an by appropriate funtional di�erentiation generate topologially distint DSEs

for the same mixed orrelation funtion. Without approximations these equations should provide idential results

but they may be a�eted di�erently by trunations. Moreover, the dynamis an be represented di�erently in the

various equations as demonstrated for the quark-gluon vertex in [3℄. We start here with the simpler equation for the

ghost-gluon vertex, i. e. we take the derivative in eq. (16) with respet to the ghost �eld. Fig. 3 redues in this ase to
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-1

=

-1

- -

.

The symmetry fator 1/2 vanished beause there were two possibilities to plug the bare ghost-gluon vertex into the

third diagram. This is a nie example how the omputation simpli�es when the possible interations are redued by

symmetries. In the present ase the general diagrammati rules speialize to

δ
δ Ai

=

i

δ
δ Ai

=

i

δ
δ Ai

=

i

whih leads to the three-point expression

= + + +

.

When we set the external soures to zero, the mixed propagators beome irreduible gluon and ghost propagators. The

pure super-�eld propagator in the seond and third terms on the right-hand side yields a sum of di�erent terms, when

deomposed, but ghost number onservation allows here only verties with the same number of ghost and anti-ghost

legs. Therefore, for eah diagram only one propagator an be realized. The �nal result is then the ghost-gluon vertex

DSE:

= + + +

.

We obtain a seond distint version of the ghost-gluon DSE if we start di�erentiating with respet to the gluon

�eld. In this ase the super-�eld is important as will beome evident below. The gluon is involved in all possible

interations of Landau gauge Yang-Mills theory, so Fig. 3 is not topologially simpli�ed in this ase. For brevity we

skip diagrams that do not ontribute to the ghost-gluon vertex (the tadpole and all inompatible tree graphs as well

as the graph with the bare four-gluon vertex onneted to an external �eld). The fator in front of the loop ontaining

ghost-�elds is hanged from 1/2 to 1, beause there are two possibilities to insert the bare ghost-gluon vertex as we

have to onsider the diretion of fermion lines expliitly. The diagrams left are

-1

= - -1/2 - -1/2 -1/3!

.
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Di�erentiation with respet to the anti-ghost �eld yields

= + + ++ +1/2 +

+1/2 +1/2 +1/2 +1/3!+1/2 +1/2

.

Again propagators partly involving the super-�eld are determined by the seond �eld and pure super-�eld propagators

by the symmetries of the verties. Finally the seond version of the ghost-gluon vertex DSE is obtained by setting

the external soures to zero:

= + -+ +1/2 +

+1/2 +1/2 +1/2 +1/3!+1/2 +1/2

.

The derivation of the DSEs for the gluoni orrelation funtions an be done in a similar way. However, sine the

super-�eld annot lead to internal ghost loops one an irumvent the super-�eld formalism and proeed with pure

ghost and gluon propagators from the level of two-point funtions on. For mixed Green funtions this would omit

some diagrams as was expliitly shown for the ghost-gluon vertex, where all diagrams with internal ghost lines - exept

the pure ghost loop (the �fth diagram on the right-hand side) - and the triangle diagrams would be missing.

IV. DERIVATION OF DYSON-SCHWINGER EQUATIONS USING MATHEMATICA

As should have beome lear the manual appliation of the algorithm beomes rather tedious for more ompliated

Green funtions. The algorithm explained in the Se. II is perfetly suitable for an implementation into a symboli

programming language like Mathematia [22℄. The funtionality of the pakage DoDSE is that the user enters the

interations of the theory and then all desired DSEs are automatially generated from it. In speial ases it may in

addition be neessary to provide further information about symmetries of verties. Together with the pakage there

is also a notebook (examples.nb) available that ontains the model used below as well as other examples like Landau

gauge QCD.
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A. Tehnial Notes

To load the pakage �le DoDSE.m, one either opies it to the subdiretory DoDSE of $UserAddOnsDiretory

4

and evaluates << DoDSE`DoDSE` (whih would be the standard way of installation) or uses the Get ommand to

load it from any other plae: Get[pathToTheFile℄. DoDSE was developed under Mathematia 6 and will not work

with Mathematia 5.2 or lower sine some funtions new to Mathematia 6 are used. There exists no dediated

doumentation within Mathematia's Doumentation Center, but help on single ommands is available using the

ommand ?, e.g. ?DSEPlot.

