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Abstract

Monte Carlo (MC) simulations and series expansions (SE) data for the
energy, specific heat, magnetization, and susceptibility of the three-state and
four-state Potts model and Baxter-Wu model on the square lattice are an-
alyzed in the vicinity of the critical point in order to estimate universal
combinations of critical amplitudes. We also form effective ratios of the
observables close to the critical point and analyze how they approach the
universal critical-amplitude ratios. In particular, using the duality relation,
we show analytically that for the Potts model with a number of states q ≤ 4,
the effective ratio of the energy critical amplitudes always approaches unity
linearly with respect to the reduced temperature. This fact leads to the
prediction of relations among the amplitudes of correction-to-scaling terms
of the specific heat in the low- and high-temperature phases. It is a com-
mon belief that the four-state Potts and the Baxter-Wu model belong to
the same universality class. At the same time, the critical behavior of the
four-state Potts model is modified by logarithmic corrections while that of
the Baxter-Wu model is not. Numerical analysis shows that critical ampli-
tude ratios are very close for both models and, therefore, gives support to
the hypothesis that the critical behavior of both systems is described by the
same renormalization group fixed point.

Key words: Potts model; Baxter-Wu model; Critical exponents; Critical
amplitudes; Universality; Monte Carlo simulations; Series Expansions;

Preprint submitted to Computer Physics Communications October 29, 2018

http://arxiv.org/abs/0809.5045v1


Renormalization Group
PACS: 0.50.+q, 75.10.-b

The fixed points of the renormalization group define the universal behav-
ior of a system through a set of critical exponents and universal combinations
of critical amplitudes [1]. The universality concept divides all systems at crit-
icality into a number of universality classes. It is instructive to know the set
of values of the critical exponents and of the universal combinations of critical
amplitudes for a given universality class.

The two-dimensional Potts model [2] is the simplest model which exhibits
a phase transition. It is solved exactly at the critical point for any number of
spin components q and it is known that for q ≤ 4 it has a continuous phase
transition while for q > 4 the phase transition is of the first order. The model
has a great theoretical interest as new theories may be tested in this model.

At the same time, these models may have some practical interest as they
may be realized in an adsorbate lattice placed onto a clean crystalline sur-
face. The full classification of such systems with continuous transitions is
known theoretically [3]. There are experiments in which some of them real-
ize the 3-state and 4-state Potts models [4] and the critical exponents can be
experimentally estimated.

Critical exponents for the Potts model with q ≤ 4 can be computed
exactly by different theoretical techniques [5, 6]. The values of the thermal
critical exponents and of the magnetic critical exponents follow from the
identification of the dimensions of the conformal algebra operators [6].

Nowadays, there is no doubt on the values of the leading critical expo-
nents whereas the values of the correction-to-scaling exponents are still under
discussion, as well as the values of the universal ratios of the critical ampli-
tudes. Our presentation is intended to give a short review of the research on
the subject.

The Potts model Hamiltonian [2] (see review [7] for details) can written as
H = −∑

〈ij〉 δsisj , where si is a spin variable taking integer values between

0 and q−1, and the sum is restricted to the nearest neighbor sites 〈ij〉 on the
square lattice.

Close to the critical temperature Tc at which the continuous phase tran-
sition occurs, the residual magnetization M and the singular part of the
reduced susceptibility χ and of the specific heat C of the system in zero ex-
ternal field are characterized by the critical exponents β, γ, and α and by
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the critical amplitudes B, Γ±, and A±

M(τ) ≈ B(−τ)β , τ < 0 (1)

χ±(τ) ≈ Γ±|τ |−γ, (2)

C±(τ) ≈ A±
α

|τ |−α, (3)

where τ is the reduced temperature τ = (T −Tc)/T and the labels ± refer to
the high-temperature and low-temperature sides of the critical temperature
Tc. The critical amplitudes are not universal by themselves but some com-
binations of them, f.e., A+/A−, Γ+/Γ−, and Γ+A+/B

2, are universal [1] due
to the scaling laws.

On the square lattice, in zero field, the model is self-dual. The duality
relation

(

eβ − 1
) (

eβ
∗ − 1

)

= q (4)

fixes the inverse critical temperature to βc= ln(1+
√
q). The values E(β) and

E(β∗) of the internal energy at dual temperatures are simply related through

(

1− e−β
)

E(β) +
(

1− e−β∗
)

E(β∗) = 2. (5)

Dual reduced temperatures τ and τ ∗ can be defined by β=βc(1−τ) and
β∗=βc(1+τ ∗). Close to the critical point, τ and τ ∗ coincide through linear

order, since τ ∗=τ+
ln(1+

√
q)√

q
τ 2+O(τ 3).

