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The B-spline Galerkin method is investigated for the simple eigenvalue problem, y′′ = −λ2y.
Special attention is give to boundary conditions. From this analysis, we propose a stable method
for the Dirac equation and evaluate its accuracy by comparing the computed and exact R-matrix
for a wide range of nuclear charges Z and angular quantum numbers κ. No spurious solutions were
found and excellent agreement was obtained for the R-matrix.

The B-spline methods Johnson and Sapirstein [1, 2]
introduced into relativistic many-body perturbation the-
ory have produced results of unprecedented accuracy [3].
Essentially, the local non-orthogonal B-spline basis was
transformed to an orthogonal orbital basis by the ap-
plication of the Galerkin method to the Dirac equation
over a finite interval [4]. The resulting basis was fi-
nite and effectively complete. Though the low-energy
bound states were good approximations to solutions of
the Dirac equation, no physical interpretation was impor-
tant for continuum states. Rapidly oscillating solutions
were observed but played a negligible role in the sum-
mation over states in their applications [2]. However,
these spurious states perturbed the spectrum and slowed
the convergence of quantum electrodynamic (QED) cal-
culations. This led Shabaev et al. [5] to propose a dual
kinetic balance basis similar to the basis Quiney et al. [6]
employed with analytic Slater type functions. Bound-
ary conditions were for the case of a finite nuclear-charge
distribution, with the point nucleus considered as a lim-
iting case. Different boundary conditions at the origin
were proposed for positive and negative values of κ and
both large and small components were set to zero at the
large r boundary. Recently Igarashi [7] investigated a
variety of methods and boundary conditions. He pointed
out that the four boundary conditions used by Froese
Fischer and Parpia [8] were excessive and explored the
use of B-splines of different order, kp and kq, as a way
of avoiding spurious solutions. In a subsequent paper he
concluded that kinetic balance also provided a good basis
[9]. No best method was identified. All his methods em-
ployed analytic weighting factors to B-spline expansions
in order to control the asymptotic properties of large and
small components.

R-matrix methods (see Ref.’s [10, 11] for recent re-
views) differ from the applications considered by the
above authors in that zero boundary conditions at large
r, such as proposed by Shabaev et al. [5], cannot be used.
R-matrix theory assumes an inner region r < a in which
exchange is important and an outer region r > a where
exchange with an outer electron can be neglected. What
is needed is a basis for the inner region that satisfies
certain conditions at the r = a boundary. B-splines

were very successfully employed in the non-relativistic
R-matrix calculations [12], however, they cannot be used
in the Dirac-based calculations when spurious states in
the continuum spectrum are present. At the same time,
the kinetically balanced bases lead to extensive compu-
tational difficultes in many-electron calculations.
Spline methods are based on approximation theory.

The grid that is selected along with boundary condi-
tions determine a piecewise polynomial space with a finite
basis. The unique B-spline basis has many advantages
[12, 13], but there are many possible bases. The trans-
formation from a non-orthogonal basis to an orthogonal
orbital basis depends on how the Galerkin method is ap-
plied. In this letter we propose a simple method for the
Dirac matrix equation and apply it to the calculation of
the R-matrix boundary condition. All calculations are
for a point nucleus so that results can be compared with
exact solutions. Special attention is given to the bound-
ary conditions. We also show the relationship between
kinetic balance and the use of splines of different order.

At large values of r, the non-relativistic Schrödinger
equation has the same form as

y′′(r) = −λ2y(r), y(0) = 0, (1)

for which the solutions are y(r) = c sin(λr). A second
boundary condition at r = a defines the allowed values of
λ. With y(a) = 0, the values of λ are such that λa = nπ
and n an integer. We will denote the computed value of
n as n∗.

With a grid consisting of subintervals of length h and
knots of multiplicity k at r = 0 and r = a, the solution
y(r) =

∑N−1
2 yiBi(r) satisfies y(0) = y(a) = 0, where

N is the size of the basis. The Galerkin requirement
that the residual be orthogonal to each basis element in
the expansion, leads to the generalized matrix eigenvalue
problem

D(02) y = −λ2B y (2)

where D(02)(i, j) = 〈Bi(r)|B
′′

j (r)〉 and B(i, j) =
〈Bi(r)|Bj(r)〉. The superscripts on the the derivative
matrix designate the order of the derivatives acting on
Bi(r) and Bj(r), respectively. The top graph of Fig. 1

http://arxiv.org/abs/0806.3067v1


2

0 10 20 30 40
1e-10

1e-08

1e-06

0.0001

0.01

1
E

rr
or

 in
 n

h=1/2.0
h=1/2.1

0 10 20 30 40
n

1e-10

1e-08

1e-06

0.0001

0.01

1

E
rr

or
 in

 n

New
Eigenvalue

y’’ = - 
2
 y, y(0) = y(10) = 0λ

-z’ =
 y’ =

λ
λ

y
z

y(0) = y(10) = 0

FIG. 1: Errors in n for the Galerkin method applied to equiv-
alent systems of differential equations.

