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A bstract

The partition function ofa quantum �eld theory with an exact sym m etry can be de-

com posed into a sum offunctionalintegrals each giving the contribution from states

with de�nitesym m etry properties.Thecom position rulesofthecorrespondingtransfer

m atrix elem entscan beexploited todeviseam ulti-levelM onteCarlointegration schem e

for com puting correlation functions whose num ericalcost,at a �xed precision and at

asym ptotically largetim es,increasespower-likewith thetim eextentofthelattice.Asa

resultthenum ericale�ortisexponentially reduced with respectto thestandard M onte

Carlo procedure. W e test thisstrategy in the SU(3) Yang{M ills theory by evaluating

the relative contribution to the partition function ofthe parity odd states.

http://arxiv.org/abs/0806.2601v2


1 Introduction

Dynam icalproperties ofquantum �eld theories can be determ ined on the lattice by

com puting appropriate functionalintegralsvia M onte Carlo sim ulations.Forthe m ost

interesting theories this is, up to now, the only toolto carry out non-perturbative

com putations from �rst principles. The m ass of the lightest asym ptotic state with

a given set ofquantum num bers can,for instance,be extracted from the Euclidean

tim e dependence ofa suitable two-point correlation function. Its contribution can be

disentangled from those ofother states by inserting the source �elds at large-enough

tim e distances. The associated statistical error can be estim ated from the spectral

propertiesofthe theory [1,2]. Very often the lattergrowsexponentially with the tim e

separation,and in practice it is not possible to �nd a window where statisticaland

system atic errors are both under control. This is a wellknown m ajor lim iting factor

in m any num ericalcom putationssuch as,forexam ple,thecom putation oftheglueball

m assesin theYang{M illstheory.A widely used strategy to m itigate thisproblem isto

reducethesystem aticerrorby constructinginterpolating operatorswith asm alloverlap

on theexcited states[3,4].Thelowestenergy isthen extracted atshorttim e-distances

by assum ing a negligible contam ination from excited states,som etim es also with the

help ofanisotropic lattices [5,6]. This procedure is not entirely satisfactory from a

conceptualand a practicalpointofview. The exponentialproblem rem ainsunsolved,

and thefunctionalform ofthesourcesareusually optim ized sothatthecorrelatorshows

asingleexponentialdecayin theshorttim erangeallowed bythestatisticalnoise.A solid

evidence thata single state dom inatesthe correlation function,i.e.a long exponential

decay overm any ordersofm agnitude,isthusm issing.

In thispaperwe propose a com putationalstrategy to solve the exponentialprob-

lem .Thelatterarisesin thestandard proceduresinceforany given gaugecon�guration

allasym ptotic states ofthe theory are allowed to propagate in the tim e direction,re-

gardless ofthe quantum num bers ofthe source �elds. By using the transfer m atrix

form alism ,we introduceprojectorsin the path integralwhich,con�guration by con�g-

uration,perm itthepropagation in tim eofstateswith a given setofquantum num bers

only.Thecom position propertiesofthe projectorscan then beexploited to im plem ent

a hierarchicalm ulti-levelintegration proceduresim ilarto those proposed in Refs.[7,8]

forthePolyakov loops.By iterating overseverallevelsthenum ericalcostofcom puting

therelevantobservablesgrows,atasym ptotically large tim es,with a powerofthetim e

extentofthe lattice.

W etestourstrategy ofa \sym m etry constrained" M onteCarloin theSU(3)Yang{

M ills theory by determ ining the relative contribution to the partition function ofthe

parity-odd states on lattices with a spacing of roughly 0:17 fm , spatialvolum es up

to 2:5fm 3,and tim e extent up to 3:4fm . The algorithm behaves as expected,and in

particular the m ulti-levelintegration schem e achieves an exponentialreduction ofthe

num ericale�ort. In the speci�c num ericalim plem entation adopted here the com puta-

tion ofthe projectors is the m ostexpensive part,and its cost scales roughly with the
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squareofthe three-dim ensionalvolum e.Therealistic latticesconsidered in thispaper,

however,were sim ulated with a m odestcom putationale�ort.

