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Abstra
t

We derive a formalism, the separation method, for the e�
ient and a

urate 
al-


ulation of two-body matrix elements for a Gaussian potential in the 
ylindri
al

harmoni
-os
illator basis. This formalism is of 
riti
al importan
e for Hartree-Fo
k

and Hartree-Fo
k-Bogoliubov 
al
ulations in deformed nu
lei using realisti
, �nite-

range e�e
tive intera
tions between nu
leons. The results given here are also relevant

for mi
ros
opi
 many-body 
al
ulations in atomi
 and mole
ular physi
s, as the for-

malism 
an be applied to other types of intera
tions beyond the Gaussian form. The

derivation is presented in great detail to emphasize the methodology, whi
h relies on

generating fun
tions. The resulting analyti
al expressions for the Gaussian matrix

elements are 
he
ked for speed and a

ura
y as a fun
tion of the number of os
illator

shells and against dire
t numeri
al integration.

Key words: Deformed harmoni
 os
illator, Gaussian intera
tion, Matrix elements,

Gogny for
e
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1 Introdu
tion

Gaussian intera
tions play an important role in the mi
ros
opi
 des
ription of

mole
ular and nu
lear pro
esses [1℄. The Gaussian form represents a relatively

simple two-body potential with a �nite range, whi
h is needed in many realisti


des
riptions of many-body systems. In nu
lear physi
s for example, the Gogny

intera
tion [2℄
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V (~r1, ~r2)=
2
∑

i=1

(

Wi +BiP̂σ −HiP̂τ −MiP̂σP̂τ

)

e−(~r1−~r2)
2/µ2

i

+iWLS

(←−∇1 −
←−∇2

)

× δ (~r1 − ~r2)
(−→∇1 −

−→∇2

)

· (~σ1 + ~σ2)

+t0
(

1 + x0P̂σ

)

δ (~r1 − ~r2) ρ
γ

(

~r1 + ~r2
2

)

+ V
Coul

(1)

where P̂σ and P̂τ are spin- and isospin-ex
hange operators and ρ is the total

nu
lear density, gives the e�e
tive (in-medium) potential between nu
leons.

Two Gaussian terms appear expli
itly with range parameters µ1 and µ2. A

spin-orbit term with strength WLS uses a Dira
-delta fun
tion, but extensions

of the Gogny for
e have been proposed [3℄ that introdu
e a Gaussian form

for this term. Finally the Coulomb intera
tion V
Coul

∼ 1/ |~r1 − ~r2| between
protons is 
learly not of Gaussian form, but the mathemati
al framework

presented in this paper 
an be applied equally well to a Coulomb potential.

For the 
al
ulation of matrix elements in mole
ular, atomi
, and nu
lear

physi
s, harmoni
-os
illator fun
tions provide a 
onvenient and popular or-

thogonal basis. The 
al
ulation of Gaussian matrix elements in a harmoni
-

os
illator basis, however, poses de�nite te
hni
al 
hallenges in a

ura
y as

well as exe
ution time. In previous work [4℄, the separation method was in-

trodu
ed as a way of 
al
ulating the Gaussian matrix elements e�
iently and

a

urately for systems with spheri
al symmetry. In the separation method,

two-body matrix elements are expressed as a more manageable �nite sum of

produ
ts of one-body matrix elements. In this paper, we derive the separation

method for a wider 
lass of systems that exhibit axial symmetry. These results

are 
ru
ial, for example, in mi
ros
opi
 
al
ulations of nu
lear �ssion using the

Gogny for
e, where the nu
leus elongates along a symmetry axis, until s
ission

o

urs.

Fission 
al
ulations in parti
ular bring to the fore many of the te
hni
al dif-

�
ulties involved in the 
omputation of Gaussian matrix elements. On the

other hand, mi
ros
opi
 
al
ulations of �ssion using the intera
tion in Eq. (1)

have had 
onsiderable su

ess in re
ent years [5,6,7℄, and are therefore of great

interest. In the mi
ros
opi
 des
ription of �ssion, the matrix elements of the

nu
leon-nu
leon intera
tion are typi
ally used in a Hartree-Fo
k-Bogoliubov

(HFB) pro
edure to 
onstru
t a Slater-determinant wave fun
tion for the nu-


leus. S
ission 
on�gurations are then found by driving the nu
leus to su
h

exoti
 shapes that the deli
ate balan
e between its surfa
e tension and the

Coulomb repulsion between the nas
ent �ssion fragments is broken. The proper

identi�
ation of s
ission 
on�gurations and the 
al
ulation of their properties

depend sensitively on a

urate 
al
ulations of the matrix elements of the ef-

fe
tive intera
tion. Fission also implies the evolution of the nu
leus through a

variety of exoti
 shapes leading to s
ission. Therefore many sets of matrix el-

ements need to be 
al
ulated, ea
h set 
orresponding to a harmoni
-os
illator

2



basis optimized for a parti
ular nu
lear shape, and ea
h set requiring a large

number of os
illator shells. The resulting large-s
ale 
omputations 
an be
ome

very time-
onsuming and are prone to errors in a

ura
y. Thus mi
ros
opi


�ssion 
al
ulations must rely on fast and a

urate algorithms to evaluate the

two-body matrix elements, su
h as the separation method. The separation

method is espe
ially well-suited to the HFB algorithm, be
ause the 
oe�-


ients needed to 
al
ulate the two-body matrix elements derived in this paper


an be 
al
ulated qui
kly on
e and for all, and stored with relatively little


omputer memory.

The goal of this paper is to derive the separation-method formalism for Gaus-

sian matrix elements in a 
ylindri
al harmoni
-os
illator basis, with parti
u-

lar emphasis pla
ed on the details of the derivation be
ause of its relevan
e

to other types of intera
tions, and other appli
ations involving the harmoni
-

os
illator basis. In parti
ular, we rely heavily on the power and versatility of

generating fun
tions to derive many of the present results. We also present

the derivations in great detail be
ause they are rather involved, and although

the same results may be arrived at by alternate approa
hes, the formulas will

tend to be mu
h more 
umbersome and less 
omputationally e�
ient than

the ones obtained by the generating-fun
tion methods outlined here. Be
ause

of the lengthy and detailed derivations involved, many of the intermediary

results have been pla
ed in the appendi
es. These intermediary results are

important in their own right, as they provide useful properties of harmoni
-

os
illator fun
tions in a 
ylindri
al basis, and the mapping between 
ylindri
al

and Cartesian harmoni
-os
illator bases.

In se
tion 2, the basi
 formalism for the 
al
ulation of both radial and ax-

ial 
omponents of the Gaussian matrix elements by the separation method

are derived. In se
tion 3, the a

ura
y of the method is examined both rela-

tive to dire
t numeri
al integration, and as a fun
tion of the number of shells

in the os
illator basis. The exe
ution times for the separation method are

also 
ompared to those of the numeri
al integration. The mapping between

harmoni
-os
illator fun
tion in polar and Cartesian 
oordinates, needed in

the development of the separation-method formalism, is derived in appendix

A. In appendix B, the Gaussian two-body potential, V (~r1, ~r2), is written in

separated form with respe
t to ~r1 and ~r2. Formulas redu
ing the produ
ts of

harmoni
-os
illator fun
tions are derived in appendix C, and provide a pow-

erful tool in the evaluation of integrals involving those fun
tions. In appendix

D, the result quoted in [9℄ for the separation-method formalism in the 
ase

of large os
illator-shell numbers is derived in detail. Finally, in appendix E,

we obtain a series expansion for the dire
t angular integral of the Gaussian

potential, whi
h we use in the numeri
al integration of the potential in se
tion

3.
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2 Theory

2.1 General formalism

We wish to 
al
ulate matrix elements of the two-body potential fun
tion

V (~r1, ~r2)= e−(~r1−~r2)
2/µ2

(2)

in the 
ylindri
al harmoni
-os
illator basis. We will write the matrix elements

as

Vijkl≡〈ij |V | kl〉
=
∫

d3r1

∫

d3r2Φ
∗
n
(i)
r ,Λ(i),n

(i)
z

(~r1; b⊥, bz) Φ
∗
n
(j)
r ,Λ(j),n

(j)
z

(~r2; b⊥, bz)

×V (~r1, ~r2)Φn
(k)
r ,Λ(k),n

(k)
z

(~r1; b⊥, bz)Φn
(l)
r ,Λ(l),n

(l)
z
(~r2; b⊥, bz) (3)

where we have introdu
ed the stret
hed harmoni
-os
illator basis fun
tions in

the 
ylindri
al 
oordinates (ρ, ϕ, z) 1

Φnr ,Λ,nz
(~r; b⊥, bz) =Φnr ,Λ (ρ, ϕ; b⊥)Φnz

(z; bz)

=Φnr ,|Λ| (ρ; b⊥)
eiΛϕ√
2π

Φnz
(z; bz) (4)

with the radial-
omponent fun
tion

Φnr ,|Λ| (ρ; b⊥) =N |Λ|
nr

η|Λ|/2e−η/2L|Λ|
nr

(η) (5)

de�ned in terms of asso
iated Laguerre polynomials L|Λ|
nr

(η) as a fun
tion of

η≡ ρ2/b2⊥

and with a normalization 
onstant given by

Nnr,|Λ|≡
1

b⊥

[

2nr!

(nr + |Λ|)!

]1/2

(6)

The Cartesian, z-axis-
omponent fun
tion in Eq. (4),

1
We will drop the quali�er �stret
hed� when referring to the deformed harmoni
-

os
illator fun
tion in subsequent dis
ussion for the sake of brevity.
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Φnz
(z; bz)=Nnz

e−ξ2/2Hnz
(ξ) (7)

is expressed in terms of Hermite polynomials Hnz
(ξ) with

ξ≡ z/bz

and normalization 
onstant

Nnz
≡ 1

(bz
√
π2nznz!)

1/2

The harmoni
-os
illator fun
tions de�ned in Eqs. (4) and (7) satisfy the or-

thonormalization 
onditions

∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ∗

nr,Λ (ρ, ϕ; b⊥)Φn′
r ,Λ

′ (ρ, ϕ; b⊥) = δnr ,n′
r
δΛ,Λ′

∫ ∞

−∞
dz Φnz

(z; bz) Φn′
z
(z; bz) = δnz ,n′

z

The parameters b⊥ and bz appearing in the harmoni
-os
illator fun
tion de�-

nitions are usually treated as variational parameters in HFB 
al
ulations, and


hosen to minimize the energy.

The 
entral idea in this paper is to express the two-body potential as a sum

of produ
ts of one-body potential fun
tions

e−(~r1−~r2)
2/µ2

=
∑

nr ,Λ,nz

fnr,Λ,nz
(~r1; b⊥, bz) Φ̂nr ,Λ,nz

(~r2; b⊥, bz)

Then the two-body matrix elements 
an be written in terms of one-body

matrix elements

Vijkl =
∑

nr,Λ,nz

〈i |fnr ,Λ,nz
| k〉

〈

j
∣

∣

∣Φ̂nr ,Λ,nz

∣

∣

∣ l
〉

(8)

where we will show that this last sum is limited to a �nite number of terms.

It will be useful to separate the radial and Cartesian 
omponents in ea
h

one-body matrix element to write

5



〈i |fnr ,Λ,nz
| k〉=

∫

d3rΦ∗
n
(i)
r ,Λ(i),n

(i)
z

(~r; b⊥, bz) fnr ,Λ,nz
(~r; b⊥, bz)

×Φ
n
(k)
r ,Λ(k),n

(k)
z

(~r; b⊥, bz)

=
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ

n
(i)
r ,Λ(i) (ρ, ϕ; b⊥) fnr ,Λ (ρ, ϕ; b⊥)

×Φ
n
(k)
r ,Λ(k) (ρ, ϕ; b⊥)

×
∫ ∞

−∞
dzΦ

n
(i)
z
(z; bz) fnz

(z; bz)Φn
(k)
z

(z; bz)

≡〈i |fnr ,Λ| k〉 〈i |fnz
| k〉

and, similarly,

〈

j
∣

∣

∣Φ̂nr ,Λ,nz

∣

∣

∣ l
〉

=
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ

n
(j)
r ,Λ(j) (ρ, ϕ; b⊥) Φ̂nr,Λ (ρ, ϕ; b⊥)

×Φ
n
(l)
r ,Λ(l) (ρ, ϕ; b⊥)

×
∫ ∞

−∞
dzΦ

n
(j)
z

(z; bz) Φ̂nz
(z; bz)Φn

(l)
z
(z; bz)

≡
〈

j
∣

∣

∣Φ̂nr ,Λ

∣

∣

∣ l
〉 〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

so that we 
an write Eq. (8) as

Vijkl =





∑

nr,Λ

〈i |fnr,Λ| k〉
〈

j
∣

∣

∣Φ̂nr ,Λ

∣

∣

∣ l
〉





[

∑

nz

〈i |fnz
| k〉

〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

]

≡V
(r)
ijklV

(z)
ijkl (9)

In the remainder of this se
tion we 
al
ulate the expli
it expressions needed

to evaluate the matrix elements Vijkl.

2.2 Cartesian 
omponent

Here we derive an expression for the Cartesian 
omponent,V
(z)
ijkl , in Eq. (9).

We will show that

V
(z)
ijkl =

√

Gz − 1

Gz + 1

n
(i)
z +n

(k)
z

∑

mz=

∣

∣

∣
n
(i)
z −n

(k)
z

∣

∣

∣
,2

n
(j)
z +n

(l)
z

∑

nz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

Tmz

n
(i)
z ,n

(k)
z

T nz

n
(j)
z ,n

(l)
z

Ī (mz, nz) (10)

where Gz is de�ned by Eq. (B.4), the T n3
n1,n2


oe�
ients by Eq. (C.6), and the

Ī (mz , nz) 
oe�
ients by Eq. (18).

