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Abstract

We derive a formalism, the separation method, for the efficient and accurate cal-
culation of two-body matrix elements for a Gaussian potential in the cylindrical
harmonic-oscillator basis. This formalism is of critical importance for Hartree-Fock
and Hartree-Fock-Bogoliubov calculations in deformed nuclei using realistic, finite-
range effective interactions between nucleons. The results given here are also relevant
for microscopic many-body calculations in atomic and molecular physics, as the for-
malism can be applied to other types of interactions beyond the Gaussian form. The
derivation is presented in great detail to emphasize the methodology, which relies on
generating functions. The resulting analytical expressions for the Gaussian matrix
elements are checked for speed and accuracy as a function of the number of oscillator
shells and against direct numerical integration.
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1 Introduction

Gaussian interactions play an important role in the microscopic description of
molecular and nuclear processes [1]. The Gaussian form represents a relatively
simple two-body potential with a finite range, which is needed in many realistic
descriptions of many-body systems. In nuclear physics for example, the Gogny
interaction [2]
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where P, and P, are spin- and isospin-exchange operators and p is the total
nuclear density, gives the effective (in-medium) potential between nucleons.
Two Gaussian terms appear explicitly with range parameters p; and po. A
spin-orbit term with strength Wp¢ uses a Dirac-delta function, but extensions
of the Gogny force have been proposed [3] that introduce a Gaussian form
for this term. Finally the Coulomb interaction Vogu ~ 1/ |71 — 72| between
protons is clearly not of Gaussian form, but the mathematical framework
presented in this paper can be applied equally well to a Coulomb potential.

For the calculation of matrix elements in molecular, atomic, and nuclear
physics, harmonic-oscillator functions provide a convenient and popular or-
thogonal basis. The calculation of Gaussian matrix elements in a harmonic-
oscillator basis, however, poses definite technical challenges in accuracy as
well as execution time. In previous work [4], the separation method was in-
troduced as a way of calculating the Gaussian matrix elements efficiently and
accurately for systems with spherical symmetry. In the separation method,
two-body matrix elements are expressed as a more manageable finite sum of
products of one-body matrix elements. In this paper, we derive the separation
method for a wider class of systems that exhibit axial symmetry. These results
are crucial, for example, in microscopic calculations of nuclear fission using the
Gogny force, where the nucleus elongates along a symmetry axis, until scission
occurs.

Fission calculations in particular bring to the fore many of the technical dif-
ficulties involved in the computation of Gaussian matrix elements. On the
other hand, microscopic calculations of fission using the interaction in Eq. (1)
have had considerable success in recent years [56//7], and are therefore of great
interest. In the microscopic description of fission, the matrix elements of the
nucleon-nucleon interaction are typically used in a Hartree-Fock-Bogoliubov
(HFB) procedure to construct a Slater-determinant wave function for the nu-
cleus. Scission configurations are then found by driving the nucleus to such
exotic shapes that the delicate balance between its surface tension and the
Coulomb repulsion between the nascent fission fragments is broken. The proper
identification of scission configurations and the calculation of their properties
depend sensitively on accurate calculations of the matrix elements of the ef-
fective interaction. Fission also implies the evolution of the nucleus through a
variety of exotic shapes leading to scission. Therefore many sets of matrix el-
ements need to be calculated, each set corresponding to a harmonic-oscillator



basis optimized for a particular nuclear shape, and each set requiring a large
number of oscillator shells. The resulting large-scale computations can become
very time-consuming and are prone to errors in accuracy. Thus microscopic
fission calculations must rely on fast and accurate algorithms to evaluate the
two-body matrix elements, such as the separation method. The separation
method is especially well-suited to the HFB algorithm, because the coeffi-
cients needed to calculate the two-body matrix elements derived in this paper
can be calculated quickly once and for all, and stored with relatively little
computer memory.

The goal of this paper is to derive the separation-method formalism for Gaus-
sian matrix elements in a cylindrical harmonic-oscillator basis, with particu-
lar emphasis placed on the details of the derivation because of its relevance
to other types of interactions, and other applications involving the harmonic-
oscillator basis. In particular, we rely heavily on the power and versatility of
generating functions to derive many of the present results. We also present
the derivations in great detail because they are rather involved, and although
the same results may be arrived at by alternate approaches, the formulas will
tend to be much more cumbersome and less computationally efficient than
the ones obtained by the generating-function methods outlined here. Because
of the lengthy and detailed derivations involved, many of the intermediary
results have been placed in the appendices. These intermediary results are
important in their own right, as they provide useful properties of harmonic-
oscillator functions in a cylindrical basis, and the mapping between cylindrical
and Cartesian harmonic-oscillator bases.

In section 2] the basic formalism for the calculation of both radial and ax-
ial components of the Gaussian matrix elements by the separation method
are derived. In section [l the accuracy of the method is examined both rela-
tive to direct numerical integration, and as a function of the number of shells
in the oscillator basis. The execution times for the separation method are
also compared to those of the numerical integration. The mapping between
harmonic-oscillator function in polar and Cartesian coordinates, needed in
the development of the separation-method formalism, is derived in appendix
[Al In appendix Bl the Gaussian two-body potential, V (7, 75), is written in
separated form with respect to 7; and 75. Formulas reducing the products of
harmonic-oscillator functions are derived in appendix [C] and provide a pow-
erful tool in the evaluation of integrals involving those functions. In appendix
D] the result quoted in [9] for the separation-method formalism in the case
of large oscillator-shell numbers is derived in detail. Finally, in appendix [E]
we obtain a series expansion for the direct angular integral of the Gaussian
potential, which we use in the numerical integration of the potential in section

Bl



2 Theory
2.1 General formalism

We wish to calculate matrix elements of the two-body potential function

V (71, 72) = e~ (=) /us?

(2)

in the cylindrical harmonic-oscillator basis. We will write the matrix elements
as

:/d3r1/d37~2(1>;$i)7A(1.)7ng) (7501, 02) @) 5y 0 (72301, 02)

XV (7, 72) @ )y 00 (T30, 02) @ oy gy 0 (72501, 02) (3)

where we have introduced the stretched harmonic-oscillator basis functions in
the cylindrical coordinates (p, ¢, z)

Dy A, (T501,02) =P (0, 0301) P, (2502)

iAp

e
=o, 101) —=®,. (270, 4
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with the radial-component function
O, 1) (03 00) = NN 212 L () (5)

defined in terms of associated Laguerre polynomials L‘,{:' (n) as a function of

n=p* /bt

and with a normalization constant given by

1 o, 12
No, Al = o [m] (6)

The Cartesian, z-axis-component function in Eq. (),

1 We will drop the qualifier “stretched” when referring to the deformed harmonic-
oscillator function in subsequent discussion for the sake of brevity.
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is expressed in terms of Hermite polynomials H,,, (§) with

E=z/b,

and normalization constant

1
(b, y/m2mm 1)

Nz

The harmonic-oscillator functions defined in Eqs. (@) and () satisfy the or-
thonormalization conditions

[e'e] 2T
/0 pdp 0 dp (I)ZT,A (p,p;b1) (I)n;,A' (p,p;b1) :5nr,n;5A,A'

The parameters b, and b, appearing in the harmonic-oscillator function defi-
nitions are usually treated as variational parameters in HFB calculations, and
chosen to minimize the energy.

The central idea in this paper is to express the two-body potential as a sum
of products of one-body potential functions

6_(F1_F2)2/M2 = Z fnhA,nz (Fh bJ_> bz) (i)nr-,A,nz (F27 bJ_> bz)

nr,An;

Then the two-body matrix elements can be written in terms of one-body
matrix elements

%]kl = Z <Z |fn7‘7A7nZ

np, Az

k> <] ’(i)nr,A,nz

) (8)

where we will show that this last sum is limited to a finite number of terms.
It will be useful to separate the radial and Cartesian components in each
one-body matrix element to write
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and, similarly,
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so that we can write Eq. (&) as

(Z; bz) (I)n(l) (Z, bz)

)
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V]klvmkz 9)

In the remainder of this section we calculate the explicit expressions needed
to evaluate the matrix elements Vj;p;.

2.2 Cartesian component

Here we derive an expression for the Cartesian component, Vwkl , in Eq. ().
We will show that

o a1 7 4 n gD

z z m n T

Vijk = G+ 1 Z Z Tngﬁmngng)’ng)](mz>nz) (10)
T ma|n® a2 n.=[n® —nl® |2

where G is defined by Eq. (B.4), the T2, coefficients by Eq. (C.), and the
I (m,,n,) coefficients by Eq. (I8).