B. Using DoDSE

For the derivation of DSEs via the DoDSE pakage it is usually only neessary to speify the interations of the

given theory. This is done by a list whose elements are given by the individual propagators and verties in the bare

Lagrangian of the theory. These are in turn represented by lists ontaining the external �elds of the orresponding

orrelation funtions. With this information the funtion doDSE an now derive any DSE. The output an be used

diretly, put into a more onvenient form using short notations for propagators and verties or plotted with DSEPlot.

The omplete alulation takes seonds, maybe minutes for vertex funtions with more than four legs. As the pakage

is written for Mathematia we have a wide range of tools available for proessing the results further, for instane the

uniform IR saling exponent of a graph (f. e.g. [23, 24℄) an be derived diretly from the output of DoDSE.

In order to demonstrate the method to derive DSEs let us onsider an example model. Its ation onsists of four

�elds, two of them bosoni (A, B) and two fermioni (c, d):

L =
1

2
SAAij AiAj +

1

2
SBBij BiBj + S c̄cij c̄icj + Sd̄dij d̄idj+

− SAc̄cijk Aic̄jck −
1

2
SAABijk AiAjBk −

1

4
SAABBijkl AiAjBkBl −

1

4!
SAAAAijkl AiAjAkAl − S c̄d̄dcijkl c̄id̄jdkcl. (24)

We wrote the quarti Grassmann interation suh that no additional minus sign ours when di�erentiating with

respet to c and c̄ or d and d̄. The interations of this ation are entered in the form

ilist = {{A,A}, {B,B}, {b,}, {db,d}, {A,b,}, {A,A,B}, {A,A,B,B}, {A,A,A,A}, {b,db,d,}};

With this representation of the theory, we an start deriving the propagator DSEs using the funtion doDSE whih

generates the non-trivial right hand side of the DSE for the orresponding orrelation funtion. As arguments it takes

the list of interations ilist, and a list of the �elds with their respetive indies inluded in the orrelator for whih

we want to derive the DSE. In general, the order of the elements in the list of the orrelation funtion for whih the

DSE is derived determines the order in whih the individual funtional derivatives are taken. When di�erent �elds

are involved this an result in distint DSEs, as was the ase for the ghost-gluon vertex disussed in the last setion.

The orresponding ommands for the propagators read:

AADSE = doDSE[ilist, {A, A}℄;

BBDSE = doDSE[ilist, {B, B}℄;

DSE = doDSE[ilist, {{, i}, {b, j}}℄;

ddDSE = doDSE[ilist, {{d, i}, {db, j}}℄;

It is not neessary to give the indies of the �elds, but it an be done as shown above for the two fermion DSEs.

Alternatively one an derive several DSEs by passing a list to doDSE, i.e. the following line derives one DSE for all

primitively divergent vertex funtions:

DSEs = doDSE[ilist, ilist℄;

We an bring the rather long output into a more readable form with shortExpression:

shortExpression[AADSE℄

or equivalently

4

Under Unix systems this is normally ~/.Mathematia/Appliations
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sE[AADSE℄

SA A

i j

−
1

2

(

SA A A A

i j r1 s1

∆A A

r1 s1

)

−
1

2

(

SA A B B

i j r1 s1

∆B B

r1 s1

)