We start by evaluating

6



〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

=
∫ ∞

−∞
dzΦ

n
(j)
z

(z; bz) Φ̂nz
(z; bz) Φn

(l)
z
(z; bz)

Using Eqs. (B.1) whi
h gives the expli
it form of Φ̂nz
(z; bz) and Eq. (C.1) to

redu
e the produ
t of harmoni
-os
illator fun
tions,

〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

=
1

√

bz
√
π

n
(j)
z +n

(l)
z

∑

mz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

Tmz

n
(j)
z ,n

(l)
z

∫ ∞

−∞
dzΦmz

(z; bz)Φnz
(z; bz)

By orthogonality of the harmoni
-os
illator fun
tions this is simply

〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

=
1

√

bz
√
π
T nz

n
(j)
z ,n

(l)
z

(11)

where we must have

∣

∣

∣n(j)
z − n(l)

z

∣

∣

∣ ≤ nz ≤ n(j)
z + n(l)

z for the T nz

n
(j)
z ,n

(l)
z


oe�
ient

to be non-zero. Next, we use the expli
it form of fnz
(z; bz) from Eq. (B.2) to

write

〈i |fnz
| k〉=

∫ ∞

−∞
dzΦ

n
(i)
z
(z; bz) fnz

(z; bz) Φn
(k)
z

(z; bz)

=K1/2
z λnz

∫ ∞

−∞
dzΦ

n
(i)
z
(z; bz) e

−z2/(2Gzb2z)

×Φnz

(

z;G1/2
z bz

)

Φ
n
(k)
z

(z; bz) (12)

Two of the harmoni
-os
illator fun
tions 
an be repla
ed with a single one,

thanks to Eq. (C.1),

〈i |fnz
| k〉= K1/2

z λnz
√

bz
√
π

n
(i)
z +n

(k)
z

∑

mz=

∣

∣

∣
n
(i)
z −n

(k)
z

∣

∣

∣
,2

Tmz

n
(i)
z ,n

(k)
z

∫ ∞

−∞
dz e−z2/(2b2z)−z2/(2Gzb2z)

×Φmz
(z; bz)Φnz

(

z;G1/2
z bz

)

(13)

The remaining integral, whi
h we write in terms of the fun
tion

I (m,n)≡
∫ ∞

−∞
dz e−z2/(2b2z)−z2/(2B2

z)Φm (z; bz)Φn (z;Bz)

where Bz ≡ G1/2
z bz, 
an be 
al
ulated with the help of generating fun
tions.

Indeed, using Eq. (A.1) to form the produ
t of the harmoni
-os
illator fun
-

tions, we have for any t1 and t2

7



e−t21+2t1z/bz−z2/(2b2z)e−t22+2t2z/Bz−z2/(2B2
z) =

√

bzBzπ
∞
∑

m=0

∞
∑

n=0

2(m+n)/2

√
m!n!

×tm1 tn2Φm (z; bz) Φn (z;Bz)

from whi
h, multiplying by the Gaussian fa
tors in the de�nition of I (m,n)
and integrating both sides of the equation,

e−t21−t22

∫ ∞

−∞
dz e2t1z/bz−z2/b2z+2t2z/Bz−z2/B2

z

=
√

bzBzπ
∞
∑

m=0

∞
∑

n=0

2(m+n)/2

√
m!n!

tm1 t
n
2I (m,n) (14)

The integral on the left-hand side 
an be evaluated by 
ompleting the square,

∫ ∞

−∞
dz e2t1z/bz−z2/b2z+2t2z/Bz−z2/B2

z = et
2/ν
∫ ∞

−∞
dz e−(

√
νz−t/

√
ν)

2

=

√

π

ν
et

2/ν

where we have de�ned

ν≡ 1

b2z
+

1

B2
z

t≡ t1
bz

+
t2
Bz

Thus, the left-hand side of Eq. (14) be
omes

LHS=

√

π

ν
et

2/ν−t21−t22

=

√

π

ν
e−(bzt1−Bzt2)

2/(νb2zB2
z)

whi
h 
an be expanded as

LHS=

√

π

ν

∞
∑

p=0

(−1)p (bzt1 − Bzt2)
2p

p! (νb2zB
2
z )

p

=

√

π

ν

∞
∑

p=0

2p
∑

q=0







2p

q







(−1)p+q

p!νpbqzB
2p−q
z

t2p−q
1 tq2

Comparing with the right-hand side of Eq. (14), we see that we must make

the identi�
ations m = 2p− q and n = q in order for the equation to hold for

any t1 and t2. Then,

8



LHS=

√

π

ν

∞
∑

m=0

∞
∑

n=0







2p

q







(−1)p+q

p!νpbqzB
2p−q
z

t2p−q
1 tq2δn,qδm,2p−q

and the 
omparison with the right-hand side of Eq. (14) yields

I (m,n)=
(−1)(m+n)/2+n

√
m!n!

(

m+n
2

)

! (2ν)(m+n)/2 bnzB
m
z

√
bzBzν







m+ n

n







Note that m+ n must be even. We simplify this form further by noting that

bzBzν =G1/2
z +G−1/2

z (15)

B2
zν =1 +Gz (16)

b2zν =1 +G−1
z (17)

where Gz is de�ned in Eq. (B.4). This leads us to write

I (m,n)=
G1/4

z Gn/2
z√

1 +Gz

√

m!n!

2m+n

(−1)(m−n)/2

(

m+n
2

)

! (1 +Gz)
(m+n)/2







m+ n

n







Some of the 
onstants 
an be fa
tored out by de�ning the 
oe�
ient

Ī (m,n)≡
√
1 +Gz

G
1/4
z G

n/2
z

I (m,n)

=

√

m!n!

2m+n

(−1)(m−n)/2

(

m+n
2

)

! (1 +Gz)
(m+n)/2







m+ n

n





 (18)

Then, returning to Eq. (13), we obtain after some simpli�
ation

〈i |fnz
| k〉= K1/2

z λnz
√

bz
√
π

G1/4
z Gnz/2

z√
1 +Gz

n
(i)
z +n

(k)
z

∑

mz=

∣

∣

∣
n
(i)
z −n

(k)
z

∣

∣

∣
,2

Tmz

n
(i)
z ,n

(k)
z

Ī (mz, nz) (19)

Having derived the expli
it forms in Eqs. (11) and (19), we 
an express the

Cartesian 
omponent in Eq. (9) as

9



V
(z)
ijkl≡

∑

nz

〈i |fnz
| k〉

〈

j
∣

∣

∣Φ̂nz

∣

∣

∣ l
〉

=

√

Gz − 1

Gz + 1

n
(i)
z +n

(k)
z

∑

mz=

∣

∣

∣
n
(i)
z −n

(k)
z

∣

∣

∣
,2

n
(j)
z +n

(l)
z

∑

nz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

Tmz

n
(i)
z ,n

(k)
z

T nz

n
(j)
z ,n

(l)
z

Ī (mz, nz)

where Ī (mz, nz) is given by Eq. (18), and the T 
oe�
ients are given by Eq.

(C.6). An alternate form of V
(z)
ijkl was proposed by Egido et al. [9℄ whi
h yields

more a

urate results for large os
illator shell numbers, and is derived as Eq.

(D.2) in appendix D.

2.3 Radial 
omponent

A formula similar to Eq. (10) 
an be derived for the radial 
omponent, V
(r)
ijkl,

in Eq. (9). We will show that

V
(r)
ijkl =

G⊥ − 1

G⊥ + 1

nj̄,l
∑

nr=0

nī,k
∑

n=0

T n,−Λ(i)+Λ(k)

n
(i)
r ,−Λ(i);n

(k)
r ,Λ(k)

T nr,−Λ(j)+Λ(l)

n
(j)
r ,−Λ(j);n

(l)
r ,Λ(l)

×Ī
(

nr,−Λ(j) + Λ(l);n,−Λ(i) + Λ(k)
)

(20)

where G⊥ is de�ned by Eq. (B.10), the T 
oe�
ients by Eq. (C.9), and the

Ī 
oe�
ients by Eq. (27). The indi
es nj̄,l and nī,k are given by Eq. (A.29),

where the bar indi
ates that −Λ(j)
and −Λ(i)

, respe
tively, should be used in

that de�nition due to the 
omplex 
onjugation in Eq. (3).

Using Eqs. (B.7) for the expli
it form of Φ̂nr ,Λ (ρ, ϕ; b⊥), Eq. (C.7) to redu
e the
produ
t of harmoni
-os
illator fun
tions, and the orthogonality of harmoni
-

os
illator fun
tions

〈

j
∣

∣

∣Φ̂nr ,Λ

∣

∣

∣ l
〉

=
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ∗

n
(j)
r ,Λ(j)

(ρ, ϕ; b⊥) Φ̂nr ,Λ (ρ, ϕ; b⊥)

×Φ
n
(l)
r ,Λ(l) (ρ, ϕ; b⊥)

=
1√
πb⊥

nj̄,l
∑

n=0

T n,−Λ(j)+Λ(l)

n
(j)
r ,−Λ(j);n

(l)
r ,Λ(l)

×
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ∗

n,Λ(j)+Λ(l) (ρ, ϕ; b⊥)Φnr ,Λ (ρ, ϕ; b⊥)

=
1√
πb⊥

T nr ,−Λ(j)+Λ(l)

n
(j)
r ,−Λ(j);n

(l)
r ,Λ(l)

δnr≤nj̄,l
δΛ,−Λ(j)+Λ(l)

where the bar supers
ript in the nj̄,l symbol serves as a reminder that we must

use −Λ(j)
in Eq. (A.29), be
ause of the 
omplex 
onjugation. The 
ondition

10



δnr≤nj̄,l

omes about from the de�nition of the T 
oe�
ients in Eq. (C.9). The

other matrix element in the radial 
omponent of Eq. (9) is written expli
itly

using the expli
it form for fnr,Λ (ρ, ϕ; b⊥) in Eq. (B.8) as

〈i |fnr ,Λ| k〉=
∫ ∞

0
ρdρ

∫ 2π

0
dϕΦ∗

n
(i)
r ,Λ(i)

(ρ, ϕ; b⊥) fnr ,Λ (ρ, ϕ; b⊥)

×Φ
n
(k)
r ,Λ(k) (ρ, ϕ; b⊥)

=K⊥λ2nr+|Λ|

∫ ∞

0
ρdρ

∫ 2π

0
dϕ e−ρ2/(2G⊥b2⊥)Φnr ,Λ

(

ρ, ϕ;G
1/2
⊥ b⊥

)

×Φ∗
n
(i)
r ,Λ(i)

(ρ, ϕ; b⊥)Φn
(k)
r ,Λ(k) (ρ, ϕ; b⊥)

and using Eq. (C.7), the produ
t of harmoni
-os
illator fun
tions 
an be re-

du
ed

〈i |fnr ,Λ| k〉=
K⊥λ2nr+|Λ|√

πb⊥

nī,k
∑

n=0

T n,−Λ(i)+Λ(k)

n
(i)
r ,−Λ(i);n

(k)
r ,Λ(k)

×
∫ ∞

0
ρdρ

∫ 2π

0
dϕ e−ρ2/(2B2

⊥)−ρ2/(2b2⊥)

×Φnr ,Λ (ρ, ϕ;B⊥) Φn,−Λ(i)+Λ(k) (ρ, ϕ; b⊥)

where B⊥ ≡ G
1/2
⊥ b⊥, and the ī in nī,k is a reminder that we must use −Λ(i)

in

Eq. (A.29). The remaining integral to be 
al
ulated is

I (n1, k1;n2, k2)≡
∫ ∞

0
ρdρ

∫ 2π

0
dϕ e−ρ2/(2B2

⊥)−ρ2/(2b2⊥)

×Φn1,k1 (ρ, ϕ;B⊥)Φn2,k2 (ρ, ϕ; b⊥) (21)

and 
an be evaluated using the generating fun
tion in Eq. (A.3) by writing,

for arbitrary ve
tors

~t1 and ~t2,

e−
~t21+2~ρ·~t1/B⊥−ρ2/(2B2

⊥)e−
~t22+2~ρ·~t2/b⊥−ρ2/(2b2⊥)

=B2
⊥

√

π

2

∞
∑

k1=−∞

∞
∑

n1=0

Nn1,|k1| (B⊥)χn1,k1

(

~t1
)

Φn1,k1 (ρ, ϕ;B⊥)

×b2⊥
√

π

2

∞
∑

k2=−∞

∞
∑

n2=0

Nn2,|k2| (b⊥)χn2,k2

(

~t2
)

Φn2,k2 (ρ, ϕ; b⊥) (22)

note that, for 
larity, we have expli
itly written the parameter dependen
e for

the normalization 
oe�
ients Nn1,|k1| (B⊥) and Nn2,|k2| (b⊥) given by Eq. (6).

Multiplying both sides of Eq. (22) by the Gaussian fa
tor that appears in Eq.

(21) and integrating, we obtain on the left-hand side

11



LHS= e−
~t21−~t22

∫ ∞

0
ρdρ

∫ 2π

0
dϕ e−ρ2/B2

⊥−ρ2/b2⊥e2~ρ·
~t1/B⊥e2~ρ·

~t2/b⊥
(23)

and on the right-hand side

RHS=
π

2
B2

⊥b
2
⊥

∞
∑

k1=−∞

∞
∑

n1=0

∞
∑

k2=−∞

∞
∑

n2=0

Nn1,|k1| (B⊥)Nn2,|k2| (b⊥)

×χn1,k1

(

~t1
)

χn2,k2

(

~t2
)

I (n1, k1;n2, k2) (24)

whi
h 
ontains the desired 
oe�
ients I (n1, k1;n2, k2). The integral in Eq.