The strategy proposed here israthergeneraland we expectitto be applicable to

othersym m etriesand other�eld theoriesincluding thosehaving ferm ionsasfundam en-

taldegrees offreedom . It can,ofcourse,be quite usefulalso for com puting excited

levelsin otherquantum m echanicalsystem s.Thebasic ideaswere indeed checked in a

considerable sim plerand solvable quantum system with a non-trivialparity sym m etry,

nam ely theone dim ensionalharm onic oscillator[9].

2 Prelim inaries and basic notation

W e setup the SU(3)Yang{M ills theory on a �nite four-dim ensionallattice ofvolum e

V = T � L3 with a spacing a and periodic boundary conditions1. The gluons are

discretized through the standard W ilson plaquette action

S[U ]=
�

2

X

x

X

�;�

�

1�
1

3
ReTr

n

U��(x)

o�

; (2.1)

where the trace is over the color index,� = 6=g2
0
with g0 the bare coupling constant,

and theplaquette isde�ned asa function ofthe gauge linksU �(x)as

U��(x)= U�(x)U�(x + �̂)U y
�(x + �̂)Uy�(x); (2.2)

with �;� = 0;:::;3,�̂ isthe unitvectoralong the direction � and x isthe space-tim e

coordinate.Theaction isinvariantundera gauge transform ation

U�(x)� ! U


� (x)= 
(x)U �(x)


y(x + �̂) (2.3)

with 
(x)2 SU(3).Thepath integralisde�ned asusual

Z =

Z

D 4[U ]e
� S[U ]

; D 4[U ]=
Y

x

3Y

�= 0

D U�(x); (2.4)

where D U is the invariant Haar m easure on the SU(3) group,which throughout the

paperwillbe always norm alized such that
R
D U = 1. The average value ofa generic

operatorO can thusbewritten as

hO i=
1

Z

Z

D 4[U ]e
� S[U ]

O [U ]: (2.5)

1
Throughoutthe paperdim ensionfulquantitiesare alwaysexpressed in unitsofa.
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2.1 H ilbert space

TheHilbertspaceofthetheoryisthespaceofallsquare-integrablecom plex-valued func-

tions [V ]ofVk(x)2 SU(3)with ascalarproductde�ned as(x isthethreedim ensional

space-coordinate and k = 1;2;3)

h�j i=

Z

D 3[V ]�[V ]
�
 [V ]; D 3[V ]=

Y

x

3Y

k= 1

D Vk(x): (2.6)

The \coordinate" basisisthe setofvectors which diagonalize the �eld operatoratall

pointsx,i.e.

V̂ k(x)jV i= Vk(x)jV i; (2.7)

and which are norm alized such that

hV j i=  [V ]: (2.8)

From aquantum m echanicalpointofview,the�eld valuesVk(x)form thesetofquantum

num bersthatlabelthevectorsofthe basis.In a gauge theory physicalstatesare wave

functionswhich satisfy

 [V 
]=  [V ] (2.9)

forallgauge transform ations
.A projectoronto thissubspacecan bede�ned as

hV ĵPG j i=

Z

D [
] [V 
]; D [
]=
Y

x

D 
(x); (2.10)

and itisstraightforward to verify thatP̂2
G
= P̂G .

2.2 Transfer m atrix

The transferm atrix ofa Yang-M ills theory discretized by the W ilson action hasbeen

constructed m any yearsago [10{13].The subjectiswellknown and itappearson text

books,therefore we report only those form ul� which are relevant to the paper. The

starting pointisto rewrite thefunctionalintegralin Eq.(2.4)as

Z =

Z T� 1Y

x0= 0

D 3[Vx0]T

h

Vx0+ 1;Vx0

i

(2.11)

wherethe transferm atrix elem entsare de�ned as

T

h

Vx0+ 1;Vx0

i

=

Z

D [
]e
� L[V 


x0+ 1
;Vx0]; (2.12)

