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We present an algorithm for the derivation of Dyson-S
hwinger equations of general theories that is

suitable for an implementation within a symboli
 programming language. Moreover, we introdu
e

the Mathemati
a pa
kage DoDSE

1

whi
h provides su
h an implementation. It derives the Dyson-

S
hwinger equations graphi
ally on
e the intera
tions of the theory are spe
i�ed. A few examples

for the appli
ation of both the algorithm and the DoDSE pa
kage are provided.
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I. INTRODUCTION

Correlation fun
tions are the basi
 quantities in lo
al quantum �eld theories and en
ode all physi
al information

about the theory. They ful�ll quantum equations of motion, 
onventionally 
alled Dyson-S
hwinger equations (DSEs)

[1, 2℄ whi
h are related among ea
h other and form a set of in�nitely many 
oupled equations. Derived from the

translational invarian
e of the path integral they are genuinely non-perturbative and des
ribe the physi
s of the system

on all s
ales. This makes them a very useful tool for investigating aspe
ts on whi
h some alternative approa
hes fail.

Perhaps the most prominent example is perturbation theory, whi
h is not valid in the strong 
oupling regime. Sin
e

DSEs are likewise appli
able in the weak 
oupling region they su

essfully extend the results of perturbation theory

into the strong 
oupling domain. An alternative non-perturbative tool, whi
h 
an be used 
omplementary to DSEs,

are Monte-Carlo latti
e simulations. Due to the dis
retization of spa
e-time they have their limits for very low and

very high momenta, the former being restri
ted by the size of the latti
e and the latter by �nite latti
e spa
ings.

DSEs, in 
ontrast, are formulated in 
ontinuous spa
etime and allow to study also the analyti
 stru
ture and the

infrared regime whi
h is parti
ularly important in an asymptoti
ally free but 
on�ning gauge theory like quantum


hromodynami
s (QCD).
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However, DSEs also have their 
hallenges. They represent strongly non-linear integral equations that are numeri
ally

involved. Moreover, as they form an in�nite tower of equations, they have to be trun
ated. Re
ently it turned out

in the 
ontext of Landau gauge QCD that the leading order trun
ation based only on the propagator DSEs 
an miss

important qualitative features that are en
oded in the equations for the verti
es. In parti
ular, the quark-gluon vertex

provides a novel me
hanism for 
on�nement and 
hiral symmetry breaking [3℄, as well as anomalous mass generation

[4℄ in QCD. Yet, the DSEs for the verti
es be
ome in
reasingly 
ompli
ated and 
orrespondingly hard to obtain

algebrai
ally. Another 
ompli
ation is given by the ne
essity of gauge �xing and the additional degrees of freedom

and intera
tions arising from the 
orresponding 
onstraints. In parti
ular, in non-
ovariant gauges, like Coulomb

gauge or non-linear gauges like the maximally Abelian gauge, this in
reases the e�ort to derive the DSEs already at

the propagator level 
onsiderably, see for example [5, 6℄, and 
alls for an algorithmi
 way to derive these fundamental

equations. This is espe
ially useful when working with a
tions that 
ontain many di�erent �elds and intera
tions,

as arise e.g. when symmetries are not manifestly realized or in the 
ase of ne
essary additional terms in the a
tion.

Examples for the latter are the four-ghost intera
tion required to ensure renormalizability in maximally Abelian gauge

[7, 8℄ or generalized 
onstru
tions of Lagrangians allowing additional terms as in ghost-antighost symmetri
 gauges

[9, 10℄. A 
onvenient way to derive DSEs also simpli�es the 
omparison of di�erent gauges required to obtain a more

gauge independent pi
ture of the basi
 underlying me
hanisms. Finally, it is parti
ularly useful in the 
ontext of an

IR analysis where the IR s
aling, whi
h is important for long-range properties like 
on�nement, 
an be abstra
ted

from mere power 
ounting.

The aim of this paper is to present su
h an algorithmi
 derivation of Dyson-S
hwinger equations. A similar aim

has been extensively followed in perturbation theory where it resulted in the basi
ally automati
 
omputation of

numerous physi
al pro
esses to a given order, 
f. e.g. [11, 12, 13, 14, 15℄. Here we partially extend this idea to

the non-perturbative regime were su
h an automati
 solution of the 
reated equations is surely beyond our s
ope.

Instead we present an algorithm for the derivation of the equations that is suited for implementation into a symboli


programming language. This algorithm is presented below in Se
. II and is implemented in the Mathemati
a pa
kage

DoDSE, whi
h stands for Derivation of Dyson-S
hwinger Equations. An example of how to use the algorithm is

provided in Se
. III. Details on the DoDSE pa
kage are presented in Se
. IV. Whereas a dire
t algebrai
 derivation


an be quite a tedious task, with the symboli
 and graphi
al notations employed, one 
an obtain DSEs for general

a
tions with a relatively high number of intera
tions. Moreover, the presented algorithm operates dire
tly on the

level of the e�e
tive a
tion and 
ir
umvents the tedious step to de
ompose 
onne
ted into proper verti
es ne
essary

in a derivation on the level of the generating fun
tional of full Green fun
tions. We implemented this algorithm

up to the diagrammati
 level into DoDSE. From the intera
tions of the theory, given in symboli
 form, the 
ode

derives DSEs to the desired order. The out
ome are symboli
 representations of the Feynman diagrams en
oding

their topologi
al stru
ture and their symmetry fa
tors. The last step, whi
h has to be done manually, to get the

full algebrai
 form of the DSEs is the repla
ement of the symboli
 form by the expli
it integral expression involving

proper and bare 
orrelation fun
tions. For some appli
ations of DSEs it is not even ne
essary to pro
ess the symboli


equations even further sin
e they 
an be used dire
tly, as is e.g. the 
ase for s
aling analyses. Finally, we note that

the presented algorithm is in prin
iple also appli
able for the generation of a perturbative expansion by re-inserting

the Dyson-S
hwinger equations for dressed verti
es and trun
ating at a given loop order.