(23) 
an be evaluated by introdu
ing

~t≡
~t1
B⊥

+
~t2
b⊥

ν≡ 1

B2
⊥
+

1

b2⊥

and 
ompleting the square,

LHS= et
2/ν−t21−t22

∫ ∞

0
ρdρ

∫ 2π

0
dϕ exp



−
(√

ν~ρ−
~t√
ν

)2




=
π

ν
et

2/ν−t21−t22

=
π

ν
e(2b⊥B⊥~t1·~t2−B2

⊥t21−b2⊥t22)/(B2
⊥b2⊥ν)

using Eq. (A.27) with

~t1 → ~t1/ (b⊥
√
ν) and

~t2 → ~t2/ (B⊥
√
ν), this 
an be

further expanded as

LHS=
πB2

⊥b
2
⊥

2
e−(B

2
⊥
t21+b2

⊥
t22)/(B2

⊥
b2
⊥
ν)

∞
∑

n=0

∞
∑

k=−∞
N 2

n,|k|
(

B⊥b⊥
√
ν
)

×χ∗
n,k

(

~t1
b⊥
√
ν

)

χn,k

(

~t2
B⊥
√
ν

)

Next, we use Eq. (A.23) to eliminate the remaining exponential,

LHS=
πB2

⊥b
2
⊥

2

∞
∑

n=0

∞
∑

k=−∞

∞
∑

m1=0

∞
∑

m2=0

(n+m1)! (n +m2)!

m1!m2! (n!)
2 N 2

n,|k|
(

B⊥b⊥
√
ν
)

×χ∗
n+m1,k

(

~t1
b⊥
√
ν

)

χn+m2,k

(

~t2
B⊥
√
ν

)

12



Using Eqs (A.24) to eliminate the 
omplex 
onjugation, and (A.25) to fa
tor

out the 
oe�
ients inside the χ fun
tions, this takes the form

LHS=
πB2

⊥b
2
⊥

2

∞
∑

n=0

∞
∑

k=−∞

∞
∑

m1=0

∞
∑

m2=0

(n+m1)! (n +m2)!

m1!m2! (n!)
2 N 2

n,|k|
(

B⊥b⊥
√
ν
)

×
(

b⊥
√
ν
)−2(n+m1)−|k| (

B⊥
√
ν
)−2(n+m2)−|k|

×χn+m1,−k

(

~t1
)

χn+m2,k

(

~t2
)

Comparing this result for LHS with RHS in Eq. (24) for arbitrary ve
tors

~t1
and

~t2, we are led to 
on
lude that

I (n1, k1;n2, k2) = 0 if k1 + k2 6= 0 (25)

We are also led to make the identi�
ations

n +m1=n1

n +m2=n2

−k= k1
k= k2

whi
h allow us to write

LHS=
πB2

⊥b
2
⊥

2

∞
∑

n=0

∞
∑

k=−∞

∞
∑

n1=0

∞
∑

n2=0

n1!n2!

(n1 − n)! (n2 − n)! (n!)2
N 2

n,|k|
(

B⊥b⊥
√
ν
)

×
(

b⊥
√
ν
)−2n1−|k| (

B⊥
√
ν
)−2n2−|k|

χn1,−k

(

~t1
)

χn2,k

(

~t2
)

(26)

and therefore, assuming |k1| = |k2| ≡ |k| be
ause of Eq. (25), the 
omparison

between LHS and RHS, in Eqs. (26) and (24) respe
tively, yields

I (n1, k1;n2, k2) =
δk1+k2,0 (b⊥

√
ν)

−2n1−|k|
(B⊥
√
ν)

−2n2−|k|
n1!n2!

Nn1,|k| (B⊥)Nn2,|k| (b⊥)

×
∞
∑

n=0

N 2
n,|k| (B⊥b⊥

√
ν)

(n1 − n)! (n2 − n)! (n!)2

= δk1+k2,0
(b⊥
√
ν)

−2n1−|k|
(B⊥
√
ν)

−2n2−|k|

B⊥b⊥ν

×
√

n1! (n1 + |k|)!n2! (n2 + |k|)!
∞
∑

n=0

1

(n1 − n)! (n2 − n)!n! (n+ |k|)!

13



Using Eqs. (15)-(17) with G⊥ instead of Gz we 
an simplify the fa
tor outside

the summation

(b⊥
√
ν)

−2n1−|k|
(B⊥
√
ν)

−2n2−|k|

B⊥b⊥ν
=

(

1 +G−1
⊥
)−n1−|k|/2

(1 +G⊥)
−n2−|k|/2

G
1/2
⊥ +G

−1/2
⊥

=
G

(n1−n2)/2
⊥

(

G
1/2
⊥ +G

−1/2
⊥

)n1+n2+|k|+1

and, for 
ompa
tness of notation, we de�ne

Ξ (n1, n2, |k|)≡
∞
∑

n=0

1

(n1 − n)! (n2 − n)!n! (n+ |k|)!

whi
h, after some simpli�
ation 
an be written as

Ξ (n1, n2, |k|)=
1

n1! (n2 + |k|)!
∞
∑

n=0







n1

n













n2 + |k|
n2 − n







=
1

(n1 + n2 + |k|)!







n1 + n2 + |k|
n1













n1 + n2 + |k|
n2







where Eq. 0.156(1) in [8℄ was used to obtain the se
ond line. Therefore, we

�nally have

I (n1, k1;n2, k2) = δk1+k2,0
G

(n1−n2)/2
⊥

(

G
1/2
⊥ +G

−1/2
⊥

)n1+n2+|k|+1

×
√

n1! (n1 + |k|)!n2! (n2 + |k|)!Ξ (n1, n2, |k|)

As in Eq. (18), it will be 
onvenient to fa
tor out some 
onstant terms. There-

fore we de�ne

Ī (n1, k1;n2, k2)≡
K⊥λ2n1+|k|

πb2⊥

G⊥ + 1

G⊥ − 1
I (n1, k1;n2, k2)

= δk1+k2,0

√

n1! (n1 + |k|)!n2! (n2 + |k|)!
(G⊥ + 1)n1+n2+|k| Ξ (n1, n2, |k|) (27)

and the radial 
omponent in Eq. (9) be
omes

14



V
(r)
ijkl =

∑

nr,Λ

〈i |fnr,Λ| k〉
〈

j
∣

∣

∣Φ̂nr ,Λ

∣

∣

∣ l
〉

=
G⊥ − 1

G⊥ + 1

∞
∑

nr=0

∞
∑

Λ=−∞

nī,k
∑

n=0

T n,−Λ(i)+Λ(k)

n
(i)
r ,−Λ(i);n

(k)
r ,Λ(k)

Ī
(

nr,Λ;n,−Λ(i) + Λ(k)
)

×T nr ,Λ(j)+Λ(l)

n
(j)
r ,Λ(j);n

(l)
r ,Λ(l)

δnr≤nj,l
δΛ,−Λ(j)+Λ(l)

=
G⊥ − 1

G⊥ + 1

nj̄,l
∑

nr=0

nī,k
∑

n=0

T n,−Λ(i)+Λ(k)

n
(i)
r ,−Λ(i);n

(k)
r ,Λ(k)

T nr,−Λ(j)+Λ(l)

n
(j)
r ,−Λ(j);n

(l)
r ,Λ(l)

×Ī
(

nr,−Λ(j) + Λ(l);n,−Λ(i) + Λ(k)
)

Thus , using Eqs. (10) or (D.2) and (20), the full matrix element Vijkl in Eq.

(9) 
an be 
al
ulated as an analyti
al expression. In the next se
tion, we will

examine the 
omputational merits of these results.

3 Dis
ussion

In this se
tion, we will 
ompare three di�erent ways of evaluating the Cartesian

(V
(z)
ijkl) and radial (V

(r)
ijkl) 
omponents of the Gaussian matrix elements in Eq.

(3): 1) dire
t numeri
al integration of Eq. (3), 2) numeri
al evaluation of the

separation-method equations (Eqs. (10) or (D.2) for the Cartesian 
omponent,

and Eq. (20) for the radial 
omponent) in double-pre
ision mode, and 3) ex-

a
t evaluation of the separation-method equations using the symboli
-algebra

pa
kage Mathemati
a [10℄. In prin
iple, the �rst two methods�numeri
al eval-

uation by either integration or the separation method�will give the values

of V
(z)
ijkl and V

(r)
ijkl to within the limits of ma
hine a

ura
y and roundo� er-

rors, whereas the third�exa
t evaluation of the separation-method equations

using Mathemati
a�will produ
e these matrix elements to any desired a

u-

ra
y (even beyond ma
hine a

ura
y) and will serve as a referen
e 
he
k for

numeri
al 
onvergen
e of the integrals and roundo� errors.

We begin by 
omparing the relative merits of the separation-method Eqs.

(10) and (D.2) for the Cartesian 
omponent of the matrix element. The two

equations are mathemati
ally equivalent, but Eq. (D.2) was obtained from Eq.

(10) spe
i�
ally to provide greater a

ura
y in numeri
al 
al
ulations. For all

quantitative appli
ations in this work, we have used

µ=1.2 fm

bz =3.3 fm

b⊥ =2 fm

These values of µ, bz, b⊥ are typi
al in HFB 
al
ulations using the Gogny
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intera
tion for

240
Pu along the most likely path to s
ission [11℄.

In pra
ti
e, both Eqs. (10) and (D.2) 
an be evaluated e�
iently be
ause the

T n
n1,n2

and Ī (m,n) or F̄ n
n1,n2


oe�
ients 
an easily be 
al
ulated on
e and for

all and stored with relatively little memory, to be used in re
onstru
ting the

matrix elements V
(z)
ijkl whenever they are needed. However, for large values

of the quantum numbers ni, nj , nk, and nl the sums in Eq. (10) rapidly

lead to sizable numeri
al ina

ura
ies. These ina

ura
ies arise be
ause the T

oe�
ients grow progressively larger with in
reasing values of the arguments,

whereas the Ī 
oe�
ients de
rease. The resulting sum of produ
ts of small

and large numbers in Eq. (10) be
omes numeri
ally unstable. The formula

obtained by Egido et al. in [9℄, and derived as Eq. (D.2) in the present work,

avoids this problem.

Fig. 1 gives the maximum deviation between matrix elements 
al
ulated using

numeri
al evaluations of Eqs. (10) and (D.2). To generate the plot, the equa-

tions were 
ompared for 
al
ulations of V
(z)
ijkl as a fun
tion of the maximum

harmoni
-os
illator shell number N0, i.e. for all possible quantum numbers

su
h that 0 ≤ ni, nj , nk, nl ≤ N0, and the largest deviation was re
orded for

ea
h point on the plot. We will refer to N0 as the size of the basis in the dis-


ussion below. The deviations plotted in Fig. 1 are based on the dimensionless

Gaussian fun
tion in Eq. (2), but with realisti
 intera
tion strengths for the

Gogny for
e [12℄, a deviation as small as 10−2
on the plot, 
an 
orrespond

to a dis
repan
y of the order of an MeV. Thus, for N0 greater than about

16, Eq. (D.2) should 
ertainly always be used instead of Eq. (10), and in the

remainder of this paper we will use it 
onsistently for all N0 instead of Eq.

(10).

Next, we 
ompare an exa
t evaluation of Eq. (D.2) to the numeri
al inte-

gration of the Cartesian 
omponent in Eq. (3). We 
hoose to 
ompare the

separation method to a numeri
al integral of the potential be
ause the latter

is easily implemented, requires very little 
omputer memory, and 
an be made

arbitrarily a

urate. The exa
t evaluation of Eq. (D.2) was obtained using the

symboli
-algebra pa
kage Mathemati
a. Within Mathemati
a, the expression

in Eq. (D.2) was �rst redu
ed by symboli
 manipulation to the exa
t algebrai


form a
√
b/c, where a, b, and c are integers, for ea
h 
hoi
e of the quantum

numbers ni, nj , nk, and nl. That algebrai
 number 
ould then be evaluated

numeri
ally to any desired a

ura
y. The numeri
al integration, on the other

hand, was performed by Gauss-Hermite quadrature in double-pre
ision mode

(i.e., with 16 signi�
ant �gures). The purpose of the 
omparison between the

exa
t evaluation of Eq. (D.2) and the numeri
al integration is to show that

the numeri
al integration 
an be made arbitrarily 
lose (up to the limits of

ma
hine a

ura
y) to the exa
t result, thereby validating Eq. (D.2). In Fig.

2, the maximum deviation between the exa
t 
al
ulation and numeri
al in-

tegration of the V
(z)
ijkl values is plotted as a fun
tion of the number N

quad

of
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Figure 1. Maximum deviation between 
al
ulations of the matrix elements V
(z)
ijkl using

the separation method in Eq. (10) on one hand, and Eq. (D.2) on the other, plotted

as a fun
tion of basis size N0.

quadrature points for a basis size N0 = 12. For N
quad

≥ 208, the limits of

ma
hine a

ura
y are rea
hed in the numeri
al integration, and the maximum

deviation between the two methods of 
al
ulating V
(z)
ijkl matrix elements levels

out slightly above 4.3× 10−16
.

In Fig. 3, we 
ompare the exa
t evaluation of Eq. (D.2) using Mathemati
a to

its numeri
al evaluation in double-pre
ision mode, as a fun
tion of basis size

N0. The trend in Fig. 3 shows the e�e
t of roundo� error in the numeri
al

evaluation of Eq. (D.2). However, despite a 
lear de
rease in a

ura
y with

in
reasing basis size, Fig. 3 shows that a double-pre
ision numeri
al evaluation

of Eq. (D.2) still gives the value of the matrix elements V
(z)
ijkl to a very high level

of a

ura
y. Even for a basis size as large asN0 = 24, the largest deviation from
the exa
t values is still only 1.5×10−8

. For the remainder of this dis
ussion, we

will use the numeri
al evaluation of Eq. (D.2) in double-pre
ision mode rather

than the exa
t Mathemati
a result, be
ause the Mathemati
a 
al
ulations are

prohibitively time-
onsuming, and the a

ura
y of the numeri
al evaluation of

the separation-method formulas is more than su�
ient for most appli
ations.