shows the error |n − n∗| as a function of n for two dif-
ferent grids that increase the matrix size by one. Splines
of order 6 were used. The steady reduction in accuracy
as n increases is expected but not all solutions are ap-
proximations to solutions of the differential equation for
which a notion of convergence should apply. As h is re-
duced and the size of the matrix increased by one, a new
eigenvalue appears but the four highest move to higher
values. The latter four are not approximations to the
differential equation but are needed for the completeness
of the orthogonal basis set.
The second-order differential equation can also be writ-

ten as a pair of first-order equations in a form similar to
that of the Dirac equation, namely

[

0 −d/dr
d/dr 0

] [

y(r)
z(r)

]

= k

[

y(r)
z(r)

]

. (3)

The solution of these equations with y(0) = 0 are y(r) =
c sin(kr) and z(r) = c cos(kr). Note that the boundary
condition y(0) = 0 implies z(0) = c and y(a) = 0 im-
plies z(a) = ±c. Thus no boundary condition should be
applied on the latter. With the assumption

y(r) =

N−1
∑

i=2

yiBi(r) and z(r) =

N
∑

i=1

ziBi(r), (4)

the Galerkin method leads to the generalized eigenvalue
problem

[

0 D(10)

D(01) 0

] [

y
z

]

= k

[

B 0
0 B

] [

y
z

]

. (5)

with D(01) a rectangular matrix of N rows and N-2
columns and D(10) its transpose. The values of λ occur
in positive and negative pairs except for two eigenvalues
with λ = 0, a consequence of D(01) being rectangular.
The bottom graph of Fig. 1 shows the errors in n for
the positive eigenvalues. Note the presence of two solu-
tions for n = 10, 15, 16 and higher. The error of only one
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FIG. 2: Some solutions of −z′(r) = ky(r), y′(r) = kz(r) with
y(0) = y(10) = 0: top left, n = 1 − 4; top right, n = 10, 10;
bottom left, n = 21, 21; bottom right, n = 39, 39 (see Fig. 1).

of the two solutions decreased as the step-size was made
smaller. Fig. 2 shows some of the eigenfunctions. Solu-
tions of the differential equation have constant amplitude
as seen for n = 1 − 4. Of the two n = 10 solutions, one
has constant amplitude whereas the other does not and
is referred to as a spurious solution. The four eigenfunc-
tions of the bottom graphs are “border” solutions and
correspond to solutions in Fig. 1 that move to higher en-
ergies as h is decreased. The numerical properties of the
solutions of the two equivalent differential equations can
be interpreted by comparing the errors depicted in Fig. 1
as h is decreased and the matrix size increases by one. In
the top graph, the errors of all eigensolutions decrease,
a new solution appears, and border solutions move to
higher energies. In the bottom graph some errors de-
crease, the new eigensolution may be a spurious solution,
and border solutions move to higher energy. Clearly the
second-order differential equation solution whose errors
are depicted in the top graph is the preferred solution.
Unlike the differential equations where z(r) can be

eliminated to yield the original second-order differential
equation, the elimination of the vector z leads to the
matrix D(10)B−1D(01) for y that is quite different from
D(02). Whereas the latter matrix for the B-spline basis
is banded, the former is a full matrix. The difference is
most dramatic if the matrices are evaluated in the basis
of eigenvectors of D(02). Then D(02) is diagonal whereas
D(10)B−1D(01) is striated with a non-zero diagonal and
alternating zero and non-zero sub- or super-diagonals.
The pair of first-order equations could also be solved

by assuming

y(r) =

N−1
∑

i=2

yiBi(r) and z(r) =

N−1
∑

i=2

ziB
′(r).

Then the application of the Galerkin method leads to
[

0 D(11)

D(11) 0

] [

y
z

]

= k

[

B 0
0 D(11)

] [

y
z

]

. (6)
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Furthermore, D(11) is symmetric and positive definite.
Thus the second set of equations defines the relationship
between the expansion coefficients, namely yi = kzi and
the equation for y is the same as for y′′ = −λ2y since,
with our boundary conditions, D(02) = −D(11). The
numerical results are identical.

Each basis function, B′

i(r), i = 2, . . . , N is a spline of
order k − 1. This set defines a complete, linearly inde-
pendent basis for a spline approximation of order k − 1
(for simplicity, the superscript k is omitted for splines of
order k). Another basis for splines of order k− 1 are the
B-splines, Bk−1

i (r), i = 1, . . . , N − 1. In fact, the first
derivative of a spline function can be found by differ-
encing its B-spline coefficients [14]. Thus this method is
similar to the method proposed by Igarashi [7] provided
|kp − kq| = 1 and without analytic weighting factors. An
expansion in the (B,B′) basis is also similar to a kinet-
ically balanced basis with κ = 0 and is equivalent to an
expansion in the (Bk, Bk−1) basis. The advantage of the
latter is that all basis functions are again strictly positive
functions and boundary conditions are simpler to apply.