with

L

h

Vx0+ 1;Vx0

i

= K

h

Vx0+ 1;Vx0

i

+
1

2
W

h

Vx0+ 1

i

+
1

2
W

h

Vx0

i

; (2.13)
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and 
 being identi�ed with the link in the tem poraldirection. The kinetic and the

potentialcontributionsto theLagrangian aregiven by

K

h

Vx0+ 1;Vx0

i

= �
X

x;k

�

1�
1

3
ReTr

n

Vk(x0 + 1;x)V
y

k
(x0;x)

o�

; (2.14)

and

W

h

Vx0

i

=
�

2

X

x

X

k;l

�

1�
1

3
ReTr

n

Vkl(x0;x)

o�

; (2.15)

respectively,where Vkl is the plaquette de�ned in Eq.(2.2) com puted with the links

Vk(x).Thepotentialterm isgauge-invariant,i.e.W

h

Vx0

i

= W

h

V 

x0

i

,whilethedepen-

denceofthekineticterm on thegaugetransform ations
0attim e(x0+ 1)and 
attim e

x0 isonly via the product

y
0. Thanksto the invariance ofthe Haarm easure under

leftand rightm ultiplication,thisim pliesthatthe transferm atrix isgauge-invariant

T

h

V

 0

x0+ 1
;V



x0

i

= T

h

Vx0+ 1;Vx0

i

; (2.16)

and that

T

h

Vx0+ 1;Vx0

i

=

Z

D [
0]D [
]e
� L[V 


0

x0+ 1
;V 


y

x0
]
: (2.17)

The latter are thus m atrix elem ents ofa transferoperator T̂ between gauge invariant

states

T

h

Vx0+ 1;Vx0

i

=

D

Vx0+ 1ĵPG T̂ P̂G jVx0

E

; (2.18)

and thefunctionalintegralcan then bewritten as

Z = Tr

�h

T̂ P̂G

iT
�

; (2.19)

wherethetraceisoverallgaugeinvariantstates.Forathick tim e-slice,i.e.theensem ble

ofpointsin thesub-latticewith tim ecoordinatesin agiven interval[x0;y0]and bounded

by theequal-tim ehyper-planesattim esx0 and y0,thetransferm atrix elem entscan be

introduced by the form ula

T

h

Vy0;Vx0

i

=

Z y0� 1Y

w 0= x0+ 1

D 3[Vw 0
]

y0� 1Y

z0= x0

T

h

Vz0+ 1;Vz0

i

: (2.20)

3 D ecom position ofthe functionalintegral

The invariance ofthe system undera globalsym m etry can be exploited to decom pose

the partition function into a sum offunctionalintegrals each giving the contribution

from states with de�nite sym m etry properties. In the following we willfocus on the

invariance ofthe Yang{M illstheory underparity.
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In thecoordinatebasis,theparity transform ation on gaugeinvariantstatescan be

de�ned as

}̂ jVi= jV }
i; jVi= P̂G jV i; V

}

k
(x)= V

y

k
(� x � k̂); (3.1)

which im pliesthat }̂2= 11.Theparity eigenstatescan then bewritten as

jV;� i=
1
p
2

h

jVi� jV}i

i

; }̂ jV;� i= � jV;� i: (3.2)

and theirtransferm atrix elem entsaregiven by

hs
0
;V x0+ 1ĵTjV x0;si = 2�s0s T

s
h

Vx0+ 1;Vx0

i

; (3.3)

Ts
h

Vx0+ 1;Vx0

i

=
1

2

n

T

h

Vx0+ 1;Vx0

i

+ sT

h

Vx0+ 1;V
}
x0

io

: (3.4)

Theinvariance ofthe action yields

T

h

V
}

x0+ 1
;V

}
x0

i

= T

h

Vx0+ 1;Vx0

i

; T

h

V
}

x0+ 1
;Vx0

i

= T

h

Vx0+ 1;V
}
x0

i

; (3.5)

and therefore

Ts
h

Vx0+ 1;V
}
x0

i

= sTs
h

Vx0+ 1;Vx0

i

: (3.6)

