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Gaussian matrix elements in a ylindrial

harmoni osillator basis
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Abstrat

We derive a formalism, the separation method, for the e�ient and aurate al-

ulation of two-body matrix elements for a Gaussian potential in the ylindrial

harmoni-osillator basis. This formalism is of ritial importane for Hartree-Fok

and Hartree-Fok-Bogoliubov alulations in deformed nulei using realisti, �nite-

range e�etive interations between nuleons. The results given here are also relevant

for mirosopi many-body alulations in atomi and moleular physis, as the for-

malism an be applied to other types of interations beyond the Gaussian form. The

derivation is presented in great detail to emphasize the methodology, whih relies on

generating funtions. The resulting analytial expressions for the Gaussian matrix

elements are heked for speed and auray as a funtion of the number of osillator

shells and against diret numerial integration.

Key words: Deformed harmoni osillator, Gaussian interation, Matrix elements,

Gogny fore

PACS: 07.05.Tp, 21.30.Fe, 21.60.Jz

1 Introdution

Gaussian interations play an important role in the mirosopi desription of

moleular and nulear proesses [1℄. The Gaussian form represents a relatively

simple two-body potential with a �nite range, whih is needed in many realisti

desriptions of many-body systems. In nulear physis for example, the Gogny

interation [2℄
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V (~r1, ~r2)=
2
∑

i=1

(

Wi +BiP̂σ −HiP̂τ −MiP̂σP̂τ

)

e−(~r1−~r2)
2/µ2

i

+iWLS

(←−∇1 −
←−∇2

)

× δ (~r1 − ~r2)
(−→∇1 −

−→∇2

)

· (~σ1 + ~σ2)

+t0
(

1 + x0P̂σ

)

δ (~r1 − ~r2) ρ
γ

(

~r1 + ~r2
2

)

+ V
Coul

(1)

where P̂σ and P̂τ are spin- and isospin-exhange operators and ρ is the total

nulear density, gives the e�etive (in-medium) potential between nuleons.

Two Gaussian terms appear expliitly with range parameters µ1 and µ2. A

spin-orbit term with strength WLS uses a Dira-delta funtion, but extensions

of the Gogny fore have been proposed [3℄ that introdue a Gaussian form

for this term. Finally the Coulomb interation V
Coul

∼ 1/ |~r1 − ~r2| between
protons is learly not of Gaussian form, but the mathematial framework

presented in this paper an be applied equally well to a Coulomb potential.

For the alulation of matrix elements in moleular, atomi, and nulear

physis, harmoni-osillator funtions provide a onvenient and popular or-

thogonal basis. The alulation of Gaussian matrix elements in a harmoni-

osillator basis, however, poses de�nite tehnial hallenges in auray as

well as exeution time. In previous work [4℄, the separation method was in-

trodued as a way of alulating the Gaussian matrix elements e�iently and

aurately for systems with spherial symmetry. In the separation method,

two-body matrix elements are expressed as a more manageable �nite sum of

produts of one-body matrix elements. In this paper, we derive the separation

method for a wider lass of systems that exhibit axial symmetry. These results

are ruial, for example, in mirosopi alulations of nulear �ssion using the

Gogny fore, where the nuleus elongates along a symmetry axis, until sission

ours.

Fission alulations in partiular bring to the fore many of the tehnial dif-

�ulties involved in the omputation of Gaussian matrix elements. On the

other hand, mirosopi alulations of �ssion using the interation in Eq. (1)

have had onsiderable suess in reent years [5,6,7℄, and are therefore of great

interest. In the mirosopi desription of �ssion, the matrix elements of the

nuleon-nuleon interation are typially used in a Hartree-Fok-Bogoliubov

(HFB) proedure to onstrut a Slater-determinant wave funtion for the nu-

leus. Sission on�gurations are then found by driving the nuleus to suh

exoti shapes that the deliate balane between its surfae tension and the

Coulomb repulsion between the nasent �ssion fragments is broken. The proper

identi�ation of sission on�gurations and the alulation of their properties

depend sensitively on aurate alulations of the matrix elements of the ef-

fetive interation. Fission also implies the evolution of the nuleus through a

variety of exoti shapes leading to sission. Therefore many sets of matrix el-

ements need to be alulated, eah set orresponding to a harmoni-osillator
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basis optimized for a partiular nulear shape, and eah set requiring a large

number of osillator shells. The resulting large-sale omputations an beome

very time-onsuming and are prone to errors in auray. Thus mirosopi

�ssion alulations must rely on fast and aurate algorithms to evaluate the

two-body matrix elements, suh as the separation method. The separation

method is espeially well-suited to the HFB algorithm, beause the oe�-

ients needed to alulate the two-body matrix elements derived in this paper

an be alulated quikly one and for all, and stored with relatively little

omputer memory.

The goal of this paper is to derive the separation-method formalism for Gaus-

sian matrix elements in a ylindrial harmoni-osillator basis, with partiu-

lar emphasis plaed on the details of the derivation beause of its relevane

to other types of interations, and other appliations involving the harmoni-

osillator basis. In partiular, we rely heavily on the power and versatility of

generating funtions to derive many of the present results. We also present

the derivations in great detail beause they are rather involved, and although

the same results may be arrived at by alternate approahes, the formulas will

tend to be muh more umbersome and less omputationally e�ient than

the ones obtained by the generating-funtion methods outlined here. Beause

of the lengthy and detailed derivations involved, many of the intermediary

results have been plaed in the appendies. These intermediary results are

important in their own right, as they provide useful properties of harmoni-

osillator funtions in a ylindrial basis, and the mapping between ylindrial

and Cartesian harmoni-osillator bases.

In setion 2, the basi formalism for the alulation of both radial and ax-

ial omponents of the Gaussian matrix elements by the separation method

are derived. In setion 3, the auray of the method is examined both rela-

tive to diret numerial integration, and as a funtion of the number of shells

in the osillator basis. The exeution times for the separation method are

also ompared to those of the numerial integration. The mapping between

harmoni-osillator funtion in polar and Cartesian oordinates, needed in

the development of the separation-method formalism, is derived in appendix

A. In appendix B, the Gaussian two-body potential, V (~r1, ~r2), is written in

separated form with respet to ~r1 and ~r2. Formulas reduing the produts of

harmoni-osillator funtions are derived in appendix C, and provide a pow-

erful tool in the evaluation of integrals involving those funtions. In appendix

D, the result quoted in [9℄ for the separation-method formalism in the ase

of large osillator-shell numbers is derived in detail. Finally, in appendix E,

we obtain a series expansion for the diret angular integral of the Gaussian

potential, whih we use in the numerial integration of the potential in setion

3.
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2 Theory

2.1 General formalism

We wish to alulate matrix elements of the two-body potential funtion

V (~r1, ~r2)= e−(~r1−~r2)
2/µ2

(2)

in the ylindrial harmoni-osillator basis. We will write the matrix elements

as

Vijkl≡〈ij |V | kl〉
=
∫

d3r1

∫

d3r2Φ
∗
n
(i)
r ,Λ(i),n

(i)
z

(~r1; b⊥, bz) Φ
∗
n
(j)
r ,Λ(j),n

(j)
z

(~r2; b⊥, bz)

×V (~r1, ~r2)Φn
(k)
r ,Λ(k),n

(k)
z

(~r1; b⊥, bz)Φn
(l)
r ,Λ(l),n

(l)
z
(~r2; b⊥, bz) (3)

where we have introdued the strethed harmoni-osillator basis funtions in

the ylindrial oordinates (ρ, ϕ, z) 1

Φnr ,Λ,nz
(~r; b⊥, bz) =Φnr ,Λ (ρ, ϕ; b⊥)Φnz

(z; bz)

=Φnr ,|Λ| (ρ; b⊥)
eiΛϕ√
2π

Φnz
(z; bz) (4)

with the radial-omponent funtion

Φnr ,|Λ| (ρ; b⊥) =N |Λ|
nr

η|Λ|/2e−η/2L|Λ|
nr

(η) (5)

de�ned in terms of assoiated Laguerre polynomials L|Λ|
nr

(η) as a funtion of

η≡ ρ2/b2⊥

and with a normalization onstant given by

Nnr,|Λ|≡
1

b⊥

[

2nr!

(nr + |Λ|)!

]1/2

(6)

The Cartesian, z-axis-omponent funtion in Eq. (4),

1
We will drop the quali�er �strethed� when referring to the deformed harmoni-

osillator funtion in subsequent disussion for the sake of brevity.

4



Φnz
(z; bz)=Nnz

e−ξ2/2Hnz
(ξ) (7)

is expressed in terms of Hermite polynomials Hnz
(ξ) with

ξ≡ z/bz

and normalization onstant

Nnz
≡ 1

(bz
√
π2nznz!)

1/2

The harmoni-osillator funtions de�ned in Eqs. (4) and (7) satisfy the or-

thonormalization onditions

∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ∗

nr,Λ (ρ, ϕ; b⊥)Φn′
r ,Λ

′ (ρ, ϕ; b⊥) = δnr ,n′
r
δΛ,Λ′

∫ ∞

−∞
dz Φnz

(z; bz) Φn′
z
(z; bz) = δnz ,n′

z

The parameters b⊥ and bz appearing in the harmoni-osillator funtion de�-

nitions are usually treated as variational parameters in HFB alulations, and

hosen to minimize the energy.

The entral idea in this paper is to express the two-body potential as a sum

of produts of one-body potential funtions

e−(~r1−~r2)
2/µ2

=
∑

nr ,Λ,nz

fnr,Λ,nz
(~r1; b⊥, bz) Φ̂nr ,Λ,nz

(~r2; b⊥, bz)

Then the two-body matrix elements an be written in terms of one-body

matrix elements

Vijkl =
∑

nr,Λ,nz

〈i |fnr ,Λ,nz
| k〉

〈

j
∣

∣

∣Φ̂nr ,Λ,nz

∣

∣

∣ l
〉

(8)

where we will show that this last sum is limited to a �nite number of terms.

It will be useful to separate the radial and Cartesian omponents in eah

one-body matrix element to write
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〈i |fnr ,Λ,nz
| k〉=

∫

d3rΦ∗
n
(i)
r ,Λ(i),n

(i)
z

(~r; b⊥, bz) fnr ,Λ,nz
(~r; b⊥, bz)

×Φ
n
(k)
r ,Λ(k),n

(k)
z

(~r; b⊥, bz)

=
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ

n
(i)
r ,Λ(i) (ρ, ϕ; b⊥) fnr ,Λ (ρ, ϕ; b⊥)

×Φ
n
(k)
r ,Λ(k) (ρ, ϕ; b⊥)

×
∫ ∞

−∞
dzΦ

n
(i)
z
(z; bz) fnz

(z; bz)Φn
(k)
z

(z; bz)

≡〈i |fnr ,Λ| k〉 〈i |fnz
| k〉

and, similarly,

〈

j
∣

∣

∣Φ̂nr ,Λ,nz

∣

∣

∣ l
〉

=
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ

n
(j)
r ,Λ(j) (ρ, ϕ; b⊥) Φ̂nr,Λ (ρ, ϕ; b⊥)

×Φ
n
(l)
r ,Λ(l) (ρ, ϕ; b⊥)

×
∫ ∞

−∞
dzΦ

n
(j)
z

(z; bz) Φ̂nz
(z; bz)Φn

(l)
z
(z; bz)

≡
〈

j
∣

∣

∣Φ̂nr ,Λ

∣

∣

∣ l
〉 〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

so that we an write Eq. (8) as

Vijkl =





∑

nr,Λ

〈i |fnr,Λ| k〉
〈

j
∣

∣

∣Φ̂nr ,Λ

∣

∣

∣ l
〉





[

∑

nz

〈i |fnz
| k〉

〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

]

≡V
(r)
ijklV

(z)
ijkl (9)

In the remainder of this setion we alulate the expliit expressions needed

to evaluate the matrix elements Vijkl.

2.2 Cartesian omponent

Here we derive an expression for the Cartesian omponent,V
(z)
ijkl , in Eq. (9).

We will show that

V
(z)
ijkl =

√

Gz − 1

Gz + 1

n
(i)
z +n

(k)
z

∑

mz=

∣

∣

∣
n
(i)
z −n

(k)
z

∣

∣

∣
,2

n
(j)
z +n

(l)
z

∑

nz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

Tmz

n
(i)
z ,n

(k)
z

T nz

n
(j)
z ,n

(l)
z

Ī (mz, nz) (10)

where Gz is de�ned by Eq. (B.4), the T n3
n1,n2

oe�ients by Eq. (C.6), and the

Ī (mz , nz) oe�ients by Eq. (18).