II. DERIVING DYSON-SCHWINGER EQUATIONS IN SYMBOLIC NOTATION

The algorithm presented here involves several abstra
tions. The �rst is the use of a symboli
 notation that enables

us to keep expressions relatively short. Writing out the equations in full detail, i.e. Lorentz and internal group indi
es

as well as all 
oordinates in position spa
e or momenta, leads to expressions that 
an easily hide the underlying

basi
 stru
ture. Se
ondly, we employ a super-�eld formalism that in
ludes all irredu
ible �elds of the theory into a

single redu
ible multiplet. Finally, we exploit the fa
t that a lo
al a
tion 
an be expanded in the �elds. Thereby the

expansion 
oe�
ients, that 
an be operators in 
oordinate as well as internal spa
e, 
an be left unspe
i�ed during

the derivation and only have to be inserted in the end to obtain algebrai
 expressions for the graphi
al equations.

Thereby, the main steps 
an be done using diagrammati
 repla
ement rules. All the te
hniques used in the following

are not new, but 
ombined they provide a powerful way of deriving DSEs 
onveniently and fast. As an expli
it

example we demonstrate the pro
edure for the two inequivalent DSEs of the ghost-gluon vertex in Landau gauge

Yang-Mills theory in Se
. III. Before we explain the a
tual algorithm in Subse
tion II B we make a short summary

of used identities and employed 
onventions.
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A. Basi
 Identities and Conventions

The basi
 obje
t we will start from is the generating fun
tional of one-parti
le irredu
ible (1PI) Green fun
tions.

In the following we do not spe
ify any parti
ular �elds but will rather use a more 
ompa
t notation with a super-

�eld denoted by φi. It represents a redu
ible multiplet 
ontaining all irredu
ible representations present in the

a
tion. We also introdu
e 
orresponding sour
es Ji. The multi-index i in
ludes the label of the parti
ular irredu
ible
representation, its internal indi
es and also the spa
e-time dependen
e of the �eld. For example in Landau gauge

QCD φi is the set of the gluon, ghost and quark �elds: {Aaµ(x), c
a(x), c̄a(x), qi(x), q̄i(x)}. Where appropriate the

Einstein 
onvention for summation is understood and amended by integration.

The e�e
tive a
tion is given by

Γ[Φ] = −W [J ] + ΦiJi , (1)

where W [J ] is the generating fun
tional of 
onne
ted Green fun
tions related to the fun
tional path integral by

Z[J ] =

∫

D[φ]e−S+φjJj = eW [J]
(2)

with S being the gauge-�xed a
tion. The e�e
tive a
tion Γ[Φ] depends on the averaged �elds Φ in the presen
e of

external 
urrents J ,

Φi ≡ 〈φi〉J =
δW

δJi
= Z[J ]−1

∫

D[φ]φie
−S+φjJj . (3)

For Grassmann variables terms like φjJj in
lude the �elds and sour
es in the usual order

1

, i.e. for example in Landau

gauge QCD we have φjJj =
∫

dx(Aaµ(x)j
a
µ(x) + σ̄a(x)ca(x) + c̄a(x)σa(x) + η̄i(x)qi(x) + q̄i(x)ηi(x)).

For non-vanishing external sour
es (denoted by the index J) the propagator of the multiplet φ is

∆J
ij ≡

δ2W

δJiδJj
=

(

δ2Γ

δΦiδΦj

)−1

(4)

but for vanishing external sour
es only some elements remain. For instan
e in Landau gauge QCD these would be a

diagonal element for the gluon and o�-diagonal elements for ghosts and quarks, but also mixed propagators 
an arise

if allowed by the a
tion. For the derivation of DSEs it is important to keep the general expressions and only at the

end the external sour
es 
an be set to zero. Otherwise one would miss 
ontributions.

Higher 1PI verti
es are de�ned as derivatives of the e�e
tive a
tion:

ΓJi1···in ≡ −
δΓ

δΦi1 · · · δΦin
. (5)

In the following we will need the derivatives of �elds, propagators and verti
es with respe
t to �elds. These are given

by

δ

δΦi
Φj = δij , (6a)

δ

δΦi
∆J
jk =

δ

δΦi

(

δ2Γ

δΦjδΦk

)−1

= −

(

δ2Γ

δΦjδΦm

)−1 (
δ3Γ

δΦmδΦiδΦn

)(

δ2Γ

δΦnδΦk

)−1

= ∆J
jmΓJmin∆

J
nk , (6b)

δ

δΦi
ΓJj1···jn = −

δΓ

δΦiδΦj1 · · · δΦjn
= ΓJij1···jn (6
)

and are represented graphi
ally in Fig. 1.

The physi
al 
orrelation fun
tions are obtained from the above expressions when evaluated at the va
uum expe
-

1

Another possibility would be the use of a metri
 as for example used in ref. [16℄.
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δ
δ φi

=
i

δ
δ φi

=

i

δ
δ φi

=

i

FIG. 1: Diagrammati
 rules for di�erentiating an external �eld, a propagator or a vertex. The 
ir
le with the 
ross denotes an

external �eld, small blobs denote dressed propagators, and big blobs 1PI verti
es. The double line represents the super-�eld φ.

tation values of the �elds, 
orresponding to vanishing external 
urrents,

∆ij ≡ 〈φiφj〉 =

(

δ2Γ

δΦiδΦj

)−1
∣

∣

∣

∣

∣

Φ=Φ0

= ∆J
ij

∣

∣

Φ=Φ0 ,

Γi1···in ≡ 〈φi1 · · ·φin〉1PI = −
δΓ

δΦi1 · · · δΦin

∣

∣

∣

∣

Φ=Φ0

= ΓJi1···in
∣

∣

Φ=Φ0 ,

where the verti
es involve only proper, i.e. 1PI, diagrams. By 
onstru
tion the arising generating equations always

involve one bare vertex fun
tion

Si1···in ≡ 〈φi1 · · ·φin〉
0
1PI = −

δS

δφi1 · · · δφin

∣

∣

∣

∣

Φ=Φ0

, Φ0
i ≡

δW

δJi

∣

∣

∣

∣

J=0

. (7)

We 
omment on the in
lusion of fermions in Subse
. II C.