Fora thick tim e-slice the m atrix elem ents between parity states can be introduced by

exploiting thecom position rule

Ts
h

Vy0;Vx0

i

=

n

Ts
h

Vy0;Vz0

i

Ts
h

Vz0;Vx0

io

; (3.7)

wherex0 < z0 < y0 and in general

n

Ts
h

Vy0;Vz0

i

Ts0
h

Vz0;Vx0

io

=

Z

D 3[Vz0]T
s
h

Vy0;Vz0

i

Ts0
h

Vz0;Vx0

i

: (3.8)

Itiseasy to show that,in addition to relationsanalogousto those in Eqs.(3.4){(3.6),

the identities

n

Ts
h

Vy0;Vz0

i

T� s
h

Vz0;Vx0

io

= 0 ; (3.9)

n

Ts
h

Vy0;Vz0

i

T

h

Vz0;Vx0

io

= Ts
h

Vy0;Vx0

i

(3.10)

hold.In particularthey im ply that

Ts[Vy0;Vx0]

T [Vy0;Vx0]
=

1

Zsub

Z

D 4[U ]sub e
� S[U ]T

s[Uy0;Uy0� 1]

T [Uy0;Uy0� 1]
; (3.11)

an usefulexpression for the practicalim plem entation ofthe m ulti-levelalgorithm de-

scribed in the following section. The subscript \sub" indicates that the integral is
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perform ed over the dynam ical�eld variables in the thick tim e-slice [x0;y0]with the

spatialcom ponentsUk(x)oftheboundary �elds�xed to Vk(x0;~x)and Vk(y0;~x)respec-

tively.Finally,by inserting Eq.(3.4)into Eq.(2.11)and repeatedly applying Eq.(3.9),

itispossibleto rewrite the path integralasa sum offunctionalintegrals

Z =
X

s= �

Z
s
; Z

s =

Z T� 1Y

x0= 0

D 3[Vx0]T
s
h

Vx0+ 1;Vx0

i

; (3.12)

each giving the contribution from gauge-invariant parity-even and -odd states respec-

tively

Z
+ = e

� E 0 T

"

1+
X

n= 1

w
+
n e

� E
+

n T

#

; Z
� = e

� E 0 T
X

m = 1

w
�
m e

� E
�
m T

: (3.13)

In theseexpressionsE 0 isthevacuum energy,E +
n and E �

m aretheenergies(with respect

to the vacuum one) ofthe parity even and odd eigenstates,and w +
n and w �

m are the

corresponding weights.Thelatterare integersand positive since fortheW ilson action

the transferoperatorT̂ isself-adjointand strictly positive [11].

Itisinteresting to notice thateven though the transferm atrix form alism inspired

the construction, the above considerations hold independently of the existence of a

positiveself-adjointtransferoperator.Theinsertion ofTs[Vy0;Vx0]in thepath integral

playsthe r̂ole ofa projector,ason each con�guration itallowsthe propagation in the

tim e direction ofstates with parity s only. Indeed the parity transform ation ofone

ofthe boundary �elds in T[Vy0;Vx0]ips the sign ofallcontributions that it receives

from the parity-odd states while leaving invariant the rest. The very sam e applies to

the path integralin Eq.(2.4) ifthe periodic boundary conditions are replaced by }-

periodic boundary conditions,i.e. VT = V
}

0
. Allcontributions from the parity odd

states are then m ultiplied by a m inus sign. Sim ilar considerations have already been

exploited in di�erentcontexts,forinstance in the study ofthe interface free energy of

the three-dim ensionalIsing m odel[14].

4 M ulti-levelsim ulation algorithm

Thecom position rulesin Eqs.(3.7){(3.10)areatthebasisofourstrategy forcom puting

Z s=Z (aswellasagenericcorrelation function)with ahierarchicalm ulti-levelintegration

procedure.

4.1 P rojector com putation

To determ inetheparity projectorbetween two boundary �eldsofa thick tim e-slice,the

basic building block to becom puted istheratio oftransferm atrix elem ents

R[Vx0+ d;Vx0]=
T[Vx0+ d;V

}
x0]

T[Vx0+ d;Vx0]
: (4.1)
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Theparity transform ation in thenum eratorchangesoneoftheboundary �eldsoverthe

entire spatialvolum e ofthe corresponding tim e-slice,a globaloperation which could

m akethelogarithm ofthisratioproportionaltothespatialvolum e,seeforinstance[14].