We start by evaluating
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〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

=
∫ ∞

−∞
dzΦ

n
(j)
z

(z; bz) Φ̂nz
(z; bz) Φn

(l)
z
(z; bz)

Using Eqs. (B.1) whih gives the expliit form of Φ̂nz
(z; bz) and Eq. (C.1) to

redue the produt of harmoni-osillator funtions,

〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

=
1

√

bz
√
π

n
(j)
z +n

(l)
z

∑

mz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

Tmz

n
(j)
z ,n

(l)
z

∫ ∞

−∞
dzΦmz

(z; bz)Φnz
(z; bz)

By orthogonality of the harmoni-osillator funtions this is simply

〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

=
1

√

bz
√
π
T nz

n
(j)
z ,n

(l)
z

(11)

where we must have

∣

∣

∣n(j)
z − n(l)

z

∣

∣

∣ ≤ nz ≤ n(j)
z + n(l)

z for the T nz

n
(j)
z ,n

(l)
z

oe�ient

to be non-zero. Next, we use the expliit form of fnz
(z; bz) from Eq. (B.2) to

write

〈i |fnz
| k〉=

∫ ∞

−∞
dzΦ

n
(i)
z
(z; bz) fnz

(z; bz) Φn
(k)
z

(z; bz)

=K1/2
z λnz

∫ ∞

−∞
dzΦ

n
(i)
z
(z; bz) e

−z2/(2Gzb2z)

×Φnz

(

z;G1/2
z bz

)

Φ
n
(k)
z

(z; bz) (12)

Two of the harmoni-osillator funtions an be replaed with a single one,

thanks to Eq. (C.1),

〈i |fnz
| k〉= K1/2

z λnz
√

bz
√
π

n
(i)
z +n

(k)
z

∑

mz=

∣

∣

∣
n
(i)
z −n

(k)
z

∣

∣

∣
,2

Tmz

n
(i)
z ,n

(k)
z

∫ ∞

−∞
dz e−z2/(2b2z)−z2/(2Gzb2z)

×Φmz
(z; bz)Φnz

(

z;G1/2
z bz

)

(13)

The remaining integral, whih we write in terms of the funtion

I (m,n)≡
∫ ∞

−∞
dz e−z2/(2b2z)−z2/(2B2

z)Φm (z; bz)Φn (z;Bz)

where Bz ≡ G1/2
z bz, an be alulated with the help of generating funtions.

Indeed, using Eq. (A.1) to form the produt of the harmoni-osillator fun-

tions, we have for any t1 and t2
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e−t21+2t1z/bz−z2/(2b2z)e−t22+2t2z/Bz−z2/(2B2
z) =

√

bzBzπ
∞
∑

m=0

∞
∑

n=0

2(m+n)/2

√
m!n!

×tm1 tn2Φm (z; bz) Φn (z;Bz)

from whih, multiplying by the Gaussian fators in the de�nition of I (m,n)
and integrating both sides of the equation,

e−t21−t22

∫ ∞

−∞
dz e2t1z/bz−z2/b2z+2t2z/Bz−z2/B2

z

=
√

bzBzπ
∞
∑

m=0

∞
∑

n=0

2(m+n)/2

√
m!n!

tm1 t
n
2I (m,n) (14)

The integral on the left-hand side an be evaluated by ompleting the square,

∫ ∞

−∞
dz e2t1z/bz−z2/b2z+2t2z/Bz−z2/B2

z = et
2/ν
∫ ∞

−∞
dz e−(

√
νz−t/

√
ν)

2

=

√

π

ν
et

2/ν

where we have de�ned

ν≡ 1

b2z
+

1

B2
z

t≡ t1
bz

+
t2
Bz

Thus, the left-hand side of Eq. (14) beomes

LHS=

√

π

ν
et

2/ν−t21−t22

=

√

π

ν
e−(bzt1−Bzt2)

2/(νb2zB2
z)

whih an be expanded as

LHS=

√

π

ν

∞
∑

p=0

(−1)p (bzt1 − Bzt2)
2p

p! (νb2zB
2
z )

p

=

√

π

ν

∞
∑

p=0

2p
∑

q=0







2p

q







(−1)p+q

p!νpbqzB
2p−q
z

t2p−q
1 tq2

Comparing with the right-hand side of Eq. (14), we see that we must make

the identi�ations m = 2p− q and n = q in order for the equation to hold for

any t1 and t2. Then,
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LHS=

√

π

ν

∞
∑

m=0

∞
∑

n=0







2p

q







(−1)p+q

p!νpbqzB
2p−q
z

t2p−q
1 tq2δn,qδm,2p−q

and the omparison with the right-hand side of Eq. (14) yields

I (m,n)=
(−1)(m+n)/2+n

√
m!n!

(

m+n
2

)

! (2ν)(m+n)/2 bnzB
m
z

√
bzBzν







m+ n

n







Note that m+ n must be even. We simplify this form further by noting that

bzBzν =G1/2
z +G−1/2

z (15)

B2
zν =1 +Gz (16)

b2zν =1 +G−1
z (17)

where Gz is de�ned in Eq. (B.4). This leads us to write

I (m,n)=
G1/4

z Gn/2
z√

1 +Gz

√

m!n!

2m+n

(−1)(m−n)/2

(

m+n
2

)

! (1 +Gz)
(m+n)/2







m+ n

n







Some of the onstants an be fatored out by de�ning the oe�ient

Ī (m,n)≡
√
1 +Gz

G
1/4
z G

n/2
z

I (m,n)

=

√

m!n!

2m+n

(−1)(m−n)/2

(

m+n
2

)

! (1 +Gz)
(m+n)/2







m+ n

n





 (18)

Then, returning to Eq. (13), we obtain after some simpli�ation

〈i |fnz
| k〉= K1/2

z λnz
√

bz
√
π

G1/4
z Gnz/2

z√
1 +Gz

n
(i)
z +n

(k)
z

∑

mz=

∣

∣

∣
n
(i)
z −n

(k)
z

∣

∣

∣
,2

Tmz

n
(i)
z ,n

(k)
z

Ī (mz, nz) (19)

Having derived the expliit forms in Eqs. (11) and (19), we an express the

Cartesian omponent in Eq. (9) as
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V
(z)
ijkl≡

∑

nz

〈i |fnz
| k〉

〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

=

√

Gz − 1

Gz + 1

n
(i)
z +n

(k)
z

∑

mz=

∣

∣

∣
n
(i)
z −n

(k)
z

∣

∣

∣
,2

n
(j)
z +n

(l)
z

∑

nz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

Tmz

n
(i)
z ,n

(k)
z

T nz

n
(j)
z ,n

(l)
z

Ī (mz, nz)

where Ī (mz, nz) is given by Eq. (18), and the T oe�ients are given by Eq.

(C.6). An alternate form of V
(z)
ijkl was proposed by Egido et al. [9℄ whih yields

more aurate results for large osillator shell numbers, and is derived as Eq.

(D.2) in appendix D.

2.3 Radial omponent

A formula similar to Eq. (10) an be derived for the radial omponent, V
(r)
ijkl,

in Eq. (9). We will show that

V
(r)
ijkl =

G⊥ − 1

G⊥ + 1

nj̄,l
∑

nr=0

nī,k
∑

n=0

T n,−Λ(i)+Λ(k)

n
(i)
r ,−Λ(i);n

(k)
r ,Λ(k)

T nr,−Λ(j)+Λ(l)

n
(j)
r ,−Λ(j);n

(l)
r ,Λ(l)

×Ī
(

nr,−Λ(j) + Λ(l);n,−Λ(i) + Λ(k)
)

(20)

where G⊥ is de�ned by Eq. (B.10), the T oe�ients by Eq. (C.9), and the

Ī oe�ients by Eq. (27). The indies nj̄,l and nī,k are given by Eq. (A.29),

where the bar indiates that −Λ(j)
and −Λ(i)

, respetively, should be used in

that de�nition due to the omplex onjugation in Eq. (3).

Using Eqs. (B.7) for the expliit form of Φ̂nr ,Λ (ρ, ϕ; b⊥), Eq. (C.7) to redue the
produt of harmoni-osillator funtions, and the orthogonality of harmoni-

osillator funtions

〈

j
∣

∣

∣Φ̂nr ,Λ

∣

∣

∣ l
〉

=
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ∗

n
(j)
r ,Λ(j)

(ρ, ϕ; b⊥) Φ̂nr ,Λ (ρ, ϕ; b⊥)

×Φ
n
(l)
r ,Λ(l) (ρ, ϕ; b⊥)

=
1√
πb⊥

nj̄,l
∑

n=0

T n,−Λ(j)+Λ(l)

n
(j)
r ,−Λ(j);n

(l)
r ,Λ(l)

×
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ∗

n,Λ(j)+Λ(l) (ρ, ϕ; b⊥)Φnr ,Λ (ρ, ϕ; b⊥)

=
1√
πb⊥

T nr ,−Λ(j)+Λ(l)

n
(j)
r ,−Λ(j);n

(l)
r ,Λ(l)

δnr≤nj̄,l
δΛ,−Λ(j)+Λ(l)

where the bar supersript in the nj̄,l symbol serves as a reminder that we must

use −Λ(j)
in Eq. (A.29), beause of the omplex onjugation. The ondition

10



δnr≤nj̄,l
omes about from the de�nition of the T oe�ients in Eq. (C.9). The

other matrix element in the radial omponent of Eq. (9) is written expliitly

using the expliit form for fnr,Λ (ρ, ϕ; b⊥) in Eq. (B.8) as

〈i |fnr ,Λ| k〉=
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ∗

n
(i)
r ,Λ(i)

(ρ, ϕ; b⊥) fnr ,Λ (ρ, ϕ; b⊥)

×Φ
n
(k)
r ,Λ(k) (ρ, ϕ; b⊥)

=K⊥λ2nr+|Λ|

∫ ∞

0
ρdρ

∫ 2π

0
dϕ e−ρ2/(2G⊥b2⊥)Φnr ,Λ

(

ρ, ϕ;G
1/2
⊥ b⊥

)

×Φ∗
n
(i)
r ,Λ(i)

(ρ, ϕ; b⊥)Φn
(k)
r ,Λ(k) (ρ, ϕ; b⊥)

and using Eq. (C.7), the produt of harmoni-osillator funtions an be re-

dued

〈i |fnr ,Λ| k〉=
K⊥λ2nr+|Λ|√

πb⊥

nī,k
∑

n=0

T n,−Λ(i)+Λ(k)

n
(i)
r ,−Λ(i);n

(k)
r ,Λ(k)

×
∫ ∞

0
ρdρ

∫ 2π

0
dϕ e−ρ2/(2B2

⊥)−ρ2/(2b2⊥)

×Φnr ,Λ (ρ, ϕ;B⊥) Φn,−Λ(i)+Λ(k) (ρ, ϕ; b⊥)

where B⊥ ≡ G
1/2
⊥ b⊥, and the ī in nī,k is a reminder that we must use −Λ(i)

in

Eq. (A.29). The remaining integral to be alulated is

I (n1, k1;n2, k2)≡
∫ ∞

0
ρdρ

∫ 2π

0
dϕ e−ρ2/(2B2

⊥)−ρ2/(2b2⊥)

×Φn1,k1 (ρ, ϕ;B⊥)Φn2,k2 (ρ, ϕ; b⊥) (21)

and an be evaluated using the generating funtion in Eq. (A.3) by writing,

for arbitrary vetors

~t1 and ~t2,

e−
~t21+2~ρ·~t1/B⊥−ρ2/(2B2

⊥)e−
~t22+2~ρ·~t2/b⊥−ρ2/(2b2⊥)

=B2
⊥

√

π

2

∞
∑

k1=−∞

∞
∑

n1=0

Nn1,|k1| (B⊥)χn1,k1

(

~t1
)

Φn1,k1 (ρ, ϕ;B⊥)

×b2⊥
√

π

2

∞
∑

k2=−∞

∞
∑

n2=0

Nn2,|k2| (b⊥)χn2,k2

(

~t2
)

Φn2,k2 (ρ, ϕ; b⊥) (22)

note that, for larity, we have expliitly written the parameter dependene for

the normalization oe�ients Nn1,|k1| (B⊥) and Nn2,|k2| (b⊥) given by Eq. (6).

Multiplying both sides of Eq. (22) by the Gaussian fator that appears in Eq.

(21) and integrating, we obtain on the left-hand side

11



LHS= e−
~t21−~t22

∫ ∞

0
ρdρ

∫ 2π

0
dϕ e−ρ2/B2

⊥−ρ2/b2⊥e2~ρ·
~t1/B⊥e2~ρ·

~t2/b⊥
(23)

and on the right-hand side

RHS=
π

2
B2

⊥b
2
⊥

∞
∑

k1=−∞

∞
∑

n1=0

∞
∑

k2=−∞

∞
∑

n2=0

Nn1,|k1| (B⊥)Nn2,|k2| (b⊥)

×χn1,k1

(

~t1
)

χn2,k2

(

~t2
)

I (n1, k1;n2, k2) (24)

whih ontains the desired oe�ients I (n1, k1;n2, k2). The integral in Eq.