Some further comments are in order. If in Eq. (2), the
matrixD(02) is replaced by −D11, no boundary condition
is needed to preserve symmetry at r = a. These two
matrices differ only in the last column and the difference
can be treated as a symmetrizing Bloch operator [12].
The resulting spectrum is for n = 1/2, 3/2, . . . for which
y′(a) = 0. The numerical accuracy of the modified Eq.(2)
and extended Eq. (6) is unchanged.

Based on the above findings for B-spline solutions
of differential equations we propose a general, stable
method for the Dirac equation and describe its applica-
tion to the R-matrix method. For a single electron in the
Coulomb potential, V (r) = −Z/r, and a point nucleus of
charge Z the equation may be written as





V (r) −c
[

d
dr

− κ
r

]

c
[

d
dr

+ κ
r

]

V (r) − 2c2





[

P (r)
Q(r)

]

= E

[

P (r)
Q(r)

]

. (7)

The R-matrix method requires an effectively complete
basis (Pi, Qi) for the inner r < a region with Pi(0) = 0
and special boundary conditions at r = a that determine
the set of energies Ei. For low positive energies E, and
r = a sufficiently large so that V (a) is small relative to
−2c2, it follows that Q(a) ≈ (aP ′(a) + κP (a))/2ac [15].
The boundary conditions for the desired R-matrix so-
lutions of the Dirac equation are Qi(a)/Pi(a) = (b +
κ)/(2ac) = p, where b is an arbitrary constant. Thus
both large and small components are non-zero on the
boundary though not equal.

With non-zero solutions on the boundary, the Galerkin
method as described earlier will not yield a symmetric
matrix. Variational methods applied to an associated
action ([4], Eq. 7) can be used, but in R-matrix theory it
is customary to apply a Bloch operator that enforces the

boundary condition as well as symmetry. This operator
is then also used for the outer region. Let

Ĥ = H+ L (8)

where H is the Dirac operator of Eq. (7) and L is the
Bloch operator [16]

L = cδ(r − a)

(

−pη η
(η − 1) (1− η)/p

)

, (9)

and η is an arbitrary constant. In the present calculations
we have used the values η = 0.5 and p = κ/2ac.
Having defined the operators, let us now define the

spline expansions. Suppose there are two sets of B-splines
on the same grid that define the (Bkp , Bkq ) basis for the
Dirac equation. Then the number of functions in each
set are np = nv + kp − 1 and nq = nv + kq − 1, respec-
tively where nv is the number of intervals. The expan-
sions P (r) =

∑np

i=2 piBi(kp; r) Q(r) =
∑i=nq

i=1 qiBi(kq; r)
satisfy the boundary condition P (0) = 0 and lead to

[

V11 W12

W21 V22

] [

p
q

]

= E

[

B11 0
0 B22

] [

p
q

]

, (10)

where

V11(i, j) = 〈B
kp

i | − Z/r|B
kp

j 〉 − (cp/2)δinp
δjnp

V22(i, j) = 〈B
kq

i | − Z/r − 2c2|B
kq

j 〉+ (c/2p)δinq
δjnq

W12(i, j) = −c〈B
kp

i |
d

dr
−

κ

r
|B

kq

j 〉+ (c/2)δinp
δjnq

W21(j, i) = c〈B
kq

j |
d

dr
+

κ

r
|B

kp

i 〉 − (c/2)δinq
δjnp

, (11)

and B11 and B22 are the overlap matrices for Bkp and
Bkq , respectively. We have used the fact that for a grid
with muliple knots at r = a, BN (a) = 1 for all orders.
From the above finite set of solutions, an R-matrix

relation can be derived that connects the inner and outer
region. For a given energy E, the relation has the form

P (a) =

[

R(E)−
b+ κ

(b + κ)2 + (2ac)2

]

[2acQ(a)−(b+κ)P (a)]

(12)
where the relativistic R-matrix is defined as

R(E) =
1

2a

∑

i

Pi(a)Pi(a)

Ei − E
. (13)

Eq. (12) contains the correction (b+κ)[(b+κ)2+(2ac)2],
first obtained by Szmytkowski and Hinze [16]. This cor-
rection is due to the fact that the set of relativistic basis
functions (Pi, Qi) is incomplete on the surface r = a.
However, it is small in most realistic cases and usually is
omitted.
If we employ expansions with kq = kp in Eq. (10),

many pseudo-solutions are found in the positive-energy
spectrum. These pseudo-solutions are characterized by
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FIG. 3: Comparison of the surface amplitudes for (B4, B5)
and (B5, B5) bases in the case Z=1, κ = −1, a = 20, N =
100, on an equally spaced grid.

