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We present an algorithm for the derivation of Dyson-Schwinger equations of general theories that is
suitable for an implementation within a symbolic programming language. Moreover, we introduce
the Mathematica package DoDSH which provides such an implementation. It derives the Dyson-
Schwinger equations graphically once the interactions of the theory are specified. A few examples
for the application of both the algorithm and the DoDSE package are provided.
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I. INTRODUCTION

Correlation functions are the basic quantities in local quantum field theories and encode all physical information
about the theory. They fulfill quantum equations of motion, conventionally called Dyson-Schwinger equations (DSEs)
@, E] which are related among each other and form a set of infinitely many coupled equations. Derived from the
translational invariance of the path integral they are genuinely non-perturbative and describe the physics of the system
on all scales. This makes them a very useful tool for investigating aspects on which some alternative approaches fail.
Perhaps the most prominent example is perturbation theory, which is not valid in the strong coupling regime. Since
DSEs are likewise applicable in the weak coupling region they successfully extend the results of perturbation theory
into the strong coupling domain. An alternative non-perturbative tool, which can be used complementary to DSEs,
are Monte-Carlo lattice simulations. Due to the discretization of space-time they have their limits for very low and
very high momenta, the former being restricted by the size of the lattice and the latter by finite lattice spacings.
DSEs, in contrast, are formulated in continuous spacetime and allow to study also the analytic structure and the
infrared regime which is particularly important in an asymptotically free but confining gauge theory like quantum
chromodynamics (QCD).

* reinhard.alkofer@Quni-graz.at

T markus.huber@uni-graz.at
¥ kai.schwenzerQuni-graz.at
I The package can be obtained from physik.uni-graz.at/ “mah/DoDSE.html.


http://arxiv.org/abs/0808.2939v2

However, DSEs also have their challenges. They represent strongly non-linear integral equations that are numerically
involved. Moreover, as they form an infinite tower of equations, they have to be truncated. Recently it turned out
in the context of Landau gauge QCD that the leading order truncation based only on the propagator DSEs can miss
important qualitative features that are encoded in the equations for the vertices. In particular, the quark-gluon vertex

rovides a novel mechanism for confinement and chiral symmetry breaking B], as well as anomalous mass generation

| in QCD. Yet, the DSEs for the vertices become increasingly complicated and correspondingly hard to obtain
algebraically. Another complication is given by the necessity of gauge fixing and the additional degrees of freedom
and interactions arising from the corresponding constraints. In particular, in non-covariant gauges, like Coulomb
gauge or non-linear gauges like the maximally Abelian gauge, this increases the effort to derive the DSEs already at
the propagator level considerably, see for example E, ], and calls for an algorithmic way to derive these fundamental
equations. This is especially useful when working with actions that contain many different fields and interactions,
as arise e.g. when symmetries are not manifestly realized or in the case of necessary additional terms in the action.
Examples for the latter are the four-ghost interaction required to ensure renormalizability in maximally Abelian gauge
E, or generalized constructions of Lagrangians allowing additional terms as in ghost-antighost symmetric gauges

,[10]. A convenient way to derive DSEs also simplifies the comparison of different gauges required to obtain a more
gauge independent picture of the basic underlying mechanisms. Finally, it is particularly useful in the context of an
IR analysis where the IR scaling, which is important for long-range properties like confinement, can be abstracted
from mere power counting.

The aim of this paper is to present such an algorithmic derivation of Dyson-Schwinger equations. A similar aim
has been extensively followed in perturbation theory where it resulted in the basically automatic computation of
numerous physical processes to a given order, cf. e.g. , , , , ] Here we partially extend this idea to
the non-perturbative regime were such an automatic solution of the created equations is surely beyond our scope.
Instead we present an algorithm for the derivation of the equations that is suited for implementation into a symbolic
programming language. This algorithm is presented below in Sec. [l and is implemented in the Mathematica package
DoDSE, which stands for Derivation of Dyson-Schwinger Equations. An example of how to use the algorithm is
provided in Sec. [Tl Details on the DoDSE package are presented in Sec. [Vl Whereas a direct algebraic derivation
can be quite a tedious task, with the symbolic and graphical notations employed, one can obtain DSEs for general
actions with a relatively high number of interactions. Moreover, the presented algorithm operates directly on the
level of the effective action and circumvents the tedious step to decompose connected into proper vertices necessary
in a derivation on the level of the generating functional of full Green functions. We implemented this algorithm
up to the diagrammatic level into DoDSE. From the interactions of the theory, given in symbolic form, the code
derives DSEs to the desired order. The outcome are symbolic representations of the Feynman diagrams encoding
their topological structure and their symmetry factors. The last step, which has to be done manually, to get the
full algebraic form of the DSEs is the replacement of the symbolic form by the explicit integral expression involving
proper and bare correlation functions. For some applications of DSEs it is not even necessary to process the symbolic
equations even further since they can be used directly, as is e.g. the case for scaling analyses. Finally, we note that
the presented algorithm is in principle also applicable for the generation of a perturbative expansion by re-inserting
the Dyson-Schwinger equations for dressed vertices and truncating at a given loop order.