We start by evaluating
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Using Eqs. (BI) which gives the explicit form of ®,,_ (z;b.) and Eq. (C) to
reduce the product of harmonic-oscillator functions,

2 4 ®

[e.e]
Z T,ZZJ'Z)’@D /_OO dz @y, (2;02) P, (23)2)
= ngj)—ngl) ,2

By orthogonality of the harmonic-oscillator functions this is simply

. 1
J|®n.|l) =——=—==T"3) o (11)
< > bz\/7_T nzj sy
where we must have ‘ngj) ‘ <n, <nd +nd for the T" ) 0 coefficient

to be non-zero. Next, we use the explicit form of f,. (z;0.) from Eq. (B2) to
write

(i | fo.| K

- / dz® o (2:b2) fo. (2:02) @ o (2:02)
=K!?)\,, /°° dz® i (2;0.) e—=/(26:12)
x Py, (2 GY?.) 0 (2.) (12)

Two of the harmonic-oscillator functions can be replaced with a single one,
thanks to Eq. (CI)),

OO
K1/2)\n +ny
(i | fn.| k) = —F——= % (k)/ dze "/ /(202) =2/ (2G=02)
bzﬁ my= ngi)—ngk) 2 o
X By, (2:D.) By, (23 G120 ) (13)

The remaining integral, which we write in terms of the function

L= [~ dee /G2 2R, (2b,) @, (2 B.)

where B, = G/?b,, can be calculated with the help of generating functions.
Indeed, using Eq. (AJ) to form the product of the harmonic-oscillator func-
tions, we have for any t; and t,
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from which, multiplying by the Gaussian factors in the definition of I (m,n)
and integrating both sides of the equation,

_L2/p2 2 /2
e / dz €2t1z/bz 22 /bs42t2z/B,—2*/ B3

00 oo 2(m+n)/2
=\/b.:B. > tmt"I (m,n) (14)

mOnO

The integral on the left-hand side can be evaluated by completing the square,
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where we have defined

11
SR TR
t1 to
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b. B,

Thus, the left-hand side of Eq. (I4]) becomes

LHS — \/7152/1/ 12 —t2
_\/7 —(bst1—Bata)?/ (62 B2)
v

which can be expanded as

bt1 B.ty)*
LHS= \f I T

oo 2 +
p (—1)7* g

20—

V = Oq 5 plopb B2

Comparing with the right-hand side of Eq. (I4]), we see that we must make
the identifications m = 2p — ¢ and n = ¢ in order for the equation to hold for

any t; and t,. Then,
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and the comparison with the right-hand side of Eq. (I4) yields
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Note that m + n must be even. We simplify this form further by noting that
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Bv=1+G,
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where G, is defined in Eq. (B.4). This leads us to write

(o) GY1G? [min] (—1)m2 m+n
m,n)=
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Some of the constants can be factored out by defining the coefficient

] AT
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Then, returning to Eq. (I3]), we obtain after some simplification
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Having derived the explicit forms in Eqs. (II) and (I9), we can express the
Cartesian component in Eq. (@) as
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where I (m.,n,) is given by Eq (18), and the T coefficients are given by Eq.

(C.8). An alternate form of ijl was proposed by Egido et al. [9] which yields
more accurate results for large oscillator shell numbers, and is derived as Eq.

(D2)) in appendix Dl
2.3  Radial component

A formula similar to Eq. (I0) can be derived for the radial component, V]kl,
in Eq. (@). We will show that

jl ik

() " —A@ L AR np,— A +AD
V;'jkl G 41 Z Z (1) A(i);ngk)’A(k)Tngj)’_A(j);ngl)’A(l)

n,=0n=

xT (np, =AD 4+ AO;n, —AD 4 AW) (20)

where G, is defined by Eq. (B.10), the T coefficients by Eq. (C.9), and the
I coefficients by Eq. (27). The indices nj; and n;,, are given by Eq. (A29),
where the bar indicates that —AU) and —A® | respectively, should be used in
that definition due to the complex conjugation in Eq. (3]).

Using Egs. (B.1) for the explicit form of ®,,, s (p, ¢; b1 ), Bq. (C2) to reduce the
product of harmonic-oscillator functions, and the orthogonality of harmonic-
oscillator functions
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where the bar superscript in the n;; symbol serves as a reminder that we must
use —AVY) in Eq. (A29), because of the complex conjugation. The condition

10



On,<nz, comes about from the definition of the T" coefficients in Eq. (C.9). The
other matrix element in the radial component of Eq. (@) is written explicitly
using the explicit form for f,,,. A (p,¢;b1) in Eq. (B.8) as

e8] 2
(il K) = [ pdp [ de @7 ) (prpib) forn (o i30)
Xq)n,(ﬁ),/\(k) (p, 3 b1)
00 2
— Kl)Q”rHA\ /0 pdp/o dSO 6_p2/(2GLbi>®nmA (p’ 0 Gi/le)

X(I):;gj)A(i) (p> 2 bJ_) (I)ngk)’A(k) (p> ©s bJ_)

and using Eq. (CI), the product of harmonic-oscillator functions can be re-
duced

) ) — KJ_>\2n7a—HA\ oh Tn,—A(“+A<’V>
<Z |fnr,A| > - \/7_er_ ZO nf),—A(i);nﬁk),A(k)
n=

[ i [ o))
0 0

X®p, A (P, 05 B1) P, _poam (p,0;301)

where B, = Gi/zbl, and the 7 in n; 1 18 a reminder that we must use —A® in
Eq. (A.29). The remaining integral to be calculated is

00 2m
1 (nl, ]{51, No, ]{32) EA pdp‘/0 d(p e—p2/(2Bi)—p2/(2bi)
X Py ky (0505 BL) Ps s (5 03 01) (21)

and can be evaluated using the generating function in Eq. (A.3) by writing,
for arbitrary vectors t; and t,,

o278/ BL—p?/(2BY ) B2 /b~ /(207

T 00 oo .
:Bi\/g Z Z an,\kﬂ (BJ-) Xn,k1 (tl) (I)m,lm (/), 2 BJ-)

ki=—o0on1=0

Xbi\/g Z Z NN27|7€2\ (bl) Xna ko (t_;) (I)m,kz (p> 2 bJ_) (22)

kQ:—oo TL2:0

note that, for clarity, we have explicitly written the parameter dependence for
the normalization coefficients N,,, .| (B1) and N, i, (b1) given by Eq. (@).
Multiplying both sides of Eq. (22) by the Gaussian factor that appears in Eq.
(2I) and integrating, we obtain on the left-hand side

11



LS =8 [T pdp | T e PR 2P B 2l (23)
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and on the right-hand side
RHS = 32 v Z Z Z Z N iy (BL) Nog o) (b1)
1 —0o0 N1= Okz——oo na=0
Xan,k‘l (tl) an,k‘z (FQ) I (nla k17 na, k2) (24)

which contains the desired coefficients I (ny, ki;n2, ks). The integral in Eq.
(23) can be evaluated by introducing

Lt
=l B2
B, b,
L1
VE— + —
B

and completing the square,

-\ 2
00 2 t
LHS:etz/”‘t%‘tg/ pdp | dp exp [— (ﬁﬁ— —) ]
0 0 N4
Tt v—13-183
v
_ T (2Bt =Bl -b243)/ (B0 v)

14

using BEq. (A27) with #; — &/ (b.v/v) and £, — 5/ (Biy/v), this can be
further expanded as

WBib%_ —(BQt2+b2t2)/(BQb2u) 0 s 2
LHS: 72 e 171 172 171 Z Z Nn,‘]ﬂ (Blbl\/;)

n=0 k=—c0

Xn,k bJ_\/; Xn,k BJ_\/;

Next, we use Eq. (A.23)) to eliminate the remaining exponential,

BQbi 0o 00 o) n-l—m1 (n—|-m2) )
H= nzo k_z_oo mlzo mzzo milms! (nl)? N Ikl (Bﬂuﬁ)

. t t}
X 7 = n+m
Xn—i—ml,k (bj_\/;> Xn+ma,k (BJ_\/E)

12



Using Eqs (A.24)) to eliminate the complex conjugation, and (A.23) to factor
out the coefficients inside the x functions, this takes the form

B2t & & 2 (n+mp)! (n+ my)!
LHS = i}j}j §j§j N2, (Bibivv
n=0 k=—oo0 m1=0 m2=0 ml'm2'("') 7|k|( o )
2(n+m1) 2(n+ma)—|k|

x (W> H(Bav)

X Xn4mi,—k (Fl) Xn4ma,k (t2)

Comparing this result for LH S with RHS in Eq. (24) for arbitrary vectors #;
and ¢y, we are led to conclude that

](nl,kl;ng,kg)zo 1f]€1+]{327£0 (25)

We are also led to make the identifications

n—4+mp=m
n -+ Mg ="n9y
—k=k
k=ky

which allow us to write

o

B2y & n1!ng!
LHS =" LLZ > Z Z — ,2N3,\k\ (Bﬂu\/;)

n=0 k=—o00 n1=0n2=0 (n1 —n)! (ng —n)! (n!)

x (b)) " (Buve) T s (B) Xk (B2) (26)

and therefore, assuming |k;| = |ko| = |k| because of Eq. (25]), the comparison
between LHS and RHS, in Egs. (26]) and (24) respectively, yields

Oty skro (buy/w) > M (B )2 My Iy
o i ) = N (B1) N (B1)
= NZ 1y (Birbiy/v)
=0 (n1 —n)!(ng —n)! (n!)2
(boyw) "M (Bry)
Bbv
x /! (ng + |K])ng! (ng + [K|)!
0 1
n;o (n1 —n)! (ng —n)In! (n + |k|)!

X

= 5k1 +k2,0

13



Using Eqs. (I5)-(I7) with G instead of G, we can simplify the factor outside

the summation

_1\ k]2 n
(bl\/ﬂ)_znl_'k' (BM/;)_MQ_\M B (1+GJ_1) (1+G )™ |k[/2
Bb v Gll/Q + Gll/Q
G(fl_n2)/2

= _ ni+no+|k|+1
(G2 gy

and, for compactness of notation, we define

= . 1

= (ny, na, |k|) EZ (11— 1) (s — )l (n + [K])!

which, after some simplification can be written as

— n1 n2+\k\
‘:‘(n17n27|k|) k’ | Z
! (nz + [k])! +| ) n ng —n
B 1 n1+n2+\k\ n1+n2+\k\
(n1+n2+\k\)' ny Ngy

where Eq. 0.156(1) in [8] was used to obtain the second line. Therefore, we

finally have

Ggill—nz)ﬂ

(G1/2+G_1/2
X/l (n + [K)) ! (ng + [K])IZ (n1, o, |K])

I (nlv klu na, k2) = 5k1+k2,0 )nl—‘rnz-HkH-l

As in Eq. (I8)), it will be convenient to factor out some constant terms. There-

fore we define
_ KX, G, +1
I (n1, kisng, ko) = sziﬁk Gi — 11 (1, k1 na, ko)

= 5k1+k2,0 \/ (GJ_ i 1)n1+n2+‘k‘ = (nlv 12, |k|> (27)

and the radial component in Eq. (@) becomes

14



Vi =" (il faral k) (5|, a| 1)

Nr,

n,—A® 4 AF) 7 i
G | nZ_OA_Z_OM;)T o (—;;ngk),A(k)I (nr,A;n, —A® +A(k))

ne, AG) A0
T o AG D A(l)5nr§nj,l5A,_A<j)+Au)

j l nz k X
G, -1 ™ A<@)+A<k> e —AD +AD
T _
TG+ nz_:onz ~AOinf A ) A0 AD

x[(nr,—A(J £ AWy, —AD +A(k))

Thus , using Egs. (I0) or (D.2)) and (20)), the full matrix element Vi, in Eq.
@) can be calculated as an analytical expression. In the next section, we will
examine the computational merits of these results.