B. Algorithm

The fun
tional DSEs [17, 18, 19℄ are obtained by the invarian
e of the path integral with respe
t to variations of

the integration variable φ 2

:

δ

δφi
Z[J ] =

∫

D[φ]

(

−
δS

δφi
+ Ji

)

e−S+φjJj =

=



−
δS

δφ′i

∣

∣

∣

∣

∣

φ′

i=δ/δJi

+ Ji



Z[J ] = 0. (8)

Substituting Z[J ] by eW [J]
and using

e−W [J]

(

δ

δJi

)

eW [J] =
δW [J ]

δJi
+

δ

δJi
(9)

after multipli
ation of eq. (8) from the left with e−W [J]
we �nd

−
δS

δφi

∣

∣

∣

∣

∣

φi=
δW [J]
δJi

+ δ
δJi

+ Ji = 0. (10)

This is the fun
tional DSE for 
onne
ted 
orrelation fun
tions. To get the 
orresponding version for 1PI fun
tions we

perform the Legendre transformation of W with respe
t to all sour
es. Thereby δW [J ]/δJi 
hanges to Φi and δ/δJi
be
omes

δ

δJi
=
δΦj
δJi

δ

δΦj
=

δ

δJi

δW

δJj

δ

δΦj
=

δ2W

δJiδJj

δ

δΦj
= ∆J

ij

δ

δΦj
. (11)

2

For a di�erent approa
h using equal time 
ommutation relations and Heisenberg's equation of motion see ref. [20℄.
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δ Γ =
δ φi

-1/2 -1/2 -1/3! -1/2 -1/3!

FIG. 2: The fun
tional DSE for 1PI fun
tions. Crosses in 
ir
les denote external �elds. All internal propagators are 1PI and

the big blob denotes a 1PI vertex fun
tion.

This yields

−
δS

δφi

∣

∣

∣

∣

∣

φi=Φi+∆J
ij δ/δΦj

+
∂Γ

∂Φi
= 0. (12)

We stress again that here the summation over the index j in
ludes summation over di�erent �elds. To simplify the

pro
ess of di�erentiating the a
tion we expand it in the �elds

3

. To stay as general as possible we again use the

super-�eld φ

S[φ] =
1

2!
Srsφrφs −

1

3!
Srstφrφsφt −

1

4!
Srstuφrφsφtφu. (13)

but for expli
it 
al
ulations one 
an alternatively use an expansion in the �elds of the a
tion at this point. The Si...
are the expansion 
oe�
ients and 
orrespond to bare quantities (or the inverse ones in 
ase of the propagators) of

whi
h for an expli
it a
tion usually several vanish. Their signs have been 
hosen in a

ordan
e with eq. (7). For the

propagators as well as for all derivative intera
tions these are operators in 
oordinate spa
e and may have a non-trivial

stru
ture in the internal spa
e as well. We now di�erentiate on
e with respe
t to a �eld φi,

δS

δφi
= Sisφs −

1

2!
Sistφsφt −

1

3!
Sirstφsφtφu, (14)

and repla
e the �eld operators a

ording to eq. (12) by

φi → Φi +∆J
ij

δ

δΦj
. (15)

Performing the derivatives and employing eq. (6) we get the general generating DSE for 1PI Green fun
tions, depi
ted

in Fig. 2:

δΓ

δΦi
=SisΦs −

1

2
Sist(ΦsΦt +∆J

st)+

−
1

3!
Sistu(ΦsΦtΦu + 3Φs∆

J
tu +∆J

sv∆
J
tw∆

J
uxΓ

J
vwx). (16)

from whi
h the DSEs of arbitrary Greens fun
tions 
an be obtained. This equation 
an be de
omposed into generating

equations for the individual irredu
ible �elds whi
h by 
onstru
tion always involve one bare vertex fun
tion. If we had


al
ulated these equations by dire
t di�erentiation of the a
tion as given in eq. (12), it would have been a tedious task

to get the bare verti
es and propagators in the �nal expression. In parti
ular, in this 
ase derivatives on δ-fun
tions
o

ur that have to be properly resolved by partial integration. This is the advantage the formal expansion in �elds

entails. In this formalism everything is hidden in a single index of the �elds and the details of the bare verti
es only

have to be spe
i�ed in the end in order to obtain algebrai
 expressions for the DSEs. We have 
he
ked by an expli
it


omputation in the 
ase of non-Abelian gauge theory that both ways to 
ompute eq. (16) indeed reprodu
e the same

3

We restri
t ourselves here to quarti
 intera
tions sin
e they are renormalizable in four dimensions, but there is no restri
tion on the

order of the intera
tions, like e.g. �ve-point verti
es, in the DoDSE pa
kage.
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-1

=

-1

-1/2 -1/2 -1/2 -1/3! -1/2 - -1/2

FIG. 3: The DSE for a generi
 two-point fun
tion.

result.

The 
orresponding DSEs for arbitrary 
orrelation fun
tions are obtained by further fun
tional derivatives of the

generating equation eq. (16) whi
h are 
omputed via eqs. (6). From now on we 
an pro
eed by use of the diagrammati


rules given in Fig. 1, where all internal lines denote dressed propagators. Here, a major advantage of the diagrammati


rules is that one does not have to take 
are of indi
es. We would like to stress again that the appearing super-

propagators have o�-diagonal 
omponents 
orresponding to mixing of the irredu
ible �elds. These mixed propagators

are important in the derivation pro
ess, although they seem like an arti�
ial 
ompli
ation. In "simple" 
ases as for

example the three-gluon vertex DSE in Landau gauge the result would not 
hange if we kept only "real" propagators.

However, for the ghost-gluon vertex (see Subse
. III for details), for higher vertex fun
tions and in 
ertain gauges

already for the propagators, some 
ontributions would be missing.

The DSE for a generi
 two-point fun
tion is derived by performing another di�erentiation of the generating DSE

eq. (16) using the diagrammati
 repla
ement rules of Fig. 1 in the 
orresponding diagrammati
 representation Fig.

2 in all possible ways. The result is shown in Fig. 3. Pro
eeding to higher vertex fun
tions the number of diagrams

in
reases rapidly: For three-point verti
es there are 15 generi
 diagrams and for four-point fun
tions 60. For real

appli
ations it is therefore re
ommendable to exploit possible simpli�
ations. First, the �nal number and form of

graphs depend on the �rst di�erentiation in eq. (16) as the 
orresponding �eld determines whi
h bare verti
es appear

in the diagrams. For example the DSE of the ghost-gluon vertex in Landau gauge QCD has only four terms, when

the �rst derivative is performed with respe
t to a ghost �eld. In this 
ase one 
an drop all diagrams with bare gluoni


verti
es. On the other hand, if one starts with the gluon �eld, all verti
es have to be kept and one ends up with twelve

graphs. Se
ondly, one 
an skip some diagrams taking into a

ount where one is going. Simple examples are that for

a three-point fun
tion we do not have to drag along the bare four-point vertex or diagrams with an external �eld 
an

be dropped if no further derivatives with respe
t to this parti
ular �eld follow.