(23) an be evaluated by introduing

~t≡
~t1
B⊥

+
~t2
b⊥

ν≡ 1

B2
⊥
+

1

b2⊥

and ompleting the square,

LHS= et
2/ν−t21−t22

∫ ∞

0
ρdρ

∫ 2π

0
dϕ exp



−
(√

ν~ρ−
~t√
ν

)2




=
π

ν
et

2/ν−t21−t22

=
π

ν
e(2b⊥B⊥~t1·~t2−B2

⊥t21−b2⊥t22)/(B2
⊥b2⊥ν)

using Eq. (A.27) with

~t1 → ~t1/ (b⊥
√
ν) and

~t2 → ~t2/ (B⊥
√
ν), this an be

further expanded as

LHS=
πB2

⊥b
2
⊥

2
e−(B

2
⊥
t21+b2

⊥
t22)/(B2

⊥
b2
⊥
ν)

∞
∑

n=0

∞
∑

k=−∞
N 2

n,|k|
(

B⊥b⊥
√
ν
)

×χ∗
n,k

(

~t1
b⊥
√
ν

)

χn,k

(

~t2
B⊥
√
ν

)

Next, we use Eq. (A.23) to eliminate the remaining exponential,

LHS=
πB2

⊥b
2
⊥

2

∞
∑

n=0

∞
∑

k=−∞

∞
∑

m1=0

∞
∑

m2=0

(n+m1)! (n +m2)!

m1!m2! (n!)
2 N 2

n,|k|
(

B⊥b⊥
√
ν
)

×χ∗
n+m1,k

(

~t1
b⊥
√
ν

)

χn+m2,k

(

~t2
B⊥
√
ν

)

12



Using Eqs (A.24) to eliminate the omplex onjugation, and (A.25) to fator

out the oe�ients inside the χ funtions, this takes the form

LHS=
πB2

⊥b
2
⊥

2

∞
∑

n=0

∞
∑

k=−∞

∞
∑

m1=0

∞
∑

m2=0

(n+m1)! (n +m2)!

m1!m2! (n!)
2 N 2

n,|k|
(

B⊥b⊥
√
ν
)

×
(

b⊥
√
ν
)−2(n+m1)−|k| (

B⊥
√
ν
)−2(n+m2)−|k|

×χn+m1,−k

(

~t1
)

χn+m2,k

(

~t2
)

Comparing this result for LHS with RHS in Eq. (24) for arbitrary vetors

~t1
and

~t2, we are led to onlude that

I (n1, k1;n2, k2) = 0 if k1 + k2 6= 0 (25)

We are also led to make the identi�ations

n +m1=n1

n +m2=n2

−k= k1
k= k2

whih allow us to write

LHS=
πB2

⊥b
2
⊥

2

∞
∑

n=0

∞
∑

k=−∞

∞
∑

n1=0

∞
∑

n2=0

n1!n2!

(n1 − n)! (n2 − n)! (n!)2
N 2

n,|k|
(

B⊥b⊥
√
ν
)

×
(

b⊥
√
ν
)−2n1−|k| (

B⊥
√
ν
)−2n2−|k|

χn1,−k

(

~t1
)

χn2,k

(

~t2
)

(26)

and therefore, assuming |k1| = |k2| ≡ |k| beause of Eq. (25), the omparison

between LHS and RHS, in Eqs. (26) and (24) respetively, yields

I (n1, k1;n2, k2) =
δk1+k2,0 (b⊥

√
ν)

−2n1−|k|
(B⊥
√
ν)

−2n2−|k|
n1!n2!

Nn1,|k| (B⊥)Nn2,|k| (b⊥)

×
∞
∑

n=0

N 2
n,|k| (B⊥b⊥

√
ν)

(n1 − n)! (n2 − n)! (n!)2

= δk1+k2,0
(b⊥
√
ν)

−2n1−|k|
(B⊥
√
ν)

−2n2−|k|

B⊥b⊥ν

×
√

n1! (n1 + |k|)!n2! (n2 + |k|)!
∞
∑

n=0

1

(n1 − n)! (n2 − n)!n! (n+ |k|)!

13



Using Eqs. (15)-(17) with G⊥ instead of Gz we an simplify the fator outside

the summation

(b⊥
√
ν)

−2n1−|k|
(B⊥
√
ν)

−2n2−|k|

B⊥b⊥ν
=

(

1 +G−1
⊥
)−n1−|k|/2

(1 +G⊥)
−n2−|k|/2

G
1/2
⊥ +G

−1/2
⊥

=
G

(n1−n2)/2
⊥

(

G
1/2
⊥ +G

−1/2
⊥

)n1+n2+|k|+1

and, for ompatness of notation, we de�ne

Ξ (n1, n2, |k|)≡
∞
∑

n=0

1

(n1 − n)! (n2 − n)!n! (n+ |k|)!

whih, after some simpli�ation an be written as

Ξ (n1, n2, |k|)=
1

n1! (n2 + |k|)!
∞
∑

n=0







n1

n













n2 + |k|
n2 − n







=
1

(n1 + n2 + |k|)!







n1 + n2 + |k|
n1













n1 + n2 + |k|
n2







where Eq. 0.156(1) in [8℄ was used to obtain the seond line. Therefore, we

�nally have

I (n1, k1;n2, k2) = δk1+k2,0
G

(n1−n2)/2
⊥

(

G
1/2
⊥ +G

−1/2
⊥

)n1+n2+|k|+1

×
√

n1! (n1 + |k|)!n2! (n2 + |k|)!Ξ (n1, n2, |k|)

As in Eq. (18), it will be onvenient to fator out some onstant terms. There-

fore we de�ne

Ī (n1, k1;n2, k2)≡
K⊥λ2n1+|k|

πb2⊥

G⊥ + 1

G⊥ − 1
I (n1, k1;n2, k2)

= δk1+k2,0

√

n1! (n1 + |k|)!n2! (n2 + |k|)!
(G⊥ + 1)n1+n2+|k| Ξ (n1, n2, |k|) (27)

and the radial omponent in Eq. (9) beomes

14



V
(r)
ijkl =

∑

nr,Λ

〈i |fnr,Λ| k〉
〈

j
∣

∣

∣Φ̂nr ,Λ

∣

∣

∣ l
〉

=
G⊥ − 1

G⊥ + 1

∞
∑

nr=0

∞
∑

Λ=−∞

nī,k
∑

n=0

T n,−Λ(i)+Λ(k)

n
(i)
r ,−Λ(i);n

(k)
r ,Λ(k)

Ī
(

nr,Λ;n,−Λ(i) + Λ(k)
)

×T nr ,Λ(j)+Λ(l)

n
(j)
r ,Λ(j);n

(l)
r ,Λ(l)

δnr≤nj,l
δΛ,−Λ(j)+Λ(l)

=
G⊥ − 1

G⊥ + 1

nj̄,l
∑

nr=0

nī,k
∑

n=0

T n,−Λ(i)+Λ(k)

n
(i)
r ,−Λ(i);n

(k)
r ,Λ(k)

T nr,−Λ(j)+Λ(l)

n
(j)
r ,−Λ(j);n

(l)
r ,Λ(l)

×Ī
(

nr,−Λ(j) + Λ(l);n,−Λ(i) + Λ(k)
)

Thus , using Eqs. (10) or (D.2) and (20), the full matrix element Vijkl in Eq.

(9) an be alulated as an analytial expression. In the next setion, we will

examine the omputational merits of these results.

3 Disussion

In this setion, we will ompare three di�erent ways of evaluating the Cartesian

(V
(z)
ijkl) and radial (V

(r)
ijkl) omponents of the Gaussian matrix elements in Eq.

(3): 1) diret numerial integration of Eq. (3), 2) numerial evaluation of the

separation-method equations (Eqs. (10) or (D.2) for the Cartesian omponent,

and Eq. (20) for the radial omponent) in double-preision mode, and 3) ex-

at evaluation of the separation-method equations using the symboli-algebra

pakage Mathematia [10℄. In priniple, the �rst two methods�numerial eval-

uation by either integration or the separation method�will give the values

of V
(z)
ijkl and V

(r)
ijkl to within the limits of mahine auray and roundo� er-

rors, whereas the third�exat evaluation of the separation-method equations

using Mathematia�will produe these matrix elements to any desired au-

ray (even beyond mahine auray) and will serve as a referene hek for

numerial onvergene of the integrals and roundo� errors.

We begin by omparing the relative merits of the separation-method Eqs.

(10) and (D.2) for the Cartesian omponent of the matrix element. The two

equations are mathematially equivalent, but Eq. (D.2) was obtained from Eq.

(10) spei�ally to provide greater auray in numerial alulations. For all

quantitative appliations in this work, we have used

µ=1.2 fm

bz =3.3 fm

b⊥ =2 fm

These values of µ, bz, b⊥ are typial in HFB alulations using the Gogny
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interation for

240
Pu along the most likely path to sission [11℄.

In pratie, both Eqs. (10) and (D.2) an be evaluated e�iently beause the

T n
n1,n2

and Ī (m,n) or F̄ n
n1,n2

oe�ients an easily be alulated one and for

all and stored with relatively little memory, to be used in reonstruting the

matrix elements V
(z)
ijkl whenever they are needed. However, for large values

of the quantum numbers ni, nj , nk, and nl the sums in Eq. (10) rapidly

lead to sizable numerial inauraies. These inauraies arise beause the T
oe�ients grow progressively larger with inreasing values of the arguments,

whereas the Ī oe�ients derease. The resulting sum of produts of small

and large numbers in Eq. (10) beomes numerially unstable. The formula

obtained by Egido et al. in [9℄, and derived as Eq. (D.2) in the present work,

avoids this problem.

Fig. 1 gives the maximum deviation between matrix elements alulated using

numerial evaluations of Eqs. (10) and (D.2). To generate the plot, the equa-

tions were ompared for alulations of V
(z)
ijkl as a funtion of the maximum

harmoni-osillator shell number N0, i.e. for all possible quantum numbers

suh that 0 ≤ ni, nj , nk, nl ≤ N0, and the largest deviation was reorded for

eah point on the plot. We will refer to N0 as the size of the basis in the dis-

ussion below. The deviations plotted in Fig. 1 are based on the dimensionless

Gaussian funtion in Eq. (2), but with realisti interation strengths for the

Gogny fore [12℄, a deviation as small as 10−2
on the plot, an orrespond

to a disrepany of the order of an MeV. Thus, for N0 greater than about

16, Eq. (D.2) should ertainly always be used instead of Eq. (10), and in the

remainder of this paper we will use it onsistently for all N0 instead of Eq.

(10).

Next, we ompare an exat evaluation of Eq. (D.2) to the numerial inte-

gration of the Cartesian omponent in Eq. (3). We hoose to ompare the

separation method to a numerial integral of the potential beause the latter

is easily implemented, requires very little omputer memory, and an be made

arbitrarily aurate. The exat evaluation of Eq. (D.2) was obtained using the

symboli-algebra pakage Mathematia. Within Mathematia, the expression

in Eq. (D.2) was �rst redued by symboli manipulation to the exat algebrai

form a
√
b/c, where a, b, and c are integers, for eah hoie of the quantum

numbers ni, nj , nk, and nl. That algebrai number ould then be evaluated

numerially to any desired auray. The numerial integration, on the other

hand, was performed by Gauss-Hermite quadrature in double-preision mode

(i.e., with 16 signi�ant �gures). The purpose of the omparison between the

exat evaluation of Eq. (D.2) and the numerial integration is to show that

the numerial integration an be made arbitrarily lose (up to the limits of

mahine auray) to the exat result, thereby validating Eq. (D.2). In Fig.

2, the maximum deviation between the exat alulation and numerial in-

tegration of the V
(z)
ijkl values is plotted as a funtion of the number N

quad

of
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Figure 1. Maximum deviation between alulations of the matrix elements V
(z)
ijkl using

the separation method in Eq. (10) on one hand, and Eq. (D.2) on the other, plotted

as a funtion of basis size N0.

quadrature points for a basis size N0 = 12. For N
quad

≥ 208, the limits of

mahine auray are reahed in the numerial integration, and the maximum

deviation between the two methods of alulating V
(z)
ijkl matrix elements levels

out slightly above 4.3× 10−16
.

In Fig. 3, we ompare the exat evaluation of Eq. (D.2) using Mathematia to

its numerial evaluation in double-preision mode, as a funtion of basis size

N0. The trend in Fig. 3 shows the e�et of roundo� error in the numerial

evaluation of Eq. (D.2). However, despite a lear derease in auray with

inreasing basis size, Fig. 3 shows that a double-preision numerial evaluation

of Eq. (D.2) still gives the value of the matrix elements V
(z)
ijkl to a very high level

of auray. Even for a basis size as large asN0 = 24, the largest deviation from
the exat values is still only 1.5×10−8

. For the remainder of this disussion, we

will use the numerial evaluation of Eq. (D.2) in double-preision mode rather

than the exat Mathematia result, beause the Mathematia alulations are

prohibitively time-onsuming, and the auray of the numerial evaluation of

the separation-method formulas is more than su�ient for most appliations.