3 Discussion

In this section, we will compare three different ways of evaluating the Cartesian
(Vzgk)z) and radial (Vwk)l) components of the Gaussian matrix elements in Eq.
@): 1) direct numerical integration of Eq. (), 2) numerical evaluation of the
separation-method equations (Egs. (I0) or (D.2)) for the Cartesian component,
and Eq. (20) for the radial component) in double-precision mode, and 3) ex-
act evaluation of the separation-method equations using the symbolic-algebra
package Mathematica [10]. In principle, the first two methods—numerical eval-
uatlon by elther integration or the separation method-will give the values
of V]kl and V]kl to within the limits of machine accuracy and roundoff er-
rors, whereas the third—exact evaluation of the separation-method equations
using Mathematica—will produce these matrix elements to any desired accu-
racy (even beyond machine accuracy) and will serve as a reference check for

numerical convergence of the integrals and roundoff errors.

We begin by comparing the relative merits of the separation-method Egs.
(I0) and (D.2) for the Cartesian component of the matrix element. The two
equations are mathematically equivalent, but Eq. (D.2]) was obtained from Eq.
(I0Q) specifically to provide greater accuracy in numerical calculations. For all
quantitative applications in this work, we have used

pw=12fm
b,=3.31fm
bl:2fm

These values of u, b,, b, are typical in HFB calculations using the Gogny
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interaction for ?°Pu along the most likely path to scission [11].

In practice, both Eqs. (I0) and (D.2) can be evaluated efficiently because the
T ., and I (m,n) or Fn”wz coefficients can easily be calculated once and for
all and stored with relatively little memory, to be used in reconstructing the
matrix elements Vlg'z)l whenever they are needed. However, for large values
of the quantum numbers n;, n;, n,, and n; the sums in Eq. ([I0) rapidly
lead to sizable numerical inaccuracies. These inaccuracies arise because the T’
coefficients grow progressively larger with increasing values of the arguments,
whereas the I coefficients decrease. The resulting sum of products of small
and large numbers in Eq. (I0) becomes numerically unstable. The formula
obtained by Egido et al. in [9], and derived as Eq. (D.2) in the present work,

avoids this problem.

Fig.dl gives the maximum deviation between matrix elements calculated using
numerical evaluations of Eqs. (I0) and (D.2)). To generate the plot, the equa-
tions were compared for calculations of Vzﬁ)z as a function of the maximum
harmonic-oscillator shell number Ny, i.e. for all possible quantum numbers
such that 0 < n;,nj,ng,ny < Ny, and the largest deviation was recorded for
each point on the plot. We will refer to Ny as the size of the basis in the dis-
cussion below. The deviations plotted in Fig.[Il are based on the dimensionless
Gaussian function in Eq. (2)), but with realistic interaction strengths for the
Gogny force [12], a deviation as small as 1072 on the plot, can correspond
to a discrepancy of the order of an MeV. Thus, for N, greater than about
16, Eq. (D.2) should certainly always be used instead of Eq. (I0), and in the
remainder of this paper we will use it consistently for all Ny instead of Eq.

T0).

Next, we compare an exact evaluation of Eq. (D.2) to the numerical inte-
gration of the Cartesian component in Eq. ([B). We choose to compare the
separation method to a numerical integral of the potential because the latter
is easily implemented, requires very little computer memory, and can be made
arbitrarily accurate. The exact evaluation of Eq. (D.2)) was obtained using the
symbolic-algebra package Mathematica. Within Mathematica, the expression
in Eq. (D.2) was first reduced by symbolic manipulation to the exact algebraic
form av/b/c, where a, b, and ¢ are integers, for each choice of the quantum
numbers n;, n;, ng, and n;. That algebraic number could then be evaluated
numerically to any desired accuracy. The numerical integration, on the other
hand, was performed by Gauss-Hermite quadrature in double-precision mode
(i.e., with 16 significant figures). The purpose of the comparison between the
exact evaluation of Eq. (D.2)) and the numerical integration is to show that
the numerical integration can be made arbitrarily close (up to the limits of
machine accuracy) to the exact result, thereby validating Eq. (D.2)). In Fig.
2l the maximum deviation between the exact calculation and numerical in-

tegration of the Vlg'z)l values is plotted as a function of the number Ny,.q of
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Maximum deviation

Figure 1. Maximum deviation between calculations of the matrix elements Vzﬁ)l using
the separation method in Eq. (I0) on one hand, and Eq. (D:2) on the other, plotted

as a function of basis size Ny.

quadrature points for a basis size Ny = 12. For Ngyaq > 208, the limits of
machine accuracy are reached in the numerical integration, and the maximum
deviation between the two methods of calculating Vlg'z)l matrix elements levels
out slightly above 4.3 x 10716,

In Fig. Bl we compare the exact evaluation of Eq. (D.2)) using Mathematica to
its numerical evaluation in double-precision mode, as a function of basis size
Ny. The trend in Fig. [8 shows the effect of roundoff error in the numerical
evaluation of Eq. (D.2). However, despite a clear decrease in accuracy with
increasing basis size, Fig. Blshows that a double-precision numerical evaluation
of Eq. (D.2)) still gives the value of the matrix elements Vlg'z)l to a very high level
of accuracy. Even for a basis size as large as Ny = 24, the largest deviation from
the exact values is still only 1.5x 1078, For the remainder of this discussion, we
will use the numerical evaluation of Eq. (D.2) in double-precision mode rather
than the exact Mathematica result, because the Mathematica calculations are
prohibitively time-consuming, and the accuracy of the numerical evaluation of
the separation-method formulas is more than sufficient for most applications.

In Fig. [ we extract the number of Gauss-Hermite quadrature points required
by the numerical integration to obtain values that are satisfactorily close (say,

17
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Figure 2. Maximum deviation between the numerical integration of the matrix el-
ements Viﬁ)l and their exact evaluation using the separation method in Eq. (D.2))
with Mathematica for basis size Ny = 12, plotted as a function of the number of

Gauss-Hermite quadrature points in the integral.

within a 107 discrepancy at most) to the values given by a numerical eval-
uation of Eq. (D.2)). The number of quadrature points plotted as a function
of basis size Ny is moderately large, and increases steadily with Ny. Further
below we will gauge the cost in computational time incurred by the numerical
integration with these relatively large numbers of quadrature points.

We carry out a similar analysis for the radial component,VigT,;)l, of the matrix
elements. In this case, for a given basis size Ny, the quantum numbers for
the radial matrix element V;g’,;l in Eq. (3) take on all values such that 0 <
2n, + |A| < Ny with n,. > 0. As we did in Fig. Pl for the Cartesian component,
we compare in Fig. Bl an exact (Mathematica) calculation of Eq. (20) to a
numerical integration of the radial component in Eq. () using double-precision
Gauss-Laguerre quadrature, for a basis size Ny = 8. In Fig. [l the maximum
deviation between exact evaluation and numerical integration, plotted as a
function of the number Ny,.q of quadrature points, is made arbitrarily small
with increasing Nqyaq values until the limits of machine accuracy and roundoff
error are reached for Nyy,q > 48, where the maximum discrepancy settles
above 1.3 x 10715,
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Figure 3. Maximum deviation between the numerical calculation and exact Mathe-

matica evaluation of the matrix elements Vigi)l using the separation method in Eq.

(D.2), plotted as a function of basis size Ny.

A comparison between exact (Mathematica) and double-precision numerical
evaluations of the separation-method result in Eq. (20) is plotted in Fig. [0l as
a function of basis size Ny. The accuracy of the numerical evaluation clearly
deteriorates with increasing basis size, but remains quite good nevertheless,
reaching only a 1.2 x 10~% maximum deviation for Ny = 12. For practical rea-
sons, we will use the numerical evaluation of Eq. (20)) in the remainder of this
discussion, rather than the exact—but much slower-Mathematica calculation.

The number of Gauss-Laguerre quadrature points needed to obtain a discrep-
ancy of 107 or less between the numerical integration and numerical separa-
tion method for VZ-E-T,;)I matrix elements is plotted in Fig. [l as a function of basis
size. As in Fig. [ for the Cartesian matrix elements, the required number of
quadrature points is moderate and increases with basis size. The impact of
these numbers of quadrature points on execution time will be investigated
next.