C. In
lusion of Grassmann Fields

Anti
ommuting �elds need slightly more 
are when performing derivatives to get the 
orre
t signs. In this subse
tion

we denote Grassmann �elds by ψ and ψ̄ with sour
es η̄ and η, respe
tively. Let us �rst spe
ify our 
onvention for the

derivatives with respe
t to Grassmann quantities. We 
hoose left- and right-derivatives:

δ

δψ
:=

←

δ

δψ
,

δ

δψ̄
:=

→

δ

δψ̄
. (17)

This entails that the proper de�nition of a Grassmann �eld propagator is

∆ψ̄ψ
ij =

δ2W

δη̄iδηj
=

(

δ2Γ

δψ̄iδψj

)−1

. (18)

In general derivatives always have to be ordered su
h that derivatives with respe
t to Grassmann �elds are right of

those with respe
t to anti-Grassmann �elds. A quarti
 Grassmann intera
tion then has the form

Γijkl = −
∂Γ

∂ψ̄i∂ψ̄j∂ψk∂ψl

∣

∣

∣

ψ̄=ψ=0
. (19)

For easier readability and also in 
orresponden
e with DoDSE the indi
es of the Γ do not re�e
t the order of how the

derivatives are performed, but rather have the order in whi
h the derivatives appear, i.e. that the di�erentiation with

respe
t to ψ̄j has to be performed before that with respe
t to ψ̄i, but ψk 
omes before ψl.
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When using the algorithm des
ribed above derivatives always a
t from the 
orresponding dire
tion. Eqs. (6) have

to be amended by

δ

δψ̄i
∆J
jk = ∆J

jmΓJ,ψ̄ΦΦ
imn ∆J

nk, (20a)

δ

δψi
∆J
jk = ∆J

jmΓJ,ΦΦψ
mni ∆J

nk, (20b)

δ

δψ̄i
ΓJj1···jn = ΓJij1···jn , (20
)

δ

δψi
ΓJj1···jn = ΓJj1···jni, (20d)

where here the supers
ript J denotes the dependen
e on all sour
es and the additional supers
ripts of the ΓJ denote

the �elds 
orresponding to the indi
es. This means in turn that at the end, when the external sour
es are set to zero

and the redu
ible multiplet is de
omposed into the irredu
ible, physi
al �elds, some Grassmann derivatives 
an be

unordered. Ordering them gives the signs expe
ted normally for Feynman diagrams with fermion loops. However,

in some 
ases this algorithm is oversimpli�ed when several super-�elds are involved. Using diagrammati
 rules this

problem 
an be 
ir
umvented and the minus signs for 
losed fermion loops have to be added manually at the end.

Sin
e DoDSE needs spe
i�
 rules how to perform the derivatives, it may happen that the wrong sign appears for

two-loop graphs.

A simple example for the 
hange of sign is the quark respe
tively ghost loop in the gluon DSE of Landau gauge

where ψ = {q, c} . Repla
ing ψ̄r by ψ̄r +∆J,ψψ̄
rt

δ
δψt

in the 
orresponding part of the �rst derivative of the a
tion with

respe
t to Ai,

−SAψ̄ψirs ψ̄rψs → −SAψ̄ψirs

(

ψ̄rψs +∆J,ψψ̄
rs

)

, (21)

and di�erentiating on
e more with respe
t to Aj yields

δ2Γ

δAiδAj
= −SAψ̄ψirs ∆ψψ̄

rr′∆
ψψ̄
s′s

δΓ

δAiδψr′δψ̄s′
+ gluoni
 terms (22)

Ordering the derivatives 
hanges the sign of the expression and leads to the expe
ted relative minus sign of 
losed

fermion loops.

Finally we should 
omment on the expansion of the a
tion when Grassmann �elds are involved. First, we re
ommend

to order Grassmann intera
tions su
h that all anti-Grassmann �elds are left of the Grassmann �elds. Se
ond, the

expansion 
oe�
ients are antisymmetri
 in the indi
es belonging to Grassmann �elds. This entails that we 
an

di�erentiate with respe
t to Grassmann �elds as usual, e.g.

δ

δψ̄i
Sψ̄ψ̄ψψrstu ψ̄rψ̄sψtψu = Sψ̄ψ̄ψψistu ψ̄sψtψu − Sψ̄ψ̄ψψritu ψ̄rψtψu = Sψ̄ψ̄ψψistu ψ̄sψtψu + Sψ̄ψ̄ψψirtu ψ̄rψtψu = 2Sψ̄ψ̄ψψistu ψ̄sψtψu. (23)

III. AN EXAMPLE: THE GHOST-GLUON VERTEX IN LANDAU GAUGE YANG-MILLS THEORY

For the derivation of the ghost-gluon vertex in Landau gauge [21℄ we start with Fig. 3. As mentioned above,

there are two DSEs for this vertex. These arise sin
e the DSEs are derived from the invarian
e of the initial path

integral under 
hanges of the �elds. The invarian
e for the individual �elds in the theory yields di�erent generating

equations from eq. (16) that 
an by appropriate fun
tional di�erentiation generate topologi
ally distin
t DSEs

for the same mixed 
orrelation fun
tion. Without approximations these equations should provide identi
al results

but they may be a�e
ted di�erently by trun
ations. Moreover, the dynami
s 
an be represented di�erently in the

various equations as demonstrated for the quark-gluon vertex in [3℄. We start here with the simpler equation for the

ghost-gluon vertex, i. e. we take the derivative in eq. (16) with respe
t to the ghost �eld. Fig. 3 redu
es in this 
ase to
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-1

=

-1

- -

.