− SA A B

i r1 s1

ΓA A B

j t1 u1

∆A A

r1 t1

∆B B

s1 u1

+ SA b 

i r1 s1

ΓA b 

j t1 u1

∆ b

s1 t1

∆ b

u1 r1

−
1

6

(

SA A A A

i r1 r2 s1

ΓA A A A

j s2 t2 u2

∆A A

r1 s2

∆A A

r2 t2

∆A A

s1 u2

)

−
1

2

(

SA A B B

i r1 r2 s1

ΓA A B B

j s2 t2 u2

∆A A

r1 s2

∆B B

r2 t2

∆B B

s1 u2

)

− SA A B B

i r1 r2 s1

ΓA B A

j u2 v1

ΓA A B

s2 t2 u1

∆A A

r1 s2

∆B B

r2 u2

∆B B

s1 u1

∆A A

t2 v1

− SA A B B

i r1 r2 s1

ΓA B B

j u2 v1

ΓA B B

s2 t2 u1

∆A A

r1 s2

∆B B

r2 u2

∆B B

s1 u1

∆B B

t2 v1

−
1

2

(

SA A A A

i r1 r2 s1

ΓA A A

j s2 t1

ΓA A A

u1 v2 w1

∆A A

r1 s2

∆A A

r2 v2

∆A A

s1 w1

∆A A

u1 t1

)

−
1

2

(

SA A B B

i r1 r2 s1

ΓA A A

j s2 t1

ΓA B B

u1 v2 w1

∆A A

r1 s2

∆B B

r2 v2

∆B B

s1 w1

∆A A

u1 t1

)

−
1

2

(

SA A A A

i r1 r2 s1

ΓA A B

j s2 t1

ΓB A A

u1 v2 w1

∆A A

r1 s2

∆A A

r2 v2

∆A A

s1 w1

∆B B

u1 t1

)

−
1

2

(

SA A B B

i r1 r2 s1

ΓA A B

j s2 t1

ΓB B B

u1 v2 w1

∆A A

r1 s2

∆B B

r2 v2

∆B B

s1 w1

∆B B

u1 t1

)

(25)

shortExpression uses the Mathematia funtion Style and aepts its orresponding options, e. g. olors

or FontSize. The symbols used for propagators and verties are set with the variables $bareVertexSymbol,

$vertexSymbol and $propagatorSymbol. The standard settings are S, Γ and ∆. The subsripts of these expressions

are the indies, whereas the orresponding �elds an be found in the supersript. Alternatively one an plot the DSEs

with DSEPlot. To improve the representation it is advantageous to de�ne a few graphis primitives for eah �eld in

a list of the form {{field1, primitives1}, {field2, primitives2}, ...}:

fieldRules = {{A, Red}, {B, Green, Dashed}, {, Blue, Dotted},

{d, Orange, Dashing[{0.02, 0.01}℄}};

These primitives an be used in DSEPlot:

DSEPlot[AADSE, ilist, fieldRules℄

Sine DSEPlot uses the Mathematia funtion GraphPlot it inherits its orresponding options whih are unfortunately

quite limited. For example GraphPlot may show the external points at di�erent plaes for di�erent graphs. It is

possible to provide spei� oordinates for the external points, but then some graphs may appear with overlapping

internal lines. For many internal lines it an also happen that GraphPlot draws lines above eah other. For this

reason DSEPlot should be onsidered more a tool for showing the results of DoDSE than a means of reating nie

Feynman diagrams. However, the latter is also possible to a limited extend using the available options. In the

generated diagrams all propagators are dressed. 1PI verties are denoted by a large blob, whereas bare verties are

drawn without a blob. Fermioni �elds have an arrow denoting their diretion. One an invoke DSEPlot also without

the additional graphis primitives:

DSEPlot[AADSE, ilist℄

As a result text labels are attahed to the individual propagators denoting their type.