In Fig. 4, we extra
t the number of Gauss-Hermite quadrature points required

by the numeri
al integration to obtain values that are satisfa
torily 
lose (say,

17
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Figure 2. Maximum deviation between the numeri
al integration of the matrix el-

ements V
(z)
ijkl and their exa
t evaluation using the separation method in Eq. (D.2)

with Mathemati
a for basis size N0 = 12, plotted as a fun
tion of the number of

Gauss-Hermite quadrature points in the integral.

within a 10−4
dis
repan
y at most) to the values given by a numeri
al eval-

uation of Eq. (D.2). The number of quadrature points plotted as a fun
tion

of basis size N0 is moderately large, and in
reases steadily with N0. Further

below we will gauge the 
ost in 
omputational time in
urred by the numeri
al

integration with these relatively large numbers of quadrature points.

We 
arry out a similar analysis for the radial 
omponent,V
(r)
ijkl, of the matrix

elements. In this 
ase, for a given basis size N0, the quantum numbers for

the radial matrix element V
(r)
ijkl in Eq. (3) take on all values su
h that 0 ≤

2nr + |Λ| ≤ N0 with nr ≥ 0. As we did in Fig. 2 for the Cartesian 
omponent,

we 
ompare in Fig. 5 an exa
t (Mathemati
a) 
al
ulation of Eq. (20) to a

numeri
al integration of the radial 
omponent in Eq. (3) using double-pre
ision

Gauss-Laguerre quadrature, for a basis size N0 = 8. In Fig. 5, the maximum

deviation between exa
t evaluation and numeri
al integration, plotted as a

fun
tion of the number N
quad

of quadrature points, is made arbitrarily small

with in
reasing N
quad

values until the limits of ma
hine a

ura
y and roundo�

error are rea
hed for N
quad

≥ 48, where the maximum dis
repan
y settles

above 1.3× 10−15
.
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Figure 3. Maximum deviation between the numeri
al 
al
ulation and exa
t Mathe-

mati
a evaluation of the matrix elements V
(z)
ijkl using the separation method in Eq.

(D.2), plotted as a fun
tion of basis size N0.

A 
omparison between exa
t (Mathemati
a) and double-pre
ision numeri
al

evaluations of the separation-method result in Eq. (20) is plotted in Fig. 6 as

a fun
tion of basis size N0. The a

ura
y of the numeri
al evaluation 
learly

deteriorates with in
reasing basis size, but remains quite good nevertheless,

rea
hing only a 1.2× 10−9
maximum deviation for N0 = 12. For pra
ti
al rea-

sons, we will use the numeri
al evaluation of Eq. (20) in the remainder of this

dis
ussion, rather than the exa
t�but mu
h slower�Mathemati
a 
al
ulation.

The number of Gauss-Laguerre quadrature points needed to obtain a dis
rep-

an
y of 10−4
or less between the numeri
al integration and numeri
al separa-

tion method for V
(r)
ijkl matrix elements is plotted in Fig. 7 as a fun
tion of basis

size. As in Fig. 4 for the Cartesian matrix elements, the required number of

quadrature points is moderate and in
reases with basis size. The impa
t of

these numbers of quadrature points on exe
ution time will be investigated

next.

We now 
ompare exe
ution times for the numeri
al integration and numeri
al

separation methods. The numeri
al integrations for the Cartesian and radial


omponents are performed with the number of quadrature points given in

Figs. 4 and 7, respe
tively, to ensure agreement to 10−4
or better with the
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Figure 4. Minimum number of Gauss-Hermite quadrature points needed to a
hieve

10
−4

or better agreement between the numeri
al integration of the matrix elements

V
(z)
ijkl and their evaluation using the separation method in Eq. (D.2), plotted as a

fun
tion of basis size N0.

separation-method results. In order to speed up the numeri
al integrations,

the harmoni
-os
illator fun
tions are 
al
ulated at the appropriate quadrature

points and stored on
e and for all. A set of nested loops then evaluate the

multidimensional integrals by re
alling the stored values of the fun
tions as

the terms in the quadrature are summed. Likewise, for the 
al
ulations by the

separation method, the T , Ī, and F̄ 
oe�
ients are 
al
ulated ahead of time

and re
alled as needed in the evaluation of the matrix elements using Eqs.

(D.2) and (20).

The 
al
ulations have been performed on a 2.13-GHz Pentium M pro
es-

sor in double-pre
ision mode. The exe
ution times are plotted in Fig. 8 for

the z 
omponent of the matrix element, and in Fig. 9 for the radial 
ompo-

nent. The times plotted in
lude the setup time needed to pre-
al
ulate the

harmoni
-os
illator fun
tion values and separation 
oe�
ients appropriate to

ea
h method. The di�eren
e in exe
ution times between the numeri
al and sep-

aration methods be
ome staggering with in
reasing basis size. For large-s
ale


omputations requiring matrix-element 
al
ulations over a range of values of

the harmoni
-os
illator parameters b⊥ and bz, su
h as maps of �ssion shapes

for a single nu
leus or maps of nu
lear properties for large sets of nu
lei, dire
t
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Figure 5. Maximum deviation between the numeri
al integration of the matrix el-

ements V
(r)
ijkl and their exa
t evaluation using the separation method in Eq. (20)

with Mathemati
a for basis size N0 = 8, plotted as a fun
tion of the number of

Gauss-Laguerre quadrature points in the integral.

numeri
al integrations rapidly be
ome unfeasible without parallel ma
hines.

Even with parallel pro
essing, modern nu
lear-physi
s problems (e.g., the

mi
ros
opi
 treatment of �ssion in a multidimensional 
olle
tive-
oordinate

spa
e) will eventually overwhelm any given 
omputational resour
e, and in

order to mat
h the a

ura
y of the separation method, numeri
al integrals

will generally require an inordinate number of quadrature points.

4 Con
lusion

We have derived expli
it expressions for Gaussian matrix elements in a 
ylin-

dri
al harmoni
-os
illator basis, using the separation method. These expres-

sions have been tested against dire
t numeri
al integration and found to be

highly a

urate and 
omputationally e�
ient. These 
hara
teristi
s make the

separation method an invaluable tool for 
omputationally-intensive appli
a-

tions, su
h as the mi
ros
opi
 des
ription of �ssion. The work presented here

has wider relevan
e than to the Gaussian form, or to nu
lear-physi
s problems

alone. In parti
ular, the methodology used in the present derivations, whi
h
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Figure 6. Maximum deviation between the numeri
al 
al
ulation and exa
t Mathe-

mati
a evaluation of the matrix elements V
(r)
ijkl using the separation method in Eq.

(20), plotted as a fun
tion of basis size N0.

relies heavily on generating fun
tions, 
an be applied to other types of inter-

a
tions and a wider 
lass of basis states to derive analyti
al, 
omputationally-

e�
ient expressions for matrix elements. For example, in future publi
ations,

we will apply the separation method to the Coulomb and Yukawa intera
tions,

and extend the formalism to bases of displa
ed and two-
enter deformed har-

moni
 os
illators. These planned extensions to the separation formalism en-

large the range of appli
ations of the method to many problems of 
entral

importan
e in nu
lear, atomi
, and mole
ular systems.

We wish to thank D. Gogny for invaluable guidan
e in the development of

the formalism and preparation of this manus
ript. This work was performed

under the auspi
es of the U.S. Department of Energy by Lawren
e Livermore

National Laboratory under Contra
t DE-AC52-07NA27344.
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Figure 7. Minimum number of Gauss-Laguerre quadrature points needed to a
hieve

10
−4

or better agreement between the numeri
al integration of the matrix elements

V
(r)
ijkl and their evaluation using the separation method in Eq. (20), plotted as a

fun
tion of basis size N0.

A Mapping between Cartesian and polar 
oordinates for harmoni
-

os
illator fun
tions

In this se
tion, we derive an identity relating the harmoni
-os
illator fun
tions

expressed in two-dimensional Cartesian 
oordinates (x, y) to those in polar


oordinates (ρ, ϕ) where

ρ2= x2 + y2

tanϕ=
y

x

To this end, we will �rst need to derive generating fun
tions for the harmoni
-

os
illator fun
tions in the two 
oordinate systems.
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Figure 8. Comparison of total exe
ution times for the evaluation of V
(z)
ijkl by numeri
al

integration and by the separation method in Eq. (D.2), as a fun
tion of basis size

N0.

A.1 Generating fun
tion in Cartesian 
oordinates

In this appendix, we derive the generating fun
tion

e−t2+2tx/b−x2/(2b2) =
√

b
√
π

∞
∑

k=0

2k/2√
k!
tkΦk (x; b) (A.1)

for the Cartesian harmoni
-os
illator fun
tions in Eq. (7).

We begin with the generating fun
tion for Hermite polynomials (Eq. 8.957(1),

p. 1034 in [8℄), for arbitrary variables x and t,

e−t2+2tx =
∞
∑

k=0

tk

k!
Hk (x)

making the substitution x→ x/b in order to introdu
e the harmoni
-os
illator

parameter b,
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Figure 9. Comparison of total exe
ution times for the evaluation of V
(r)
ijkl by numeri
al

integration and by the separation method in Eq. (20), as a fun
tion of basis size N0.

e−t2+2tx/b =
∞
∑

k=0

tk

k!
Hk

(

x

b

)

Next, we introdu
e the Gaussian and normalization fa
tors appearing in the

de�nition of the harmoni
 os
illator fun
tion in Eq. (7)

e−x2/(2b2)e−t2+2tx/b =
∞
∑

k=0

tk

k!Nk
Nke

−x2/(2b2)Hk

(

x

b

)

or, in terms of the harmoni
-os
illator fun
tions,

e−t2+2tx/b−x2/(2b2) =
√

b
√
π

∞
∑

k=0

2k/2√
k!
tkΦk (x; b)
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A.2 Generating fun
tion in polar 
oordinates

Here, we derive a generating fun
tion for the polar harmoni
-os
illator fun
-

tions de�ned in Eq. (4),

e−t2+2ρt cosϕ/b−ρ2/(2b2) = b
√
π

∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|
√

n! (n + |k|)!
Φn,k (ρ, ϕ; b) (A.2)

whi
h we also 
ast in the form

e−
~t2+2~ρ·~t/b−ρ2/(2b2) = b2

√

π

2

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|χn,k

(

~t
)

Φn,k (ρ, ϕ; b) (A.3)

where the fun
tions χn,k

(

~t
)

are de�ned by Eq. (A.9).

To derive a generating fun
tion for harmoni
-os
illator fun
tions in polar 
oor-

dinates, we begin with the generating fun
tion for Laguerre polynomials (Eq.

8.975(3), p. 1038 in [8℄), for arbitrary variables x and z, and α > −1

Jα

(

2
√
xz
)

ez (xz)−α/2=
∞
∑

n=0

zn

Γ (n+ α + 1)
Lα
n (x) (A.4)

In order to mat
h the de�nition of the harmoni
-os
illator fun
tion in Eq. (5),

we substitute

√
x = ρ/b,

√
z = −it, and α = |k| where k is an integer. Then,

isolating the Bessel fun
tion on the left-hand side, Eq. (A.4) takes the form

J|k| (−2iρt/b) = et
2

(−i)|k|
(

ρt

b

)|k| ∞
∑

n=0

(−1)n t2n
(n+ |k|)!L

|k|
n

(

ρ2

b2

)

(A.5)

On the other hand, the generating fun
tion for a Bessel fun
tion of the �rst

kind for arbitrary z and ϕ is (Eq. 8.511(4), p. 973 in [8℄)

eiz cosϕ =
∞
∑

k=−∞
ikJk (z) e

ikϕ

=
∞
∑

k=−∞
i|k|J|k| (z) e

ikϕ
(A.6)

where the se
ond line follows from Eq. 8.404(2) in [8℄. Substituting z =
−2iρt/b2 into Eq. (A.6),
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e2ρt cosϕ/b =
∞
∑

k=−∞
i|k|J|k|

(

−2iρt
b

)

eikϕ (A.7)

Finally, plugging Eq. (A.5) into Eq. (A.7) yields

e2ρt cosϕ/b = et
2

∞
∑

k=−∞
(−i)|k| i|k|

(

ρt

b

)|k|

×
∞
∑

n=0

(−1)n t2n
(n+ |k|)!L

|k|
n

(

ρ2

b2

)

eikϕ

where the right-hand side 
an be made to look more like the harmoni
-

os
illator fun
tion de�nition in Eq. (5),

e−t2+2ρt cosϕ/b =
∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|

(n + |k|)!

√
2πeρ

2/(2b2)

Nn,|k|

×
[

Nn,|k|

(

ρ

b

)|k|
e−ρ2/(2b2)L|k|

n

(

ρ2

b2

)

eikϕ√
2π

]

or, after straightforward simpli�
ations,

e−t2+2ρt cosϕ/b−ρ2/(2b2) = b
√
π

∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|
√

n! (n+ |k|)!
Φn,k (ρ, ϕ; b)

Note that there is a potential ambiguity in the meaning of the angle ϕ in

Eq. (A.2). In fa
t, Eq. (A.2) was derived for any arbitrary value of ϕ but on

left-hand side, the term ρt cosϕ in the exponent suggests a dot produ
t ~ρ · ~t
with ϕ the angle between the ve
tors, while on the right-hand side, writing the

harmoni
-os
illator fun
tion Φn,k (ρ, ϕ; b) suggests that ϕ is the polar angle of

the ve
tor ~ρ. To lift this apparent ambiguity, we introdu
e the polar angle ϕt

of ve
tor

~t expli
itly by noting that if θ is the angle between ve
tors ~ρ and

~t
with θ = ϕ− ϕt, then a

ording to Eq. (4)

Φn,k (ρ, θ; b) =Φn,|k| (ρ; b)
eikθ√
2π

and therefore

Φn,k (ρ, θ; b) =Φn,k (ρ, ϕ; b) e
−ikϕt

(A.8)

Writing the left-hand side of Eq. (A.2) in ve
tor form, we now have
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e−
~t2+2~ρ·~t/b−ρ2/(2b2) = b

√
π

∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|
√

n! (n + |k|)!
e−ikϕtΦn,k (ρ, ϕ; b)

For 
onvenien
e, we introdu
e the fun
tion

χn,k

(

~t
)

≡ (−1)n
n!

t2n+|k|e−ikϕt
(A.9)

whi
h allows us to write the generating fun
tion for polar harmoni
-os
illator

fun
tions as

e−
~t2+2~ρ·~t/b−ρ2/(2b2) = b2

√

π

2

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|χn,k

(

~t
)

Φn,k (ρ, ϕ; b)

This form will be 
onvenient for some derivations, and we will obtain useful

properties of the fun
tion χn,k

(

~t
)

in se
tion A.5.