II. DERIVING DYSON-SCHWINGER EQUATIONS IN SYMBOLIC NOTATION

The algorithm presented here involves several abstractions. The first is the use of a symbolic notation that enables
us to keep expressions relatively short. Writing out the equations in full detail, i.e. Lorentz and internal group indices
as well as all coordinates in position space or momenta, leads to expressions that can easily hide the underlying
basic structure. Secondly, we employ a super-field formalism that includes all irreducible fields of the theory into a
single reducible multiplet. Finally, we exploit the fact that a local action can be expanded in the fields. Thereby the
expansion coefficients, that can be operators in coordinate as well as internal space, can be left unspecified during
the derivation and only have to be inserted in the end to obtain algebraic expressions for the graphical equations.
Thereby, the main steps can be done using diagrammatic replacement rules. All the techniques used in the following
are not new, but combined they provide a powerful way of deriving DSEs conveniently and fast. As an explicit
example we demonstrate the procedure for the two inequivalent DSEs of the ghost-gluon vertex in Landau gauge
Yang-Mills theory in Sec. [IIl Before we explain the actual algorithm in Subsection [IBl we make a short summary
of used identities and employed conventions.



A. Basic Identities and Conventions

The basic object we will start from is the generating functional of one-particle irreducible (1PI) Green functions.
In the following we do not specify any particular fields but will rather use a more compact notation with a super-
field denoted by ¢;. It represents a reducible multiplet containing all irreducible representations present in the
action. We also introduce corresponding sources J;. The multi-index ¢ includes the label of the particular irreducible
representation, its internal indices and also the space-time dependence of the field. For example in Landau gauge
QCD ¢; is the set of the gluon, ghost and quark fields: {A%(x),c*(x),c*(x),¢"(x),q'(x)}. Where appropriate the
Einstein convention for summation is understood and amended by integration.

The effective action is given by

[[®] = —WI[J] + ®:iJi , (1)

where WJ] is the generating functional of connected Green functions related to the functional path integral by
219) = [ Dlgle s+ = MV @

with S being the gauge-fixed action. The effective action I'[®] depends on the averaged fields ® in the presence of
external currents .J,

;= (d),; = oW Z[J) ! /D[¢]¢ie—5+¢ﬂf : (3)

6J;

For Grassmann variables terms like ¢;.J; include the fields and sources in the usual order !, i.e. for example in Landau
gauge QCD we have ¢;J; = [ dz(Afi(2)jj(2) + 5% (z)c" (z) + ¢ ()0 (2) + 7' ()¢ () + ¢ (2)n" (@))-
For non-vanishing external sources (denoted by the index J) the propagator of the multiplet ¢ is

52W 52r N\ !
J — _
Aij = §J:6.J; (5<1>i5<1>j> @

but for vanishing external sources only some elements remain. For instance in Landau gauge QCD these would be a
diagonal element for the gluon and off-diagonal elements for ghosts and quarks, but also mixed propagators can arise
if allowed by the action. For the derivation of DSEs it is important to keep the general expressions and only at the
end the external sources can be set to zero. Otherwise one would miss contributions.

Higher 1PI vertices are defined as derivatives of the effective action:

oT
J =
Fivoin = 6P, 6P, )

in

In the following we will need the derivatives of fields, propagators and vertices with respect to fields. These are given
by

5
r{)i@j = 0ij , (6a)
b b 52T\ ! s2r N\ ! 53T 52T\ !
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50, T 5D, <5<1>j5q>k> (5@5%) <5<1>m5q>i5<1>n> <5q>n5q>k> gm” min"nk 1 (6b)
5 6T o
F{)irjl'“j" - 5(I)i5(1)j1 . '5q)jn - Pijl"'jn (66)

and are represented graphically in Fig. [l
The physical correlation functions are obtained from the above expressions when evaluated at the vacuum expec-

1 Another possibility would be the use of a metric as for example used in ref. [16].
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FIG. 1: Diagrammatic rules for differentiating an external field, a propagator or a vertex. The circle with the cross denotes an
external field, small blobs denote dressed propagators, and big blobs 1PI vertices. The double line represents the super-field ¢.

tation values of the fields, corresponding to vanishing external currents,

520\
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where the vertices involve only proper, i.e. 1PI, diagrams. By construction the arising generating equations always
involve one bare vertex function

_ 05
Sy -+ 0,

We comment on the inclusion of fermions in Subsec. [LCl
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B. Algorithm

The functional DSEs m, 18§, |E] are obtained by the invariance of the path integral with respect to variations of

the integration variable ¢ 2:
> 210 = [ Do) (-5 + ) e =

0 00
08
=57 +J; | z[J] =o0. (8)
v lgr=6/8J;
Substituting Z[.J] by ¢!/l and using
_ ) SWIJ] 6
W[ 2 VI = 2
¢ <5Ji> ¢ 5 s, )

after multiplication of eq. (§) from the left with e[’ we find

Rt
0¢;