The transferm atrix form alism and the expected spectralpropertiesofthe Yang{M ills

theory however suggest that,in a �nite volum e and for d large enough,only a few of

thephysicalstatesgivea sizeablecontribution to thisratio,which isthereforeexpected

to be ofO (1). These generalpropertiescan be studied analytically forthe free lattice

scalartheory,seeforinstance[15].Itgoeswithoutsaying thatthelatterhasa di�erent

spectrum from the Yang{M ills theory,and therefore can be used only as an exam ple

whereourstrategy can bestudied analytically.

Even tough theratio R isexpected to beofO (1),theintegrandsin thenum erator

and in the denom inatoron the r.h.sofEq.(4.1)are,in general,very di�erentand the

m ain contributions to their integrals com e from di�erent regions ofthe phase space.

The m ost straightforward way for com puting R is to de�ne a set ofn system s with

partition functionsZ1 :::Zn designed in such a way thatthe relevantphase spacesof

successive integrals overlap and thatZ1 = T[Vx0+ d;V
}
x0]and Zn = T[Vx0+ d;Vx0]. The

ratio R can then becalculated as

R =
Z1

Z2

�
Z2

Z3

� :::�
Zn� 2

Zn� 1

�
Zn� 1

Zn

; (4.2)

with each ratio on the r.h.s. being com putable in a single M onte Carlo sim ulation

by averaging the properreweighting factor. To im plem entthisprocedure we startby

generalizing the de�nition ofthe transferm atrix elem entin Eq.(2.17)as

T

h

Vx0+ 1;Vx0;r

i

=

Z

D [
0]D [
]e
� L[V 


0

x0+ 1
;V 


y

x0
;r]
; (4.3)

wherer2 [� 1=2;1=2]and

L

h

Vx0+ 1;Vx0;r

i

=

�
1

2
+ r

�

K

h

Vx0+ 1;Vx0

i

+

�
1

2
� r

�

K

h

V
}

x0+ 1
;Vx0

i

+
1

2
W

h

Vx0+ 1

i

+
1

2
W

h

Vx0

i

: (4.4)

Analogously,Eq.(3.11)can begeneralized as

T

h

Vx0+ d;Vx0;r

i

=

Z x0+ d� 1Y

w 0= x0+ 1

D 3[Vw 0
]

"
x0+ d� 2Y

z0= x0

T

h

Vz0+ 1;Vz0

i
#

T

h

Vx0+ d;Vx0+ d� 1;r

i

(4.5)

and theratio R[Vx0+ d;Vx0]can bewritten as

R[Vx0+ d;Vx0]=

L3

Y

k= 1

R[Vx0+ d;Vx0;� 1=2+ (k � 1=2)"] (4.6)
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where

R[Vx0+ d;Vx0;r]=
T[Vx0+ d;Vx0;r� "=2]

T[Vx0+ d;Vx0;r+ "=2]
(4.7)

and " = 1=L3. W ith this choice of " the relevant phase spaces of two consecutive

integralsoverlap since the actionsdi�erby a quantity ofO (1),while theiructuations

are ofO (
p
V ). To com pute each ratio on the r.h.s. ofEq.(4.6)one startsby noticing

thatthegroup integralson 

0

and 
in Eq.(4.3)can befactorized byintroducingon each

pointofthe tim e-slice x0 the usualtem porallink U0(x0;~x)= 
y(~x)

0

(~x)and a second

tem porallink U4(x0;~x)= 
y(~x)

0

(� ~x). The average ofthe reweighting factoristhen

com puted with thethree-levelalgorithm described in AppendixA.Asotherm ethodsfor

com puting ratiosofpartition functionswhich are presentin the literature [16{18],the

num ericalcost scales roughly quadratically with the three-dim ensionalvolum e. Since

the m ain goalofthispaperisto presentand testthe validity ofthe strategy,we leave

to futurestudiesthedevelopm entofa m orere�ned and betterscaling algorithm forthe

com putation ofthe projector.