The symmetry fa
tor 1/2 vanished be
ause there were two possibilities to plug the bare ghost-gluon vertex into the

third diagram. This is a ni
e example how the 
omputation simpli�es when the possible intera
tions are redu
ed by

symmetries. In the present 
ase the general diagrammati
 rules spe
ialize to

δ
δ Ai

=

i

δ
δ Ai

=

i

δ
δ Ai

=

i

whi
h leads to the three-point expression

= + + +

.

When we set the external sour
es to zero, the mixed propagators be
ome irredu
ible gluon and ghost propagators. The

pure super-�eld propagator in the se
ond and third terms on the right-hand side yields a sum of di�erent terms, when

de
omposed, but ghost number 
onservation allows here only verti
es with the same number of ghost and anti-ghost

legs. Therefore, for ea
h diagram only one propagator 
an be realized. The �nal result is then the ghost-gluon vertex

DSE:

= + + +

.

We obtain a se
ond distin
t version of the ghost-gluon DSE if we start di�erentiating with respe
t to the gluon

�eld. In this 
ase the super-�eld is important as will be
ome evident below. The gluon is involved in all possible

intera
tions of Landau gauge Yang-Mills theory, so Fig. 3 is not topologi
ally simpli�ed in this 
ase. For brevity we

skip diagrams that do not 
ontribute to the ghost-gluon vertex (the tadpole and all in
ompatible tree graphs as well

as the graph with the bare four-gluon vertex 
onne
ted to an external �eld). The fa
tor in front of the loop 
ontaining

ghost-�elds is 
hanged from 1/2 to 1, be
ause there are two possibilities to insert the bare ghost-gluon vertex as we

have to 
onsider the dire
tion of fermion lines expli
itly. The diagrams left are

-1

= - -1/2 - -1/2 -1/3!

.
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Di�erentiation with respe
t to the anti-ghost �eld yields

= + + ++ +1/2 +

+1/2 +1/2 +1/2 +1/3!+1/2 +1/2

.

Again propagators partly involving the super-�eld are determined by the se
ond �eld and pure super-�eld propagators

by the symmetries of the verti
es. Finally the se
ond version of the ghost-gluon vertex DSE is obtained by setting

the external sour
es to zero:

= + -+ +1/2 +

+1/2 +1/2 +1/2 +1/3!+1/2 +1/2

.

The derivation of the DSEs for the gluoni
 
orrelation fun
tions 
an be done in a similar way. However, sin
e the

super-�eld 
annot lead to internal ghost loops one 
an 
ir
umvent the super-�eld formalism and pro
eed with pure

ghost and gluon propagators from the level of two-point fun
tions on. For mixed Green fun
tions this would omit

some diagrams as was expli
itly shown for the ghost-gluon vertex, where all diagrams with internal ghost lines - ex
ept

the pure ghost loop (the �fth diagram on the right-hand side) - and the triangle diagrams would be missing.

IV. DERIVATION OF DYSON-SCHWINGER EQUATIONS USING MATHEMATICA

As should have be
ome 
lear the manual appli
ation of the algorithm be
omes rather tedious for more 
ompli
ated

Green fun
tions. The algorithm explained in the Se
. II is perfe
tly suitable for an implementation into a symboli


programming language like Mathemati
a [22℄. The fun
tionality of the pa
kage DoDSE is that the user enters the

intera
tions of the theory and then all desired DSEs are automati
ally generated from it. In spe
ial 
ases it may in

addition be ne
essary to provide further information about symmetries of verti
es. Together with the pa
kage there

is also a notebook (examples.nb) available that 
ontains the model used below as well as other examples like Landau

gauge QCD.
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A. Te
hni
al Notes

To load the pa
kage �le DoDSE.m, one either 
opies it to the subdire
tory DoDSE of $UserAddOnsDire
tory

4

and evaluates << DoDSE`DoDSE` (whi
h would be the standard way of installation) or uses the Get 
ommand to

load it from any other pla
e: Get[pathToTheFile℄. DoDSE was developed under Mathemati
a 6 and will not work

with Mathemati
a 5.2 or lower sin
e some fun
tions new to Mathemati
a 6 are used. There exists no dedi
ated

do
umentation within Mathemati
a's Do
umentation Center, but help on single 
ommands is available using the


ommand ?, e.g. ?DSEPlot.

B. Using DoDSE

For the derivation of DSEs via the DoDSE pa
kage it is usually only ne
essary to spe
ify the intera
tions of the

given theory. This is done by a list whose elements are given by the individual propagators and verti
es in the bare

Lagrangian of the theory. These are in turn represented by lists 
ontaining the external �elds of the 
orresponding


orrelation fun
tions. With this information the fun
tion doDSE 
an now derive any DSE. The output 
an be used

dire
tly, put into a more 
onvenient form using short notations for propagators and verti
es or plotted with DSEPlot.

The 
omplete 
al
ulation takes se
onds, maybe minutes for vertex fun
tions with more than four legs. As the pa
kage

is written for Mathemati
a we have a wide range of tools available for pro
essing the results further, for instan
e the

uniform IR s
aling exponent of a graph (
f. e.g. [23, 24℄) 
an be derived dire
tly from the output of DoDSE.

In order to demonstrate the method to derive DSEs let us 
onsider an example model. Its a
tion 
onsists of four

�elds, two of them bosoni
 (A, B) and two fermioni
 (c, d):

L =
1

2
SAAij AiAj +

1

2
SBBij BiBj + S c̄cij c̄icj + Sd̄dij d̄idj+

− SAc̄cijk Aic̄jck −
1

2
SAABijk AiAjBk −

1

4
SAABBijkl AiAjBkBl −

1

4!
SAAAAijkl AiAjAkAl − S c̄d̄dcijkl c̄id̄jdkcl. (24)

We wrote the quarti
 Grassmann intera
tion su
h that no additional minus sign o

urs when di�erentiating with

respe
t to c and c̄ or d and d̄. The intera
tions of this a
tion are entered in the form

ilist = {{A,A}, {B,B}, {
b,
}, {db,d}, {A,
b,
}, {A,A,B}, {A,A,B,B}, {A,A,A,A}, {
b,db,d,
}};

With this representation of the theory, we 
an start deriving the propagator DSEs using the fun
tion doDSE whi
h

generates the non-trivial right hand side of the DSE for the 
orresponding 
orrelation fun
tion. As arguments it takes

the list of intera
tions ilist, and a list of the �elds with their respe
tive indi
es in
luded in the 
orrelator for whi
h

we want to derive the DSE. In general, the order of the elements in the list of the 
orrelation fun
tion for whi
h the

DSE is derived determines the order in whi
h the individual fun
tional derivatives are taken. When di�erent �elds

are involved this 
an result in distin
t DSEs, as was the 
ase for the ghost-gluon vertex dis
ussed in the last se
tion.