+J; =0. (10)

5
+55:

=31

=757

This is the functional DSE for connected correlation functions. To get the corresponding version for 1PI functions we
perform the Legendre transformation of W with respect to all sources. Thereby §W/[.J]/d.J; changes to ®; and §/4.J;
becomes

b§ 0®; 0 0 W 0 PW 5 g 0

50, T 5 0%, 30 00, 00, 50, 00, e (11)

2 For a different approach using equal time commutation relations and Heisenberg’s equation of motion see ref. IE]
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FIG. 2: The functional DSE for 1PI functions. Crosses in circles denote external fields. All internal propagators are 1PI and
the big blob denotes a 1PI vertex function.

This yields

58 L or

= 0. (12)

We stress again that here the summation over the index j includes summation over different fields. To simplify the
process of differentiating the action we expand it in the fields®. To stay as general as possible we again use the
super-field ¢

S[(b] T‘S¢T¢S - rst¢r¢s¢t rstu¢r¢s¢t¢u (13)

but for explicit calculations one can alternatively use an expansion in the fields of the action at this point. The S;. .
are the expansion coeflicients and correspond to bare quantities (or the inverse ones in case of the propagators) of
which for an explicit action usually several vanish. Their signs have been chosen in accordance with eq. (). For the
propagators as well as for all derivative interactions these are operators in coordinate space and may have a non-trivial
structure in the internal space as well. We now differentiate once with respect to a field ¢;,

58
6¢1 zs¢s - zst¢s¢t zrst¢s¢t¢uu (14)
and replace the field operators according to eq. ([I2) by
i — B+ AL — 0 (15)
! ToP;

Performing the derivatives and employing eq. (6) we get the general generating DSE for 1PI Green functions, depicted
in Fig.

or 1
F{)i :Sisq)s — 557;515((1)5(1)15 + ASJt)+
- ;l sttu((l) (I)tq) + 3(1) A + AJ A Aimri{wm) (16)

from which the DSEs of arbitrary Greens functions can be obtained. This equation can be decomposed into generating
equations for the individual irreducible fields which by construction always involve one bare vertex function. If we had
calculated these equations by direct differentiation of the action as given in eq. (I2)), it would have been a tedious task
to get the bare vertices and propagators in the final expression. In particular, in this case derivatives on d-functions
occur that have to be properly resolved by partial integration. This is the advantage the formal expansion in fields
entails. In this formalism everything is hidden in a single index of the fields and the details of the bare vertices only
have to be specified in the end in order to obtain algebraic expressions for the DSEs. We have checked by an explicit
computation in the case of non-Abelian gauge theory that both ways to compute eq. (If) indeed reproduce the same

3 We restrict ourselves here to quartic interactions since they are renormalizable in four dimensions, but there is no restriction on the
order of the interactions, like e.g. five-point vertices, in the DoDSE package.
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FIG. 3: The DSE for a generic two-point function.

result.

The corresponding DSEs for arbitrary correlation functions are obtained by further functional derivatives of the
generating equation eq. (I6)) which are computed via eqgs. (B)). From now on we can proceed by use of the diagrammatic
rules given in Fig. [[l where all internal lines denote dressed propagators. Here, a major advantage of the diagrammatic
rules is that one does not have to take care of indices. We would like to stress again that the appearing super-
propagators have off-diagonal components corresponding to mixing of the irreducible fields. These mixed propagators
are important in the derivation process, although they seem like an artificial complication. In "simple" cases as for
example the three-gluon vertex DSE in Landau gauge the result would not change if we kept only "real" propagators.
However, for the ghost-gluon vertex (see Subsec. [l for details), for higher vertex functions and in certain gauges
already for the propagators, some contributions would be missing.

The DSE for a generic two-point function is derived by performing another differentiation of the generating DSE
eq. (I6) using the diagrammatic replacement rules of Fig. [[lin the corresponding diagrammatic representation Fig.
in all possible ways. The result is shown in Fig. Bl Proceeding to higher vertex functions the number of diagrams
increases rapidly: For three-point vertices there are 15 generic diagrams and for four-point functions 60. For real
applications it is therefore recommendable to exploit possible simplifications. First, the final number and form of
graphs depend on the first differentiation in eq. (IG) as the corresponding field determines which bare vertices appear
in the diagrams. For example the DSE of the ghost-gluon vertex in Landau gauge QCD has only four terms, when
the first derivative is performed with respect to a ghost field. In this case one can drop all diagrams with bare gluonic
vertices. On the other hand, if one starts with the gluon field, all vertices have to be kept and one ends up with twelve
graphs. Secondly, one can skip some diagrams taking into account where one is going. Simple examples are that for
a three-point function we do not have to drag along the bare four-point vertex or diagrams with an external field can
be dropped if no further derivatives with respect to this particular field follow.