4.2 H ierarchicalintegration

O nce the projectorshave been com puted,the ratio ofpartition functionsZ s=Z can be

calculated by im plem enting thehierarchicaltwo-levelintegration form ula

Z s

Z
=

1

Z

Z

D 4[U ]e
� S[U ]Psm ;d

h

T;0

i

(4.8)

wherePs
m ;d

h

y0;x0

i

isde�ned as

Psm ;d

h

y0;x0

i

=

m � 1Y

i= 0

Ts[Ux0+ (i+ 1)� d;Ux0+ i� d]

T[Ux0+ (i+ 1)� d;Ux0+ i� d]
(4.9)

with m � 1and y0 = x0+ m � d.Theprocedurecan,ofcourse,begeneralized to am ulti-

levelalgorithm .Forathree-levelone,forinstance,each ratioon ther.h.sofEq.(4.9)can

becom puted by a two-levelschem e.Thanksto thecom position rulesin Eqs.(3.7)and

(3.9),ther.h.s.ofEq.(4.8)doesnotdepend on m and d.W hen com puted by a M onte

Carlo procedure,however,itsstatisticalerrordependsstrongly on the speci�c form of

Psm ;d

h

y0;x0

i

chosen.Thealgorithm thereforerequiresan optim ization which in general

dependson thespectralpropertiesofthetheory.Itishoweverim portantto stressthat

them ulti-levelhierarchicalintegration givesalwaysthecorrectresultindependently on

thedetailsofitsim plem entation.Thiscan beshown by following thesam estepsin the

Appendix A ofRef.[8]. There are two m ain di�erences: auxiliary link variables and

theirown actionsneed to be introduced foreach value ofr,and the com putation ofR

requiresatherm alization procedureforeach valueofr.W edonotexpectthelattertobe

particularly problem atic since,asm entioned earlier,expectation valuesforconsecutive

values ofr refer to path integrals with the relevant phase spaces which overlap. The
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ratiosR are com puted by sim ulating system scorresponding to consecutive valuesofr

one after the other,and by starting from the one used to extract the boundary �elds

(r= 0:5).

4.3 Exponentialerror reduction

Thestatisticalvarianceoftheestim ateofa two-pointcorrelation function hO (x0)O (0)i

ofa parity-odd interpolating operatorO ,com puted by the standard M onte Carlo pro-

cedure,isde�ned as

�
2 = hO

2(x0)O
2(0)i� hO (x0)O (0)i

2
: (4.10)

Atasym ptotically-largetim eseparationsthesignal-to-noiseratiocan beeasilycom puted

via the transferm atrix form alism which,for0 � x0 � T=2,gives[1,2]

hO (x0)O (0)i

�
=
jhE

�
1
ĵO j0ij2

jh0jÔ 2j0ij
e
� E

�

1
x0 + � � � (4.11)

The exponentialdecrease ofthis ratio with the tim e distance can be traced back to

the fact that for each gauge con�guration the standard M onte Carlo allows for the

propagation in tim e ofallasym ptotic states ofthe theory regardless ofthe quantum

num bersofthesource�eld O .Thereforeeach con�guration givesa contribution to the

signalwhich decreasesexponentially in tim e,whereasitcontributesO (1)to the noise

(variance)atany tim edistance.O n thecontrary,ifin Eq.(4.8)d ischosen largeenough

forthesinglethick-sliceratiotoberoughlydom inated by thecontribution ofthelightest

state,then each factorisofordere� E
�

1
d.Foreach con�guration oftheboundary �elds,

them agnitudeoftheproductisproportionalto e� E
�

1
T,and thestatisticaluctuations

arereduced to thislevel.To achieve an analogousexponentialgain in thecom putation

ofthe correlation functions,the projectors Ts have to be inserted in the proper way

am ong the interpolating operators(see Ref.[9]fora m oredetailed discussion).