We now compare execution times for the numerical integration and numerical
separation methods. The numerical integrations for the Cartesian and radial
components are performed with the number of quadrature points given in
Figs. @ and [, respectively, to ensure agreement to 10~* or better with the
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Figure 4. Minimum number of Gauss-Hermite quadrature points needed to achieve
10~* or better agreement between the numerical integration of the matrix elements
Vlg'?l and their evaluation using the separation method in Eq. (D.2), plotted as a
function of basis size Njy.

separation-method results. In order to speed up the numerical integrations,
the harmonic-oscillator functions are calculated at the appropriate quadrature
points and stored once and for all. A set of nested loops then evaluate the
multidimensional integrals by recalling the stored values of the functions as
the terms in the quadrature are summed. Likewise, for the calculations by the
separation method, the T, I, and F coefficients are calculated ahead of time
and recalled as needed in the evaluation of the matrix elements using Egs.

(D.2)) and (20).

The calculations have been performed on a 2.13-GHz Pentium M proces-
sor in double-precision mode. The execution times are plotted in Fig. { for
the z component of the matrix element, and in Fig. [0 for the radial compo-
nent. The times plotted include the setup time needed to pre-calculate the
harmonic-oscillator function values and separation coefficients appropriate to
each method. The difference in execution times between the numerical and sep-
aration methods become staggering with increasing basis size. For large-scale
computations requiring matrix-element calculations over a range of values of
the harmonic-oscillator parameters b, and b, such as maps of fission shapes
for a single nucleus or maps of nuclear properties for large sets of nuclei, direct
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Figure 5. Maximum deviation between the numerical integration of the matrix el-
ements Vigrl;)l and their exact evaluation using the separation method in Eq. (20)
with Mathematica for basis size Ny = 8, plotted as a function of the number of

Gauss-Laguerre quadrature points in the integral.

numerical integrations rapidly become unfeasible without parallel machines.
Even with parallel processing, modern nuclear-physics problems (e.g., the
microscopic treatment of fission in a multidimensional collective-coordinate
space) will eventually overwhelm any given computational resource, and in
order to match the accuracy of the separation method, numerical integrals
will generally require an inordinate number of quadrature points.

4 Conclusion

We have derived explicit expressions for Gaussian matrix elements in a cylin-
drical harmonic-oscillator basis, using the separation method. These expres-
sions have been tested against direct numerical integration and found to be
highly accurate and computationally efficient. These characteristics make the
separation method an invaluable tool for computationally-intensive applica-
tions, such as the microscopic description of fission. The work presented here
has wider relevance than to the Gaussian form, or to nuclear-physics problems
alone. In particular, the methodology used in the present derivations, which
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Figure 6. Maximum deviation between the numerical calculation and exact Mathe-

matica evaluation of the matrix elements Viﬁ)l using the separation method in Eq.

(20)), plotted as a function of basis size Ny.

relies heavily on generating functions, can be applied to other types of inter-
actions and a wider class of basis states to derive analytical, computationally-
efficient expressions for matrix elements. For example, in future publications,
we will apply the separation method to the Coulomb and Yukawa interactions,
and extend the formalism to bases of displaced and two-center deformed har-
monic oscillators. These planned extensions to the separation formalism en-
large the range of applications of the method to many problems of central
importance in nuclear, atomic, and molecular systems.

We wish to thank D. Gogny for invaluable guidance in the development of
the formalism and preparation of this manuscript. This work was performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07TNA27344.
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Viﬁ)l and their evaluation using the separation method in Eq. (20)), plotted as a
function of basis size Njy.

A Mapping between Cartesian and polar coordinates for harmonic-
oscillator functions

In this section, we derive an identity relating the harmonic-oscillator functions
expressed in two-dimensional Cartesian coordinates (z,y) to those in polar
coordinates (p, p) where

p2: 2

tan o =

2

8

ty

8 I

To this end, we will first need to derive generating functions for the harmonic-
oscillator functions in the two coordinate systems.
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Figure 8. Comparison of total execution times for the evaluation of V( k)l by numerical
integration and by the separation method in Eq. (D.2), as a functlon of basis size
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A.1 Generating function in Cartesian coordinates

In this appendix, we derive the generating function

00 2k/2

ot 2tn/b—a?/(26°) / _tkgpk (2: D) (A.1)

for the Cartesian harmonic-oscillator functions in Eq. ().

We begin with the generating function for Hermite polynomials (Eq. 8.957(1),
p. 1034 in [§]), for arbitrary variables z and ¢,

_t2 +2tx __ Z k' Hk

making the substitution x — /b in order to introduce the harmonic-oscillator
parameter b,
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o tH2ta/b _ Z lek ( )

Next, we introduce the Gaussian and normalization factors appearing in the
definition of the harmonic oscillator function in Eq. ()

0 k
—z2/(2b%) —t>+2tx/b _ t —a? /(2% E
B7)e = 2 e I, (b)

or, in terms of the harmonic-oscillator functions,

e—t2+2tm/b x2 2b2 / Z _tkék ZL’ b)
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A.2  Generating function in polar coordinates

Here, we derive a generating function for the polar harmonic-oscillator func-
tions defined in Eq. (@),

2n+k
e—t2+2ptcos<p/b 02/ 2b2 b\/’ Z Z 1) t i

—(I)n,k (p,30) | (A2)
k=—oon=0 y/n! (n + |k|)!

which we also cast in the form

o201/ (262) bz\/> Z ZN Xk (f) O,k (p, ;b (A.3)

k=—o00n=0

where the functions x,, x (f) are defined by Eq. (A.9).

To derive a generating function for harmonic-oscillator functions in polar coor-
dinates, we begin with the generating function for Laguerre polynomials (Eq.
8.975(3), p. 1038 in [8]), for arbitrary variables x and z, and a > —1

n

o (2va2) € (22) " = g mm (x) (A.4)

In order to match the definition of the harmonic-oscillator function in Eq. (H),
we substitute \/r = p/b, \/2 = —it, and o = |k| where k is an integer. Then,
isolating the Bessel function on the left-hand side, Eq. (A.4)) takes the form

) |[k] oo (_1\"42n 2
(2o = (-0 () 3 S (1) (A5)

On the other hand, the generating function for a Bessel function of the first
kind for arbitrary z and ¢ is (Eq. 8.511(4), p. 973 in [§])

eizcosgp — Z Zka (Z) eikgp
= Z i'k‘J|k| (Z) 6““0 (A6)

where the second line follows from Eq. 8.404(2) in [8]. Substituting z =
—2ipt/b? into Eq. (A.6),
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e2ptcosip/b: Z Z|k‘<]‘k‘ <—2Z%) eZkSD (A?)

k=—00

Finally, plugging Eq. (A.D) into Eq. (A1) yields

2pt b2 e k| k) (P 1
e2p cos ¢/ —e Z (—’l) Z| | (?)

k=—0c0

(e} (_1)nt2n . p2 )
N " R E ) gike

L e i) ¢

where the right-hand side can be made to look more like the harmonic-
oscillator function definition in Eq. (H),

0o 00 2n+|k| 2 p2/(2b2)
—t24-2pt cos /b __ n t e
e =5 S (-1 v

k=—00 n=0

P\ —p%/(26%) 1 |K| PP\ e
XW’f(é) LN ) Ve

or, after straightforward simplifications,

_1)” t2n+\k|

et 2pteos /o= (%) _p /r i i (

L . (peh

k=—oon=0 y/n! (n + |k|)! + (093]

Note that there is a potential ambiguity in the meaning of the angle ¢ in
Eq. (A.2). In fact, Eq. (A.2)) was derived for any arbitrary value of ¢ but on
left-hand side, the term pt cos¢ in the exponent suggests a dot product 7t
with ¢ the angle between the vectors, while on the right-hand side, writing the
harmonic-oscillator function ®,, . (p, p; b) suggests that ¢ is the polar angle of
the vector p. To lift this apparent ambiguity, we introduce the polar angle ¢,
of vector ¢ explicitly by noting that if @ is the angle between vectors § and
with 0 = ¢ — ¢4, then according to Eq. (@)

ez’k&

V2m

and therefore

(I)n,k (pa 97 b) = q>n,k (p> 2 b) e_ikwt (AS)

Writing the left-hand side of Eq. (A.2) in vector form, we now have
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. o0 [e'¢) _ 1\ £2n+|k
e_t‘2+2ﬁ,t/b_p2/(2b2):bﬁ Z Z ( 1) t +|k|

—ikpy .
€ (I)n,k (pv ©; b)
k=—oon=0 /1! (n + |k|)!

For convenience, we introduce the function

(_1)" n —ikpt
Xook (F)ETE Flkl ke (A.9)

which allows us to write the generating function for polar harmonic-oscillator
functions as

o~ P20/ (2°) _ bz\/g i i No | Xk (Q Dy i (055 0)

k=—o00n=0

This form will be convenient for some derivations, and we will obtain useful
properties of the function x,, 4 (ﬂ in section [AL5]

A.3 Polar-to-Cartesian mapping

Having derived generating functions for the harmonic-oscillator functions in
both polar and Cartesian coordinates, we can now obtain a relation between
the two,

Ng+ny

®,, (z;0) Py, (y;0) = > Csfény(bnﬁ,;y,\k\’k (p, ;b) (A.10)

k=—nz—ny,2

where the coefficients C,, %" are given by Eq. (AI7).

In order to relate the polar and Cartesian harmonic-oscillator functions we will
use Eqgs. (Al and (A.2). We will assume axial symmetry and use the same
parameter b for all the coordinates involved. Consider the arbitrary vectors
p = 2 + yy and t =t + t,¥ in the two-dimensional Cartesian coordinate
system, with 7.t = pt cos§. Note that we are using the symbol 6 for the angle
between vectors 7 and t. We can write

—t%+2tx:c/b—:c2/(2b2) e—t§+2tyy—y2/(2b2) e—t2+2pt cos G/b—pz/(2b2)

e

Using Egs. (A) and (A.2), this can also be written as
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50 o(ngtny)/2

by/m —
nzz—o nyz_o Ny ny'

1)” t2n+\k|

=bJ/m —(I)n,k ,0:b
k_z—oonz(] L(n+ |k])! (,8:0)

We must now equate the terms on the left-hand side to those on the right-
hand side. We would like to introduce the polar angle ¢ of the vector g instead
of the angle # between § and t in these expressions, because the final result
should be completely independent of the choice of vector . Using Eq. (A.9),

Eq. (A1) becomes

oo oo 2(nz+ny)/2 te\ " ty ny
> Zi(;) <3) ®y,, (250) P, (33 b)

( 1)" t 2tk —ikpy .
= Z Z—D< > e D, 1 (p, 3 b) (A.12)

k=—oon=0 /1! (n + |k])!