C. Inclusion of Grassmann Fields

Anticommuting fields need slightly more care when performing derivatives to get the correct signs. In this subsection
we denote Grassmann fields by 1 and 1 with sources 77 and 7, respectively. Let us first specify our convention for the
derivatives with respect to Grassmann quantities. We choose left- and right-derivatives:

56 5
— = — = . 17
oY oy oY oy an
This entails that the proper definition of a Grassmann field propagator is
_ 2 2 -1
Agjw_‘sw_(‘_”) . (18)
01;0m; 01615

In general derivatives always have to be ordered such that derivatives with respect to Grassmann fields are right of
those with respect to anti-Grassmann fields. A quartic Grassmann interaction then has the form

o ‘
i 0y Oy li=y=0’
For easier readability and also in correspondence with DoDSE the indices of the I do not reflect the order of how the

derivatives are performed, but rather have the order in which the derivatives appear, i.e. that the differentiation with
respect to 1; has to be performed before that with respect to v;, but 15, comes before ;.

Tijr = (19)



When using the algorithm described above derivatives always act from the corresponding direction. Eqs. (@) have
to be amended by

5szA = AJ TIRAT (20a)
S = ALEAL, (200)
%r" i =T i (20c)
5:2 =T (20d)

where here the superscript J denotes the dependence on all sources and the additional superscripts of the I'/ denote
the fields corresponding to the indices. This means in turn that at the end, when the external sources are set to zero
and the reducible multiplet is decomposed into the irreducible, physical fields, some Grassmann derivatives can be
unordered. Ordering them gives the signs expected normally for Feynman diagrams with fermion loops. However,
in some cases this algorithm is oversimplified when several super-fields are involved. Using diagrammatic rules this
problem can be circumvented and the minus signs for closed fermion loops have to be added manually at the end.
Since DoDSE needs specific rules how to perform the derivatives, it may happen that the wrong sign appears for
two-loop graphs.

A simple example for the change of sign is the quark respectively ghost loop in the gluon DSE of Landau gauge
where ¢ = {q, ¢} . Replacing v, by 9, + AJ’W’L in the corresponding part of the first derivative of the action with
respect to A;,

rs rs

ST bty - —SHY (B + ALY (21)
and differentiating once more with respect to A; yields

6°T A w . or
AVIAYY ————— + gluoni 99
TADA; Sirs T + gluonic terms (22)

Ordering the derivatives changes the sign of the expression and leads to the expected relative minus sign of closed
fermion loops.

Finally we should comment on the expansion of the action when Grassmann fields are involved. First, we recommend
to order Grassmann interactions such that all anti-Grassmann fields are left of the Grassmann fields. Second, the
expansion coefficients are antisymmetric in the indices belonging to Grassmann fields. This entails that we can
differentiate with respect to Grassmann fields as usual, e.g.

5 SEPV htpitpy = SEPV b, — SEPVhapithy = SEPYVh by + SECV b, = 25TV D by, (23)

III. AN EXAMPLE: THE GHOST-GLUON VERTEX IN LANDAU GAUGE YANG-MILLS THEORY

For the derivation of the ghost-gluon vertex in Landau gauge M] we start with Fig. Bl As mentioned above,
there are two DSEs for this vertex. These arise since the DSEs are derived from the invariance of the initial path
integral under changes of the fields. The invariance for the individual fields in the theory yields different generating
equations from eq. (I6) that can by appropriate functional differentiation generate topologically distinct DSEs
for the same mixed correlation function. Without approximations these equations should provide identical results
but they may be affected differently by truncations. Moreover, the dynamics can be represented differently in the
various equations as demonstrated for the quark-gluon vertex in IB] We start here with the simpler equation for the
ghost-gluon vertex, i. e. we take the derivative in eq. (I6]) with respect to the ghost field. Fig. Blreduces in this case to
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The symmetry factor 1/2 vanished because there were two possibilities to plug the bare ghost-gluon vertex into the