The 
orresponding 
ommands for the propagators read:

AADSE = doDSE[ilist, {A, A}℄;

BBDSE = doDSE[ilist, {B, B}℄;



DSE = doDSE[ilist, {{
, i}, {
b, j}}℄;

ddDSE = doDSE[ilist, {{d, i}, {db, j}}℄;

It is not ne
essary to give the indi
es of the �elds, but it 
an be done as shown above for the two fermion DSEs.

Alternatively one 
an derive several DSEs by passing a list to doDSE, i.e. the following line derives one DSE for all

primitively divergent vertex fun
tions:

DSEs = doDSE[ilist, ilist℄;

We 
an bring the rather long output into a more readable form with shortExpression:

shortExpression[AADSE℄

or equivalently

4

Under Unix systems this is normally ~/.Mathemati
a/Appli
ations
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sE[AADSE℄

SA A

i j

−
1

2

(

SA A A A

i j r1 s1

∆A A

r1 s1

)

−
1

2

(

SA A B B

i j r1 s1

∆B B

r1 s1

)

− SA A B

i r1 s1

ΓA A B

j t1 u1

∆A A

r1 t1

∆B B

s1 u1

+ SA 
b 


i r1 s1

ΓA 
b 


j t1 u1

∆
 
b

s1 t1

∆
 
b

u1 r1

−
1

6

(

SA A A A

i r1 r2 s1

ΓA A A A

j s2 t2 u2

∆A A

r1 s2

∆A A

r2 t2

∆A A

s1 u2

)

−
1

2

(

SA A B B

i r1 r2 s1

ΓA A B B

j s2 t2 u2

∆A A

r1 s2

∆B B

r2 t2

∆B B

s1 u2

)

− SA A B B

i r1 r2 s1

ΓA B A

j u2 v1

ΓA A B

s2 t2 u1

∆A A

r1 s2

∆B B

r2 u2

∆B B

s1 u1

∆A A

t2 v1

− SA A B B

i r1 r2 s1

ΓA B B

j u2 v1

ΓA B B

s2 t2 u1

∆A A

r1 s2

∆B B

r2 u2

∆B B

s1 u1

∆B B

t2 v1

−
1

2

(

SA A A A

i r1 r2 s1

ΓA A A

j s2 t1

ΓA A A

u1 v2 w1

∆A A

r1 s2

∆A A

r2 v2

∆A A

s1 w1

∆A A

u1 t1

)

−
1

2

(

SA A B B

i r1 r2 s1

ΓA A A

j s2 t1

ΓA B B

u1 v2 w1

∆A A

r1 s2

∆B B

r2 v2

∆B B

s1 w1

∆A A

u1 t1

)

−
1

2

(

SA A A A

i r1 r2 s1

ΓA A B

j s2 t1

ΓB A A

u1 v2 w1

∆A A

r1 s2

∆A A

r2 v2

∆A A

s1 w1

∆B B

u1 t1

)

−
1

2

(

SA A B B

i r1 r2 s1

ΓA A B

j s2 t1

ΓB B B

u1 v2 w1

∆A A

r1 s2

∆B B

r2 v2

∆B B

s1 w1

∆B B

u1 t1

)

(25)

shortExpression uses the Mathemati
a fun
tion Style and a

epts its 
orresponding options, e. g. 
olors

or FontSize. The symbols used for propagators and verti
es are set with the variables $bareVertexSymbol,

$vertexSymbol and $propagatorSymbol. The standard settings are S, Γ and ∆. The subs
ripts of these expressions

are the indi
es, whereas the 
orresponding �elds 
an be found in the supers
ript. Alternatively one 
an plot the DSEs

with DSEPlot. To improve the representation it is advantageous to de�ne a few graphi
s primitives for ea
h �eld in

a list of the form {{field1, primitives1}, {field2, primitives2}, ...}:

fieldRules = {{A, Red}, {B, Green, Dashed}, {
, Blue, Dotted},

{d, Orange, Dashing[{0.02, 0.01}℄}};

These primitives 
an be used in DSEPlot:

DSEPlot[AADSE, ilist, fieldRules℄

Sin
e DSEPlot uses the Mathemati
a fun
tion GraphPlot it inherits its 
orresponding options whi
h are unfortunately

quite limited. For example GraphPlot may show the external points at di�erent pla
es for di�erent graphs. It is

possible to provide spe
i�
 
oordinates for the external points, but then some graphs may appear with overlapping

internal lines. For many internal lines it 
an also happen that GraphPlot draws lines above ea
h other. For this

reason DSEPlot should be 
onsidered more a tool for showing the results of DoDSE than a means of 
reating ni
e

Feynman diagrams. However, the latter is also possible to a limited extend using the available options. In the

generated diagrams all propagators are dressed. 1PI verti
es are denoted by a large blob, whereas bare verti
es are

drawn without a blob. Fermioni
 �elds have an arrow denoting their dire
tion. One 
an invoke DSEPlot also without

the additional graphi
s primitives:

DSEPlot[AADSE, ilist℄

As a result text labels are atta
hed to the individual propagators denoting their type.

Alternatively one 
an get a list of all graphs by setting the option output to List. Other options are indexStyle

and fa
torStyle, whi
h determine the styles of the indi
es and prefa
tors.
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C. Implementation

In the following we will des
ribe the individual operation steps of the fun
tion doDSE for the interested reader

who wants to do a step-by-step 
al
ulation for example to 
he
k own 
al
ulations. Furthermore using the individual

routines one has several additional possibilities on whi
h we 
omment below. We also explain the representation of

integrals in DoDSE.

The fun
tion doDSE performs the following operations:

1. It 
onverts the list of intera
tions to the internal representation of the a
tion with generateA
tion. Alternatively

one 
an dire
tly give su
h an expression as argument to doDSE.