——t,"t,* ®,,, (7;0) Pp, (y;b)

(A.11)

All we have to do now is identify terms on the left- and right-hand sides. We
can establish this correspondence by expressing ¢ and ¢ in terms of ¢, and ¢,,.
To this end, we write

i i |k|
t2n+\k|e tkot :t2n (t€ zskcpt)

where we have introduced the sign quantity

1 k>0
= - A.13
o {—1 k<0 (4.13)

Note that we can write

te—iskcpt =1 cos (SkSOt) — it sin (SkSOt)
=1cosy; — 1St sin
—_= tw — iSkty

where the second line follows because s, = £1. Thus we have

t2n+‘k|e—ikg0t — (ti + tZ)n (tw — Zskty)‘m

_ Z Z (_Z-Sk)\kl—q tip+qtz2/n+\k|—2p—q
p=0¢=0 \ P q
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We substitute this result into the right-hand side of Eq. (A12) to get

1n n k| n |]€‘

RIS — Z Z— ZZ (—isy )|k\ q
k=—oc n=0 + kD! |p=04=0 \ p q
xtipﬂtzn“k‘_%_q} O, 1 (p, ;D) (A.14)

Comparing with the left-hand side of Eq. (A.12), we see that we will need to
make the identifications

2n + k| —2p — g=mn,

which also implies the important relation

Ny +ny =2n + |k| (A.15)

We wish to replace the sums in Eq. (A.14)) over n and p with sums over n,
and n,. Since n, = 2p+q, it is clear that n, will span the full range of integers
starting with 0. Similarly, Eq. (A.I3)) implies that n, = 2n + |k| — n, and for
any n,, there will always be a set of n and k values such that n, spans the
full range of integers from 0, independently of the value of index n,. Thus we
can make the substitution

[e.e] n [e.e] [e.e]
PIDBED MDY
n=0 p=0 ng=0mny=0
Next, we note that Eq. (A.15)) can also be written as 2n = n, + n, — |k|, and

since n > 0, we must therefore have |k| < n, + n,. Finally, 2p = n, — ¢, and
since p > 0, we conclude that ¢ < n,. Thus we can also make the substitution

~ |k ng+ny  min(ng,|k|)

227 22

k=—00 q=0 k=—ngz—ny

and Eq. (A.14) becomes

oty mingo ) ()t —lK)/2 (o yIk=a

rRHS=Y Y | Y%

—|k k
Ne=0 ny:O k;:_nx_ny72 q=0 \/nx+7;y I ‘ |7lx+712y+‘ ‘ |
nzt+ny— k| k|
2 . N 4T
X " ’ @nlwknyf‘k‘ k (p, ()07 b) tZE tyy (A.16)
T 2 ’
2 q

30



Note that in the sum over k, the index can be stepped by 2 units at a time,
because of the restrictions imposed by the factorials. Comparing the left-hand
side of Eq. (A.12)), and its right-hand side given by Eq. (A.16), we deduce

9(nz+ny)/2 nz+ny  min(ng,|k[) (_1)("m+ny—\k|)/2 (—isk)‘kl_q
ﬁq)n” (l’; b) (I)"?! (y; b) = Z nz+ny—|klynet+ny+k|
Ng Ty k=—nz—ny,2 q=0 \/ z 2y 122 2y !
nw+712y—|k\ k|
X D gty v, (053 0)
Nx—q 2 ’
3 q

or, in more compact notation,

Nz+ny

o, (30) P, (i) = DL o Prasnymi (0 3D)

k=—ngz—ny,2

where
nglnyl  (—1)metmymlkD/2 minne k) " natru B\ k|
ot = —isy,) "7
n,k 2(nx+ny)/2 \/nz+7;y—\k|!nz+n2y+|k|! q;(] ( k) nz2—q q
(A.17)

The appearance of the index n in the symbol Zf,;ny, even though it is not

explicitly used, serves as a reminder of the implicit relation between the indices

given by Eq. (A.13).

A.} Cartesian-to-polar mapping

In this section,we derive the inverse transformation corresponding to Eq.

(A.10),

2n+|k|

O i (p,030) = D Ok Boyji)—n, (250) P, (y;b) (A.18)

ny=0

which expresses the polar harmonic-oscillator functions in terms of the Carte-
sian functions. The coefficients C™* are given by Eq. (A21).

Ng,Ny

We start again from Eq. (A12), but this time, we express t, and ¢, on the
left-hand side in terms of ¢ and ¢;. Consider then
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thotyr = (tcos )" (tsin ;)™
_ by et e\ [eive _ pmive \ ™
2 21

Expanding the powers and grouping terms yields

ety e o n, ny (e +ny —2p—2q)
Nggny _ _ ~ _ 1\ 4 ,—i(natny—2p—2q)p:
L 33 (1
p=0g=0 \ D q

Substituting into the left-hand side of Eq. (AI2) produces

gnetny ey, \ [0,

LHS=3 3

<ot 00G, (2:5) @, (1:0)

Comparing with the right-hand side of Eq. (A.12]) we see that we need to make
the identifications

ng +ny, =2n + |k| (A.19)
ng +n, —2p—2¢=k (A.20)

we therefore introduce a summation over n and k with the help of Kronecker-
delta functions,

LHS=Y Y t¥emtherg=tutm)2 N7 NG otk
n=0 k=—o0 ne=0ny=0
D, (2;0) D, (y;b) &o Ny n .
x (7:0) &, )2252p+2q,nz+ny—k (=

\/ nx'ny"&ny p:O q:O p q

where the Kronecker-delta functions collect those terms in the remaining sum-
mations needed to satisfy Eqs. (A.19) and (A.20). The restrictions imposed by
the Kronecker-delta functions can be used to eliminate the summations over

n, and p
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) 2n+|k| . .
LHS=Y Y ontlle-iborg-n-|ki/2 Pontk]—n, (£50) Pn, (43 0)
n=0 k=—oo ny=0 \/(Qn + k| — ny)In,linv
min(ny,n—q+(|k|—k)/2) on + |k’| —n, n, ( 1)ny_q
= n—q+ 55 )\ q

Comparing with the right-hand side of Eq. (A.12) we deduce the relation

2—n—|k|/2 2tk (I)2n+\k|—ny (SL’; b) (I)ny (y§ b)
ny=0 \/(2n + k| — ny)In,liny

dmax on —+ |]~{,‘| — ny ny (_1>ny—q — i(ﬁ k (p (o) b)
q=0 n—q+“k‘2_k q n(n+ kDL

where

Amaz = min (ny,n + (|k| - k) /2)

which we write as

2n+|k|
D, i (p,p;b) = Z sznycb%-i-\kl—ny (7;0) cbny (y;b)

Ny =0

with

omk 27 M2 ()" V nl(n + [k])! qiz 2n + k| —n, Ty (—1)"¢

Ng,MNy \/(277, + |]{?| o ny)!ny!iny gq=0 n—gq + |k‘2—k q

(A.21)
The appearance of the index n, in the symbol C™* | even though it is not

N, My ?

explicitly used, serves as a reminder of the implicit relation between the indices

given by Eq. (A.13).
A.5  Properties of the function Xk (F)

In section [A.2] we introduced the function y, i (f) which was used to obtain
a generating function for harmonic-oscillator functions in polar coordinates.
This function has many useful properties which we will exploit in further
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derivations. In this section, we obtain some important properties of x,, x (tj
From the definition of the y, x (f) function in Eq. (A.9),

Xk (E) t2n+|k\ —ikpt

we can easily show that

"Xk @ L!Tn)Xn+m,k @ (A.22)

As a corollary, we can use Eq. (A.22) to show

m'n'

The complex conjugate of x, (f) is also readily expressed as

Xk () = X (F) (A.24)

and a scale factor can be factored out,

X (af) = a® ¥, (7) (A.25)

Next, We will use the function x, %, to expand the expression exp (215_1 t;)
Starting with the generating function for Bessel functions of the first kind, Eq.

(M) with z = —21t1ts and Y = Y1 — P2,

2t — N (<2t ty) eFe1—e2) (A.26)

k=—00

Next, we use the series expansion for Bessel functions (Eq. 8.440 in [§]),

20=() Srerm (3)
to write Eq. (A.26) as
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2f_ N> M ik(e1—e) ( (—itits)™"
e = 1Me —it t2
2 'S ST

Z Z |k|+ 1 (t1t2)2n+‘k| etk(p1—p2)

n=0 k——oo

or,

N b2oo 00

M= 23 3 ARy ) xi (1) o (2) (A.27)

n=0 k=—oc0

where N, | (D) is given by Eq. (@), and the oscillator parameter b cancels out
in the right-hand side. Next, we derive an expression for the product of two
Xnk functions, using the definition in Eq. (A.9)

1 n1+mn2 '
Xos s (f) Xng s (tj ﬁﬁm—ﬂnz-ﬁ-lklﬂkze—z(kl-',-kg)pt (A.28)

at this point, it is convenient to define the quantities

k| + ko] — |y + k
n1,25n1+n2+| ik 2|2 [k + ol (A.29)
’ _ |Ea| 4 [ka| — |y + ko

1,2 =

’ 2

(A.30)

which recur throughout the paper. Then Eq. (A.28) becomes

—ki,2 71172! (_1)"1,2 2n1 2+ |k1+k2| ,—i(k1+k2)pt
thkl (£> Xng,kz (f) = (_1) ' | | | t ’ €
ning: Ni2:

or,

Xni k1 (f) Xna,kz (5) k12 a 2' Xni,2,k1+ks (5) (A31)

n1lng!