Alternatively one an get a list of all graphs by setting the option output to List. Other options are indexStyle

and fatorStyle, whih determine the styles of the indies and prefators.
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C. Implementation

In the following we will desribe the individual operation steps of the funtion doDSE for the interested reader

who wants to do a step-by-step alulation for example to hek own alulations. Furthermore using the individual

routines one has several additional possibilities on whih we omment below. We also explain the representation of

integrals in DoDSE.

The funtion doDSE performs the following operations:

1. It onverts the list of interations to the internal representation of the ation with generateAtion. Alternatively

one an diretly give suh an expression as argument to doDSE.

2. The �rst derivative is performed diretly on the ation using deriv, see eq. (12).

3. Then the replaement aording to eq. (15) is done with replaementCal.

4. At this point some graphs may appear several times. identifyGraph adds them up to avoid redundant alu-

lations and get the symmetry fators right.

5. The neessary number of further derivatives an be worked out with deriv.

6. The external soures are set to zero using setSouresZero.

7. For Grassmann �elds it may be neessary to order the derivatives with orderFermions suh that anti-�elds are

left from �elds thereby possibly hanging the sign.

8. Due to our de�nition of the vertex funtions the left hand side ontains a minus sign so that the �nal expression

is multiplied by −1 for all vertex DSEs.

In the pakage several objets are introdued for representing Feynman diagrams. The smallest units are �elds

and indies. Typially they are ombined in a list like {A,i}, where A is a �eld and i its index. They an stand for

external �elds or internal ones. These lists an be grouped to form propagators and verties, denoted by P and V

(1PI) or S (bare). Finally external �elds, propagators and verties are ombined in an objet alled op, the biggest

objet, whih represents individual diagrams. In it indies ourring twie are summed and integrated over. Note

that a �eld is external if it is an argument of op, while �elds in verties represent their legs. An example for a graph

ontaining a propagator and an external �eld {A,j} is

op[S[{A,i},{A,j},{A,k},{A,l}℄, P[{A,k},{A,l}℄, {A,j}℄.

The index i only appears one and is therefore an external leg. The op-funtion is the main objet used internally for

the omputations and is also returned in the output of doDSE. It an be used like one would expet from something

representing a graph, for instane one an sum up several of them or it vanishes if one of its arguments is zero.

Furthermore it splits up if one argument is a sum. For Grassmann �elds there is a peuliarity in the notation: To make

it as easy as possible to read op-expressions, when two indies appear that are summed over also the orresponding

�elds are written idential, although in the notation above there should be the anti-�eld in the propagator for

Grassmann �elds. This means that the standard Grassmann propagator is de�ned as

P[{,i}, {b,j}℄,

where  is a Grassmann �eld and b the orresponding anti-�eld. Verties are de�ned as expeted, i.e. anti-�eld

derivatives are left from �eld derivatives. As inverse bare propagators are denoted by S, the funtion of bare verties,

they have the onvention of verties in ontrast to dressed propagators.

D. Advaned Options

In some ases the features of DoDSE desribed so far are not su�ient. For instane the ourrene of mixed

propagators or symmetries not apparent in the generi expansion of the �elds pose more intriate problems. This

happens for example in the maximal Abelian gauge, where three-point funtions involving three diagonal gluons are

not allowed due to the olor algebra but by default they are onstruted by DoDSE, whih does not know about the

olor struture. These verties have to be removed by appropriate restritions.
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To understand the neessity of vertex test funtions and expliit de�nition of propagators as explained below, it

may be helpful to know about the use of the super-�eld in DoDSE. During the derivation of a DSE the super-�eld

5

an our in two plaes: verties and propagators. For the latter a list of rules of possible replaements is needed.

Without further input DoDSE uses only those propagators that appear in the Lagrangian. With these rules the �elds

in the propagators and verties are replaed. However, as some of the verties are forbidden by the symmetries of the

ation, further tests, alled vertex test funtions, are needed to assess if a vertex an exist in the theory.