2. The �rst derivative is performed dire
tly on the a
tion using deriv, see eq. (12).

3. Then the repla
ement a

ording to eq. (15) is done with repla
ementCal
.

4. At this point some graphs may appear several times. identifyGraph adds them up to avoid redundant 
al
u-

lations and get the symmetry fa
tors right.

5. The ne
essary number of further derivatives 
an be worked out with deriv.

6. The external sour
es are set to zero using setSour
esZero.

7. For Grassmann �elds it may be ne
essary to order the derivatives with orderFermions su
h that anti-�elds are

left from �elds thereby possibly 
hanging the sign.

8. Due to our de�nition of the vertex fun
tions the left hand side 
ontains a minus sign so that the �nal expression

is multiplied by −1 for all vertex DSEs.

In the pa
kage several obje
ts are introdu
ed for representing Feynman diagrams. The smallest units are �elds

and indi
es. Typi
ally they are 
ombined in a list like {A,i}, where A is a �eld and i its index. They 
an stand for

external �elds or internal ones. These lists 
an be grouped to form propagators and verti
es, denoted by P and V

(1PI) or S (bare). Finally external �elds, propagators and verti
es are 
ombined in an obje
t 
alled op, the biggest

obje
t, whi
h represents individual diagrams. In it indi
es o

urring twi
e are summed and integrated over. Note

that a �eld is external if it is an argument of op, while �elds in verti
es represent their legs. An example for a graph


ontaining a propagator and an external �eld {A,j} is

op[S[{A,i},{A,j},{A,k},{A,l}℄, P[{A,k},{A,l}℄, {A,j}℄.

The index i only appears on
e and is therefore an external leg. The op-fun
tion is the main obje
t used internally for

the 
omputations and is also returned in the output of doDSE. It 
an be used like one would expe
t from something

representing a graph, for instan
e one 
an sum up several of them or it vanishes if one of its arguments is zero.

Furthermore it splits up if one argument is a sum. For Grassmann �elds there is a pe
uliarity in the notation: To make

it as easy as possible to read op-expressions, when two indi
es appear that are summed over also the 
orresponding

�elds are written identi
al, although in the notation above there should be the anti-�eld in the propagator for

Grassmann �elds. This means that the standard Grassmann propagator is de�ned as

P[{
,i}, {
b,j}℄,

where 
 is a Grassmann �eld and 
b the 
orresponding anti-�eld. Verti
es are de�ned as expe
ted, i.e. anti-�eld

derivatives are left from �eld derivatives. As inverse bare propagators are denoted by S, the fun
tion of bare verti
es,

they have the 
onvention of verti
es in 
ontrast to dressed propagators.

D. Advan
ed Options

In some 
ases the features of DoDSE des
ribed so far are not su�
ient. For instan
e the o

urren
e of mixed

propagators or symmetries not apparent in the generi
 expansion of the �elds pose more intri
ate problems. This

happens for example in the maximal Abelian gauge, where three-point fun
tions involving three diagonal gluons are

not allowed due to the 
olor algebra but by default they are 
onstru
ted by DoDSE, whi
h does not know about the


olor stru
ture. These verti
es have to be removed by appropriate restri
tions.
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To understand the ne
essity of vertex test fun
tions and expli
it de�nition of propagators as explained below, it

may be helpful to know about the use of the super-�eld in DoDSE. During the derivation of a DSE the super-�eld

5


an o

ur in two pla
es: verti
es and propagators. For the latter a list of rules of possible repla
ements is needed.

Without further input DoDSE uses only those propagators that appear in the Lagrangian. With these rules the �elds

in the propagators and verti
es are repla
ed. However, as some of the verti
es are forbidden by the symmetries of the

a
tion, further tests, 
alled vertex test fun
tions, are needed to assess if a vertex 
an exist in the theory.

In general DoDSE performs two standard tests. The �rst 
he
ks for number 
onservation of individual Grassmann

�eld spe
ies. It 
an be disabled with the option doGrassmannTest->False for example to allow mixing. The se
ond

one makes sure that bosons with a dis
rete symmetry φ↔ −φ in the Lagrangian only appear in verti
es that respe
t

that symmetry. These standard tests 
an be amended by user-de�ned test fun
tions, whi
h take a vertex as argument

and give True or False. To employ su
h fun
tions they are given as argument to doDSE (or setSour
esZero). Vertex

test fun
tions allow also to trun
ate the system of DSEs, e.g. by forbidding verti
es with a 
ertain number of legs. We

demonstrate this with a trun
ation of the AA DSE from above by de�ning a test fun
tion that only allows three-point

verti
es:

vertexTest[a_V℄ := Length�a==3

Called with this restri
tion

AADSETrun
ated = doDSE [ilist, {A, A}, vertexTest℄;

the number of diagrams redu
es from 13 to 11, be
ause the two sunset diagrams vanished.

In the 
ase of mixed propagators in the Lagrangian it is ne
essary to provide the additional option

spe
ifi
FieldDefinitions to doDSE, e.g.

AADSEMixedL = doDSE[{{A, A}, {A, B}, {B, B}, {
b, 
}, {A, 
b, 
}, {A, A, B}, {A, A, A}},

{A, A}, spe
ifi
FieldDefinitions->{A, B, {
, 
b}}℄;

If this option was not given, doDSEwould assume that A and B are fermion and anti-fermion. The list {A, B, {
, 
b}}

tells doDSE that A and B are bosons, 
 is a fermion and 
b the 
orresponding anti-fermion.

If the theory allows mixed propagators not present in the Lagrangian, one has to provide a list of all possible

propagators to doDSE, e.g.

AADSEmixed = doDSE[ilist, {A, A}, {{A,A}, {A,B}, {B,B}, {
,
b}, {d,db}}℄;

where we allowed a propagator between the A and B �eld. The number of terms in the generated DSEs in
reases


orrespondingly. The presen
e of mixed propagators has also a drawba
k: The �nal result may 
ontain some terms

several times. To add them up one employs the fun
tion identifyGraphs with an additional option:

AADSEMixedLId = identifyGraphs[AADSEMixedL, 
ompareFun
tion -> 
ompareGraphs2℄;

Sin
e 
ompareGraphs2 
an take quite long, doDSE normally uses 
ompareGraphs, whi
h is not adequate for the

situation with mixed propagators. The number of terms redu
es as 
an be 
he
ked with


ountTerms/�{AADSEMixedL, AADSEMixedLId}

In prin
iple it is possible to derive a DSE step by step instead of using doDSE. Thereby one 
an tra
k every single step

of the 
al
ulation 
orresponding to the algorithm des
ribed above and perform further manipulations, e.g. keeping

some external �elds. We refrain here from an explanation how to do this and refer the interested reader to the

notebook examples.nb, whi
h is available together with the pa
kage. Finally there are a few tools available within

DoDSE that allow to 
he
k the syntax of expressions or to obtain information about the �elds. They are listed in the

appendix.