The ratio of the free energy critical amplitudes A+/A− is equal to unity
due to duality. Moreover, duality relations may be used to understand the
dependence on temperature of the effective amplitude functions which may
be constructed from the energy in the symmetric phase E+(τ) and in the
ordered phase E−(τ

∗)

A+(τ) = α(1− α)βc(E+(τ)−E0)τ
α−1, (6)

A−(τ
∗) = α(1− α)βc(E0 −E−(τ

∗))(τ ∗)α−1 (7)

as an effective amplitude ratio

A+(τ)

A−(τ ∗)
=

(E+(τ)− E0)τ
α−1

(E0 −E−(τ ∗))(τ ∗)α−1
, (8)

where the constant E0 is the value of the energy at the transition temperature,
E0=E(βc)=−1−1/

√
q.
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Table 1: Exact values of critical exponents and ratios of critical amplitudes for the Ising
model (2-state Potts model).

ν α β γ A+/A− Γ+/ΓL R+
C = Γ+A+/B

2

1 0 1/8 7/4 1 37.69365... 0.318569...

Evaluating expression (8) for small τ and denoting αq = −E0βce
−βc =

ln(1+
√
q)√

q
, we obtain

A+(τ)

A−(τ ∗)
= 1 + (3− α)αqτ +O(τ 1+α). (9)

Note the linear dependence on τ of the effective amplitude ratio.
The 2-state Potts model is equivalent to the Ising model which was solved

exactly [8] (see Ref. [9] for details). The susceptibility behavior was under-
stood in the paper by Wu, McCoy, Tracy and Barouch [10]. It turns out
that there exist only integer corrections to scaling (for a recent and detailed
discussions we refer readers to Refs. [11, 12, 13]). Values of the critical ex-
ponents and of some amplitude ratios are presented in Table 1.

The critical behavior of the susceptibility reads as

χ(τ) = Γ±|τ |−γXcorr(|τ |∆) + Ybt(τ), (10)

where Xcorr(|τ |∆) is the correction-to-scaling function and Ybt(τ) represents
an analytic expression (“background term”) which accounts for non-singular
contributions to susceptibility.

Set of values of the thermal critical exponents xǫn and of the magnetic
critical exponents xσn

are known analytically [5, 6]

xǫn =
n2 + ny

2− y
, xσn

=
(2n− 1)2 − y2

4(2− y)
(11)

in terms of the variable y linked to the number of states q by cos πy
2
= 1

2

√
q.

For the 3-state Potts model there is a finite number of correction terms [6],
xǫ2 = 14/5, xǫ2 = 6, and xσ2

= 4/3. The leading correction-to-scaling
contribution is ∆ = −(2− xǫ2)/(2− xǫ1) = 2/3 and it was first supported in
numerical simulation [14].

Clear evidence for these leading correction to the scaling behavior may
be seen in Figure 1, where we plot the difference of the longitudinal and
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Table 2: Exact values of critical exponents and estimates of the ratios of critical amplitudes
for the 3-state Potts model.

ν α β γ Γ+/ΓL ΓT/ΓL R+
C=Γ+A+/B

2 Remark
5/6 1/3 1/9 13/9 - - - Exact result

13.848 0.327 0.1041 [15, 16]
13.83(9) 0.325(2) [19] - SE
13.83(9) 0.3272(7) 0.1044(8) [18] - SE
13.86(12) 0.322(3) 0.1049(29) [18] - MC

transverse susceptibilities (χL − χT ) (note the cancelation of background
terms (10) in the difference) multiplied by the leading behavior factor |τ |γ ,
as a function of |τ |2/3. The ratio of the susceptibilities (χT/χL) is shown
in Figure 2 and may be used to estimate the universal ratio of associated
amplitudes ΓT/ΓL.

Analytical predictions for the amplitude ratios in Potts model for q =
2, 3, and 4 were given in the papers [15, 16]. The values are shown in the
Table 2 together with numerical estimations from Monte Carlo (MC) and
series expansions (SE) analyses [17, 18, 19]. The coincidence of the data is
a good indication for the validity of both two-kink approximation [15, 16] to
the exact scattering theory [20] for 3-state Potts model and of the analysis
of MC data and series expansions.

The analysis of the 4-state Potts model is much more complicated be-
cause in addition to the corrections to scaling there are confluent logarithmic
corrections [21, 22]. The result of the analysis of MC data and SE [23, 24, 19]
is shown in the Table 3 together with the analytical estimates [15, 16].