In general DoDSE performs two standard tests. The �rst heks for number onservation of individual Grassmann

�eld speies. It an be disabled with the option doGrassmannTest->False for example to allow mixing. The seond

one makes sure that bosons with a disrete symmetry φ↔ −φ in the Lagrangian only appear in verties that respet

that symmetry. These standard tests an be amended by user-de�ned test funtions, whih take a vertex as argument

and give True or False. To employ suh funtions they are given as argument to doDSE (or setSouresZero). Vertex

test funtions allow also to trunate the system of DSEs, e.g. by forbidding verties with a ertain number of legs. We

demonstrate this with a trunation of the AA DSE from above by de�ning a test funtion that only allows three-point

verties:

vertexTest[a_V℄ := Length�a==3

Called with this restrition

AADSETrunated = doDSE [ilist, {A, A}, vertexTest℄;

the number of diagrams redues from 13 to 11, beause the two sunset diagrams vanished.

In the ase of mixed propagators in the Lagrangian it is neessary to provide the additional option

speifiFieldDefinitions to doDSE, e.g.

AADSEMixedL = doDSE[{{A, A}, {A, B}, {B, B}, {b, }, {A, b, }, {A, A, B}, {A, A, A}},

{A, A}, speifiFieldDefinitions->{A, B, {, b}}℄;

If this option was not given, doDSEwould assume that A and B are fermion and anti-fermion. The list {A, B, {, b}}

tells doDSE that A and B are bosons,  is a fermion and b the orresponding anti-fermion.

If the theory allows mixed propagators not present in the Lagrangian, one has to provide a list of all possible

propagators to doDSE, e.g.

AADSEmixed = doDSE[ilist, {A, A}, {{A,A}, {A,B}, {B,B}, {,b}, {d,db}}℄;

where we allowed a propagator between the A and B �eld. The number of terms in the generated DSEs inreases

orrespondingly. The presene of mixed propagators has also a drawbak: The �nal result may ontain some terms

several times. To add them up one employs the funtion identifyGraphs with an additional option:

AADSEMixedLId = identifyGraphs[AADSEMixedL, ompareFuntion -> ompareGraphs2℄;

Sine ompareGraphs2 an take quite long, doDSE normally uses ompareGraphs, whih is not adequate for the

situation with mixed propagators. The number of terms redues as an be heked with

ountTerms/�{AADSEMixedL, AADSEMixedLId}

In priniple it is possible to derive a DSE step by step instead of using doDSE. Thereby one an trak every single step

of the alulation orresponding to the algorithm desribed above and perform further manipulations, e.g. keeping

some external �elds. We refrain here from an explanation how to do this and refer the interested reader to the

notebook examples.nb, whih is available together with the pakage. Finally there are a few tools available within

DoDSE that allow to hek the syntax of expressions or to obtain information about the �elds. They are listed in the

appendix.

5

Its standard name is φ, but that an be hanged by rede�ning the variable $dummyField. As long as one does not do step-by-step

alulations it should never appear in output.
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V. SUMMARY

In this artile we presented an algorithm to derive Dyson-Shwinger equations in a onvenient way, in whih one does

not have to deal with the usual abundane of indies and integrals. This is ahieved by graphial rules for performing

derivatives that allow a quik and straight forward derivation even of higher vertex funtions. We used this algorithm

in the Mathematia pakage DoDSE that an give DSEs one the interations of the theory are spei�ed. It proves

espeially useful for theories with many interations or higher vertex funtions in general as the number of terms

grows onsiderably. This should in partiular help to analyze gauge theories in di�erent gauges in order to obtain a

more gauge independent piture of the desribed physis.
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APPENDIX: TABLES OF FUNCTIONS

In the following we provide lists of all publi funtions of DoDSE. We give their syntax and a short explanation

what they do. When the pakage is loaded one an always get help on the ommands and their syntax within a

notebook using the ommand ?, e.g. ?doDSE.
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Main funtions

Command Desription

doDSE[ilist, list℄ Derives the DSE for the orrelation funtion list for a theory with

interations ilist.