5 N um ericalsim ulations

W ehavetested thehierarchicalm ulti-levelintegration strategy described in theprevious

section for the SU(3) Yang{M ills theory by perform ing extensive num ericalcom puta-

tions. W e have sim ulated lattices with an inverse gauge coupling of� = 6=g20 = 5:7

which correspondsto a valueofthereferencescaler0 ofabout2:93a [19,20].Thenum -

beroflattice pointsin each spatialdirection hasbeen setto L = 6;8 corresponding to

a linearsizeof1:0 and 1:4 fm respectively.Foreach spatialvolum ewehave considered

severaltim e extents T,the fulllist is reported in Table 1 together with the num ber

ofcon�gurationsgenerated and thedetailsofthem ulti-levelsim ulation algorithm used

foreach run.The latticeshave been chosen to testthe strategy in a realistic situation

with thecom putationalresourcesatourdisposal,i.e.a m achineequivalentto approxi-

m atively 6 dualprocessorquad-core PC nodesofthe lastgeneration running fora few

m onths.

9



Lattice L T N conf N lev d

A 1 6 4 50 2 4

A 2 5 50 2 5

A 3 6 50 2 6

A 4 8 175 2 4

A 5 10 50 2 5

A 6 12 90 2 6

A 7 16 48 2 8

A 8 20 48 3 f5,10g

B1 8 4 20 2 4

B2 5 25 2 5

B3 6 75 2 3

B4 8 48 2 4

Table 1:Sim ulation param eters:N confisthenum berofcon�gurationsoftheupperm ost

level,N lev isthe num beroflevelsand d isthethicknessofthethick tim e-slice used for

the variouslevels.

5.1 A lgorithm im plem entation and tests

The basic M onte Carlo update ofeach link variable isa com bination ofheatbath and

over-relaxation updateswhich im plem entstheCabibbo{M arinarischem e[21].Depend-

ing on the value ofthe coupling constant associated to the link at a given stage of

the sim ulation,the heatbath updates the SU(2) sub-m atrices by the M etropolis,the

Creutz[22]ortheFabricius{Haan [23,24]algorithm .In theupperm ostlevelthegener-

ation ofthegauge �eld con�gurationsconsum esa negligible am ountofcom putertim e.

Atthislevelwe perform m any update cyclesbetween subsequentcon�gurations(typi-

cally 500 iterationsof1 heatbath and L=2 over-relaxation updatesofalllink variables)

so thatthey can be assum ed to be statistically independent. O n each ofthese con�g-

urationswe com pute the \observables" Ps
m ;d

[T;0],with the m ostexpensive partbeing

the estim ate ofthe thick-slice ratio R[Vx0+ d;Vx0]at the lowest algorithm ic level. The

latteriscom puted by using thethree-levelalgorithm described in theprevioussection,

with the param eter values tuned sequentially levelby levelso to m inim ize the actual

CPU cost for the required statisticalprecision. In allrunsthis has been set to be at

m ost30% oftheexpected absolute value ofthedeviation ofR from 1,thelatterbeing

determ ined by som e prelim inary exploratory tests. As m entioned in section 4.2,the

algorithm requiresa therm alization step foreach value ofr which hasbeen �xed,after

severalexploratory runs,to 500 sweepsofthe fullsub-lattice.

10
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Figure 1: Left: the naturallogarithm ofR[Vx0+ d;Vx0;r]is shown as a function ofr

(statisticalerrors are sm aller than sym bols)for a typicalcon�guration ofthe run B 3.

Right: the sum ofthe points in the interval[� r;r]is plotted as a function ofr (one

each eighth pointforvisualconvenience).

Apart from m any consistency checks ofthe program s,we have veri�ed several

non-trivialpropertiesofthebasicratiosin Eqs.(4.1)and (4.7).W ehavem onitored the

deviation from the equality

R

h

Vx0+ d;V
}
x0
;r

i

= R

h

Vx0+ d;Vx0;� r

i� 1
(5.1)

for severalboundary con�gurations and allvalues ofr,and it turns out to be com -

patible with being a G aussian statistical uctuation. For the runs with d = T we

have veri�ed that, on each con�guration and within the statistical error, the ratio

T� [VT;V0]=T[VT;V0]is always positive as predicted by the transfer m atrix represen-

tation. Ford = T=2 the two thick-slice ratios in Eq.(4.8)have to be equal. W e have

m onitored the di�erence in a signi�cantsam ple ofourcon�gurations,and itturnsout

to becom patible with a G aussian statisticaluctuation aswell.