Conformal field theory predicts the set of renormalization group (RG)
exponents yǫn=2−xǫn=3/2, 0, -5/2, ... . The leading correction-to-scaling
exponent yǫ2 vanishes and gives rise to a logarithmic behavior [21]. In our
recent publication [24, 25] we revised the renormalization group equations
and included in our analysis the known form of the logarithmic corrections
and of the next-to-leading corrections, taking into account the width of the
temperature region window examined. The set of magnetic exponents for
the Potts model xσn

=1/8, 9/8, 25/8, ... translates into the magnetization
exponent β=1/12 and the leading correction-to-scaling exponent ∆σ=2/3.
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Finally, the following behavior of the susceptibility is assumed

χ+(τ) = Γ+τ
−7/6G3/4(− ln τ)(1 + a+τ

2/3 + b+τ) +D+, (12)

where the function G contains a universal correction function E [22, 24, 25]
and the leading nonuniversal correction function F

G(− ln |τ |) = (− ln |τ |)× E(− ln |τ |)× F(− ln |τ |), (13)

E(− ln |τ |) =

(

1 +
3

4

ln(− ln |τ |)
− ln |τ |

)

×
(

1− 3

4

ln(− ln |τ |)
− ln |τ |

)−1(

1 +
3

4

1

(− ln |τ |)

)

, (14)

F(− ln |τ |) ≃
(

1 +
C1

− ln |τ | +
C2 ln(− ln |τ |)
(− ln |τ |)2

)−1

. (15)

We fit our data to estimate the amplitude Γ+, the coefficient of the leading
correction to scaling a+ in Eq. (12), and coefficients C1 and C2 in Eq. (15).

It is obvious that the logarithmic corrections (the whole function G(− ln |τ |))
cancels in simple ratios, like A+/A−, Γ+/ΓL, ΓT/ΓL, etc. This has been
demonstrated analytically for the effective ratio A+/A− (see Eq. 9). We note
also that the RG analysis predicts [24, 25] powers of logarithmic corrections
to specific heat α′=−1, susceptibility γ′=3/4, and magnetization β ′=−1/8
such that they cancel in all universal ratios. For example, the universal
amplitude ratio R−

C may be calculated as the limit of the ratio of functions

R−
C = lim

τ→0
τ
(E−(|τ |)− E0)χ−(|τ |)

M(|τ |)2 α(α− 1)βc (16)

where E0 = E(0) =
√
2. One can check that in the ratio (16) not only

powers of |τ | cancel but also powers of E . In the ratio, the magnetization M
and the energy difference E−(|τ |)−E0 have only singular contributions and
the only systematic deviation may come from the background correction to
susceptibility χ−(|τ |). It was shown in [18] that the contribution from this
background correction is negligible in the critical region window, and the
estimator (16) tends to the value 0.0055(1) as τ → 0.

The Baxter-Wu [26] model is defined on a triangular lattice, with spins
σi located at vertices. The three spins forming a triangular face are coupled
with a strength J , and the Hamiltonian reads
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Figure 1: 3-state Potts model. Difference of susceptibilities (χL − χT )|τ |γ as function of
|τ |2/3. The almost linear dependence supports the value 2/3 for the power of the leading
correction to scaling.
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Table 3: Exact values of critical exponents and estimations of the ratios of critical ampli-
tudes for the 4-state Potts model.

ν α β γ Γ+/ΓL ΓT/ΓL R−
C=Γ−A−/B

2 Remark
2/3 2/3 1/12 7/6 - - - Exact result

4.013 0.129 0.00508 [15, 16]
3.5(4) 0.11(4) [19] - SE
3.14(70) 0.0068(9) [23] - MC
6.93(6) 0.1674(30) 0.00512(13) [24, 25] - MC
6.30(1) 0.1511(24) 0.00531(5) [24, 25] - SE

H = −J
∑

faces

σiσjσk, (17)

where the summation extends over all triangular faces of the lattice, both
pointing up and down. The ground state is four-fold degenerate and the
critical exponents are found to be the same as for the 4-state Potts model.

The exact behavior of the magnetization, energy, and specific heat are
known analytically [26, 27, 28]. An analysis of Monte Carlo data was per-
formed by two of us [29] and preliminary estimates shows that the values of
the susceptibility amplitude-ratio Γ+/ΓL ≈ 6.9 and of the ratio R−

C ≈ 0.005
are very near to those obtained from our analysis of MC and SE data for
the 4-state Potts model (see Table 3). We have to note that logarithmic
corrections to scaling are absent in the critical behavior of Baxter-Wu model
and this gives us more confidence in our analysis.

Delfino and Grinza [30] use the same analytical approach as in [15] to
study the Ashkin-Teller model which also belongs to the 4-state Potts model
universality class with some particular choice of coupling constants. This
leads to the estimatation Γ+/ΓL ≈ 4.02 and ΓT/ΓL ≈ 0.129. This result is
also very near to those for 4-state Potts model (see second entry in Table 3.)

A possible explanation of the deviation of our results from the analytical
predictions may be explained as follows: the two-kink approximation is exact
for the 2-state Potts model, it gives good accuracy for the 3-state Potts model,
but it may be insufficient to produce accurate values for 4-state Potts model.
Further analyses have to be done to resolve the contradiction among these
results.
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Figure 2: 3-state Potts model. Ratio of transverse to longitudinal susceptibilities.
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