third diagram. This is a nice example how the computation simplifies when the possible interactions are reduced by
symmetries. In the present case the general diagrammatic rules specialize to
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When we set the external sources to zero, the mixed propagators become irreducible gluon and ghost propagators. The
pure super-field propagator in the second and third terms on the right-hand side yields a sum of different terms, when
decomposed, but ghost number conservation allows here only vertices with the same number of ghost and anti-ghost
legs. Therefore, for each diagram only one propagator can be realized. The final result is then the ghost-gluon vertex
DSE:
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We obtain a second distinct version of the ghost-gluon DSE if we start differentiating with respect to the gluon
field. In this case the super-field is important as will become evident below. The gluon is involved in all possible
interactions of Landau gauge Yang-Mills theory, so Fig. [is not topologically simplified in this case. For brevity we
skip diagrams that do not contribute to the ghost-gluon vertex (the tadpole and all incompatible tree graphs as well
as the graph with the bare four-gluon vertex connected to an external field). The factor in front of the loop containing
ghost-fields is changed from 1/2 to 1, because there are two possibilities to insert the bare ghost-gluon vertex as we
have to consider the direction of fermion lines explicitly. The diagrams left are
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Differentiation with respect to the anti-ghost field yields
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Again propagators partly involving the super-field are determined by the second field and pure super-field propagators
by the symmetries of the vertices. Finally the second version of the ghost-gluon vertex DSE is obtained by setting
the external sources to zero:
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The derivation of the DSEs for the gluonic correlation functions can be done in a similar way. However, since the
super-field cannot lead to internal ghost loops one can circumvent the super-field formalism and proceed with pure
ghost and gluon propagators from the level of two-point functions on. For mixed Green functions this would omit
some diagrams as was explicitly shown for the ghost-gluon vertex, where all diagrams with internal ghost lines - except
the pure ghost loop (the fifth diagram on the right-hand side) - and the triangle diagrams would be missing.

IV. DERIVATION OF DYSON-SCHWINGER EQUATIONS USING MATHEMATICA

As should have become clear the manual application of the algorithm becomes rather tedious for more complicated
Green functions. The algorithm explained in the Sec. [l is perfectly suitable for an implementation into a symbolic
programming language like Mathematica @] The functionality of the package DoDSE is that the user enters the
interactions of the theory and then all desired DSEs are automatically generated from it. In special cases it may in
addition be necessary to provide further information about symmetries of vertices. Together with the package there
is also a notebook (examples.nb) available that contains the model used below as well as other examples like Landau
gauge QCD.
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A. Technical Notes

To load the package file DoDSE.m, one either copies it to the subdirectory DoDSE of $UserAddOnsDirectory?
and evaluates << DoDSE‘DoDSE‘ (which would be the standard way of installation) or uses the Get command to
load it from any other place: Get [pathToTheFile]. DoDSE was developed under Mathematica 6 and will not work
with Mathematica 5.2 or lower since some functions new to Mathematica 6 are used. There exists no dedicated
documentation within Mathematica’s Documentation Center, but help on single commands is available using the
command 7, e.g. 7DSEPlot.

B. Using DoDSE

For the derivation of DSEs via the DoDSE package it is usually only necessary to specify the interactions of the
given theory. This is done by a list whose elements are given by the individual propagators and vertices in the bare
Lagrangian of the theory. These are in turn represented by lists containing the external fields of the corresponding
correlation functions. With this information the function doDSE can now derive any DSE. The output can be used
directly, put into a more convenient form using short notations for propagators and vertices or plotted with DSEPlot.
The complete calculation takes seconds, maybe minutes for vertex functions with more than four legs. As the package
is written for Mathematica we have a wide range of tools available for processing the results further, for instance the
uniform IR scaling exponent of a graph (cf. e.g. [23,[24]) can be derived directly from the output of DoDSE.

In order to demonstrate the method to derive DSEs let us consider an example model. Its action consists of four
fields, two of them bosonic (A, B) and two fermionic (¢, d):

1 AA 1 cc— 1d 7
L =585 AA; + 5 S7BiB; + Sijtic; + Sifdid; +

S 1 1 1 o
— S Aicien — 5SGIET A A B — 1SGTT A BBy — S AiA A = ST eiddrer. (24)
We wrote the quartic Grassmann interaction such that no additional minus sign occurs when differentiating with
respect to ¢ and ¢ or d and d. The interactions of this action are entered in the form

ilist = {{A,A}, {B,B}, {cb,c}, {db,d}, {A,cb,c}, {A,A,B}, {A,A,B,B}, {A,A,A,A}, {cb,db,d,c}};

With this representation of the theory, we can start deriving the propagator DSEs using the function doDSE which
generates the non-trivial right hand side of the DSE for the corresponding correlation function. As arguments it takes
the list of interactions ilist, and a list of the fields with their respective indices included in the correlator for which
we want to derive the DSE. In general, the order of the elements in the list of the correlation function for which the
DSE is derived determines the order in which the individual functional derivatives are taken. When different fields
are involved this can result in distinct DSEs, as was the case for the ghost-gluon vertex discussed in the last section.
The corresponding commands for the propagators read:

AADSE = doDSE[ilist, {A, A}]1;
BBDSE = doDSE[ilist, {B, B}1;
ccDSE = doDSE[ilist, {{c, i}, {cb, j}}]1;

ddDSE = doDSE[ilist, {{d, i}, {db, j}}]1;

It is not necessary to give the indices of the fields, but it can be done as shown above for the two fermion DSEs.
Alternatively one can derive several DSEs by passing a list to doDSE, i.e. the following line derives one DSE for all
primitively divergent vertex functions:

DSEs = doDSE[ilist, ilist];
We can bring the rather long output into a more readable form with shortExpression:
shortExpression[AADSE]

or equivalently

4 Under Unix systems this is normally ~/.Mathematica,/Applications
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sE[AADSE]