Next, we obtain an expression for the function x,, x (t_i + t_é) of a sum of vec-

tors. We write for an arbitrary vector ¢

62(t1+t2)-t — 2 1-5623-5 (A.32)

Using Eq. (A.27), the left-hand side is

b2oo 0

LHS=— Z Z |k| X;kz,k (Fl + 7?2) Xn,k (tj (A.33)

n=0 k=—oc0
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while the right-hand side of Eq. (A.32) is

b4oo 00

RHS=—3 >, Z Z N i) D) NG, oy (0)

n1=0 k1=—o00 n2=0 ka=—00

><Xn1,k1 (tl) Xn%kz (tz) Xna,k1 (f) Xna,ko (1?)

Using Eq. (A.31)), this reduces to

b4oo 0

RHS = — Z > Z Z ol (DN (0) (1)

ni= Okl——oo’ng Okg——oo

Xthkl (tl) an,kz (t2) Xna12,k1+ko ({)

n1,2!
n1!n2!

In order to compare with Eq. (A.33]), we introduce summations over the indices
n and k with the help of Kronecker-delta functions,

b4oo o]

ny.o!

RHS=25> ). SO S Y N (A () (<) S
n=0 k=—ocon1=0 ki=—00 n2=0 ka=—00 ni1:ny:

Xan,kl (tl) Xn27k2 (t2) 5n,n1,25k,k1+k2Xn,k (£> (A34)

Comparing Eqs. (A33) and (A34) for an arbitrary vector ¢, and taking the
complex conjugate, we are lead to write

o0 o0

i (BAB) =Y 2 S 3 D e (B) v (B)

ni= Okl_—oonz OkQ——OO

(A.35)

where

_ -+ |]€D
D" ok —1)ymrneTn (n 5n —) A.36
ni,kino,ke ( ) (nl |k‘1 |) (n2 |k’2|) n1,2 Yk, k1+k2 ( )

Note that we have used the condition imposed by the Kronecker-delta function
On.n1» and the definition of ny» in Eq. (A29) to write

(_1)k1,2 _ (_1)n1+n2—n

Finally, we derive an expansion for the product exp (2171 t}) Xn k (fl —1—1?2)
Though it is tempting to use Eq. (A27) for this, we will adopt a different
approach which will yield a simpler expression in the end. We write
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N2 o o
o201 -12/b Xouk (tl + t2) — €(t1+t2) e_(thrt%)Xn,k (tl + t2)

We treat the first exponential on the right-hand side using Eq. ([A.23), so that

0 (_1\™ | o .
20 tQXn i (t1 4 t2> e —(2+442) Z (—1) m(::;- m)'Xnervk (t1 + tg)
m=0 n!

Next, we use Eq. (A.30) to expand the pymk (1?1 + 1?2) function

s n+m)!
m=0 e

x Z Z Z Z Dzikhm,kz

n1=0 k‘1=—OO n2=0 k:2=—00

X Xny k1 ({1) Xna,ka ({2>

and use Eq. (A223)) again to eliminate the remaining exponential on the right-
hand side

2t1 tQXn k (tl + t2> Z Z Z Z Z Z nl,kl,ml,ng,kz,mz

m1=0m2=0n1=0 ki1=—00 n2=0 ka=—00

X Xni+ma,k (El) Xno+ma,ka (t_;) (A'37)
where we have defined
nk = " (n+m)(ng +m)! (ng +ma)! ik
Dn17k17M1;N27k2,m2 = Z ni,k1;n2,ka

o m!nlmy!ng'ma!ng!

i (=1)™7 27" (n 4+ m)! (ny + my)! (ng + my)!
mnlmq!ngmslng!

(n+m+ |k|)!

(ng + |k1])! (ng + | ko

m=0

| ) 5n+m,n1,2 5k,k1 +ko

which simplifies to

n,k . ny2: (7’L1 +m1) (n2+m2) (n12—|— |k’1 +k‘2|)
nak1,maing,ka,me = (nl 9 — n)'n'ml'nl'mg'ng (n1 + |k’1|) (712 + |k52|)
X (_1)n1+n2 n(snﬁm,z(sk,lﬁ-i-/@ (A38)

Note the disappearance of the infinite sum over m in favor of the Kronecker-
delta function d,<p, ,.
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B Decomposition of two-body Gaussian form
Consider the two-body Gaussian potential function in cylindrical coordinates

V(r1,72) = e~ (F1=2)*/us?
— e—(ﬁl—ﬁQ)Q/#z e_(zl—ZQ)Q//JZ

The critical first step in the separation method for harmonic-oscillator matrix
elements is to write the potential itself in a form where the dependence on the
coordinates 7, and 75 has been explicitly separated. We will therefore write
this two-body function as a sum of one-body functions in the two coordinates.
Note that the resulting sum will contain and infinite number of terms, while
the matrix elements of the potential will be limited to a finite sum, thanks to
properties of the harmonic-oscillator functions.

B.1  Cartesian component

The radial and Cartesian components of the potential can be expanded inde-
pendently. We begin with the Cartesian term and postulate

V(z,2)= e~ (z1=22)"/s?

= i fnz (21; bz) é)nz (22; bz)

n,=0

choosing for the expansion the functions

®, (z:b,) = 622/(2b§)<1>nz (2:b,) (B.1)

We will now show that

fo. (502) = K220, e /0% 0, (2 6Y2,) (B.2)

where the coefficients K, and )\, are given by Eqs. (B.5)) and (B.6), respec-
tively.

The exponential function in 22 in front of the harmonic-oscillator function on
the left-hand side has been added for computational convenience, as we shall
see. Then, by orthogonality of the harmonic-oscillator functions, we have
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/ dZ 6_Z2/ 2b (I) (227 Z1722 / dZ 6_Z2/ 2b (I) Nz (Z2;bz)

X [ S fo (z1562) o, (22 bz):l

! —
n’,=0

= fn. (21;0:)

from which we obtain an explicit expression for the weight function f,,. (z1;b.),

o (213D, / dzpe 3 ()@, (29:0,) V (21, 22)

:an /_OO nge_Zz/bze_(m—zz) /Manz (%) (B3)
Completing the square, we write

2 B 2 2 1 2
_a_m-mw)  apn aapal| <1 _ _) 21
b2 G 1 G./) \ p

z

where we have defined

2

_ H
G:=1+ 5 (B.4)

and the integral becomes

1 2
e (-2
2
x [ dzexp [— <G;/2Q _Gz—l/zﬂ> ]Hn (@)
. p ? s

Making the substitutions z = G2z /u, y = G722 /u, a = G7/?p/b., the
remaining integral can be evaluated using Eq. 7.374(8), p. 837 in [§],

fnz (Zh ) MG 1/2N 7r1/2 ( a2)nz/2 exp [_ (Gz . 1)y2}
ay

After some straightforward algebra and re-grouping of terms, this can be writ-
ten as
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fnz (Zl; bz) :7r1/2luGZ—1/2Gz—nz/26—zf/(2sz§)Gi/4
1 2 2 z
—z7/(2G.b2 1

X [TMane 1 ( )an <sz>‘|

or, identifying the term in the square brackets with a harmonic-oscillator func-
tion with parameter G1/2b, (note the extra factor G1/ needed to get the proper

normalization constant A/, (Gi/zbz)),

fnz (Zl; bZ) = Kz1/2)‘nze_z%/(2Gsz)q)nz (Zl§ Gi/2bz)

where
_

KZ prmm— W (B.5)

An, =G /? (B.6)
B.2  Radial component
For the radial component of the Gaussian potential, we write

V(py, o) = e~ (P1=72)" /1s?

= Z Z fnr,A ([)1, ©1; bJ_) (i)m-,A (,02, ©2; bJ_)
nr=0 A=—00
where we have chosen
2
(I)nr,A (pvgou bJ.) = eZbi (I)nr,A (p7 '2H bJ_) (B7)

We will then show that

T (p1,01301) = KL>\2nr+\A\6_p%/(2GLbi)(I)nT,A (/31, ©1; Gi/zlu) (B.8)

where the coefficients K| and Ao, 4o are given by Egs. (B.11) and (B.12),
respectively.