a rapidly oscillating behavior with every coefficient in
the B-spline expansion changing sign: they cannot be
used directly in Eq. (13) for the R-matrix. The use of
B-splines of different order removes all pseudo-solutions.
The (Bk, Bk+1) basis was found to be the most stable
numerically. This stability is extremely important for
the calculation of R(E). Fig. 3 compares the surface
amplitudes Pi(a). In the case of the (B4, B5) basis the
surface amplitudes vary smoothly with energy, whereas
the (B5, B5) basis produces many pseudo-solutions with
large surface amplitudes. The surface amplitudes for
these two calculations agree only for some low energy
eigenstates, but differ considerably in the higher energy
spectrum. The high energy eigensolutions in both cases
are not pseudo-solutions, though they have very large
surface amplitudes. As in the model equation, these bor-
der solutions are needed for the effective completeness in
the transformation from a B-spline basis to eigenstates
of the Dirac matrix equation. These eigenstates provide
a relatively large contribution to the total value of R(E)
that brings the final value in closer agreement with the
exact value. Note that Fig. 3 shows only positive-energy
(electron) solutions. Contributions to the R-matrix (13)
from the negative-energy (positron) solutions were found
to be negligibly small in the present case.
In the case of the Dirac-Coulomb problem with a point

nucleus, we can check directly the accuracy of the re-
sulting R-matrix because the wavefunctions are known
analytically. The R-matrix can be expressed as

R(E) = [2acG (E)− (b+ κ)F (E)] /F (E), (14)

where F (E) and G(E) are the large and small compo-
nents of the Dirac-Coulomb wavefunction for given κ and
Z. Comparison of the exact R-matrix with the one ob-
tained from B-spline bases is shown in Fig. 4. There is
very close agreement with the exact results for a wide
range of energy for the (B4, B5) basis (only the low-
energy region is shown for better visualization). The
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FIG. 4: Comparison of the exact R-matrix (blue line) with
B-spline R-matrix in the (B4, B5) basis (red circles) and in
the (B5, B5) basis (dotted line) for the same case as Fig. 3.

results correctly reproduce the tangent-like behavior of
the exact R-matrix, along with a correct representation
of all poles. At the same time, the (B5, B5) basis lead to
large errors due to the presence of pseudo-states.
The (B4, B5) method with a = 20/Z and N = 100

was checked for a wide range of Z and with κ up to ±50.
No spurious solutions were found. The accuracy of the
R-matrix for small Z and all κ was in the range 10−6 to
10−8, decreasing for large Z. At Z = 100 the accuracy
had deteriorated to 10−3 but no attempt was made to
modify the grid or change (kp, kq). The R-matrix was
relatively independent of whether an equally spaced or
exponential grid was used although the behavior near
the origin was not monitored.
We have also checked the accuracy of the R-matrix cal-

culations for the kinetic balance B-spline basis proposed
by Igarashi [9] but omitting analytic factors. The result-
ing accuracy is approximately the same as for (Bk, Bk+1)
or (B,B′) bases but the method is much more difficult
to implement, especially in the case of multi-channel R-
matrix calculations, since different bases are needed for
different values of κ. The dual kinetic balance basis,
proposed by Shabaev et al. [5] failed to reproduce an
accurate R-matrix, because it resulted in many pseudo-
solutions in the non-physical energy region just above the
−mc2 threshold. We also found that the appearance of
pseudo-solutions depends only in a minor way on initial
or boundary conditions. In fact the most accurate results
are obtained with a minimum of additional conditions on
the B-spline coefficients.
In conclusion, a simple but stable method is proposed

for the solution of the Dirac equation, including the
eigenvalue problems arising in R-matrix theory. Whereas
earlier considerations concentrated on the non-relativistic
limit of the Dirac equation, we have shown the impor-
tance of the large r region. Any reliable method for
the Dirac equation must be able to solve the pair of
first-order equations of Eq.(3) to the same accuracy as
Eq.(2) or, equivalently have matrices for which D(02) =



5

D(10)B−1D(01). In general, accurate methods require an
exponential grid near the origin in order to reproduce the
rγ behavior where γ =

√

κ2 − Z2/c2 but the singularity
at the origin itself has not been found to be a problem.
The methods described here have been applied to

the investigation of low-energy electron scattering from
Cs [11]. A finite nucleus was used along with B-splines
of order (8,9). Close agreement with experiment was ob-
tained for the total and angle differential cross sections
as well as several spin-asymmetry parameters.
The work of O. Z. was supported by the National Sci-

ence Foundation under Grant No. PHY-0244470.
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