1 1
A A AAAAAAA AABBABB AABTAABAAA ABB A cbcpAcbcAaccbh Accbh
Si i 5 ( ijrlsl Arl sl) - 5 (Slj rl sl Ar1 sl) ~ Mirlsl FJ t1 ulArl tlAsl ul + Si rl sl FJ t1 ulAsl tlAul rl

_%(SAAAA AAAAAAAAAAAAA)_%(SAABB AABBArA1?2A?2]?2AsBlE2)

irlr2sl™js2t2u2-rl s2-r2 t2=s1 u2 irl r2sl™js2t2u2
AABBTABATAAB AA ABB BB A A AABBTABBTABB AA ABB BB BB
T Mirlr2sltju2 v1F52 t2 ulArl S2AI‘2 u2Asl ulAt2 vl Mirlr2sltju2 v1F52 t2 ulArl S2AI‘2 u2Asl ulAt2 vl

1 1
AAAAPAAAPAAA AA AAA AAA A A AABBpAAAPABB AA ABB BB A A
- 5 (Sl rl r2 slrj s2 tl Ful v2 wlArl SZArZ VZAsl wlAul tl) - 5 (Sl rl r2 lej s2 tl Ful v2 W].Al'l S2Al‘2 VZAS]. WlAul tl)

1 1
AAAApPAABpTBAA AA AAA AAA BB A ABBpAABPBBB AA ABB ABB BB
- 5 (Sl rl r2 slrj s2 tl 1—‘lul v2 W].AI']. SZAI'Z VZAsl wlAul tl) - 5 (Sl rl r2 lej s2 tl 1—‘lul v2 W].AI']. SZAI'Z VZAsl wlAul tl)

(25)

shortExpression uses the Mathematica function Style and accepts its corresponding options, e. g. colors
or FontSize. The symbols used for propagators and vertices are set with the variables $bareVertexSymbol,
$vertexSymbol and $propagatorSymbol. The standard settings are S, I and A. The subscripts of these expressions
are the indices, whereas the corresponding fields can be found in the superscript. Alternatively one can plot the DSEs
with DSEPlot. To improve the representation it is advantageous to define a few graphics primitives for each field in
a list of the form {{fieldl, primitivesl}, {field2, primitives2}, ...}:

fieldRules = {{A, Red}, {B, Green, Dashed}, {c, Blue, Dotted},
{d, Orange, Dashing[{0.02, 0.01}]}};

These primitives can be used in DSEPlot:
DSEPlot [AADSE, ilist, fieldRules]
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>
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Since DSEPlot uses the Mathematica function GraphPlot it inherits its corresponding options which are unfortunately
quite limited. For example GraphPlot may show the external points at different places for different graphs. It is
possible to provide specific coordinates for the external points, but then some graphs may appear with overlapping
internal lines. For many internal lines it can also happen that GraphPlot draws lines above each other. For this
reason DSEPlot should be considered more a tool for showing the results of DoDSE than a means of creating nice
Feynman diagrams. However, the latter is also possible to a limited extend using the available options. In the
generated diagrams all propagators are dressed. 1PI vertices are denoted by a large blob, whereas bare vertices are
drawn without a blob. Fermionic fields have an arrow denoting their direction. One can invoke DSEPlot also without
the additional graphics primitives:

DSEPlot [AADSE, ilist]

As a result text labels are attached to the individual propagators denoting their type.
Alternatively one can get a list of all graphs by setting the option output to List. Other options are indexStyle
and factorStyle, which determine the styles of the indices and prefactors.
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C. Implementation

In the following we will describe the individual operation steps of the function doDSE for the interested reader
who wants to do a step-by-step calculation for example to check own calculations. Furthermore using the individual
routines one has several additional possibilities on which we comment below. We also explain the representation of
integrals in DoDSE.

The function doDSE performs the following operations:

1. It converts the list of interactions to the internal representation of the action with generateAction. Alternatively
one can directly give such an expression as argument to doDSE.

2. The first derivative is performed directly on the action using deriv, see eq. (I2)).
3. Then the replacement according to eq. ([I3) is done with replacementCalc.

4. At this point some graphs may appear several times. identifyGraph adds them up to avoid redundant calcu-
lations and get the symmetry factors right.

5. The necessary number of further derivatives can be worked out with deriv.
6. The external sources are set to zero using setSourcesZero.

7. For Grassmann fields it may be necessary to order the derivatives with orderFermions such that anti-fields are
left from fields thereby possibly changing the sign.

8. Due to our definition of the vertex functions the left hand side contains a minus sign so that the final expression
is multiplied by —1 for all vertex DSEs.