In Fig. 4, we extrat the number of Gauss-Hermite quadrature points required

by the numerial integration to obtain values that are satisfatorily lose (say,
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Figure 2. Maximum deviation between the numerial integration of the matrix el-

ements V
(z)
ijkl and their exat evaluation using the separation method in Eq. (D.2)

with Mathematia for basis size N0 = 12, plotted as a funtion of the number of

Gauss-Hermite quadrature points in the integral.

within a 10−4
disrepany at most) to the values given by a numerial eval-

uation of Eq. (D.2). The number of quadrature points plotted as a funtion

of basis size N0 is moderately large, and inreases steadily with N0. Further

below we will gauge the ost in omputational time inurred by the numerial

integration with these relatively large numbers of quadrature points.

We arry out a similar analysis for the radial omponent,V
(r)
ijkl, of the matrix

elements. In this ase, for a given basis size N0, the quantum numbers for

the radial matrix element V
(r)
ijkl in Eq. (3) take on all values suh that 0 ≤

2nr + |Λ| ≤ N0 with nr ≥ 0. As we did in Fig. 2 for the Cartesian omponent,

we ompare in Fig. 5 an exat (Mathematia) alulation of Eq. (20) to a

numerial integration of the radial omponent in Eq. (3) using double-preision

Gauss-Laguerre quadrature, for a basis size N0 = 8. In Fig. 5, the maximum

deviation between exat evaluation and numerial integration, plotted as a

funtion of the number N
quad

of quadrature points, is made arbitrarily small

with inreasing N
quad

values until the limits of mahine auray and roundo�

error are reahed for N
quad

≥ 48, where the maximum disrepany settles

above 1.3× 10−15
.
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Figure 3. Maximum deviation between the numerial alulation and exat Mathe-

matia evaluation of the matrix elements V
(z)
ijkl using the separation method in Eq.

(D.2), plotted as a funtion of basis size N0.

A omparison between exat (Mathematia) and double-preision numerial

evaluations of the separation-method result in Eq. (20) is plotted in Fig. 6 as

a funtion of basis size N0. The auray of the numerial evaluation learly

deteriorates with inreasing basis size, but remains quite good nevertheless,

reahing only a 1.2× 10−9
maximum deviation for N0 = 12. For pratial rea-

sons, we will use the numerial evaluation of Eq. (20) in the remainder of this

disussion, rather than the exat�but muh slower�Mathematia alulation.

The number of Gauss-Laguerre quadrature points needed to obtain a disrep-

any of 10−4
or less between the numerial integration and numerial separa-

tion method for V
(r)
ijkl matrix elements is plotted in Fig. 7 as a funtion of basis

size. As in Fig. 4 for the Cartesian matrix elements, the required number of

quadrature points is moderate and inreases with basis size. The impat of

these numbers of quadrature points on exeution time will be investigated

next.

We now ompare exeution times for the numerial integration and numerial

separation methods. The numerial integrations for the Cartesian and radial

omponents are performed with the number of quadrature points given in

Figs. 4 and 7, respetively, to ensure agreement to 10−4
or better with the
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Figure 4. Minimum number of Gauss-Hermite quadrature points needed to ahieve

10
−4

or better agreement between the numerial integration of the matrix elements

V
(z)
ijkl and their evaluation using the separation method in Eq. (D.2), plotted as a

funtion of basis size N0.

separation-method results. In order to speed up the numerial integrations,

the harmoni-osillator funtions are alulated at the appropriate quadrature

points and stored one and for all. A set of nested loops then evaluate the

multidimensional integrals by realling the stored values of the funtions as

the terms in the quadrature are summed. Likewise, for the alulations by the

separation method, the T , Ī, and F̄ oe�ients are alulated ahead of time

and realled as needed in the evaluation of the matrix elements using Eqs.

(D.2) and (20).

The alulations have been performed on a 2.13-GHz Pentium M proes-

sor in double-preision mode. The exeution times are plotted in Fig. 8 for

the z omponent of the matrix element, and in Fig. 9 for the radial ompo-

nent. The times plotted inlude the setup time needed to pre-alulate the

harmoni-osillator funtion values and separation oe�ients appropriate to

eah method. The di�erene in exeution times between the numerial and sep-

aration methods beome staggering with inreasing basis size. For large-sale

omputations requiring matrix-element alulations over a range of values of

the harmoni-osillator parameters b⊥ and bz, suh as maps of �ssion shapes

for a single nuleus or maps of nulear properties for large sets of nulei, diret
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Figure 5. Maximum deviation between the numerial integration of the matrix el-

ements V
(r)
ijkl and their exat evaluation using the separation method in Eq. (20)

with Mathematia for basis size N0 = 8, plotted as a funtion of the number of

Gauss-Laguerre quadrature points in the integral.

numerial integrations rapidly beome unfeasible without parallel mahines.

Even with parallel proessing, modern nulear-physis problems (e.g., the

mirosopi treatment of �ssion in a multidimensional olletive-oordinate

spae) will eventually overwhelm any given omputational resoure, and in

order to math the auray of the separation method, numerial integrals

will generally require an inordinate number of quadrature points.

4 Conlusion

We have derived expliit expressions for Gaussian matrix elements in a ylin-

drial harmoni-osillator basis, using the separation method. These expres-

sions have been tested against diret numerial integration and found to be

highly aurate and omputationally e�ient. These harateristis make the

separation method an invaluable tool for omputationally-intensive applia-

tions, suh as the mirosopi desription of �ssion. The work presented here

has wider relevane than to the Gaussian form, or to nulear-physis problems

alone. In partiular, the methodology used in the present derivations, whih
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Figure 6. Maximum deviation between the numerial alulation and exat Mathe-

matia evaluation of the matrix elements V
(r)
ijkl using the separation method in Eq.

(20), plotted as a funtion of basis size N0.

relies heavily on generating funtions, an be applied to other types of inter-

ations and a wider lass of basis states to derive analytial, omputationally-

e�ient expressions for matrix elements. For example, in future publiations,

we will apply the separation method to the Coulomb and Yukawa interations,

and extend the formalism to bases of displaed and two-enter deformed har-

moni osillators. These planned extensions to the separation formalism en-

large the range of appliations of the method to many problems of entral

importane in nulear, atomi, and moleular systems.

We wish to thank D. Gogny for invaluable guidane in the development of

the formalism and preparation of this manusript. This work was performed

under the auspies of the U.S. Department of Energy by Lawrene Livermore

National Laboratory under Contrat DE-AC52-07NA27344.

22



0 5 10 15
N

0

0

5

10

15

20

25
N

um
be

r 
of

 G
au

ss
-L

ag
ue

rr
e 

po
in

ts

Figure 7. Minimum number of Gauss-Laguerre quadrature points needed to ahieve

10
−4

or better agreement between the numerial integration of the matrix elements

V
(r)
ijkl and their evaluation using the separation method in Eq. (20), plotted as a

funtion of basis size N0.

A Mapping between Cartesian and polar oordinates for harmoni-

osillator funtions

In this setion, we derive an identity relating the harmoni-osillator funtions

expressed in two-dimensional Cartesian oordinates (x, y) to those in polar

oordinates (ρ, ϕ) where

ρ2= x2 + y2

tanϕ=
y

x

To this end, we will �rst need to derive generating funtions for the harmoni-

osillator funtions in the two oordinate systems.
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Figure 8. Comparison of total exeution times for the evaluation of V
(z)
ijkl by numerial

integration and by the separation method in Eq. (D.2), as a funtion of basis size

N0.

A.1 Generating funtion in Cartesian oordinates

In this appendix, we derive the generating funtion

e−t2+2tx/b−x2/(2b2) =
√

b
√
π

∞
∑

k=0

2k/2√
k!
tkΦk (x; b) (A.1)

for the Cartesian harmoni-osillator funtions in Eq. (7).

We begin with the generating funtion for Hermite polynomials (Eq. 8.957(1),

p. 1034 in [8℄), for arbitrary variables x and t,

e−t2+2tx =
∞
∑

k=0

tk

k!
Hk (x)

making the substitution x→ x/b in order to introdue the harmoni-osillator

parameter b,
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Figure 9. Comparison of total exeution times for the evaluation of V
(r)
ijkl by numerial

integration and by the separation method in Eq. (20), as a funtion of basis size N0.

e−t2+2tx/b =
∞
∑

k=0

tk

k!
Hk

(

x

b

)

Next, we introdue the Gaussian and normalization fators appearing in the

de�nition of the harmoni osillator funtion in Eq. (7)

e−x2/(2b2)e−t2+2tx/b =
∞
∑

k=0

tk

k!Nk
Nke

−x2/(2b2)Hk

(

x

b

)

or, in terms of the harmoni-osillator funtions,

e−t2+2tx/b−x2/(2b2) =
√

b
√
π

∞
∑

k=0

2k/2√
k!
tkΦk (x; b)
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A.2 Generating funtion in polar oordinates

Here, we derive a generating funtion for the polar harmoni-osillator fun-

tions de�ned in Eq. (4),

e−t2+2ρt cosϕ/b−ρ2/(2b2) = b
√
π

∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|
√

n! (n + |k|)!
Φn,k (ρ, ϕ; b) (A.2)

whih we also ast in the form

e−
~t2+2~ρ·~t/b−ρ2/(2b2) = b2

√

π

2

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|χn,k

(

~t
)

Φn,k (ρ, ϕ; b) (A.3)

where the funtions χn,k

(

~t
)

are de�ned by Eq. (A.9).

To derive a generating funtion for harmoni-osillator funtions in polar oor-

dinates, we begin with the generating funtion for Laguerre polynomials (Eq.

8.975(3), p. 1038 in [8℄), for arbitrary variables x and z, and α > −1

Jα

(

2
√
xz
)

ez (xz)−α/2=
∞
∑

n=0

zn

Γ (n+ α + 1)
Lα
n (x) (A.4)

In order to math the de�nition of the harmoni-osillator funtion in Eq. (5),

we substitute

√
x = ρ/b,

√
z = −it, and α = |k| where k is an integer. Then,

isolating the Bessel funtion on the left-hand side, Eq. (A.4) takes the form

J|k| (−2iρt/b) = et
2

(−i)|k|
(

ρt

b

)|k| ∞
∑

n=0

(−1)n t2n
(n+ |k|)!L

|k|
n

(

ρ2

b2

)

(A.5)

On the other hand, the generating funtion for a Bessel funtion of the �rst

kind for arbitrary z and ϕ is (Eq. 8.511(4), p. 973 in [8℄)

eiz cosϕ =
∞
∑

k=−∞
ikJk (z) e

ikϕ

=
∞
∑

k=−∞
i|k|J|k| (z) e

ikϕ
(A.6)

where the seond line follows from Eq. 8.404(2) in [8℄. Substituting z =
−2iρt/b2 into Eq. (A.6),
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e2ρt cosϕ/b =
∞
∑

k=−∞
i|k|J|k|

(

−2iρt
b

)

eikϕ (A.7)

Finally, plugging Eq. (A.5) into Eq. (A.7) yields

e2ρt cosϕ/b = et
2

∞
∑

k=−∞
(−i)|k| i|k|

(

ρt

b

)|k|

×
∞
∑

n=0

(−1)n t2n
(n+ |k|)!L

|k|
n

(

ρ2

b2

)

eikϕ

where the right-hand side an be made to look more like the harmoni-

osillator funtion de�nition in Eq. (5),

e−t2+2ρt cosϕ/b =
∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|

(n + |k|)!

√
2πeρ

2/(2b2)

Nn,|k|

×
[

Nn,|k|

(

ρ

b

)|k|
e−ρ2/(2b2)L|k|

n

(

ρ2

b2

)

eikϕ√
2π

]

or, after straightforward simpli�ations,

e−t2+2ρt cosϕ/b−ρ2/(2b2) = b
√
π

∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|
√

n! (n+ |k|)!
Φn,k (ρ, ϕ; b)

Note that there is a potential ambiguity in the meaning of the angle ϕ in

Eq. (A.2). In fat, Eq. (A.2) was derived for any arbitrary value of ϕ but on

left-hand side, the term ρt cosϕ in the exponent suggests a dot produt ~ρ · ~t
with ϕ the angle between the vetors, while on the right-hand side, writing the

harmoni-osillator funtion Φn,k (ρ, ϕ; b) suggests that ϕ is the polar angle of

the vetor ~ρ. To lift this apparent ambiguity, we introdue the polar angle ϕt

of vetor

~t expliitly by noting that if θ is the angle between vetors ~ρ and

~t
with θ = ϕ− ϕt, then aording to Eq. (4)

Φn,k (ρ, θ; b) =Φn,|k| (ρ; b)
eikθ√
2π

and therefore

Φn,k (ρ, θ; b) =Φn,k (ρ, ϕ; b) e
−ikϕt

(A.8)

Writing the left-hand side of Eq. (A.2) in vetor form, we now have
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e−
~t2+2~ρ·~t/b−ρ2/(2b2) = b

√
π

∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|
√

n! (n + |k|)!
e−ikϕtΦn,k (ρ, ϕ; b)

For onveniene, we introdue the funtion

χn,k

(

~t
)

≡ (−1)n
n!

t2n+|k|e−ikϕt
(A.9)

whih allows us to write the generating funtion for polar harmoni-osillator

funtions as

e−
~t2+2~ρ·~t/b−ρ2/(2b2) = b2

√

π

2

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|χn,k

(

~t
)

Φn,k (ρ, ϕ; b)

This form will be onvenient for some derivations, and we will obtain useful

properties of the funtion χn,k

(

~t
)

in setion A.5.