By orthogonality of the harmonic-oscillator function we then have

o

w2 = (P—72)* /u? Dy, a (P25 P23 b1)

0 27
fnr-,A(/ObQOl?bJ_):/O p2dps ; dpse
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This integral can be evaluated in a straightforward way by transforming to a
Cartesian coordinate system, and using Eq. (A18),

””2“42

e (pl,wl;lu):/ d$2/ dype P e~ it =nmve) /i
2nr+|A|

X Z ng ny(I)Qnr-HA\ ny ('T27 bJ—) (I)ny (y27 bJ.)
ny=0

S oo
Ngz,My
ny=0

2n,+|A| [ 2

v

{/ dype *Le 1= ), o (Y23 b1)

The integrals in the square brackets are precisely those appearing in Eq. (B3),
and they are given by Eq. (B.2)

2nr+|A|

fnr, (plvgolvbl Z Cgr’wll\y

ny=0

q>2nr+|A\—ny (551; Gll/QbL)}

1/2 2/(2G | b2
KJ_ >‘2n7~+\A| —ny € 1/( € L)

Kl/z)‘”y _y%/(2Glbi)q)ny (yl; Gi/zbJ_) (Bg)
where
2
GL=l+4y (B.10)
1
2
Th
Ki=—35 B.11
s (B.11)
M =G (B.12)
and Eq. (B.9) can be further reduced to
fnr,A (/71, ©1; bJ_) = KJ_)\QHTHA‘e_p%/@GLbi)
2n,+|A| s
Z Ng ny®2nr+|A‘ Ny ($17 G bJ_) Ny (yl, GJ_ bJ_)
ny=0

Finally, using Eq. (A.18) again to return to polar coordinates, we get
_ 2 2
fnT’A (pl’ #15 bl) - KJ—>\2TL7~+‘A‘6 pl/(2GLbL>(I)nr,A (plv #1; Gi/zbJ_)
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2
2b xr X
/ dxge T e (@—z2) ?/u? Do, +[A|—n, (9;01)
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C Product of harmonic-oscillator functions

In this section, we will express the product of two harmonic-oscillator functions
in terms of a sum of single oscillator functions. These results will be partic-
ularly useful in evaluating integrals where the integrand includes products of

harmonic-oscillator functions.

C.1 Product of Cartesian harmonic-oscillator functions

In this section, we derive the form

(I)kl (l’; b) (I)kz (l’; b) =

e—xz/(%z)

VoV

k1+k2
Z T,fl’kﬂ)k (x;0)

k=|k1—ko|,2

(C.1)

for the Cartesian harmonic-oscillator functions of Eq. (), with the coeflicients

TE 4, given by Eq. ([C8).

Using the generating function in Eq. (A.T]), we write for any arbitrary variables

tl and tg,

e

:{Fz

k1=0

ok1/2

t'fl Dy, (; b)}

{\/7 > 2k2/2tk2q)k2 (z; b>}

ko=0

—t%+2t1x/b—w2/(2bz) 6—t%+2t2x/b—x2/(2b2)

(C.2)

With the intent of manipulating the left-hand side of this equation into a form
similar to the left-hand side of Eq. (AJ1]), we write

LHS — e~ ti—t3+2(t1+t2)z/b—a? /b

=€

Using Eq. (A.)), this becomes

42
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LHS 2t1t2 x? 2b2 / Z tl + t2 (I)k (x’ b)

= \Jby/me "/ (2) °° 2k/2 i 2t1t2
k
Xy tit
=0 \ ¢
00 2k/2

We can also group the terms in the right-hand side of Eq. (C.2)),

oo 00 2(k1+k2)/2

RHS =byT ZMZ T

Now we equate powers of ¢; and ¢, between Eqgs. (C.3) and (C.4). We find that
we must make the identifications

S t"t52 0, (2;b) Oy, (23 b) (C.4)

q+p=Fk
k+p—q=k

which lead to
p=(k1+ ks —k)/2
q:(kl—k2+/€)/2

so that Eq. (C.3)) can be written

kl +k2 2k/2

LHS = \/b/me ="/ (2%) w (23b)
k=|k1— k2|2m

k o(k1+k2—k)/2

(o] o0 k
(PP @t iy’ (C.5)
2 2 :

k1=0 ko=0
Note that the limits and step size for the summation over k are dictated by

the need to keep the arguments of the factorials non-negative. In particular,
the “2” appearing in the lower limit of the sum over %k indicates that the index
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should be incremented by steps of 2. Direct comparison of Egs. (C.4) and

([CH) now yields

e 5 2k +k2)/2 /]

ki—kotk \| ((ka—kitk )| ( kitka—Fk )|
k=|k1—k2],2 2 ' 5 ! 5 !

9(k1+kz)/2
W‘Pkl (23 0) Pr, (z;b)

which leads to

— b7

—22/(26%)  kitho

O, (2;0) O, (2;0) = —— > TF Pk (x3h)
VOVT k=lki—kal.2

where

VEkikolk!

(kl—k2+k)| (kg—k1+k)| (k1+k2—k)|
2 : 2 : 2 :

k _
Tk17k2 =

C.2 Product of radial harmonic-oscillator functions

Here, we obtain the relation

e—p2/(2b2) 71,2 ok
. . J— n7 + .
(I)m,]ﬁ (p, 2 b) (I)n27k2 (p> 2 b) = \/7_Tb ngo Tn1,kl1;n22,k2 cbn,kl-i-kz (p, 2 b)

(C.7)
between the harmonic-oscillator functions in polar coordinates defined in Eq.
(@). The expansion coefficients T/"""*2  are defined by Eq. (C9).

n1,k1;n2,k2

Starting from the generating function in Eq. (A.3]), and for arbitrary vectors
1 and t,

€—£%+2ﬁ.£1 /b—p?/(26%) e—ig+2ﬁ.£2 Jb—p?/(26°)

= [b2\/§ Z Z Nm,\lﬂ\an,kl ({1) <I>n1,k1 (pa 2 b)]

k1=—o0n1=0

>< [b@ 53 N unis () o (p,w;b)] (€8)

kQZ—OO TL2:0

The left-hand side can be written
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LHS — o~ (B48) 425 (545) /-0 (202) 281 Ea—p? / (207)

Using Eq. (A.3]) again to expand the first exponential, we get

LHS 2t1t2 p/2b2 b2\/7 Z ZN |k\Xnk(t1+t2) q%k(ﬂa%b)

k=—00n=0

and using Eq. (A.37) to absorb the remaining exponential,

LHS = b2\/7 7 (20?) Z ZN 6P (0, 5 b)

k=—00 n=0

X Z Z Z Z Z Z p17k1,m17p2,k27m2

m1=0m2=0p1=0 k1=—00 p2=0 ks=—0c0

X Xp1+ma, ki ({1> Xpa+ma,ko ({2>

Comparing with the right-hand side of Eq. ((C.8) for arbitrary vectors ; and
t5, we make the identifications

p1t+my=
P2 + Mo ="y

and write the left-hand side as

LHS:b2\/7 2b2 Z ZN \k|q>nk p>§07b)

k=—o00 n=0

X Z Z Z Z Z Z Dnl —m1,k1,m1;n2—m2,k2,m2

m1=0ma=0n1=0 ki=—00 n2=0 ka=—00
X Xnq,k1 (tl; b) Xna,ka (t2; b)

Comparing again with the right-hand side of Eq. (C.8), we readily deduce

m
b4_Nn1,\k1|N7L2,\k2\q)n1,k1 (/), @, b) (I)n27k2 (p, ©; b)

= b2\/g - /(2b2 Z Z Nn,|k|q)n,k (p7 2 b)

k=—o00n=0

o0 o0
n,k
x> > Dy
n1—ma,k1,m1;n2—ma,k2,ma

m1=0 ma2=0

The sum over k disappears because of the Kronecker-delta function inside the
D coefficient in Eq. (A.38)) restricting the value of k to k; + ko, and the sum
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over n is cut off at n = n, 5, because of the other Kronecker-delta function in
Eq. (A38) restricting its value. Therefore,

2 2
o/ (207) [ mie Na e+
Oy i (0 010) Py (0 01 b) = = [ 2§ mllthal
vk (05 90) Py, (033 b) b n=0 Now s N |

o (@)
> > DRt
n1—mai,k1,mi;n2—ma,k2,ma

m1=0 mo=0

X(I)n,kl—i-kQ (pv ©; b)

which we write as

€_p /(2b2) 71,2 ok
™ +
(I)Tll,kl (p7 ()07 b) (I)VLQJCQ (pv 907 b - Z nl,kll,n;,kz n,k1+k2 (p7 (,07 b)

The coefficients 77572 “are obtained from Eq. (A.38), being careful to make

ni,k1;ne, ke
the substitutions n; — n; — my and ny — ny — my (and therefore, according

to Eq. (A29), n12 — ni2 — my — mg as well). Then,

. _(_1)m+m_ndn'<n1+|k1|> (2 4 o)t S S5

ni,kine,ke
n1'n2 (n+|k1+k2 1 =0 ma=0

ny U Ny — M1 — Mg
X

my mo n
(12 + k1 + ko] —my —my)!
(n1+\k1\ —ml) (n2+|k2|—m2)

| n<nis—mi—me

or, in more compact notation,

n,k1+ko _ (_1)n1+n2—n /n" (nl + |k1|) (n2 + |k2|)
nakiing,k 711!712. (TL + |k51 + k‘2|)

1 2
k1+k
X Z Z 5n§n1,2_m1_m207717111—':77121;n2,k2,m2 (Cg)

m1=0 m2=0

with
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n,k1+ks ny No Ny — M1 — M2

n1,k1,m1;n2,k2,m2

(_1)m1+m2

mi mo n

(nl,g + |]{31 + ]{32| —my — mg)'
(m + ‘]{31| — ml)' (ng + |]{32| — m2)'

(C.10)

Note again that the Kronecker-delta function d,<p, ,—m,—m, ensures that we
always have n < nj 5, which we used to limit the sum over n in Eq. (C.7).

D Formalism for large oscillator shell number

In this section, we derive the result in [9],

P T(E =) T (§—na)T(E—n)
<n1 ‘fn‘ n2> N \/ Q75/2 ZE\/ nlngIns!