5

Its standard name is φ, but that 
an be 
hanged by rede�ning the variable $dummyField. As long as one does not do step-by-step


al
ulations it should never appear in output.
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V. SUMMARY

In this arti
le we presented an algorithm to derive Dyson-S
hwinger equations in a 
onvenient way, in whi
h one does

not have to deal with the usual abundan
e of indi
es and integrals. This is a
hieved by graphi
al rules for performing

derivatives that allow a qui
k and straight forward derivation even of higher vertex fun
tions. We used this algorithm

in the Mathemati
a pa
kage DoDSE that 
an give DSEs on
e the intera
tions of the theory are spe
i�ed. It proves

espe
ially useful for theories with many intera
tions or higher vertex fun
tions in general as the number of terms

grows 
onsiderably. This should in parti
ular help to analyze gauge theories in di�erent gauges in order to obtain a

more gauge independent pi
ture of the des
ribed physi
s.
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APPENDIX: TABLES OF FUNCTIONS

In the following we provide lists of all publi
 fun
tions of DoDSE. We give their syntax and a short explanation

what they do. When the pa
kage is loaded one 
an always get help on the 
ommands and their syntax within a

notebook using the 
ommand ?, e.g. ?doDSE.
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Main fun
tions

Command Des
ription

doDSE[ilist, 
list℄ Derives the DSE for the 
orrelation fun
tion 
list for a theory with

intera
tions ilist.

doDSE[ilist, 
list [, props,

vertexTest, opts℄℄

vertexTest is a fun
tion for determining if a vertex respe
ts the

symmetries of the Lagrangian. props is a list of allowed propagators

given in the form {{field1a, field1b}, {field2a, field2b},

...}. doDSE a

epts the options spe
ifi
FieldDefinitions and

sour
esZero (prevents the repla
ement of super-�eld propagators

and verti
es when set to False).

shortExpression[expr, opts℄

sE[expr, opts℄

Rewrites a DoDSE expression into a shorter form using

$bareVertexSymbol, $vertexSymbol and $propagatorSymbol for

representation. Options of Style 
an be given.

DSEPlot[expr,

ilist [,fRules,len,opts℄℄

Plots graphs. expr is an expression 
ontaining op fun
tions, ilist

the list of intera
tions and fRules a list of options for plotting in-

dividual �elds. len determines how many graphs are shown in one

line. If fRules is not given, the lines are named a

ording to the

�elds. Possible options are: output->List, to get the result in list

form, and indexStyle and fa
torStyle to 
hange the style of the

indi
es and the prefa
tors (e.g. font size or 
olor).
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Fun
tions for the individual 
omputation steps

Command Des
ription

generateA
tion[ilist[,flist℄℄ Generates the a
tion in internal representation from the

intera
tions of the theory given in ilist. For mixed

propagators flist spe
i�es expli
itly the type of �elds in

the form {boson1, boson2, ..., {fermion1, antifermion1},

{fermion2, antifermion2}, ...}.

deriv[expr,dlists℄ Di�erentiate expr with respe
t to the �elds in dlists.

repla
eFields[expr℄ Repla
es the �elds in expr by the 
orresponding expressions after

the �rst di�erentiation is done to 
hange from full to 1PI Green

fun
tions.

identifyGraphs[expr[,


ompareGraphs->
fun
℄℄

Adds up equivalent graphs in expr. 
fun
 
an be 
ompareGraphs

(standard) or 
ompareGraphs2, the latter being ne
essary for mixed

propagators but taking longer.

setSour
esZero[expr, flist [, props,

vertexTest℄℄

Sets the external �elds in flist to zero, i.e. only physi
al propaga-

tors and verti
es are left. vertexTest is a fun
tion for determining

if a vertex respe
ts the symmetries of the Lagrangian. props is a

list of allowed propagators given in the form {{field1a, field1b},

{field2a, field2b}, ...}.

orderFermions[expr℄ Orders derivatives with respe
t to Grassmann �elds su
h that the

anti-�elds are left of the �elds thereby possibly giving a minus sign.

expr is an op-fun
tion or a sum of those. Bare verti
es are not

a�e
ted by the ordering.
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Fun
tions for 
he
ks and tools

Command Des
ription


ountTerms[expr℄ Counts the number of terms appearing in the expression.

fieldQ[f℄ Determines if expression f is de�ned as a �eld.

bosonQ[f℄ Determines if expression f is de�ned as a bosoni
 �eld.

fermionQ[f℄ Determines if expression f is de�ned as a fermioni
 �eld.

antiFermionQ[f℄ Determines if expression f is de�ned as an anti-�eld to a fermioni


�eld.


he
kFields[expr℄ Che
ks if all �elds in the expression are de�ned


he
kIndi
es[expr℄ Che
ks if an index appears more often than twi
e.


he
kSyntax[expr℄ Che
ks if expr has the 
orre
t syntax, i.e. op fun
tions only 
ontain

propagators, verti
es and �elds.


he
kA
tion[expr℄ Che
ks if all indi
es appear exa
tly twi
e, the syntax is ok and all

�elds are de�ned.


he
kAll[expr℄ Performs a series of 
he
ks on expr (
he
kIndi
es, 
he
kSyntax,


he
kFields).

defineFields[flist℄ De�nes the �elds of the a
tion that are given in flist as single

entries for bosons and grouped by bra
es for fermions.

$vertexSymbol Symbol representing a vertex in shortExpression. Standard value:

Γ.

$bareVertexSymbol Symbol representing a bare vertex in shortExpression. Standard

value: S.

$PropagatorSymbol Symbol representing a propagator in shortExpression. Standard

value: ∆.
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