A.3 Polar-to-Cartesian mapping

Having derived generating funtions for the harmoni-osillator funtions in

both polar and Cartesian oordinates, we an now obtain a relation between

the two,

Φnx
(x; b) Φny

(y; b) =
nx+ny
∑

k=−nx−ny,2

C
nx,ny

n,k Φnx+ny−|k|

2
,k
(ρ, ϕ; b) (A.10)

where the oe�ients C
nx,ny

n,k are given by Eq. (A.17).

In order to relate the polar and Cartesian harmoni-osillator funtions we will

use Eqs. (A.1) and (A.2). We will assume axial symmetry and use the same

parameter b for all the oordinates involved. Consider the arbitrary vetors

~ρ = xx̂ + yŷ and

~t = txx̂ + ty ŷ in the two-dimensional Cartesian oordinate

system, with ~ρ ·~t = ρt cos θ. Note that we are using the symbol θ for the angle
between vetors ~ρ and

~t. We an write

e−t2x+2txx/b−x2/(2b2)e−t2y+2tyy−y2/(2b2) = e−t2+2ρt cos θ/b−ρ2/(2b2)

Using Eqs. (A.1) and (A.2), this an also be written as
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b
√
π

∞
∑

nx=0

∞
∑

ny=0

2(nx+ny)/2

√

nx!ny!
tnx

x tny

y Φnx
(x; b) Φny

(y; b)

= b
√
π

∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|
√

n! (n + |k|)!
Φn,k (ρ, θ; b) (A.11)

We must now equate the terms on the left-hand side to those on the right-

hand side. We would like to introdue the polar angle ϕ of the vetor ~ρ instead
of the angle θ between ~ρ and

~t in these expressions, beause the �nal result

should be ompletely independent of the hoie of vetor

~t. Using Eq. (A.8),

Eq. (A.11) beomes

∞
∑

nx=0

∞
∑

ny=0

2(nx+ny)/2

√

nx!ny!

(

tx
b

)nx
(

ty
b

)ny

Φnx
(x; b) Φny

(y; b)

=
∞
∑

k=−∞

∞
∑

n=0

(−1)n
√

n! (n + |k|)!

(

t

b

)2n+|k|
e−ikϕtΦn,k (ρ, ϕ; b) (A.12)

All we have to do now is identify terms on the left- and right-hand sides. We

an establish this orrespondene by expressing t and ϕt in terms of tx and ty.
To this end, we write

t2n+|k|e−ikϕt = t2n
(

te−iskϕt

)|k|

where we have introdued the sign quantity

sk≡






1 k ≥ 0

−1 k < 0
(A.13)

Note that we an write

te−iskϕt = t cos (skϕt)− it sin (skϕt)

= t cosϕt − iskt sinϕt

= tx − iskty

where the seond line follows beause sk = ±1. Thus we have

t2n+|k|e−ikϕt =
(

t2x + t2y
)n

(tx − iskty)
|k|

=
n
∑

p=0

|k|
∑

q=0







n

p













|k|
q





 (−isk)|k|−q t2p+q
x t2n+|k|−2p−q

y
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We substitute this result into the right-hand side of Eq. (A.12) to get

RHS=
∞
∑

k=−∞

∞
∑

n=0

(−1)n
√

n! (n+ |k|)!







n
∑

p=0

|k|
∑

q=0







n

p













|k|
q





 (−isk)|k|−q

×t2p+q
x t2n+|k|−2p−q

y

]

Φn,k (ρ, ϕ; b) (A.14)

Comparing with the left-hand side of Eq. (A.12), we see that we will need to

make the identi�ations

2p+ q=nx

2n+ |k| − 2p− q=ny

whih also implies the important relation

nx + ny =2n+ |k| (A.15)

We wish to replae the sums in Eq. (A.14) over n and p with sums over nx

and ny. Sine nx = 2p+q, it is lear that nx will span the full range of integers

starting with 0. Similarly, Eq. (A.15) implies that ny = 2n + |k| − nx and for

any nx, there will always be a set of n and k values suh that ny spans the

full range of integers from 0, independently of the value of index nx. Thus we

an make the substitution

∞
∑

n=0

n
∑

p=0

→
∞
∑

nx=0

∞
∑

ny=0

Next, we note that Eq. (A.15) an also be written as 2n = nx + ny − |k|, and
sine n ≥ 0, we must therefore have |k| ≤ nx + ny. Finally, 2p = nx − q, and
sine p ≥ 0, we onlude that q ≤ nx. Thus we an also make the substitution

∞
∑

k=−∞

|k|
∑

q=0

→
nx+ny
∑

k=−nx−ny

min(nx,|k|)
∑

q=0

and Eq. (A.14) beomes

RHS=
∞
∑

nx=0

∞
∑

ny=0





nx+ny
∑

k=−nx−ny,2

min(nx,|k|)
∑

q=0

(−1)(nx+ny−|k|)/2 (−isk)|k|−q

√

nx+ny−|k|
2

!nx+ny+|k|
2

!

×







nx+ny−|k|
2

nx−q
2













|k|
q





Φnx+ny−|k|

2
,k
(ρ, ϕ; b)





 tnx

x tny

y (A.16)
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Note that in the sum over k, the index an be stepped by 2 units at a time,

beause of the restritions imposed by the fatorials. Comparing the left-hand

side of Eq. (A.12), and its right-hand side given by Eq. (A.16), we dedue

2(nx+ny)/2

√

nx!ny!
Φnx

(x; b) Φny
(y; b)=

nx+ny
∑

k=−nx−ny,2

min(nx,|k|)
∑

q=0

(−1)(nx+ny−|k|)/2 (−isk)|k|−q

√

nx+ny−|k|
2

!nx+ny+|k|
2

!

×







nx+ny−|k|
2

nx−q
2













|k|
q





Φnx+ny−|k|

2
,k
(ρ, ϕ; b)

or, in more ompat notation,

Φnx
(x; b) Φny

(y; b)=
nx+ny
∑

k=−nx−ny,2

C
nx,ny

n,k Φnx+ny−|k|

2
,k
(ρ, ϕ; b)

where

C
nx,ny

n,k ≡
√

nx!ny!

2(nx+ny)/2

(−1)(nx+ny−|k|)/2
√

nx+ny−|k|
2

!nx+ny+|k|
2

!

min(nx,|k|)
∑

q=0

(−isk)|k|−q







nx+ny−|k|
2

nx−q
2













|k|
q







(A.17)

The appearane of the index n in the symbol C
nx,ny

n,k , even though it is not

expliitly used, serves as a reminder of the impliit relation between the indies

given by Eq. (A.15).

A.4 Cartesian-to-polar mapping

In this setion,we derive the inverse transformation orresponding to Eq.

(A.10),

Φn,k (ρ, ϕ; b) =
2n+|k|
∑

ny=0

Cn,k
nx,ny

Φ2n+|k|−ny
(x; b) Φny

(y; b) (A.18)

whih expresses the polar harmoni-osillator funtions in terms of the Carte-

sian funtions. The oe�ients Cn,k
nx,ny

are given by Eq. (A.21).

We start again from Eq. (A.12), but this time, we express tx and ty on the

left-hand side in terms of t and ϕt. Consider then
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tnx

x tny

y =(t cosϕt)
nx (t sinϕt)

ny

= tnx+ny

(

eiϕt + e−iϕt

2

)nx
(

eiϕt − e−iϕt

2i

)ny

Expanding the powers and grouping terms yields

tnx

x tny

y =
tnx+ny

2nx+ny iny

nx
∑

p=0

ny
∑

q=0







nx

p













ny

q





 (−1)ny−q e−i(nx+ny−2p−2q)ϕt

Substituting into the left-hand side of Eq. (A.12) produes

LHS=
∞
∑

nx=0

∞
∑

ny=0

tnx+ny

√

nx!ny!2(nx+ny)/2iny

nx
∑

p=0

ny
∑

q=0







nx

p













ny

q





 (−1)ny−q

×e−i(nx+ny−2p−2q)ϕtΦnx
(x; b) Φny

(y; b)

Comparing with the right-hand side of Eq. (A.12) we see that we need to make

the identi�ations

nx + ny =2n+ |k| (A.19)

nx + ny − 2p− 2q= k (A.20)

we therefore introdue a summation over n and k with the help of Kroneker-

delta funtions,

LHS=
∞
∑

n=0

∞
∑

k=−∞
t2n+|k|e−ikϕt2−(nx+ny)/2

∞
∑

nx=0

∞
∑

ny=0

δnx+ny,2n+|k|

×Φnx
(x; b) Φny

(y; b)
√

nx!ny!iny

nx
∑

p=0

ny
∑

q=0

δ2p+2q,nx+ny−k







nx

p













ny

q





 (−1)ny−q

where the Kroneker-delta funtions ollet those terms in the remaining sum-

mations needed to satisfy Eqs. (A.19) and (A.20). The restritions imposed by

the Kroneker-delta funtions an be used to eliminate the summations over

nx and p
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LHS=
∞
∑

n=0

∞
∑

k=−∞
t2n+|k|e−ikϕt2−n−|k|/2

2n+|k|
∑

ny=0

Φ2n+|k|−ny
(x; b) Φny

(y; b)
√

(2n+ |k| − ny)!ny!iny

min(ny,n−q+(|k|−k)/2)
∑

q=0







2n+ |k| − ny

n− q + |k|−k
2













ny

q





 (−1)ny−q

Comparing with the right-hand side of Eq. (A.12) we dedue the relation

2−n−|k|/2
2n+|k|
∑

ny=0

Φ2n+|k|−ny
(x; b) Φny

(y; b)
√

(2n + |k| − ny)!ny!iny

×
qmax
∑

q=0







2n+ |k| − ny

n− q + |k|−k
2













ny

q





 (−1)ny−q =
(−1)n

√

n! (n + |k|)!
Φn,k (ρ, ϕ; b)

where

qmax≡min (ny, n+ (|k| − k) /2)

whih we write as

Φn,k (ρ, ϕ; b) =
2n+|k|
∑

ny=0

Cn,k
nx,ny

Φ2n+|k|−ny
(x; b) Φny

(y; b)

with

Cn,k
nx,ny

=
2−n−|k|/2 (−1)n

√

n! (n + |k|)!
√

(2n+ |k| − ny)!ny!iny

qmax
∑

q=0







2n+ |k| − ny

n− q + |k|−k
2













ny

q





 (−1)ny−q

(A.21)

The appearane of the index nx in the symbol Cn,k
nx,ny

, even though it is not

expliitly used, serves as a reminder of the impliit relation between the indies

given by Eq. (A.15).

A.5 Properties of the funtion χn,k

(

~t
)

In setion A.2 we introdued the funtion χn,k

(

~t
)

whih was used to obtain

a generating funtion for harmoni-osillator funtions in polar oordinates.

This funtion has many useful properties whih we will exploit in further
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derivations. In this setion, we obtain some important properties of χn,k

(

~t
)

.

From the de�nition of the χn,k

(

~t
)

funtion in Eq. (A.9),

χn,k

(

~t
)

≡ (−1)n
n!

t2n+|k|e−ikϕt

we an easily show that

t2mχn,k

(

~t
)

= (−1)m (n+m)!

n!
χn+m,k

(

~t
)

(A.22)

As a orollary, we an use Eq. (A.22) to show

eat
2

χn,k

(

~t
)

=
∞
∑

m=0

(−a)m (n +m)!

m!n!
χn+m,k

(

~t
)

(A.23)

The omplex onjugate of χn,k

(

~t
)

is also readily expressed as

χ∗
n,k

(

~t
)

= χn,−k

(

~t
)

(A.24)

and a sale fator an be fatored out,

χn,k

(

a~t
)

= a2n+|k|χn,k

(

~t
)

(A.25)

Next, We will use the funtion χn,k, to expand the expression exp
(

2~t1 · ~t2
)

.

Starting with the generating funtion for Bessel funtions of the �rst kind, Eq.

(A.6) with z = −2it1t2 and ϕ = ϕ1 − ϕ2,

e2
~t1·~t2 =

∞
∑

k=−∞
i|k|J|k| (−2it1t2) eik(ϕ1−ϕ2)

(A.26)

Next, we use the series expansion for Bessel funtions (Eq. 8.440 in [8℄),

Jν (z) =
(

z

2

)ν ∞
∑

k=0

(−1)k
k! (ν + k)!