A.3 Polar-to-Cartesian mapping

Having derived generating fun
tions for the harmoni
-os
illator fun
tions in

both polar and Cartesian 
oordinates, we 
an now obtain a relation between

the two,

Φnx
(x; b) Φny

(y; b) =
nx+ny
∑

k=−nx−ny,2

C
nx,ny

n,k Φnx+ny−|k|

2
,k
(ρ, ϕ; b) (A.10)

where the 
oe�
ients C
nx,ny

n,k are given by Eq. (A.17).

In order to relate the polar and Cartesian harmoni
-os
illator fun
tions we will

use Eqs. (A.1) and (A.2). We will assume axial symmetry and use the same

parameter b for all the 
oordinates involved. Consider the arbitrary ve
tors

~ρ = xx̂ + yŷ and

~t = txx̂ + ty ŷ in the two-dimensional Cartesian 
oordinate

system, with ~ρ ·~t = ρt cos θ. Note that we are using the symbol θ for the angle
between ve
tors ~ρ and

~t. We 
an write

e−t2x+2txx/b−x2/(2b2)e−t2y+2tyy−y2/(2b2) = e−t2+2ρt cos θ/b−ρ2/(2b2)

Using Eqs. (A.1) and (A.2), this 
an also be written as
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b
√
π

∞
∑

nx=0

∞
∑

ny=0

2(nx+ny)/2

√

nx!ny!
tnx

x tny

y Φnx
(x; b) Φny

(y; b)

= b
√
π

∞
∑

k=−∞

∞
∑

n=0

(−1)n t2n+|k|
√

n! (n + |k|)!
Φn,k (ρ, θ; b) (A.11)

We must now equate the terms on the left-hand side to those on the right-

hand side. We would like to introdu
e the polar angle ϕ of the ve
tor ~ρ instead
of the angle θ between ~ρ and

~t in these expressions, be
ause the �nal result

should be 
ompletely independent of the 
hoi
e of ve
tor

~t. Using Eq. (A.8),

Eq. (A.11) be
omes

∞
∑

nx=0

∞
∑

ny=0

2(nx+ny)/2

√

nx!ny!

(

tx
b

)nx
(

ty
b

)ny

Φnx
(x; b) Φny

(y; b)

=
∞
∑

k=−∞

∞
∑

n=0

(−1)n
√

n! (n + |k|)!

(

t

b

)2n+|k|
e−ikϕtΦn,k (ρ, ϕ; b) (A.12)

All we have to do now is identify terms on the left- and right-hand sides. We


an establish this 
orresponden
e by expressing t and ϕt in terms of tx and ty.
To this end, we write

t2n+|k|e−ikϕt = t2n
(

te−iskϕt

)|k|

where we have introdu
ed the sign quantity

sk≡






1 k ≥ 0

−1 k < 0
(A.13)

Note that we 
an write

te−iskϕt = t cos (skϕt)− it sin (skϕt)

= t cosϕt − iskt sinϕt

= tx − iskty

where the se
ond line follows be
ause sk = ±1. Thus we have

t2n+|k|e−ikϕt =
(

t2x + t2y
)n

(tx − iskty)
|k|

=
n
∑

p=0

|k|
∑

q=0







n

p













|k|
q





 (−isk)|k|−q t2p+q
x t2n+|k|−2p−q

y
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We substitute this result into the right-hand side of Eq. (A.12) to get

RHS=
∞
∑

k=−∞

∞
∑

n=0

(−1)n
√

n! (n+ |k|)!







n
∑

p=0

|k|
∑

q=0







n

p













|k|
q





 (−isk)|k|−q

×t2p+q
x t2n+|k|−2p−q

y

]

Φn,k (ρ, ϕ; b) (A.14)

Comparing with the left-hand side of Eq. (A.12), we see that we will need to

make the identi�
ations

2p+ q=nx

2n+ |k| − 2p− q=ny

whi
h also implies the important relation

nx + ny =2n+ |k| (A.15)

We wish to repla
e the sums in Eq. (A.14) over n and p with sums over nx

and ny. Sin
e nx = 2p+q, it is 
lear that nx will span the full range of integers

starting with 0. Similarly, Eq. (A.15) implies that ny = 2n + |k| − nx and for

any nx, there will always be a set of n and k values su
h that ny spans the

full range of integers from 0, independently of the value of index nx. Thus we


an make the substitution

∞
∑

n=0

n
∑

p=0

→
∞
∑

nx=0

∞
∑

ny=0

Next, we note that Eq. (A.15) 
an also be written as 2n = nx + ny − |k|, and
sin
e n ≥ 0, we must therefore have |k| ≤ nx + ny. Finally, 2p = nx − q, and
sin
e p ≥ 0, we 
on
lude that q ≤ nx. Thus we 
an also make the substitution

∞
∑

k=−∞

|k|
∑

q=0

→
nx+ny
∑

k=−nx−ny

min(nx,|k|)
∑

q=0

and Eq. (A.14) be
omes

RHS=
∞
∑

nx=0

∞
∑

ny=0





nx+ny
∑

k=−nx−ny,2

min(nx,|k|)
∑

q=0

(−1)(nx+ny−|k|)/2 (−isk)|k|−q

√

nx+ny−|k|
2

!nx+ny+|k|
2

!

×







nx+ny−|k|
2

nx−q
2













|k|
q





Φnx+ny−|k|

2
,k
(ρ, ϕ; b)





 tnx

x tny

y (A.16)

30



Note that in the sum over k, the index 
an be stepped by 2 units at a time,

be
ause of the restri
tions imposed by the fa
torials. Comparing the left-hand

side of Eq. (A.12), and its right-hand side given by Eq. (A.16), we dedu
e

2(nx+ny)/2

√

nx!ny!
Φnx

(x; b) Φny
(y; b)=

nx+ny
∑

k=−nx−ny,2

min(nx,|k|)
∑

q=0

(−1)(nx+ny−|k|)/2 (−isk)|k|−q

√

nx+ny−|k|
2

!nx+ny+|k|
2

!

×







nx+ny−|k|
2

nx−q
2













|k|
q





Φnx+ny−|k|

2
,k
(ρ, ϕ; b)

or, in more 
ompa
t notation,

Φnx
(x; b) Φny

(y; b)=
nx+ny
∑

k=−nx−ny,2

C
nx,ny

n,k Φnx+ny−|k|

2
,k
(ρ, ϕ; b)

where

C
nx,ny

n,k ≡
√

nx!ny!

2(nx+ny)/2

(−1)(nx+ny−|k|)/2
√

nx+ny−|k|
2

!nx+ny+|k|
2

!

min(nx,|k|)
∑

q=0

(−isk)|k|−q







nx+ny−|k|
2

nx−q
2













|k|
q







(A.17)

The appearan
e of the index n in the symbol C
nx,ny

n,k , even though it is not

expli
itly used, serves as a reminder of the impli
it relation between the indi
es

given by Eq. (A.15).

A.4 Cartesian-to-polar mapping

In this se
tion,we derive the inverse transformation 
orresponding to Eq.

(A.10),

Φn,k (ρ, ϕ; b) =
2n+|k|
∑

ny=0

Cn,k
nx,ny

Φ2n+|k|−ny
(x; b) Φny

(y; b) (A.18)

whi
h expresses the polar harmoni
-os
illator fun
tions in terms of the Carte-

sian fun
tions. The 
oe�
ients Cn,k
nx,ny

are given by Eq. (A.21).

We start again from Eq. (A.12), but this time, we express tx and ty on the

left-hand side in terms of t and ϕt. Consider then
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tnx

x tny

y =(t cosϕt)
nx (t sinϕt)

ny

= tnx+ny

(

eiϕt + e−iϕt

2

)nx
(

eiϕt − e−iϕt

2i

)ny

Expanding the powers and grouping terms yields

tnx

x tny

y =
tnx+ny

2nx+ny iny

nx
∑

p=0

ny
∑

q=0







nx

p













ny

q





 (−1)ny−q e−i(nx+ny−2p−2q)ϕt

Substituting into the left-hand side of Eq. (A.12) produ
es

LHS=
∞
∑

nx=0

∞
∑

ny=0

tnx+ny

√

nx!ny!2(nx+ny)/2iny

nx
∑

p=0

ny
∑

q=0







nx

p













ny

q





 (−1)ny−q

×e−i(nx+ny−2p−2q)ϕtΦnx
(x; b) Φny

(y; b)

Comparing with the right-hand side of Eq. (A.12) we see that we need to make

the identi�
ations

nx + ny =2n+ |k| (A.19)

nx + ny − 2p− 2q= k (A.20)

we therefore introdu
e a summation over n and k with the help of Krone
ker-

delta fun
tions,

LHS=
∞
∑

n=0

∞
∑

k=−∞
t2n+|k|e−ikϕt2−(nx+ny)/2

∞
∑

nx=0

∞
∑

ny=0

δnx+ny,2n+|k|

×Φnx
(x; b) Φny

(y; b)
√

nx!ny!iny

nx
∑

p=0

ny
∑

q=0

δ2p+2q,nx+ny−k







nx

p













ny

q





 (−1)ny−q

where the Krone
ker-delta fun
tions 
olle
t those terms in the remaining sum-

mations needed to satisfy Eqs. (A.19) and (A.20). The restri
tions imposed by

the Krone
ker-delta fun
tions 
an be used to eliminate the summations over

nx and p
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LHS=
∞
∑

n=0

∞
∑

k=−∞
t2n+|k|e−ikϕt2−n−|k|/2

2n+|k|
∑

ny=0

Φ2n+|k|−ny
(x; b) Φny

(y; b)
√

(2n+ |k| − ny)!ny!iny

min(ny,n−q+(|k|−k)/2)
∑

q=0







2n+ |k| − ny

n− q + |k|−k
2













ny

q





 (−1)ny−q

Comparing with the right-hand side of Eq. (A.12) we dedu
e the relation

2−n−|k|/2
2n+|k|
∑

ny=0

Φ2n+|k|−ny
(x; b) Φny

(y; b)
√

(2n + |k| − ny)!ny!iny

×
qmax
∑

q=0







2n+ |k| − ny

n− q + |k|−k
2













ny

q





 (−1)ny−q =
(−1)n

√

n! (n + |k|)!
Φn,k (ρ, ϕ; b)

where

qmax≡min (ny, n+ (|k| − k) /2)

whi
h we write as

Φn,k (ρ, ϕ; b) =
2n+|k|
∑

ny=0

Cn,k
nx,ny

Φ2n+|k|−ny
(x; b) Φny

(y; b)

with

Cn,k
nx,ny

=
2−n−|k|/2 (−1)n

√

n! (n + |k|)!
√

(2n+ |k| − ny)!ny!iny

qmax
∑

q=0







2n+ |k| − ny

n− q + |k|−k
2













ny

q





 (−1)ny−q

(A.21)

The appearan
e of the index nx in the symbol Cn,k
nx,ny

, even though it is not

expli
itly used, serves as a reminder of the impli
it relation between the indi
es

given by Eq. (A.15).

A.5 Properties of the fun
tion χn,k

(

~t
)

In se
tion A.2 we introdu
ed the fun
tion χn,k

(

~t
)

whi
h was used to obtain

a generating fun
tion for harmoni
-os
illator fun
tions in polar 
oordinates.

This fun
tion has many useful properties whi
h we will exploit in further
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derivations. In this se
tion, we obtain some important properties of χn,k

(

~t
)

.

From the de�nition of the χn,k

(

~t
)

fun
tion in Eq. (A.9),

χn,k

(

~t
)

≡ (−1)n
n!

t2n+|k|e−ikϕt

we 
an easily show that

t2mχn,k

(

~t
)

= (−1)m (n+m)!

n!
χn+m,k

(

~t
)

(A.22)

As a 
orollary, we 
an use Eq. (A.22) to show

eat
2

χn,k

(

~t
)

=
∞
∑

m=0

(−a)m (n +m)!

m!n!
χn+m,k

(

~t
)

(A.23)

The 
omplex 
onjugate of χn,k

(

~t
)

is also readily expressed as

χ∗
n,k

(

~t
)

= χn,−k

(

~t
)

(A.24)

and a s
ale fa
tor 
an be fa
tored out,

χn,k

(

a~t
)

= a2n+|k|χn,k

(

~t
)

(A.25)

Next, We will use the fun
tion χn,k, to expand the expression exp
(

2~t1 · ~t2
)

.

Starting with the generating fun
tion for Bessel fun
tions of the �rst kind, Eq.

(A.6) with z = −2it1t2 and ϕ = ϕ1 − ϕ2,

e2
~t1·~t2 =

∞
∑

k=−∞
i|k|J|k| (−2it1t2) eik(ϕ1−ϕ2)

(A.26)

Next, we use the series expansion for Bessel fun
tions (Eq. 8.440 in [8℄),

Jν (z) =
(

z

2

)ν ∞
∑

k=0

(−1)k
k! (ν + k)!

(

z

2

)2k

to write Eq. (A.26) as
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e2
~t1·~t2 =

∞
∑

k=−∞
i|k|eik(ϕ1−ϕ2) (−it1t2)|k|

∞
∑

n=0

(−1)n (−it1t2)2n
n! (|k|+ n)!