In the package several objects are introduced for representing Feynman diagrams. The smallest units are fields
and indices. Typically they are combined in a list like {A,i}, where A is a field and i its index. They can stand for
external fields or internal ones. These lists can be grouped to form propagators and vertices, denoted by P and V
(1PI) or S (bare). Finally external fields, propagators and vertices are combined in an object called op, the biggest
object, which represents individual diagrams. In it indices occurring twice are summed and integrated over. Note
that a field is external if it is an argument of op, while fields in vertices represent their legs. An example for a graph
containing a propagator and an external field {A,j} is

op[S[{A,i},{A,j},{A,k},{A,1}], P[{A,k},{A,1}], {A,j}].

The index i only appears once and is therefore an external leg. The op-function is the main object used internally for
the computations and is also returned in the output of doDSE. It can be used like one would expect from something
representing a graph, for instance one can sum up several of them or it vanishes if one of its arguments is zero.
Furthermore it splits up if one argument is a sum. For Grassmann fields there is a peculiarity in the notation: To make
it as easy as possible to read op-expressions, when two indices appear that are summed over also the corresponding
fields are written identical, although in the notation above there should be the anti-field in the propagator for
Grassmann fields. This means that the standard Grassmann propagator is defined as

P[{C,i}, {Cb,J}] ’

where ¢ is a Grassmann field and cb the corresponding anti-field. Vertices are defined as expected, i.e. anti-field
derivatives are left from field derivatives. As inverse bare propagators are denoted by S, the function of bare vertices,
they have the convention of vertices in contrast to dressed propagators.

D. Advanced Options

In some cases the features of DoDSE described so far are not sufficient. For instance the occurrence of mixed
propagators or symmetries not apparent in the generic expansion of the fields pose more intricate problems. This
happens for example in the maximal Abelian gauge, where three-point functions involving three diagonal gluons are
not allowed due to the color algebra but by default they are constructed by DoDSE, which does not know about the
color structure. These vertices have to be removed by appropriate restrictions.
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To understand the necessity of vertex test functions and explicit definition of propagators as explained below, it
may be helpful to know about the use of the super-field in DoDSE. During the derivation of a DSE the super-field®
can occur in two places: vertices and propagators. For the latter a list of rules of possible replacements is needed.
Without further input DoDSE uses only those propagators that appear in the Lagrangian. With these rules the fields
in the propagators and vertices are replaced. However, as some of the vertices are forbidden by the symmetries of the
action, further tests, called vertex test functions, are needed to assess if a vertex can exist in the theory.

In general DoDSE performs two standard tests. The first checks for number conservation of individual Grassmann
field species. It can be disabled with the option doGrassmannTest->False for example to allow mixing. The second
one makes sure that bosons with a discrete symmetry ¢ <> —¢ in the Lagrangian only appear in vertices that respect
that symmetry. These standard tests can be amended by user-defined test functions, which take a vertex as argument
and give True or False. To employ such functions they are given as argument to doDSE (or setSourcesZero). Vertex
test functions allow also to truncate the system of DSEs, e.g. by forbidding vertices with a certain number of legs. We
demonstrate this with a truncation of the AA DSE from above by defining a test function that only allows three-point
vertices:

vertexTest[a_V] := LengthQa==3
Called with this restriction
AADSETruncated = doDSE [ilist, {A, A}, vertexTest];

the number of diagrams reduces from 13 to 11, because the two sunset diagrams vanished.
In the case of mixed propagators in the Lagrangian it is necessary to provide the additional option
specificFieldDefinitions to doDSE, e.g.

AADSEMixedL = doDSE[{{A, A}, {A, B}, {B, B}, {cb, c}, {A, cb, ¢}, {A, A, B}, {A, A, A}},
{A, A}, specificFieldDefinitions->{A, B, {c, cb}}];

If this option was not given, doDSE would assume that A and B are fermion and anti-fermion. The list {A, B, {c, cb}}
tells doDSE that A and B are bosons, ¢ is a fermion and cb the corresponding anti-fermion.

If the theory allows mixed propagators not present in the Lagrangian, one has to provide a list of all possible
propagators to doDSE, e.g.

AADSEmixed = doDSE[ilist, {A, A}, <{{A,A}, {A,B}, {B,B}, {c,cb}, {d,db}}];

where we allowed a propagator between the A and B field. The number of terms in the generated DSEs increases
correspondingly. The presence of mixed propagators has also a drawback: The final result may contain some terms
several times. To add them up one employs the function identifyGraphs with an additional option:

AADSEMixedLId = identifyGraphs[AADSEMixedL, compareFunction -> compareGraphs2];

Since compareGraphs2 can take quite long, doDSE normally uses compareGraphs, which is not adequate for the
situation with mixed propagators. The number of terms reduces as can be checked with

countTerms/@{AADSEMixedl., AADSEMixedLId}

In principle it is possible to derive a DSE step by step instead of using doDSE. Thereby one can track every single step
of the calculation corresponding to the algorithm described above and perform further manipulations, e.g. keeping
some external fields. We refrain here from an explanation how to do this and refer the interested reader to the
notebook examples.nb, which is available together with the package. Finally there are a few tools available within
DoDSE that allow to check the syntax of expressions or to obtain information about the fields. They are listed in the
appendix.