(

z

2

)2k

to write Eq. (A.26) as
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e2
~t1·~t2 =

∞
∑

k=−∞
i|k|eik(ϕ1−ϕ2) (−it1t2)|k|

∞
∑

n=0

(−1)n (−it1t2)2n
n! (|k|+ n)!

=
∞
∑

n=0

∞
∑

k=−∞

1

n! (|k|+ n)!
(t1t2)

2n+|k| eik(ϕ1−ϕ2)

or,

e2
~t1·~t2 =

b2

2

∞
∑

n=0

∞
∑

k=−∞
N 2

n,|k| (b)χ
∗
n,k

(

~t1
)

χn,k

(

~t2
)

(A.27)

where Nnr,|Λ| (b) is given by Eq. (6), and the osillator parameter b anels out
in the right-hand side. Next, we derive an expression for the produt of two

χn,k funtions, using the de�nition in Eq. (A.9)

χn1,k1

(

~t
)

χn2,k2

(

~t
)

=
(−1)n1+n2

n1!n2!
t2n1+2n2+|k1|+|k2|e−i(k1+k2)ϕt

(A.28)

at this point, it is onvenient to de�ne the quantities

n1,2≡n1 + n2 +
|k1|+ |k2| − |k1 + k2|

2
(A.29)

k1,2≡
|k1|+ |k2| − |k1 + k2|

2
(A.30)

whih reur throughout the paper. Then Eq. (A.28) beomes

χn1,k1

(

~t
)

χn2,k2

(

~t
)

=(−1)−k1,2 n1,2!

n1!n2!

(−1)n1,2

n1,2!
t2n1,2+|k1+k2|e−i(k1+k2)ϕt

or,

χn1,k1

(

~t
)

χn2,k2

(

~t
)

= (−1)k1,2 n1,2!

n1!n2!
χn1,2,k1+k2

(

~t
)

(A.31)

Next, we obtain an expression for the funtion χn,k

(

~t1 + ~t2
)

of a sum of ve-

tors. We write for an arbitrary vetor

~t

e2(
~t1+~t2)·~t= e2

~t1·~te2
~t2·~t

(A.32)

Using Eq. (A.27), the left-hand side is

LHS=
b2

2

∞
∑

n=0

∞
∑

k=−∞
N 2

n,|k| (b)χ
∗
n,k

(

~t1 + ~t2
)

χn,k

(

~t
)

(A.33)
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while the right-hand side of Eq. (A.32) is

RHS=
b4

4

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
N 2

n1,|k1| (b)N 2
n2,|k2| (b)

×χ∗
n1,k1

(

~t1
)

χ∗
n2,k2

(

~t2
)

χn1,k1

(

~t
)

χn2,k2

(

~t
)

Using Eq. (A.31), this redues to

RHS=
b4

4

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
N 2

n1,|k1| (b)N 2
n2,|k2| (b) (−1)

k1,2 n1,2!

n1!n2!

×χ∗
n1,k1

(

~t1
)

χ∗
n2,k2

(

~t2
)

χn1,2,k1+k2

(

~t
)

In order to ompare with Eq. (A.33), we introdue summations over the indies

n and k with the help of Kroneker-delta funtions,

RHS=
b4

4

∞
∑

n=0

∞
∑

k=−∞

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
N 2

n1,|k1| (b)N 2
n2,|k2| (b) (−1)

k1,2 n1,2!

n1!n2!

×χ∗
n1,k1

(

~t1
)

χ∗
n2,k2

(

~t2
)

δn,n1,2δk,k1+k2χn,k

(

~t
)

(A.34)

Comparing Eqs. (A.33) and (A.34) for an arbitrary vetor

~t, and taking the

omplex onjugate, we are lead to write

χn,k

(

~t1 + ~t2
)

=
∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
Dn,k

n1,k1;n2,k2
χn1,k1

(

~t1
)

χn2,k2

(

~t2
)

(A.35)

where

Dn,k
n1,k1;n2,k2

= (−1)n1+n2−n (n + |k|)!
(n1 + |k1|)! (n2 + |k2|)!

δn,n1,2δk,k1+k2 (A.36)

Note that we have used the ondition imposed by the Kroneker-delta funtion

δn,n1,2 and the de�nition of n1,2 in Eq. (A.29) to write

(−1)k1,2 =(−1)n1+n2−n

Finally, we derive an expansion for the produt exp
(

2~t1 · ~t2
)

χn,k

(

~t1 + ~t2
)

.

Though it is tempting to use Eq. (A.27) for this, we will adopt a di�erent

approah whih will yield a simpler expression in the end. We write
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e2
~t1·~t2/b2χn,k

(

~t1 + ~t2
)

= e(
~t1+~t2)

2

e−(t
2
1+t22)χn,k

(

~t1 + ~t2
)

We treat the �rst exponential on the right-hand side using Eq. (A.23), so that

e2
~t1·~t2χn,k

(

~t1 + ~t2
)

= e−(t
2
1+t22)

∞
∑

m=0

(−1)m (n +m)!

m!n!
χn+m,k

(

~t1 + ~t2
)

Next, we use Eq. (A.35) to expand the χn+m,k

(

~t1 + ~t2
)

funtion

e2
~t1·~t2χn,k

(

~t1 + ~t2
)

= e−(t
2
1+t22)

∞
∑

m=0

(−1)m (n +m)!

m!n!

×
∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
Dn+m,k

n1,k1;n2,k2

×χn1,k1

(

~t1
)

χn2,k2

(

~t2
)

and use Eq. (A.23) again to eliminate the remaining exponential on the right-

hand side

e2
~t1·~t2χn,k

(

~t1 + ~t2
)

=
∞
∑

m1=0

∞
∑

m2=0

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
Dn,k

n1,k1,m1;n2,k2,m2

×χn1+m1,k1

(

~t1
)

χn2+m2,k2

(

~t2
)

(A.37)

where we have de�ned

Dn,k
n1,k1,m1;n2,k2,m2

≡
∞
∑

m=0

(−1)m (n+m)! (n1 +m1)! (n2 +m2)!

m!n!m1!n1!m2!n2!
Dn+m,k

n1,k1;n2,k2

=
∞
∑

m=0

(−1)n1+n2−n (n+m)! (n1 +m1)! (n2 +m2)!

m!n!m1!n1!m2!n2!

× (n +m+ |k|)!
(n1 + |k1|)! (n2 + |k2|)!

δn+m,n1,2δk,k1+k2

whih simpli�es to

Dn,k
n1,k1,m1;n2,k2,m2

≡ n1,2! (n1 +m1)! (n2 +m2)! (n1,2 + |k1 + k2|)!
(n1,2 − n)!n!m1!n1!m2!n2! (n1 + |k1|)! (n2 + |k2|)!
× (−1)n1+n2−n δn≤n1,2δk,k1+k2 (A.38)

Note the disappearane of the in�nite sum over m in favor of the Kroneker-

delta funtion δn≤n1,2 .
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B Deomposition of two-body Gaussian form

Consider the two-body Gaussian potential funtion in ylindrial oordinates

V (~r1, ~r2)= e−(~r1−~r2)
2/µ2

= e−(~ρ1−~ρ2)
2/µ2

e−(z1−z2)
2/µ2

The ritial �rst step in the separation method for harmoni-osillator matrix

elements is to write the potential itself in a form where the dependene on the

oordinates ~r1 and ~r2 has been expliitly separated. We will therefore write

this two-body funtion as a sum of one-body funtions in the two oordinates.

Note that the resulting sum will ontain and in�nite number of terms, while

the matrix elements of the potential will be limited to a �nite sum, thanks to

properties of the harmoni-osillator funtions.

B.1 Cartesian omponent

The radial and Cartesian omponents of the potential an be expanded inde-

pendently. We begin with the Cartesian term and postulate

V (z1, z2) = e−(z1−z2)
2/µ2

≡
∞
∑

nz=0

fnz
(z1; bz) Φ̂nz

(z2; bz)

hoosing for the expansion the funtions

Φ̂nz
(z; bz) ≡ ez

2/(2b2z)Φnz
(z; bz) (B.1)

We will now show that

fnz
(z1; bz) = K1/2

z λnz
e−z21/(2Gzb2z)Φnz

(

z1;G
1/2
z bz

)

(B.2)

where the oe�ients Kz and λnz
are given by Eqs. (B.5) and (B.6), respe-

tively.

The exponential funtion in z2 in front of the harmoni-osillator funtion on

the left-hand side has been added for omputational onveniene, as we shall

see. Then, by orthogonality of the harmoni-osillator funtions, we have
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∫ ∞

−∞
dz2e

−z22/(2b2z)Φnz
(z2; bz) V (z1, z2) =

∫ ∞

−∞
dz2e

−z22/(2b2z)Φnz
(z2; bz)

×




∞
∑

n′
z=0

fn′
z
(z1; bz) Φ̂n′

z
(z2; bz)





= fnz
(z1; bz)

from whih we obtain an expliit expression for the weight funtion fnz
(z1; bz),

fnz
(z1; bz) =

∫ ∞

−∞
dz2e

−z22/(2b2z)Φnz
(z2; bz) V (z1, z2)

=Nnz

∫ ∞

−∞
dz2e

−z22/b
2
ze−(z1−z2)

2/µ2

Hnz

(

z2
bz

)

(B.3)

Completing the square, we write

−z
2
2

b2z
− (z1 − z2)

2

µ2
=−

[

G1/2
z

z2
µ
−G−1/2

z

z1
µ

]2

−
(

1− 1

Gz

)

(

z1
µ

)2

where we have de�ned

Gz≡ 1 +
µ2

b2z
(B.4)

and the integral beomes

fnz
(z1; bz) =Nnz

exp



−
(

1− 1

Gz

)

(

z1
µ

)2




×
∫ ∞

−∞
dz2 exp



−
(

G1/2
z

z2
µ
−G−1/2

z

z1
µ

)2


Hnz

(

z2
bz

)

Making the substitutions x ≡ G1/2
z z2/µ, y ≡ G−1/2

z z1/µ, α ≡ G−1/2
z µ/bz, the

remaining integral an be evaluated using Eq. 7.374(8), p. 837 in [8℄,

fnz
(z1; bz) =µG−1/2

z Nnz
π1/2

(

1− α2
)nz/2

exp
[

− (Gz − 1) y2
]

×Hnz

(

αy√
1− α2

)

After some straightforward algebra and re-grouping of terms, this an be writ-

ten as
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fnz
(z1; bz) =π1/2µG−1/2

z G−nz/2
z e−z21/(2Gzb2z)G1/4

z

×
[

1

G
1/4
z

Nnz
e−z21/(2Gzb2z)Hnz

(

z1

G
1/2
z bz

)]

or, identifying the term in the square brakets with a harmoni-osillator fun-

tion with parameterG1/2
z bz (note the extra fatorG

1/4
z needed to get the proper

normalization onstant Nnz

(

G1/2
z bz

)

),

fnz
(z1; bz) =K1/2

z λnz
e−z21/(2Gzb2z)Φnz

(

z1;G
1/2
z bz

)

where

Kz≡
πµ2

G
1/2
z

(B.5)

λnz
≡G−nz/2

z (B.6)

B.2 Radial omponent

For the radial omponent of the Gaussian potential, we write

V (~ρ1, ~ρ2) = e−(~ρ1−~ρ2)
2/µ2

≡
∞
∑

nr=0

∞
∑

Λ=−∞
fnr ,Λ (ρ1, ϕ1; b⊥) Φ̂nr,Λ (ρ2, ϕ2; b⊥)

where we have hosen

Φ̂nr ,Λ (ρ, ϕ; b⊥) ≡ e
ρ2

2b2
⊥ Φnr ,Λ (ρ, ϕ; b⊥) (B.7)

We will then show that

fnr ,Λ (ρ1, ϕ1; b⊥) = K⊥λ2nr+|Λ|e
−ρ21/(2G⊥b2

⊥)Φnr ,Λ

(

ρ1, ϕ1;G
1/2
⊥ b⊥

)

(B.8)

where the oe�ients K⊥ and λ2nr+|Λ| are given by Eqs. (B.11) and (B.12),

respetively.