=
∞
∑

n=0

∞
∑

k=−∞

1

n! (|k|+ n)!
(t1t2)

2n+|k| eik(ϕ1−ϕ2)

or,

e2
~t1·~t2 =

b2

2

∞
∑

n=0

∞
∑

k=−∞
N 2

n,|k| (b)χ
∗
n,k

(

~t1
)

χn,k

(

~t2
)

(A.27)

where Nnr,|Λ| (b) is given by Eq. (6), and the os
illator parameter b 
an
els out
in the right-hand side. Next, we derive an expression for the produ
t of two

χn,k fun
tions, using the de�nition in Eq. (A.9)

χn1,k1

(

~t
)

χn2,k2

(

~t
)

=
(−1)n1+n2

n1!n2!
t2n1+2n2+|k1|+|k2|e−i(k1+k2)ϕt

(A.28)

at this point, it is 
onvenient to de�ne the quantities

n1,2≡n1 + n2 +
|k1|+ |k2| − |k1 + k2|

2
(A.29)

k1,2≡
|k1|+ |k2| − |k1 + k2|

2
(A.30)

whi
h re
ur throughout the paper. Then Eq. (A.28) be
omes

χn1,k1

(

~t
)

χn2,k2

(

~t
)

=(−1)−k1,2 n1,2!

n1!n2!

(−1)n1,2

n1,2!
t2n1,2+|k1+k2|e−i(k1+k2)ϕt

or,

χn1,k1

(

~t
)

χn2,k2

(

~t
)

= (−1)k1,2 n1,2!

n1!n2!
χn1,2,k1+k2

(

~t
)

(A.31)

Next, we obtain an expression for the fun
tion χn,k

(

~t1 + ~t2
)

of a sum of ve
-

tors. We write for an arbitrary ve
tor

~t

e2(
~t1+~t2)·~t= e2

~t1·~te2
~t2·~t

(A.32)

Using Eq. (A.27), the left-hand side is

LHS=
b2

2

∞
∑

n=0

∞
∑

k=−∞
N 2

n,|k| (b)χ
∗
n,k

(

~t1 + ~t2
)

χn,k

(

~t
)

(A.33)
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while the right-hand side of Eq. (A.32) is

RHS=
b4

4

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
N 2

n1,|k1| (b)N 2
n2,|k2| (b)

×χ∗
n1,k1

(

~t1
)

χ∗
n2,k2

(

~t2
)

χn1,k1

(

~t
)

χn2,k2

(

~t
)

Using Eq. (A.31), this redu
es to

RHS=
b4

4

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
N 2

n1,|k1| (b)N 2
n2,|k2| (b) (−1)

k1,2 n1,2!

n1!n2!

×χ∗
n1,k1

(

~t1
)

χ∗
n2,k2

(

~t2
)

χn1,2,k1+k2

(

~t
)

In order to 
ompare with Eq. (A.33), we introdu
e summations over the indi
es

n and k with the help of Krone
ker-delta fun
tions,

RHS=
b4

4

∞
∑

n=0

∞
∑

k=−∞

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
N 2

n1,|k1| (b)N 2
n2,|k2| (b) (−1)

k1,2 n1,2!

n1!n2!

×χ∗
n1,k1

(

~t1
)

χ∗
n2,k2

(

~t2
)

δn,n1,2δk,k1+k2χn,k

(

~t
)

(A.34)

Comparing Eqs. (A.33) and (A.34) for an arbitrary ve
tor

~t, and taking the


omplex 
onjugate, we are lead to write

χn,k

(

~t1 + ~t2
)

=
∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
Dn,k

n1,k1;n2,k2
χn1,k1

(

~t1
)

χn2,k2

(

~t2
)

(A.35)

where

Dn,k
n1,k1;n2,k2

= (−1)n1+n2−n (n + |k|)!
(n1 + |k1|)! (n2 + |k2|)!

δn,n1,2δk,k1+k2 (A.36)

Note that we have used the 
ondition imposed by the Krone
ker-delta fun
tion

δn,n1,2 and the de�nition of n1,2 in Eq. (A.29) to write

(−1)k1,2 =(−1)n1+n2−n

Finally, we derive an expansion for the produ
t exp
(

2~t1 · ~t2
)

χn,k

(

~t1 + ~t2
)

.

Though it is tempting to use Eq. (A.27) for this, we will adopt a di�erent

approa
h whi
h will yield a simpler expression in the end. We write

36



e2
~t1·~t2/b2χn,k

(

~t1 + ~t2
)

= e(
~t1+~t2)

2

e−(t
2
1+t22)χn,k

(

~t1 + ~t2
)

We treat the �rst exponential on the right-hand side using Eq. (A.23), so that

e2
~t1·~t2χn,k

(

~t1 + ~t2
)

= e−(t
2
1+t22)

∞
∑

m=0

(−1)m (n +m)!

m!n!
χn+m,k

(

~t1 + ~t2
)

Next, we use Eq. (A.35) to expand the χn+m,k

(

~t1 + ~t2
)

fun
tion

e2
~t1·~t2χn,k

(

~t1 + ~t2
)

= e−(t
2
1+t22)

∞
∑

m=0

(−1)m (n +m)!

m!n!

×
∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
Dn+m,k

n1,k1;n2,k2

×χn1,k1

(

~t1
)

χn2,k2

(

~t2
)

and use Eq. (A.23) again to eliminate the remaining exponential on the right-

hand side

e2
~t1·~t2χn,k

(

~t1 + ~t2
)

=
∞
∑

m1=0

∞
∑

m2=0

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
Dn,k

n1,k1,m1;n2,k2,m2

×χn1+m1,k1

(

~t1
)

χn2+m2,k2

(

~t2
)

(A.37)

where we have de�ned

Dn,k
n1,k1,m1;n2,k2,m2

≡
∞
∑

m=0

(−1)m (n+m)! (n1 +m1)! (n2 +m2)!

m!n!m1!n1!m2!n2!
Dn+m,k

n1,k1;n2,k2

=
∞
∑

m=0

(−1)n1+n2−n (n+m)! (n1 +m1)! (n2 +m2)!

m!n!m1!n1!m2!n2!

× (n +m+ |k|)!
(n1 + |k1|)! (n2 + |k2|)!

δn+m,n1,2δk,k1+k2

whi
h simpli�es to

Dn,k
n1,k1,m1;n2,k2,m2

≡ n1,2! (n1 +m1)! (n2 +m2)! (n1,2 + |k1 + k2|)!
(n1,2 − n)!n!m1!n1!m2!n2! (n1 + |k1|)! (n2 + |k2|)!
× (−1)n1+n2−n δn≤n1,2δk,k1+k2 (A.38)

Note the disappearan
e of the in�nite sum over m in favor of the Krone
ker-

delta fun
tion δn≤n1,2 .
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B De
omposition of two-body Gaussian form

Consider the two-body Gaussian potential fun
tion in 
ylindri
al 
oordinates

V (~r1, ~r2)= e−(~r1−~r2)
2/µ2

= e−(~ρ1−~ρ2)
2/µ2

e−(z1−z2)
2/µ2

The 
riti
al �rst step in the separation method for harmoni
-os
illator matrix

elements is to write the potential itself in a form where the dependen
e on the


oordinates ~r1 and ~r2 has been expli
itly separated. We will therefore write

this two-body fun
tion as a sum of one-body fun
tions in the two 
oordinates.

Note that the resulting sum will 
ontain and in�nite number of terms, while

the matrix elements of the potential will be limited to a �nite sum, thanks to

properties of the harmoni
-os
illator fun
tions.

B.1 Cartesian 
omponent

The radial and Cartesian 
omponents of the potential 
an be expanded inde-

pendently. We begin with the Cartesian term and postulate

V (z1, z2) = e−(z1−z2)
2/µ2

≡
∞
∑

nz=0

fnz
(z1; bz) Φ̂nz

(z2; bz)


hoosing for the expansion the fun
tions

Φ̂nz
(z; bz) ≡ ez

2/(2b2z)Φnz
(z; bz) (B.1)

We will now show that

fnz
(z1; bz) = K1/2

z λnz
e−z21/(2Gzb2z)Φnz

(

z1;G
1/2
z bz

)

(B.2)

where the 
oe�
ients Kz and λnz
are given by Eqs. (B.5) and (B.6), respe
-

tively.

The exponential fun
tion in z2 in front of the harmoni
-os
illator fun
tion on

the left-hand side has been added for 
omputational 
onvenien
e, as we shall

see. Then, by orthogonality of the harmoni
-os
illator fun
tions, we have
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∫ ∞

−∞
dz2e

−z22/(2b2z)Φnz
(z2; bz) V (z1, z2) =

∫ ∞

−∞
dz2e

−z22/(2b2z)Φnz
(z2; bz)

×




∞
∑

n′
z=0

fn′
z
(z1; bz) Φ̂n′

z
(z2; bz)





= fnz
(z1; bz)

from whi
h we obtain an expli
it expression for the weight fun
tion fnz
(z1; bz),

fnz
(z1; bz) =

∫ ∞

−∞
dz2e

−z22/(2b2z)Φnz
(z2; bz) V (z1, z2)

=Nnz

∫ ∞

−∞
dz2e

−z22/b
2
ze−(z1−z2)

2/µ2

Hnz

(

z2
bz

)

(B.3)

Completing the square, we write

−z
2
2

b2z
− (z1 − z2)

2

µ2
=−

[

G1/2
z

z2
µ
−G−1/2

z

z1
µ

]2

−
(

1− 1

Gz

)

(

z1
µ

)2

where we have de�ned

Gz≡ 1 +
µ2

b2z
(B.4)

and the integral be
omes

fnz
(z1; bz) =Nnz

exp



−
(

1− 1

Gz

)

(

z1
µ

)2




×
∫ ∞

−∞
dz2 exp



−
(

G1/2
z

z2
µ
−G−1/2

z

z1
µ

)2


Hnz

(

z2
bz

)

Making the substitutions x ≡ G1/2
z z2/µ, y ≡ G−1/2

z z1/µ, α ≡ G−1/2
z µ/bz, the

remaining integral 
an be evaluated using Eq. 7.374(8), p. 837 in [8℄,

fnz
(z1; bz) =µG−1/2

z Nnz
π1/2

(

1− α2
)nz/2

exp
[

− (Gz − 1) y2
]

×Hnz

(

αy√
1− α2

)

After some straightforward algebra and re-grouping of terms, this 
an be writ-

ten as
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fnz
(z1; bz) =π1/2µG−1/2

z G−nz/2
z e−z21/(2Gzb2z)G1/4

z

×
[

1

G
1/4
z

Nnz
e−z21/(2Gzb2z)Hnz

(

z1

G
1/2
z bz

)]

or, identifying the term in the square bra
kets with a harmoni
-os
illator fun
-

tion with parameterG1/2
z bz (note the extra fa
torG

1/4
z needed to get the proper

normalization 
onstant Nnz

(

G1/2
z bz

)

),

fnz
(z1; bz) =K1/2

z λnz
e−z21/(2Gzb2z)Φnz

(

z1;G
1/2
z bz

)

where

Kz≡
πµ2

G
1/2
z

(B.5)

λnz
≡G−nz/2

z (B.6)

B.2 Radial 
omponent

For the radial 
omponent of the Gaussian potential, we write

V (~ρ1, ~ρ2) = e−(~ρ1−~ρ2)
2/µ2

≡
∞
∑

nr=0

∞
∑

Λ=−∞
fnr ,Λ (ρ1, ϕ1; b⊥) Φ̂nr,Λ (ρ2, ϕ2; b⊥)

where we have 
hosen

Φ̂nr ,Λ (ρ, ϕ; b⊥) ≡ e
ρ2

2b2
⊥ Φnr ,Λ (ρ, ϕ; b⊥) (B.7)

We will then show that

fnr ,Λ (ρ1, ϕ1; b⊥) = K⊥λ2nr+|Λ|e
−ρ21/(2G⊥b2

⊥)Φnr ,Λ

(

ρ1, ϕ1;G
1/2
⊥ b⊥

)

(B.8)

where the 
oe�
ients K⊥ and λ2nr+|Λ| are given by Eqs. (B.11) and (B.12),

respe
tively.

By orthogonality of the harmoni
-os
illator fun
tion we then have

fnr ,Λ (ρ1, ϕ1; b⊥)=
∫ ∞

0
ρ2dρ2

∫ 2π

0
dϕ2e

− ρ2
2

2b2
⊥ e−(~ρ1−~ρ2)

2/µ2

Φnr,Λ (ρ2, ϕ2; b⊥)
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This integral 
an be evaluated in a straightforward way by transforming to a

Cartesian 
oordinate system, and using Eq. (A.18),

fnr ,Λ (ρ1, ϕ1; b⊥)=
∫ ∞

−∞
dx2

∫ ∞

−∞
dy2e

−x22+y22
2b2

⊥ e−(x1−x2)
2/µ2−(y1−y2)

2/µ2

×
2nr+|Λ|
∑

ny=0

Cnr ,Λ
nx,ny

Φ2nr+|Λ|−ny
(x2; b⊥) Φny

(y2; b⊥)

=
2nr+|Λ|
∑

ny=0

Cnr ,Λ
nx,ny





∫ ∞

−∞
dx2e

− x2
2

2b2
⊥ e−(x1−x2)

2/µ2

Φ2nr+|Λ|−ny
(x2; b⊥)





×




∫ ∞

−∞
dy2e

− y2
2

2b2
⊥ e−(y1−y2)

2/µ2

Φny
(y2; b⊥)





The integrals in the square bra
kets are pre
isely those appearing in Eq. (B.3),

and they are given by Eq. (B.2)

fnr ,Λ (ρ1, ϕ1; b⊥)=
2nr+|Λ|
∑

ny=0

Cnr ,Λ
nx,ny

[

K
1/2
⊥ λ2nr+|Λ|−ny

e−x2
1/(2G⊥b2

⊥)

Φ2nr+|Λ|−ny

(

x1;G
1/2
⊥ b⊥

)]

[

K
1/2
⊥ λny

e−y21/(2G⊥b2
⊥)Φny

(

y1;G
1/2
⊥ b⊥

)

]

(B.9)

where

G⊥≡ 1 +
µ2

b2⊥
(B.10)

K⊥≡
πµ2

G
1/2
⊥

(B.11)

λn≡G
−n/2
⊥ (B.12)

and Eq. (B.9) 
an be further redu
ed to

fnr ,Λ (ρ1, ϕ1; b⊥)=K⊥λ2nr+|Λ|e
−ρ21/(2G⊥b2

⊥)

2nr+|Λ|
∑

ny=0

Cnr ,Λ
nx,ny

Φ2nr+|Λ|−ny

(

x1;G
1/2
⊥ b⊥

)

Φny

(

y1;G
1/2
⊥ b⊥

)

Finally, using Eq. (A.18) again to return to polar 
oordinates, we get

fnr ,Λ (ρ1, ϕ1; b⊥)=K⊥λ2nr+|Λ|e
−ρ21/(2G⊥b2

⊥)Φnr ,Λ

(

ρ1, ϕ1;G
1/2
⊥ b⊥

)
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C Produ
t of harmoni
-os
illator fun
tions

In this se
tion, we will express the produ
t of two harmoni
-os
illator fun
tions

in terms of a sum of single os
illator fun
tions. These results will be parti
-

ularly useful in evaluating integrals where the integrand in
ludes produ
ts of

harmoni
-os
illator fun
tions.