X oFy (—nq, —ng; =€ +n+1;1 - 2) (D.1)

with £ given by Eq. (D.6) and z by Eq. (D.10), for the numerically accurate
calculation of the matrix element (nq |f,| n2) in Eq. (I2) when large oscillator-
shell numbers are involved. Note that our result differs slightly from [9] in that
a“b~1/?” factors appears in Eq. (D.1)) instead of “b'/?” (see discussion at the end
of this section). The formula in Eq. (D.)) is preferred to the one in Eq. (I9)
for large oscillator-shell numbers, because the latter requires the evaluation

of a sum of products of large (7') and small (I) coefficients, which can be
numerically unstable. We also obtain the corresponding matrix elements in

Eq. (I0O)

MO0

z IU’ My TN
LTty =D DR M W (D-2)

w92

2=

where the coefficients F:é) v are defined by Eq. (D.12).

z otz

Starting from the definition,

(lful o) = I /OO dz @, (2;0) e /W), (2,GV2) @y, (250)

we use the generating function, Eq. (A.)), to integrate the product of three
harmonic-oscillator functions with the Gaussian factor. This produces
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o
e_t%_tg_p / dz e2(t1+t2)z/b+2tz/B—1/z2
— 0o

oo o0

=3 30 Y Cop 152" (n | fu| 1) (D.3)

n1:0 n2=0 n=0

where
B=GY?
1 1
SR TR

o by/m\/ By/m 2nitnatn)/2
TR, ViVl

The integral in the left-hand side of Eq. (D.3]) is easily evaluated by completing

the square in the exponential, giving

LHS = \/ée—t?—t%—t“f?/” (D.4)
where
ity
=" B

After some simplification, Eq. (D.4) takes the form

LHS = \/éexp {[a (t1 +to) — t]2C—|— 2t1t2}

with
a=G1/?
G
“=Ta

which we expand as a series

48



=1

2 i
LHS = \/>Z tifa) Z—, a(ty +to) — 7 ¢

oo oo 2p 2p—q oi 9 9 | |
[ZZZZ = ! v (—a)Zp_qgpt§+ztgp—q—s+th

V50 =0 q=0 s=0 P! q s

comparing with the right-hand side of Eq. (D.3]), we make the identifications

S+i=np=>s=n1 —1
n1+n2+q

2p—q—s+i=ng=>p= 5

g=n

Note that this implies ny + no + n must be even, and the summation over
terminates after a finite number of terms, although we will let it run up to oo
for notational convenience, letting the factorial terms implicitly truncate the
sum. Then we have

Crinan (n1 | fn] n2)
— z _ \nitn2 ~(ni+ng+n)/2
N

n1+n2—|—n—2i n1+n2—2i
0 n ny —1 9 \!
X
; (magetn — )it <a2c>

— z __\nitn2 ~(ni+ng+n)/2
o (may g |
XOO (n1+n2+n—2i)! <2 )Z

i)t

i—on! (n1 — Z)' (n2 — Z)' (W _

(D.5)
Next, we simplify the ratio of factorials

(2p)!  (ng +mng +n — 2i)!
p! o (nl-l-gz—l-n _ ’L)'

using the doubling formula for the Gamma function (Eq. 8.335(1) in [§]),

For convenience, we define
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n+ny+n+1

§= 5

(D.6)

which is a half-integer since we have already noted that n; + ny + n is even.
Then p=¢ —i—1/2, and

%:%F(g—i) (D.7)

In order to simplify this further, we derive the following useful identity

FA-¢+0)=0-(E—¢)
(i ,

Similarly, we can write

FE=E-1)--E=-(-1)) (- —1)

Therefore,

O -9

F(1—¢+4)=(-1) TE—1) (D.8)
and, equivalently,
L(E—i)=(-1) % (D.9)

Thus, Eq. (D.1) becomes

) _ 2 Or-g
Y~ T(L_¢1)
22 L T
AR

where we have used the Pochhammer symbol

T (z+n)

=)

=z(x+1)---(x+n—-1)

Returning to Eq. (D), we replace the (n; —i)! and (ny —4)! terms with
Pochhammer symbols as well using Eq. (D.9) with & — n; + 1 to write
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o i F (nl + 1)F (—nl)
=1 I (—n1 +1)
— (-1

n1!

(—n1);
and similarly for (ny —4)!. Then, Eq. (D.3)) yields

<n1 |fn‘ n2> _ 2%~ (5) (_a)nl-i-nz C(n1+n2+n)/2 00 (_nl),’ (_n2)i ( 1 )Z

VVCly Ny s = -9\ 20%
which we express as a hypergeometric function, as defined in [8] Eq. 9.100 (see

also section 9.14(2) in [8] for the notation in terms of a generalized hypergeo-
metric function),

2&—1/2,u1—‘ (6) (_a)n1+n2 C(n1+n2+n)/2

ny | fnlng) = Fy(—nq, —ng;1 =& 2

|l 7] Vb By/T/nlng Ing |GYVAGR/2 23 (=, =g 52)
where

_ 1 1

Simplifying further, we find

_ (_1\(n1+n2—n)/2 % F(g) —£
|l 2 = (=1) \/Qbﬁ \/n!nﬂnzlz
X2F1 (—nl,—ng;l —f, Z) (Dl].)

Comparing with Eq. (3) in [9], we note that the hypergeometric function is
evaluated at 1 — z rather than z in that paper. In order to make a direct
comparison with [9], we use Eq. 9.131(2) in [§],

oFy (=1, —ng; 1 — & 2)

_F(l—g)F(l—g—l—nl—l—ng) o 1

_F(l_€+nl)r(1_€+n2)2F1(_nla_n2a n 7’L2—|—§71 Z)
N\ 1=&+nitne I (1 - g) I (_nl — Ny + 5 - 1)

= T (—) T (—na)

XoFy (1 =& +n,1 =&+n9;2 =8+ n1 +ng; 1 —2)
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The second term vanishes because of the Gamma functions with negative-
integer (or zero) arguments in the denominator. We can simplify the third
argument of the hypergeometric function in the first term to

—ny —ng+n+1
—ny — g + €= — ;
=—{+n+1

Thus,

ra-9rE-n)
1—§+n1)F(1—§+n2)
X oF) (—n1, —ng; =&+ n+1;1— 2)

2F1 (_nla_nQ;l _§7Z)ZF(

Next, we use Eq. (D.8)) to re-write the Gamma functions in the denominator,

FE—n)l'(§—nx) ' (§—n)
Fa-9rEre)
X oFy (—ny, —ng; —{+n+1;1 — 2)

oFy (—ny, —ng; 1 — & 2) = (—1)™ ™

Substituting this expression into Eq. (D.11]) gives

_ (_1\(=n1—n2—n)/2 H F(g_nl)r(g_/r@)r(g_n) —£
X 2F1 (—nl, —MNa, —§ +n+ 17 1-— Z)

Finally, we use Eq. 8.334(3) in [8] to write

o Cemeng—ny2 o D(E—m) T (€ —n) D (§—n) _,
<n1 |fn‘ n2> - ( 1) \/W \/Wﬂ- (_1)(n1+n2+n)/2 <
X oy (—n1, —ng; = +n+1;1 - 2)
T =) (€ —n) D (€~ )
V22 26v/nln;ny!

X oFy (—ny, —ng; =+ n+1;1 - 2)

This result is nearly identical to Eq. (3) in [9], after properly adjusting for
the choice of variable names, the only minor difference being the oscillator
parameter which appears as b~!/2 in the present work, and b'/2 in [9]. However,
dimensional analysis favors the b='/2 form, as the matrix element (n; | f,|n2)
must carry dimensions of length to the 1/2 power, according to its definition in
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Eq. (I2). In closing, we use Eq. (D.1]) to write the expression for the two-body
matrix element (corresponding to Eq. (I0) in the large oscillator-shell limit),

) L n,(zj)-l-n.(zl)
V. E T": Fme
ikl — ROINOEINOINC
" vV 2m3b ! n")

> Z b Z
j l
nen -0

where

T (¢=n@)T (¢=n)T (€ —n.)

01,0,

M _
Eo =
z itz Zﬁ n 'n

z*

x oy (=0, —n®; —€ + . + 151 - 2) (D.12)

E Angular integral

We wish to evaluate the radial part of the matrix-element integral

27 2T
zykl—/ pldpl/ d@l/ p2dpa dpo

X(I)nﬁ.”,/\(i) (p1,1:b1) ®n5j)7A(j) (Pz, ©a2;b1)
L L2
x e~ (P1=r2) /w cbngk),A(k) (p1> #15 bJ_) cbngl),A(z) (,02, ©23 bJ_)

numerically, where the harmonic-oscillator functions are defined in Eq. (4.
By rotational invariance of the Gaussian potential, we have

—AD ZAG) L AR L AD

The angular integrals over ¢, and @y are particularly problematic because of
their oscillatory nature. Therefore, we focus on those integrals and introduce
the function

2 2 .
/0 d(pl/o dwezk(m—m)e%COS(sol—soz) (E.1)

so that we may write
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r o0 o0 (22 02) /12
V;'g‘k)l:/o pldpl/o p2dpae (o) (I)nﬁ“,|A<i> (p1;01) (I)nij),IA(j>| (p2;01)

pLp
®,m [aw| (P1301) @ 5y (P2:61) O g pae (%) (E-2)

We simplify Eq. (E.I) using the generating function for the Bessel function,
given in Eq. (A.6), with 2 = —2ix and ¢ = @1 — ¥,

2z cos(p1—p2) _ i i‘n‘J\M (—2ix) ein(p1—p2)

n=—oo

from which the integral in Eq. (EJ)) yields

@k (37) = i'k‘J|k| (—2Z$)

From the series expansion of the modified Bessel function of the first kind, Eq.
8.445 in [§], we get

Oy () = (=)™ Iy (—22)

o] l.2n

g TR (E.3)

We find that the series in Eq. (E.3) is extremely well converged if we include
terms up to m such that

l.2m

’m! CEEIR

where € = 1072No=Nauad/8 for a calculation in up to Ny oscillator shells and
Nyuaa quadrature points. The remaining integrals over p; and ps in Eq. (E.2)
were evaluated by Gauss-Laguerre quadrature.
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