By orthogonality of the harmoni-osillator funtion we then have

fnr ,Λ (ρ1, ϕ1; b⊥)=
∫ ∞

0
ρ2dρ2

∫ 2π

0
dϕ2e

− ρ2
2

2b2
⊥ e−(~ρ1−~ρ2)

2/µ2

Φnr,Λ (ρ2, ϕ2; b⊥)
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This integral an be evaluated in a straightforward way by transforming to a

Cartesian oordinate system, and using Eq. (A.18),

fnr ,Λ (ρ1, ϕ1; b⊥)=
∫ ∞

−∞
dx2

∫ ∞

−∞
dy2e

−x22+y22
2b2

⊥ e−(x1−x2)
2/µ2−(y1−y2)

2/µ2

×
2nr+|Λ|
∑

ny=0

Cnr ,Λ
nx,ny

Φ2nr+|Λ|−ny
(x2; b⊥) Φny

(y2; b⊥)

=
2nr+|Λ|
∑

ny=0

Cnr ,Λ
nx,ny





∫ ∞

−∞
dx2e

− x2
2

2b2
⊥ e−(x1−x2)

2/µ2

Φ2nr+|Λ|−ny
(x2; b⊥)





×




∫ ∞

−∞
dy2e

− y2
2

2b2
⊥ e−(y1−y2)

2/µ2

Φny
(y2; b⊥)





The integrals in the square brakets are preisely those appearing in Eq. (B.3),

and they are given by Eq. (B.2)

fnr ,Λ (ρ1, ϕ1; b⊥)=
2nr+|Λ|
∑

ny=0

Cnr ,Λ
nx,ny

[

K
1/2
⊥ λ2nr+|Λ|−ny

e−x2
1/(2G⊥b2

⊥)

Φ2nr+|Λ|−ny

(

x1;G
1/2
⊥ b⊥

)]

[

K
1/2
⊥ λny

e−y21/(2G⊥b2
⊥)Φny

(

y1;G
1/2
⊥ b⊥

)

]

(B.9)

where

G⊥≡ 1 +
µ2

b2⊥
(B.10)

K⊥≡
πµ2

G
1/2
⊥

(B.11)

λn≡G
−n/2
⊥ (B.12)

and Eq. (B.9) an be further redued to

fnr ,Λ (ρ1, ϕ1; b⊥)=K⊥λ2nr+|Λ|e
−ρ21/(2G⊥b2

⊥)

2nr+|Λ|
∑

ny=0

Cnr ,Λ
nx,ny

Φ2nr+|Λ|−ny

(

x1;G
1/2
⊥ b⊥

)

Φny

(

y1;G
1/2
⊥ b⊥

)

Finally, using Eq. (A.18) again to return to polar oordinates, we get

fnr ,Λ (ρ1, ϕ1; b⊥)=K⊥λ2nr+|Λ|e
−ρ21/(2G⊥b2

⊥)Φnr ,Λ

(

ρ1, ϕ1;G
1/2
⊥ b⊥

)
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C Produt of harmoni-osillator funtions

In this setion, we will express the produt of two harmoni-osillator funtions

in terms of a sum of single osillator funtions. These results will be parti-

ularly useful in evaluating integrals where the integrand inludes produts of

harmoni-osillator funtions.

C.1 Produt of Cartesian harmoni-osillator funtions

In this setion, we derive the form

Φk1 (x; b) Φk2 (x; b) =
e−x2/(2b2)
√

b
√
π

k1+k2
∑

k=|k1−k2|,2
T k
k1,k2

Φk (x; b) (C.1)

for the Cartesian harmoni-osillator funtions of Eq. (7), with the oe�ients

T k
k1,k2

given by Eq. (C.6).

Using the generating funtion in Eq. (A.1), we write for any arbitrary variables

t1 and t2,

e−t21+2t1x/b−x2/(2b2)e−t22+2t2x/b−x2/(2b2)

=





√

b
√
π

∞
∑

k1=0

2k1/2√
k1!

tk11 Φk1 (x; b)





×




√

b
√
π

∞
∑

k2=0

2k2/2√
k2!

tk22 Φk2 (x; b)





(C.2)

With the intent of manipulating the left-hand side of this equation into a form

similar to the left-hand side of Eq. (A.1), we write

LHS= e−t21−t22+2(t1+t2)x/b−x2/b2

= e−(t1+t2)
2+2(t1+t2)x/b−x2/(2b2)e2t1t2−x2/(2b2)

Using Eq. (A.1), this beomes
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LHS= e2t1t2−x2/(2b2)
√

b
√
π

∞
∑

k=0

2k/2√
k!

(t1 + t2)
k Φk (x; b)

=
√

b
√
πe−x2/(2b2)

∞
∑

k=0

2k/2√
k!
Φk (x; b)

∞
∑

p=0

(2t1t2)
p

p!

×
k
∑

q=0







k

q





 tq1t
k−q
2

=
√

b
√
πe−x2/(2b2)

∞
∑

k=0

2k/2√
k!
Φk (x; b)

×
k
∑

q=0







k

q







∞
∑

p=0

2p

p!
tq+p
1 tk+p−q

2 (C.3)

We an also group the terms in the right-hand side of Eq. (C.2),

RHS= b
√
π

∞
∑

k1=0

∞
∑

k2=0

2(k1+k2)/2

√
k1!k2!

tk11 tk22 Φk1 (x; b) Φk2 (x; b) (C.4)

Now we equate powers of t1 and t2 between Eqs. (C.3) and (C.4). We �nd that

we must make the identi�ations

q + p= k1
k + p− q= k2

whih lead to

p=(k1 + k2 − k) /2

q=(k1 − k2 + k) /2

so that Eq. (C.3) an be written

LHS=
√

b
√
πe−x2/(2b2)

k1+k2
∑

k=|k1−k2|,2

2k/2√
k!
Φk (x; b)

×
∞
∑

k1=0

∞
∑

k2=0







k

k1−k2+k
2







2(k1+k2−k)/2

(

k1+k2−k
2

)

!
tk11 tk22 (C.5)

Note that the limits and step size for the summation over k are ditated by

the need to keep the arguments of the fatorials non-negative. In partiular,

the �2� appearing in the lower limit of the sum over k indiates that the index
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should be inremented by steps of 2. Diret omparison of Eqs. (C.4) and

(C.5) now yields

√

b
√
πe−x2/(2b2)

k1+k2
∑

k=|k1−k2|,2

2(k1+k2)/2
√
k!

(

k1−k2+k
2

)

!
(

k2−k1+k
2

)

!
(

k1+k2−k
2

)

!
Φk (x; b)

= b
√
π
2(k1+k2)/2

√
k1!k2!

Φk1 (x; b) Φk2 (x; b)

whih leads to

Φk1 (x; b) Φk2 (x; b) =
e−x2/(2b2)
√

b
√
π

k1+k2
∑

k=|k1−k2|,2
T k
k1,k2

Φk (x; b)

where

T k
k1,k2 ≡

√
k1!k2!k!

(

k1−k2+k
2

)

!
(

k2−k1+k
2

)

!
(

k1+k2−k
2

)

!
(C.6)

C.2 Produt of radial harmoni-osillator funtions

Here, we obtain the relation

Φn1,k1 (ρ, ϕ; b) Φn2,k2 (ρ, ϕ; b) =
e−ρ2/(2b2)
√
πb

n1,2
∑

n=0

T n,k1+k2
n1,k1;n2,k2

Φn,k1+k2 (ρ, ϕ; b)

(C.7)

between the harmoni-osillator funtions in polar oordinates de�ned in Eq.

(4). The expansion oe�ients T n,k1+k2
n1,k1;n2,k2

are de�ned by Eq. (C.9).

Starting from the generating funtion in Eq. (A.3), and for arbitrary vetors

~t1 and ~t2

e−
~t21+2~ρ·~t1/b−ρ2/(2b2)e−

~t22+2~ρ·~t2/b−ρ2/(2b2)

=



b2
√

π

2

∞
∑

k1=−∞

∞
∑

n1=0

Nn1,|k1|χn1,k1

(

~t1
)

Φn1,k1 (ρ, ϕ; b)





×


b2
√

π

2

∞
∑

k2=−∞

∞
∑

n2=0

Nn2,|k2|χn2,k2

(

~t2
)

Φn2,k2 (ρ, ϕ; b)





(C.8)

The left-hand side an be written
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LHS= e−(
~t1+~t2)

2
+2~ρ·(~t1+~t2)/b−ρ2/(2b2)e2

~t1·~t2−ρ2/(2b2)

Using Eq. (A.3) again to expand the �rst exponential, we get

LHS= e2
~t1·~t2−ρ2/(2b2)b2

√

π

2

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|χn,k

(

~t1 + ~t2
)

Φn,k (ρ, ϕ; b)

and using Eq. (A.37) to absorb the remaining exponential,

LHS= b2
√

π

2
e−ρ2/(2b2)

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|Φn,k (ρ, ϕ; b)

×
∞
∑

m1=0

∞
∑

m2=0

∞
∑

p1=0

∞
∑

k1=−∞

∞
∑

p2=0

∞
∑

k2=−∞
Dn,k

p1,k1,m1;p2,k2,m2

×χp1+m1,k1

(

~t1
)

χp2+m2,k2

(

~t2
)

Comparing with the right-hand side of Eq. (C.8) for arbitrary vetors

~t1 and
~t2, we make the identi�ations

p1 +m1=n1

p2 +m2=n2

and write the left-hand side as

LHS= b2
√

π

2
e−ρ2/(2b2)

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|Φn,k (ρ, ϕ; b)

×
∞
∑

m1=0

∞
∑

m2=0

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
Dn,k

n1−m1,k1,m1;n2−m2,k2,m2

×χn1,k1

(

~t1; b
)

χn2,k2

(

~t2; b
)

Comparing again with the right-hand side of Eq. (C.8), we readily dedue

b4
π

2
Nn1,|k1|Nn2,|k2|Φn1,k1 (ρ, ϕ; b) Φn2,k2 (ρ, ϕ; b)

= b2
√

π

2
e−ρ2/(2b2)

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|Φn,k (ρ, ϕ; b)

×
∞
∑

m1=0

∞
∑

m2=0

Dn,k
n1−m1,k1,m1;n2−m2,k2,m2

The sum over k disappears beause of the Kroneker-delta funtion inside the

D oe�ient in Eq. (A.38) restriting the value of k to k1 + k2, and the sum
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over n is ut o� at n = n1,2, beause of the other Kroneker-delta funtion in

Eq. (A.38) restriting its value. Therefore,

Φn1,k1 (ρ, ϕ; b)Φn2,k2 (ρ, ϕ; b)=
e−ρ2/(2b2)

b2

√

2

π

n1,2
∑

n=0

Nn,|k1+k2|
Nn1,|k1|Nn2,|k2|

×




∞
∑

m1=0

∞
∑

m2=0

Dn,k1+k2
n1−m1,k1,m1;n2−m2,k2,m2





×Φn,k1+k2 (ρ, ϕ; b)

whih we write as

Φn1,k1 (ρ, ϕ; b)Φn2,k2 (ρ, ϕ; b)=
e−ρ2/(2b2)
√
πb

n1,2
∑

n=0

T n,k1+k2
n1,k1;n2,k2

Φn,k1+k2 (ρ, ϕ; b)

The oe�ients T n,k1+k2
n1,k1;n2,k2

are obtained from Eq. (A.38), being areful to make

the substitutions n1 → n1 −m1 and n2 → n2 −m2 (and therefore, aording

to Eq. (A.29), n1,2 → n1,2 −m1 −m2 as well). Then,

T n,k1+k2
n1,k1;n2,k2

= (−1)n1+n2−n

√

√

√

√

n! (n1 + |k1|)! (n2 + |k2|)!
n1!n2! (n+ |k1 + k2|)!

n1
∑

m1=0

n2
∑

m2=0

(−1)m1+m2

×







n1

m1













n2

m2













n1,2 −m1 −m2

n







× (n1,2 + |k1 + k2| −m1 −m2)!

(n1 + |k1| −m1)! (n2 + |k2| −m2)!
δn≤n1,2−m1−m2

or, in more ompat notation,

T n,k1+k2
n1,k1;n2,k2

= (−1)n1+n2−n

√

√

√

√

n! (n1 + |k1|)! (n2 + |k2|)!
n1!n2! (n+ |k1 + k2|)!

×
n1
∑

m1=0

n2
∑

m2=0

δn≤n1,2−m1−m2C
n,k1+k2
n1,k1,m1;n2,k2,m2

(C.9)

with
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Cn,k1+k2
n1,k1,m1;n2,k2,m2

≡ (−1)m1+m2







n1

m1













n2

m2













n1,2 −m1 −m2

n







× (n1,2 + |k1 + k2| −m1 −m2)!

(n1 + |k1| −m1)! (n2 + |k2| −m2)!
(C.10)

Note again that the Kroneker-delta funtion δn≤n1,2−m1−m2 ensures that we

always have n ≤ n1,2, whih we used to limit the sum over n in Eq. (C.7).

D Formalism for large osillator shell number

In this setion, we derive the result in [9℄,

〈n1 |fn|n2〉=
µb−1/2

√
2π5/2

Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)

zξ
√
n!n1!n2!

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z) (D.1)

with ξ given by Eq. (D.6) and z by Eq. (D.10), for the numerially aurate

alulation of the matrix element 〈n1 |fn|n2〉 in Eq. (12) when large osillator-

shell numbers are involved. Note that our result di�ers slightly from [9℄ in that

a �b−1/2
� fators appears in Eq. (D.1) instead of �b1/2� (see disussion at the end

of this setion). The formula in Eq. (D.1) is preferred to the one in Eq. (19)

for large osillator-shell numbers, beause the latter requires the evaluation

of a sum of produts of large (T ) and small (Ī) oe�ients, whih an be

numerially unstable. We also obtain the orresponding matrix elements in

Eq. (10)

V
(z)
ijkl =

µ√
2π3bz

n
(j)
z +n

(l)
z

∑

nz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

T nz

n
(j)
z ,n

(l)
z

F̄ nz

n
(i)
z ,n

(k)
z

(D.2)

where the oe�ients F̄ nz

n
(i)
z ,n

(k)
z

are de�ned by Eq. (D.12).