C.1 Produ
t of Cartesian harmoni
-os
illator fun
tions

In this se
tion, we derive the form

Φk1 (x; b) Φk2 (x; b) =
e−x2/(2b2)
√

b
√
π

k1+k2
∑

k=|k1−k2|,2
T k
k1,k2

Φk (x; b) (C.1)

for the Cartesian harmoni
-os
illator fun
tions of Eq. (7), with the 
oe�
ients

T k
k1,k2

given by Eq. (C.6).

Using the generating fun
tion in Eq. (A.1), we write for any arbitrary variables

t1 and t2,

e−t21+2t1x/b−x2/(2b2)e−t22+2t2x/b−x2/(2b2)

=





√

b
√
π

∞
∑

k1=0

2k1/2√
k1!

tk11 Φk1 (x; b)





×




√

b
√
π

∞
∑

k2=0

2k2/2√
k2!

tk22 Φk2 (x; b)





(C.2)

With the intent of manipulating the left-hand side of this equation into a form

similar to the left-hand side of Eq. (A.1), we write

LHS= e−t21−t22+2(t1+t2)x/b−x2/b2

= e−(t1+t2)
2+2(t1+t2)x/b−x2/(2b2)e2t1t2−x2/(2b2)

Using Eq. (A.1), this be
omes

42



LHS= e2t1t2−x2/(2b2)
√

b
√
π

∞
∑

k=0

2k/2√
k!

(t1 + t2)
k Φk (x; b)

=
√

b
√
πe−x2/(2b2)

∞
∑

k=0

2k/2√
k!
Φk (x; b)

∞
∑

p=0

(2t1t2)
p

p!

×
k
∑

q=0







k

q





 tq1t
k−q
2

=
√

b
√
πe−x2/(2b2)

∞
∑

k=0

2k/2√
k!
Φk (x; b)

×
k
∑

q=0







k

q







∞
∑

p=0

2p

p!
tq+p
1 tk+p−q

2 (C.3)

We 
an also group the terms in the right-hand side of Eq. (C.2),

RHS= b
√
π

∞
∑

k1=0

∞
∑

k2=0

2(k1+k2)/2

√
k1!k2!

tk11 tk22 Φk1 (x; b) Φk2 (x; b) (C.4)

Now we equate powers of t1 and t2 between Eqs. (C.3) and (C.4). We �nd that

we must make the identi�
ations

q + p= k1
k + p− q= k2

whi
h lead to

p=(k1 + k2 − k) /2

q=(k1 − k2 + k) /2

so that Eq. (C.3) 
an be written

LHS=
√

b
√
πe−x2/(2b2)

k1+k2
∑

k=|k1−k2|,2

2k/2√
k!
Φk (x; b)

×
∞
∑

k1=0

∞
∑

k2=0







k

k1−k2+k
2







2(k1+k2−k)/2

(

k1+k2−k
2

)

!
tk11 tk22 (C.5)

Note that the limits and step size for the summation over k are di
tated by

the need to keep the arguments of the fa
torials non-negative. In parti
ular,

the �2� appearing in the lower limit of the sum over k indi
ates that the index
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should be in
remented by steps of 2. Dire
t 
omparison of Eqs. (C.4) and

(C.5) now yields

√

b
√
πe−x2/(2b2)

k1+k2
∑

k=|k1−k2|,2

2(k1+k2)/2
√
k!

(

k1−k2+k
2

)

!
(

k2−k1+k
2

)

!
(

k1+k2−k
2

)

!
Φk (x; b)

= b
√
π
2(k1+k2)/2

√
k1!k2!

Φk1 (x; b) Φk2 (x; b)

whi
h leads to

Φk1 (x; b) Φk2 (x; b) =
e−x2/(2b2)
√

b
√
π

k1+k2
∑

k=|k1−k2|,2
T k
k1,k2

Φk (x; b)

where

T k
k1,k2 ≡

√
k1!k2!k!

(

k1−k2+k
2

)

!
(

k2−k1+k
2

)

!
(

k1+k2−k
2

)

!
(C.6)

C.2 Produ
t of radial harmoni
-os
illator fun
tions

Here, we obtain the relation

Φn1,k1 (ρ, ϕ; b) Φn2,k2 (ρ, ϕ; b) =
e−ρ2/(2b2)
√
πb

n1,2
∑

n=0

T n,k1+k2
n1,k1;n2,k2

Φn,k1+k2 (ρ, ϕ; b)

(C.7)

between the harmoni
-os
illator fun
tions in polar 
oordinates de�ned in Eq.

(4). The expansion 
oe�
ients T n,k1+k2
n1,k1;n2,k2

are de�ned by Eq. (C.9).

Starting from the generating fun
tion in Eq. (A.3), and for arbitrary ve
tors

~t1 and ~t2

e−
~t21+2~ρ·~t1/b−ρ2/(2b2)e−

~t22+2~ρ·~t2/b−ρ2/(2b2)

=



b2
√

π

2

∞
∑

k1=−∞

∞
∑

n1=0

Nn1,|k1|χn1,k1

(

~t1
)

Φn1,k1 (ρ, ϕ; b)





×


b2
√

π

2

∞
∑

k2=−∞

∞
∑

n2=0

Nn2,|k2|χn2,k2

(

~t2
)

Φn2,k2 (ρ, ϕ; b)





(C.8)

The left-hand side 
an be written

44



LHS= e−(
~t1+~t2)

2
+2~ρ·(~t1+~t2)/b−ρ2/(2b2)e2

~t1·~t2−ρ2/(2b2)

Using Eq. (A.3) again to expand the �rst exponential, we get

LHS= e2
~t1·~t2−ρ2/(2b2)b2

√

π

2

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|χn,k

(

~t1 + ~t2
)

Φn,k (ρ, ϕ; b)

and using Eq. (A.37) to absorb the remaining exponential,

LHS= b2
√

π

2
e−ρ2/(2b2)

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|Φn,k (ρ, ϕ; b)

×
∞
∑

m1=0

∞
∑

m2=0

∞
∑

p1=0

∞
∑

k1=−∞

∞
∑

p2=0

∞
∑

k2=−∞
Dn,k

p1,k1,m1;p2,k2,m2

×χp1+m1,k1

(

~t1
)

χp2+m2,k2

(

~t2
)

Comparing with the right-hand side of Eq. (C.8) for arbitrary ve
tors

~t1 and
~t2, we make the identi�
ations

p1 +m1=n1

p2 +m2=n2

and write the left-hand side as

LHS= b2
√

π

2
e−ρ2/(2b2)

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|Φn,k (ρ, ϕ; b)

×
∞
∑

m1=0

∞
∑

m2=0

∞
∑

n1=0

∞
∑

k1=−∞

∞
∑

n2=0

∞
∑

k2=−∞
Dn,k

n1−m1,k1,m1;n2−m2,k2,m2

×χn1,k1

(

~t1; b
)

χn2,k2

(

~t2; b
)

Comparing again with the right-hand side of Eq. (C.8), we readily dedu
e

b4
π

2
Nn1,|k1|Nn2,|k2|Φn1,k1 (ρ, ϕ; b) Φn2,k2 (ρ, ϕ; b)

= b2
√

π

2
e−ρ2/(2b2)

∞
∑

k=−∞

∞
∑

n=0

Nn,|k|Φn,k (ρ, ϕ; b)

×
∞
∑

m1=0

∞
∑

m2=0

Dn,k
n1−m1,k1,m1;n2−m2,k2,m2

The sum over k disappears be
ause of the Krone
ker-delta fun
tion inside the

D 
oe�
ient in Eq. (A.38) restri
ting the value of k to k1 + k2, and the sum
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over n is 
ut o� at n = n1,2, be
ause of the other Krone
ker-delta fun
tion in

Eq. (A.38) restri
ting its value. Therefore,

Φn1,k1 (ρ, ϕ; b)Φn2,k2 (ρ, ϕ; b)=
e−ρ2/(2b2)

b2

√

2

π

n1,2
∑

n=0

Nn,|k1+k2|
Nn1,|k1|Nn2,|k2|

×




∞
∑

m1=0

∞
∑

m2=0

Dn,k1+k2
n1−m1,k1,m1;n2−m2,k2,m2





×Φn,k1+k2 (ρ, ϕ; b)

whi
h we write as

Φn1,k1 (ρ, ϕ; b)Φn2,k2 (ρ, ϕ; b)=
e−ρ2/(2b2)
√
πb

n1,2
∑

n=0

T n,k1+k2
n1,k1;n2,k2

Φn,k1+k2 (ρ, ϕ; b)

The 
oe�
ients T n,k1+k2
n1,k1;n2,k2

are obtained from Eq. (A.38), being 
areful to make

the substitutions n1 → n1 −m1 and n2 → n2 −m2 (and therefore, a

ording

to Eq. (A.29), n1,2 → n1,2 −m1 −m2 as well). Then,

T n,k1+k2
n1,k1;n2,k2

= (−1)n1+n2−n

√

√

√

√

n! (n1 + |k1|)! (n2 + |k2|)!
n1!n2! (n+ |k1 + k2|)!

n1
∑

m1=0

n2
∑

m2=0

(−1)m1+m2

×







n1

m1













n2

m2













n1,2 −m1 −m2

n







× (n1,2 + |k1 + k2| −m1 −m2)!

(n1 + |k1| −m1)! (n2 + |k2| −m2)!
δn≤n1,2−m1−m2

or, in more 
ompa
t notation,

T n,k1+k2
n1,k1;n2,k2

= (−1)n1+n2−n

√

√

√

√

n! (n1 + |k1|)! (n2 + |k2|)!
n1!n2! (n+ |k1 + k2|)!

×
n1
∑

m1=0

n2
∑

m2=0

δn≤n1,2−m1−m2C
n,k1+k2
n1,k1,m1;n2,k2,m2

(C.9)

with
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Cn,k1+k2
n1,k1,m1;n2,k2,m2

≡ (−1)m1+m2







n1

m1













n2

m2













n1,2 −m1 −m2

n







× (n1,2 + |k1 + k2| −m1 −m2)!

(n1 + |k1| −m1)! (n2 + |k2| −m2)!
(C.10)

Note again that the Krone
ker-delta fun
tion δn≤n1,2−m1−m2 ensures that we

always have n ≤ n1,2, whi
h we used to limit the sum over n in Eq. (C.7).

D Formalism for large os
illator shell number

In this se
tion, we derive the result in [9℄,

〈n1 |fn|n2〉=
µb−1/2

√
2π5/2

Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)

zξ
√
n!n1!n2!

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z) (D.1)

with ξ given by Eq. (D.6) and z by Eq. (D.10), for the numeri
ally a

urate


al
ulation of the matrix element 〈n1 |fn|n2〉 in Eq. (12) when large os
illator-

shell numbers are involved. Note that our result di�ers slightly from [9℄ in that

a �b−1/2
� fa
tors appears in Eq. (D.1) instead of �b1/2� (see dis
ussion at the end

of this se
tion). The formula in Eq. (D.1) is preferred to the one in Eq. (19)

for large os
illator-shell numbers, be
ause the latter requires the evaluation

of a sum of produ
ts of large (T ) and small (Ī) 
oe�
ients, whi
h 
an be

numeri
ally unstable. We also obtain the 
orresponding matrix elements in

Eq. (10)

V
(z)
ijkl =

µ√
2π3bz

n
(j)
z +n

(l)
z

∑

nz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

T nz

n
(j)
z ,n

(l)
z

F̄ nz

n
(i)
z ,n

(k)
z

(D.2)

where the 
oe�
ients F̄ nz

n
(i)
z ,n

(k)
z

are de�ned by Eq. (D.12).

Starting from the de�nition,

〈n1 |fn|n2〉=K1/2
z λn

∫ ∞

−∞
dzΦn1 (z; b) e

−z2/(2Gb2)Φn

(

z;G1/2b
)

Φn2 (z; b)

we use the generating fun
tion, Eq. (A.1), to integrate the produ
t of three

harmoni
-os
illator fun
tions with the Gaussian fa
tor. This produ
es
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e−t21−t22−t2
∫ ∞

−∞
dz e2(t1+t2)z/b+2tz/B−νz2

=
∞
∑

n1=0

∞
∑

n2=0

∞
∑

n=0

Cn1,n2,nt
n1
1 tn2

2 tn 〈n1 |fn|n2〉 (D.3)

where

B≡G1/2b

ν≡ 1

b2
+

1

B2

Cn1,n2,n≡
b
√
π
√

B
√
π

K
1/2
z λn

2(n1+n2+n)/2

√
n1!
√
n2!
√
n!