5 Its standard name is ¢, but that can be changed by redefining the variable $dummyField. As long as one does not do step-by-step
calculations it should never appear in output.
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V. SUMMARY

In this article we presented an algorithm to derive Dyson-Schwinger equations in a convenient way, in which one does
not have to deal with the usual abundance of indices and integrals. This is achieved by graphical rules for performing
derivatives that allow a quick and straight forward derivation even of higher vertex functions. We used this algorithm
in the Mathematica package DoDSE that can give DSEs once the interactions of the theory are specified. It proves
especially useful for theories with many interactions or higher vertex functions in general as the number of terms
grows considerably. This should in particular help to analyze gauge theories in different gauges in order to obtain a
more gauge independent picture of the described physics.
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APPENDIX: TABLES OF FUNCTIONS

In the following we provide lists of all public functions of DoDSE. We give their syntax and a short explanation
what they do. When the package is loaded one can always get help on the commands and their syntax within a
notebook using the command 7, e.g. 7doDSE.
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Main functions

Command

Description

doDSE[ilist, clist]

doDSE[ilist, clist [, props,
vertexTest, opts]]

shortExpression[expr, opts]
sE[expr, opts]

DSEPlot [expr,
ilist [,fRules,len,opts]]

Derives the DSE for the correlation function clist for a theory with
interactions ilist.

vertexTest is a function for determining if a vertex respects the
symmetries of the Lagrangian. props is a list of allowed propagators
given in the form {{fieldla, fieldlb}, {field2a, field2b},
...}. doDSE accepts the options specificFieldDefinitions and
sourcesZero (prevents the replacement of super-field propagators
and vertices when set to False).

Rewrites a DoDSE expression into a shorter form using
$bareVertexSymbol, $vertexSymbol and $propagatorSymbol for
representation. Options of Style can be given.

Plots graphs. expr is an expression containing op functions, ilist
the list of interactions and fRules a list of options for plotting in-
dividual fields. len determines how many graphs are shown in one
line. If fRules is not given, the lines are named according to the
fields. Possible options are: output->List, to get the result in list
form, and indexStyle and factorStyle to change the style of the
indices and the prefactors (e.g. font size or color).
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Functions for the individual computation steps

Command

Description

generateAction[ilist[,flist]]

deriv[expr,dlists]

replaceFields [expr]

identifyGraphs [expr[,
compareGraphs->cfunc]]

setSourcesZero[expr, flist [, props,
vertexTest]]

orderFermions [expr]

Generates the action in internal representation from the

interactions of the theory given in ilist. For mixed
propagators flist specifies explicitly the type of fields in
the form {bosonl, boson2, ..., {fermionl, antifermioni},
{fermion2, antifermion2}, ...}.

Differentiate expr with respect to the fields in dlists.

Replaces the fields in expr by the corresponding expressions after
the first differentiation is done to change from full to 1PI Green
functions.

Adds up equivalent graphs in expr. cfunc can be compareGraphs
(standard) or compareGraphs2, the latter being necessary for mixed
propagators but taking longer.

Sets the external fields in f1ist to zero, i.e. only physical propaga-
tors and vertices are left. vertexTest is a function for determining
if a vertex respects the symmetries of the Lagrangian. props is a
list of allowed propagators given in the form {{fieldla, fieldlb},
{field2a, field2b}, ...}.

Orders derivatives with respect to Grassmann fields such that the
anti-fields are left of the fields thereby possibly giving a minus sign.
expr is an op-function or a sum of those. Bare vertices are not
affected by the ordering.
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Functions for checks and tools

Command

Description

countTerms [expr]
fieldQ[£f]

bosonQ [f]
fermionQ[f]

antiFermionQ[f]

checkFields [expr]
checkIndices[expr]

checkSyntax [expr]

checkAction [expr]

checkAll [expr]

defineFields[flist]

$vertexSymbol

$bareVertexSymbol

$PropagatorSymbol

Counts the number of terms appearing in the expression.
Determines if expression f is defined as a field.
Determines if expression f is defined as a bosonic field.
Determines if expression f is defined as a fermionic field.

Determines if expression f is defined as an anti-field to a fermionic
field.

Checks if all fields in the expression are defined
Checks if an index appears more often than twice.

Checks if expr has the correct syntax, i.e. op functions only contain
propagators, vertices and fields.

Checks if all indices appear exactly twice, the syntax is ok and all
fields are defined.

Performs a series of checks on expr (checkIndices, checkSyntax,
checkFields).

Defines the fields of the action that are given in flist as single
entries for bosons and grouped by braces for fermions.

Symbol representing a vertex in shortExpression. Standard value:
T.

Symbol representing a bare vertex in shortExpression. Standard
value: S.

Symbol representing a propagator in shortExpression. Standard
value: A.
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