Starting from the de�nition,

〈n1 |fn|n2〉=K1/2
z λn

∫ ∞

−∞
dzΦn1 (z; b) e

−z2/(2Gb2)Φn

(

z;G1/2b
)

Φn2 (z; b)

we use the generating funtion, Eq. (A.1), to integrate the produt of three

harmoni-osillator funtions with the Gaussian fator. This produes
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e−t21−t22−t2
∫ ∞

−∞
dz e2(t1+t2)z/b+2tz/B−νz2

=
∞
∑

n1=0

∞
∑

n2=0

∞
∑

n=0

Cn1,n2,nt
n1
1 tn2

2 tn 〈n1 |fn|n2〉 (D.3)

where

B≡G1/2b

ν≡ 1

b2
+

1

B2

Cn1,n2,n≡
b
√
π
√

B
√
π

K
1/2
z λn

2(n1+n2+n)/2

√
n1!
√
n2!
√
n!

The integral in the left-hand side of Eq. (D.3) is easily evaluated by ompleting

the square in the exponential, giving

LHS=

√

π

ν
e−t21−t22−t2+τ2/ν

(D.4)

where

τ ≡ t1 + t2
b

+
t

B

After some simpli�ation, Eq. (D.4) takes the form

LHS=

√

π

ν
exp

{

[α (t1 + t2)− t]2 ζ + 2t1t2
}

with

α≡G−1/2

ζ ≡− G

G + 1

whih we expand as a series
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LHS=

√

π

ν

∞
∑

i=0

(2t1t2)
i

i!

∞
∑

p=0

1

p!
[α (t1 + t2)− t]2p ζp

=

√

π

ν

∞
∑

i=0

∞
∑

p=0

2p
∑

q=0

2p−q
∑

s=0

2i

p!i!







2p

q













2p− q

s





 (−α)2p−q ζpts+i
1 t2p−q−s+i

2 tq

omparing with the right-hand side of Eq. (D.3), we make the identi�ations

s+ i=n1 ⇒ s = n1 − i

2p− q − s+ i=n2 ⇒ p =
n1 + n2 + q

2
− i

q=n

Note that this implies n1 + n2 + n must be even, and the summation over i
terminates after a �nite number of terms, although we will let it run up to ∞
for notational onveniene, letting the fatorial terms impliitly trunate the

sum. Then we have

Cn1,n2,n 〈n1 |fn|n2〉

=

√

π

ν
(−α)n1+n2 ζ (n1+n2+n)/2

×
∞
∑

i=0







n1 + n2 + n− 2i

n













n1 + n2 − 2i

n1 − i







(

n1+n2+n
2

− i
)

!i!

(

2

α2ζ

)i

=

√

π

ν
(−α)n1+n2 ζ (n1+n2+n)/2

×
∞
∑

i=0

(n1 + n2 + n− 2i)!

n! (n1 − i)! (n2 − i)!
(

n1+n2+n
2

− i
)

!i!

(

2

α2ζ

)i

(D.5)

Next, we simplify the ratio of fatorials

(2p)!

p!
=

(n1 + n2 + n− 2i)!
(

n1+n2+n
2

− i
)

!

using the doubling formula for the Gamma funtion (Eq. 8.335(1) in [8℄),

(2p)!

p!
=

22p√
π
Γ
(

p+
1

2

)

For onveniene, we de�ne
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ξ≡ n1 + n2 + n+ 1

2
(D.6)

whih is a half-integer sine we have already noted that n1 + n2 + n is even.

Then p = ξ − i− 1/2, and

(2p)!

p!
=

22p√
π
Γ (ξ − i) (D.7)

In order to simplify this further, we derive the following useful identity

Γ (1− ξ + i) = (i− ξ) Γ (i− ξ)

= (i− ξ) (i− ξ − 1) · · · (1− ξ) Γ (1− ξ)

= (−1)i (ξ − 1) · · · (ξ − (i− 1)) (ξ − i) Γ (1− ξ)

Similarly, we an write

Γ (ξ)= (ξ − 1) · · · (ξ − (i− 1)) (ξ − i) Γ (ξ − i)

Therefore,

Γ (1− ξ + i) = (−1)i Γ (ξ) Γ (1− ξ)

Γ (ξ − i)
(D.8)

and, equivalently,

Γ (ξ − i) = (−1)i Γ (ξ) Γ (1− ξ)

Γ (1− ξ + i)
(D.9)

Thus, Eq. (D.7) beomes

(2p)!

p!
=

22p√
π
(−1)i Γ (ξ) Γ (1− ξ)

Γ (1− ξ + i)

=
22p√
π
(−1)i Γ (ξ)

(1− ξ)i

where we have used the Pohhammer symbol

(x)n≡
Γ (x+ n)

Γ (x)
= x (x+ 1) · · · (x+ n− 1)

Returning to Eq. (D.5), we replae the (n1 − i)! and (n2 − i)! terms with

Pohhammer symbols as well using Eq. (D.9) with ξ → n1 + 1 to write
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(n1 − i)!=Γ (n1 − i+ 1)

= (−1)i Γ (n1 + 1)Γ (−n1)

Γ (−n1 + i)

= (−1)i n1!

(−n1)i

and similarly for (n2 − i)!. Then, Eq. (D.5) yields

〈n1 |fn|n2〉=
22ξ−1Γ (ξ) (−α)n1+n2 ζ (n1+n2+n)/2

√
νCn1,n2,nn!n1!n2!

∞
∑

i=0

(−n1)i (−n2)i
(1− ξ)i i!

(

− 1

2α2ζ

)i

whih we express as a hypergeometri funtion, as de�ned in [8℄ Eq. 9.100 (see

also setion 9.14(2) in [8℄ for the notation in terms of a generalized hypergeo-

metri funtion),

〈n1 |fn|n2〉=
2ξ−1/2µΓ (ξ) (−α)n1+n2 ζ (n1+n2+n)/2

√
νb
√

B
√
π
√
n!n1!n2!G1/4Gn/2

2F1 (−n1,−n2; 1− ξ; z)

where

z≡− 1

2α2ζ
= 1 +

µ2

2b2
(D.10)

Simplifying further, we �nd

〈n1 |fn|n2〉=(−1)(n1+n2−n)/2 µ
√

2b
√
π

Γ (ξ)√
n!n1!n2!

z−ξ

× 2F1 (−n1,−n2; 1− ξ; z) (D.11)

Comparing with Eq. (3) in [9℄, we note that the hypergeometri funtion is

evaluated at 1 − z rather than z in that paper. In order to make a diret

omparison with [9℄, we use Eq. 9.131(2) in [8℄,

2F1 (−n1,−n2; 1− ξ; z)

=
Γ (1− ξ) Γ (1− ξ + n1 + n2)

Γ (1− ξ + n1) Γ (1− ξ + n2)
2F1 (−n1,−n2;−n1 − n2 + ξ; 1− z)

+ (1− z)1−ξ+n1+n2
Γ (1− ξ) Γ (−n1 − n2 + ξ − 1)

Γ (−n1) Γ (−n2)

× 2F1 (1− ξ + n1, 1− ξ + n2; 2− ξ + n1 + n2; 1− z)
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The seond term vanishes beause of the Gamma funtions with negative-

integer (or zero) arguments in the denominator. We an simplify the third

argument of the hypergeometri funtion in the �rst term to

−n1 − n2 + ξ=
−n1 − n2 + n+ 1

2
=−ξ + n + 1

Thus,

2F1 (−n1,−n2; 1− ξ; z)=
Γ (1− ξ) Γ (ξ − n)

Γ (1− ξ + n1) Γ (1− ξ + n2)

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

Next, we use Eq. (D.8) to re-write the Gamma funtions in the denominator,

2F1 (−n1,−n2; 1− ξ; z)= (−1)n1+n2
Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)

Γ (1− ξ) Γ (ξ) Γ (ξ)

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

Substituting this expression into Eq. (D.11) gives

〈n1 |fn|n2〉= (−1)(−n1−n2−n)/2 µ
√

2b
√
π

Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)√
n!n1!n2!Γ (1− ξ) Γ (ξ)

z−ξ

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

Finally, we use Eq. 8.334(3) in [8℄ to write

〈n1 |fn|n2〉= (−1)(−n1−n2−n)/2 µ
√

2b
√
π

Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)√
n!n1!n2!π (−1)(n1+n2+n)/2

z−ξ

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

=
µb−1/2

√
2π5/2

Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)

zξ
√
n!n1!n2!

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

This result is nearly idential to Eq. (3) in [9℄, after properly adjusting for

the hoie of variable names, the only minor di�erene being the osillator

parameter whih appears as b−1/2
in the present work, and b1/2 in [9℄. However,

dimensional analysis favors the b−1/2
form, as the matrix element 〈n1 |fn|n2〉

must arry dimensions of length to the 1/2 power, aording to its de�nition in
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Eq. (12). In losing, we use Eq. (D.1) to write the expression for the two-body

matrix element (orresponding to Eq. (10) in the large osillator-shell limit),

V
(z)
ijkl =

µ√
2π3bz

n
(j)
z +n

(l)
z

∑

nz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

T nz

n
(j)
z ,n

(l)
z

F̄ nz

n
(i)
z ,n

(k)
z

where

F̄ nz

n
(i)
z ,n

(k)
z

≡
Γ
(

ξ − n(i)
z

)

Γ
(

ξ − n(k)
z

)

Γ (ξ − nz)

zξ
√

nz!n
(i)
z !n

(k)
z !

× 2F1

(

−n(i)
z ,−n(k)

z ;−ξ + nz + 1; 1− z
)

(D.12)

E Angular integral

We wish to evaluate the radial part of the matrix-element integral

V
(r)
ijkl≡

∫ ∞

0
ρ1dρ1

∫ 2π

0
dϕ1

∫ ∞

0
ρ2dρ2

∫ 2π

0
dϕ2

×Φ∗
n
(i)
r ,Λ(i)

(ρ1, ϕ1; b⊥) Φ
∗
n
(j)
r ,Λ(j)

(ρ2, ϕ2; b⊥)

×e−(~ρ1−~ρ2)
2/µ2

Φ
n
(k)
r ,Λ(k) (ρ1, ϕ1; b⊥) Φn

(l)
r ,Λ(l) (ρ2, ϕ2; b⊥)

numerially, where the harmoni-osillator funtions are de�ned in Eq. (4).

By rotational invariane of the Gaussian potential, we have

−Λ(i) − Λ(j) + Λ(k) + Λ(l)=0

The angular integrals over ϕ1 and ϕ2 are partiularly problemati beause of

their osillatory nature. Therefore, we fous on those integrals and introdue

the funtion

Θk (x)≡
1

(2π)2

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2e

ik(ϕ1−ϕ2)e2x cos(ϕ1−ϕ2)
(E.1)

so that we may write
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V
(r)
ijkl =

∫ ∞

0
ρ1dρ1

∫ ∞

0
ρ2dρ2e

−(ρ21+ρ22)/µ2

Φ
n
(i)
r ,|Λ(i)| (ρ1; b⊥)Φn

(j)
r ,|Λ(j)| (ρ2; b⊥)

Φ
n
(k)
r ,|Λ(k)| (ρ1; b⊥) Φn

(l)
r ,|Λ(l)| (ρ2; b⊥)Θ−Λ(i)+Λ(k)

(

ρ1ρ2
µ2

)

(E.2)

We simplify Eq. (E.1) using the generating funtion for the Bessel funtion,

given in Eq. (A.6), with z = −2ix and ϕ = ϕ1 − ϕ2,

e2x cos(ϕ1−ϕ2)=
∞
∑

n=−∞
i|n|J|n| (−2ix) ein(ϕ1−ϕ2)

from whih the integral in Eq. (E.1) yields

Θk (x) = i|k|J|k| (−2ix)

From the series expansion of the modi�ed Bessel funtion of the �rst kind, Eq.

8.445 in [8℄, we get

Θk (x) = (−1)|k| I|k| (−2x)

=
∞
∑

n=0

x2n

n! (n+ |k|)! (E.3)

We �nd that the series in Eq. (E.3) is extremely well onverged if we inlude

terms up to m suh that

∣

∣

∣

∣

∣

x2m

m! (m+ |k|)!

∣

∣

∣

∣

∣

<ǫ

where ǫ = 10−2N0−N
quad

/8
for a alulation in up to N0 osillator shells and

N
quad

quadrature points. The remaining integrals over ρ1 and ρ2 in Eq. (E.2)

were evaluated by Gauss-Laguerre quadrature.
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