The integral in the left-hand side of Eq. (D.3) is easily evaluated by 
ompleting

the square in the exponential, giving

LHS=

√

π

ν
e−t21−t22−t2+τ2/ν

(D.4)

where

τ ≡ t1 + t2
b

+
t

B

After some simpli�
ation, Eq. (D.4) takes the form

LHS=

√

π

ν
exp

{

[α (t1 + t2)− t]2 ζ + 2t1t2
}

with

α≡G−1/2

ζ ≡− G

G + 1

whi
h we expand as a series
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LHS=

√

π

ν

∞
∑

i=0

(2t1t2)
i

i!

∞
∑

p=0

1

p!
[α (t1 + t2)− t]2p ζp

=

√

π

ν

∞
∑

i=0

∞
∑

p=0

2p
∑

q=0

2p−q
∑

s=0

2i

p!i!







2p

q













2p− q

s





 (−α)2p−q ζpts+i
1 t2p−q−s+i

2 tq


omparing with the right-hand side of Eq. (D.3), we make the identi�
ations

s+ i=n1 ⇒ s = n1 − i

2p− q − s+ i=n2 ⇒ p =
n1 + n2 + q

2
− i

q=n

Note that this implies n1 + n2 + n must be even, and the summation over i
terminates after a �nite number of terms, although we will let it run up to ∞
for notational 
onvenien
e, letting the fa
torial terms impli
itly trun
ate the

sum. Then we have

Cn1,n2,n 〈n1 |fn|n2〉

=

√

π

ν
(−α)n1+n2 ζ (n1+n2+n)/2

×
∞
∑

i=0







n1 + n2 + n− 2i

n













n1 + n2 − 2i

n1 − i







(

n1+n2+n
2

− i
)

!i!

(

2

α2ζ

)i

=

√

π

ν
(−α)n1+n2 ζ (n1+n2+n)/2

×
∞
∑

i=0

(n1 + n2 + n− 2i)!

n! (n1 − i)! (n2 − i)!
(

n1+n2+n
2

− i
)

!i!

(

2

α2ζ

)i

(D.5)

Next, we simplify the ratio of fa
torials

(2p)!

p!
=

(n1 + n2 + n− 2i)!
(

n1+n2+n
2

− i
)

!

using the doubling formula for the Gamma fun
tion (Eq. 8.335(1) in [8℄),

(2p)!

p!
=

22p√
π
Γ
(

p+
1

2

)

For 
onvenien
e, we de�ne
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ξ≡ n1 + n2 + n+ 1

2
(D.6)

whi
h is a half-integer sin
e we have already noted that n1 + n2 + n is even.

Then p = ξ − i− 1/2, and

(2p)!

p!
=

22p√
π
Γ (ξ − i) (D.7)

In order to simplify this further, we derive the following useful identity

Γ (1− ξ + i) = (i− ξ) Γ (i− ξ)

= (i− ξ) (i− ξ − 1) · · · (1− ξ) Γ (1− ξ)

= (−1)i (ξ − 1) · · · (ξ − (i− 1)) (ξ − i) Γ (1− ξ)

Similarly, we 
an write

Γ (ξ)= (ξ − 1) · · · (ξ − (i− 1)) (ξ − i) Γ (ξ − i)

Therefore,

Γ (1− ξ + i) = (−1)i Γ (ξ) Γ (1− ξ)

Γ (ξ − i)
(D.8)

and, equivalently,

Γ (ξ − i) = (−1)i Γ (ξ) Γ (1− ξ)

Γ (1− ξ + i)
(D.9)

Thus, Eq. (D.7) be
omes

(2p)!

p!
=

22p√
π
(−1)i Γ (ξ) Γ (1− ξ)

Γ (1− ξ + i)

=
22p√
π
(−1)i Γ (ξ)

(1− ξ)i

where we have used the Po
hhammer symbol

(x)n≡
Γ (x+ n)

Γ (x)
= x (x+ 1) · · · (x+ n− 1)

Returning to Eq. (D.5), we repla
e the (n1 − i)! and (n2 − i)! terms with

Po
hhammer symbols as well using Eq. (D.9) with ξ → n1 + 1 to write
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(n1 − i)!=Γ (n1 − i+ 1)

= (−1)i Γ (n1 + 1)Γ (−n1)

Γ (−n1 + i)

= (−1)i n1!

(−n1)i

and similarly for (n2 − i)!. Then, Eq. (D.5) yields

〈n1 |fn|n2〉=
22ξ−1Γ (ξ) (−α)n1+n2 ζ (n1+n2+n)/2

√
νCn1,n2,nn!n1!n2!

∞
∑

i=0

(−n1)i (−n2)i
(1− ξ)i i!

(

− 1

2α2ζ

)i

whi
h we express as a hypergeometri
 fun
tion, as de�ned in [8℄ Eq. 9.100 (see

also se
tion 9.14(2) in [8℄ for the notation in terms of a generalized hypergeo-

metri
 fun
tion),

〈n1 |fn|n2〉=
2ξ−1/2µΓ (ξ) (−α)n1+n2 ζ (n1+n2+n)/2

√
νb
√

B
√
π
√
n!n1!n2!G1/4Gn/2

2F1 (−n1,−n2; 1− ξ; z)

where

z≡− 1

2α2ζ
= 1 +

µ2

2b2
(D.10)

Simplifying further, we �nd

〈n1 |fn|n2〉=(−1)(n1+n2−n)/2 µ
√

2b
√
π

Γ (ξ)√
n!n1!n2!

z−ξ

× 2F1 (−n1,−n2; 1− ξ; z) (D.11)

Comparing with Eq. (3) in [9℄, we note that the hypergeometri
 fun
tion is

evaluated at 1 − z rather than z in that paper. In order to make a dire
t


omparison with [9℄, we use Eq. 9.131(2) in [8℄,

2F1 (−n1,−n2; 1− ξ; z)

=
Γ (1− ξ) Γ (1− ξ + n1 + n2)

Γ (1− ξ + n1) Γ (1− ξ + n2)
2F1 (−n1,−n2;−n1 − n2 + ξ; 1− z)

+ (1− z)1−ξ+n1+n2
Γ (1− ξ) Γ (−n1 − n2 + ξ − 1)

Γ (−n1) Γ (−n2)

× 2F1 (1− ξ + n1, 1− ξ + n2; 2− ξ + n1 + n2; 1− z)
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The se
ond term vanishes be
ause of the Gamma fun
tions with negative-

integer (or zero) arguments in the denominator. We 
an simplify the third

argument of the hypergeometri
 fun
tion in the �rst term to

−n1 − n2 + ξ=
−n1 − n2 + n+ 1

2
=−ξ + n + 1

Thus,

2F1 (−n1,−n2; 1− ξ; z)=
Γ (1− ξ) Γ (ξ − n)

Γ (1− ξ + n1) Γ (1− ξ + n2)

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

Next, we use Eq. (D.8) to re-write the Gamma fun
tions in the denominator,

2F1 (−n1,−n2; 1− ξ; z)= (−1)n1+n2
Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)

Γ (1− ξ) Γ (ξ) Γ (ξ)

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

Substituting this expression into Eq. (D.11) gives

〈n1 |fn|n2〉= (−1)(−n1−n2−n)/2 µ
√

2b
√
π

Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)√
n!n1!n2!Γ (1− ξ) Γ (ξ)

z−ξ

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

Finally, we use Eq. 8.334(3) in [8℄ to write

〈n1 |fn|n2〉= (−1)(−n1−n2−n)/2 µ
√

2b
√
π

Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)√
n!n1!n2!π (−1)(n1+n2+n)/2

z−ξ

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

=
µb−1/2

√
2π5/2

Γ (ξ − n1) Γ (ξ − n2) Γ (ξ − n)

zξ
√
n!n1!n2!

× 2F1 (−n1,−n2;−ξ + n+ 1; 1− z)

This result is nearly identi
al to Eq. (3) in [9℄, after properly adjusting for

the 
hoi
e of variable names, the only minor di�eren
e being the os
illator

parameter whi
h appears as b−1/2
in the present work, and b1/2 in [9℄. However,

dimensional analysis favors the b−1/2
form, as the matrix element 〈n1 |fn|n2〉

must 
arry dimensions of length to the 1/2 power, a

ording to its de�nition in
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Eq. (12). In 
losing, we use Eq. (D.1) to write the expression for the two-body

matrix element (
orresponding to Eq. (10) in the large os
illator-shell limit),

V
(z)
ijkl =

µ√
2π3bz

n
(j)
z +n

(l)
z

∑

nz=

∣

∣

∣
n
(j)
z −n

(l)
z

∣

∣

∣
,2

T nz

n
(j)
z ,n

(l)
z

F̄ nz

n
(i)
z ,n

(k)
z

where

F̄ nz

n
(i)
z ,n

(k)
z

≡
Γ
(

ξ − n(i)
z

)

Γ
(

ξ − n(k)
z

)

Γ (ξ − nz)

zξ
√

nz!n
(i)
z !n

(k)
z !

× 2F1

(

−n(i)
z ,−n(k)

z ;−ξ + nz + 1; 1− z
)

(D.12)

E Angular integral

We wish to evaluate the radial part of the matrix-element integral

V
(r)
ijkl≡

∫ ∞

0
ρ1dρ1

∫ 2π

0
dϕ1

∫ ∞

0
ρ2dρ2

∫ 2π

0
dϕ2

×Φ∗
n
(i)
r ,Λ(i)

(ρ1, ϕ1; b⊥) Φ
∗
n
(j)
r ,Λ(j)

(ρ2, ϕ2; b⊥)

×e−(~ρ1−~ρ2)
2/µ2

Φ
n
(k)
r ,Λ(k) (ρ1, ϕ1; b⊥) Φn

(l)
r ,Λ(l) (ρ2, ϕ2; b⊥)

numeri
ally, where the harmoni
-os
illator fun
tions are de�ned in Eq. (4).

By rotational invarian
e of the Gaussian potential, we have

−Λ(i) − Λ(j) + Λ(k) + Λ(l)=0

The angular integrals over ϕ1 and ϕ2 are parti
ularly problemati
 be
ause of

their os
illatory nature. Therefore, we fo
us on those integrals and introdu
e

the fun
tion

Θk (x)≡
1

(2π)2

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2e

ik(ϕ1−ϕ2)e2x cos(ϕ1−ϕ2)
(E.1)

so that we may write
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V
(r)
ijkl =

∫ ∞

0
ρ1dρ1

∫ ∞

0
ρ2dρ2e

−(ρ21+ρ22)/µ2

Φ
n
(i)
r ,|Λ(i)| (ρ1; b⊥)Φn

(j)
r ,|Λ(j)| (ρ2; b⊥)

Φ
n
(k)
r ,|Λ(k)| (ρ1; b⊥) Φn

(l)
r ,|Λ(l)| (ρ2; b⊥)Θ−Λ(i)+Λ(k)

(

ρ1ρ2
µ2

)

(E.2)

We simplify Eq. (E.1) using the generating fun
tion for the Bessel fun
tion,

given in Eq. (A.6), with z = −2ix and ϕ = ϕ1 − ϕ2,

e2x cos(ϕ1−ϕ2)=
∞
∑

n=−∞
i|n|J|n| (−2ix) ein(ϕ1−ϕ2)

from whi
h the integral in Eq. (E.1) yields

Θk (x) = i|k|J|k| (−2ix)

From the series expansion of the modi�ed Bessel fun
tion of the �rst kind, Eq.

8.445 in [8℄, we get

Θk (x) = (−1)|k| I|k| (−2x)

=
∞
∑

n=0

x2n

n! (n+ |k|)! (E.3)

We �nd that the series in Eq. (E.3) is extremely well 
onverged if we in
lude

terms up to m su
h that

∣

∣

∣

∣

∣

x2m

m! (m+ |k|)!

∣

∣

∣

∣

∣

<ǫ

where ǫ = 10−2N0−N
quad

/8
for a 
al
ulation in up to N0 os
illator shells and

N
quad

quadrature points. The remaining integrals over ρ1 and ρ2 in Eq. (E.2)

were evaluated by Gauss-Laguerre quadrature.

Referen
es

[1℄ D. M. Brink, E. Boeker, Nu
l. Phys. A91, (1967) 1.

[2℄ J. De
hargé, D. Gogny, Phys. Rev. C 21, (1980) 1568.

[3℄ D. Gogny, Phys. Lett. B32, (1970) 591.

[4℄ D. Gogny, Nu
l. Phys. A237, (1975) 399.

54



[5℄ J. F. Berger, M. Girod, D. Gogny, Nu
l. Phys. A428, (1984) 23.

[6℄ H. Goutte, J. F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, (2005) 024316.

[7℄ N. Dubray, H. Goutte, and J.-P. Delaro
he, Phys. Rev. C 77, (2008) 014310.

[8℄ I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series, and Produ
ts

(A
ademi
 Press In
., San Diego CA 1979).

[9℄ J. L. Egido, L. M. Robledo, R. R. Chasman, Phys. Lett. B 393, (1997) 13.

[10℄ S. Wolfram, The Mathemati
a book, 5
th

ed., (Wolfram Media, 2003).

[11℄ W. Younes, D. Gogny, LLNL Te
h. Rep. (2007) UCRL-TR-234682.

[12℄ M. Warda, J. L. Egido, L. M. Robledo, and K. Pomorski, Phys. Rev. C 66,

014310 (2002).

55


	Introduction
	Theory
	General formalism
	Cartesian component
	Radial component

	Discussion
	Conclusion
	Mapping between Cartesian and polar coordinates for harmonic-oscillator functions
	Generating function in Cartesian coordinates
	Generating function in polar coordinates
	Polar-to-Cartesian mapping
	Cartesian-to-polar mapping
	Properties of the function n,k()

	Decomposition of two-body Gaussian form
	Cartesian component
	Radial component

	Product of harmonic-oscillator functions
	Product of Cartesian harmonic-oscillator functions
	Product of radial harmonic-oscillator functions

	Formalism for large oscillator shell number
	Angular integral
	References