doDSE[ilist, list [, props,

vertexTest, opts℄℄

vertexTest is a funtion for determining if a vertex respets the

symmetries of the Lagrangian. props is a list of allowed propagators

given in the form {{field1a, field1b}, {field2a, field2b},

...}. doDSE aepts the options speifiFieldDefinitions and

souresZero (prevents the replaement of super-�eld propagators

and verties when set to False).

shortExpression[expr, opts℄

sE[expr, opts℄

Rewrites a DoDSE expression into a shorter form using

$bareVertexSymbol, $vertexSymbol and $propagatorSymbol for

representation. Options of Style an be given.

DSEPlot[expr,

ilist [,fRules,len,opts℄℄

Plots graphs. expr is an expression ontaining op funtions, ilist

the list of interations and fRules a list of options for plotting in-

dividual �elds. len determines how many graphs are shown in one

line. If fRules is not given, the lines are named aording to the

�elds. Possible options are: output->List, to get the result in list

form, and indexStyle and fatorStyle to hange the style of the

indies and the prefators (e.g. font size or olor).
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Funtions for the individual omputation steps

Command Desription

generateAtion[ilist[,flist℄℄ Generates the ation in internal representation from the

interations of the theory given in ilist. For mixed

propagators flist spei�es expliitly the type of �elds in

the form {boson1, boson2, ..., {fermion1, antifermion1},

{fermion2, antifermion2}, ...}.

deriv[expr,dlists℄ Di�erentiate expr with respet to the �elds in dlists.

replaeFields[expr℄ Replaes the �elds in expr by the orresponding expressions after

the �rst di�erentiation is done to hange from full to 1PI Green

funtions.

identifyGraphs[expr[,

ompareGraphs->fun℄℄

Adds up equivalent graphs in expr. fun an be ompareGraphs

(standard) or ompareGraphs2, the latter being neessary for mixed

propagators but taking longer.

setSouresZero[expr, flist [, props,

vertexTest℄℄

Sets the external �elds in flist to zero, i.e. only physial propaga-

tors and verties are left. vertexTest is a funtion for determining

if a vertex respets the symmetries of the Lagrangian. props is a

list of allowed propagators given in the form {{field1a, field1b},

{field2a, field2b}, ...}.

orderFermions[expr℄ Orders derivatives with respet to Grassmann �elds suh that the

anti-�elds are left of the �elds thereby possibly giving a minus sign.

expr is an op-funtion or a sum of those. Bare verties are not

a�eted by the ordering.
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Funtions for heks and tools

Command Desription

ountTerms[expr℄ Counts the number of terms appearing in the expression.

fieldQ[f℄ Determines if expression f is de�ned as a �eld.

bosonQ[f℄ Determines if expression f is de�ned as a bosoni �eld.

fermionQ[f℄ Determines if expression f is de�ned as a fermioni �eld.

antiFermionQ[f℄ Determines if expression f is de�ned as an anti-�eld to a fermioni

�eld.

hekFields[expr℄ Cheks if all �elds in the expression are de�ned

hekIndies[expr℄ Cheks if an index appears more often than twie.

hekSyntax[expr℄ Cheks if expr has the orret syntax, i.e. op funtions only ontain

propagators, verties and �elds.

hekAtion[expr℄ Cheks if all indies appear exatly twie, the syntax is ok and all

�elds are de�ned.

hekAll[expr℄ Performs a series of heks on expr (hekIndies, hekSyntax,

hekFields).

defineFields[flist℄ De�nes the �elds of the ation that are given in flist as single

entries for bosons and grouped by braes for fermions.

$vertexSymbol Symbol representing a vertex in shortExpression. Standard value:

Γ.

$bareVertexSymbol Symbol representing a bare vertex in shortExpression. Standard

value: S.

$PropagatorSymbol Symbol representing a propagator in shortExpression. Standard

value: ∆.
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