The naturallogarithm ofR[Vx0+ d;Vx0;r]is shown as a function ofr in the left

panelofFig.1 for a typicalcon�guration ofthe run B 3. As expected,its value is of

O (1)foreach value ofr.Itsalm ostperfectasym m etry underr! � r,however,m akes

the sum ofallthe L3 points a quantity ofO (1). This im pressive cancellation,which

isatwork forT > 3 on both volum es,can be betterappreciated in the rightpanelof

11
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Figure 2: M onte Carlo history of the quantity P
�
2;5[10;0]for the run A 5. The cen-

traldashed line correspondsto the average value,while the othertwo delim itthe one

standard deviation region.

the sam e Figure,where the sum ofthe function in the interval[� r;r]is plotted fora

subsetofvaluesofr. Itisthe deviation from the exactasym m etry which ipsin sign

under a parity transform ation ofone ofthe boundary �elds,and form s the signalwe

areinterested in.A sim ilarbehaviourisobserved forallothercon�gurationsand runs.

The M onte Carlo history ofP
�

2;T=2
[T;0]is shown in Figure 2 for the lattice A 5.

Also forallotherrunswe have observed reasonable M onte Carlo histories,and there-

fore we have com puted Z s=Z and itsstatisticalerrorin the standard way.Therun A 4

however is m uch noisier than the others,with rather large uctuations due to a few

con�gurations.Thiscould berelated to thefactthatd = 4 isnotyetlargeenough,and

sizeable contam inationsfrom the heavierstatesam plify thestatisticaluctuations.To

check ourstatisticalerrors,we have also carried outa m ore re�ned analysis following

Ref.[25].No autocorrelationsam ong con�gurationshavebeen observed,and theerrors

are fully com patible with those ofthe standard analysis.

Beforedescribing them ain num ericalresultsofthepaperwem ention that,forthe

runswherem = 2 isavailable,wehavecom puted thequantity on ther.h.sofEq.(3.9).

Asexpected,itturnsoutto bealwayscom patible with zero.
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Lattice
Z
+

1;T

Z

Z
�

1;T

Z

Z
+

1;T=2

Z

Z
+

2;T=2

Z

Z
�

1;T=2

Z

Z
�

2;T=2

Z
M �

A 1 0.591(8) 0.409(8) - - - - 0.223(5)

A 2 0.823(13) 0.177(13) - - - - 0.346(14)

A 3 0.931(7) 0.069(7) - - - - 0.446(17)

A 4 - - 0.995(9) 1.004(20) 0.005(9) 1:47(28)� 10� 2 0.528(24)

A 5 - - 1.003(7) 1.009(14) -0.003(7) 2:2 (5) � 10� 3 0.611(20)

A 6 - - 0.998(3) 0.996(5) 0.002(3) 6:6(17) � 10� 4 0.610(21)

A 7 - - 1.0006(9) 1.0012(17) -0.0006(9) 2:8 (8) � 10� 5 0.655(18)

A 8 - - 0.9988(20) 0.998(4) 0.00024(20) 1:5 (5) � 10� 6 0.670(15)

B1 0.574(8) 0.426(8) - - - - 0.213(5)

B2 0.939(6) 0.061(6) - - - - 0.558(21)

B3 - - 0.979(15) 0.97(3) 0.021(15) 1:65(26)� 10� 2 0.685(27)

B4 - - 0.997(5) 0.995(11) 0.003(5) 1:37(26)� 10� 3 0.824(24)

Table 2:Num ericalresultsforvariousprim ary observablesand forM � (see text).

5.2 Sim ulation results

TheratiosZ s=Z have been com puted forallvaluesofm available in each run by using

Eq.(4.8).Theresultsarecollected in Table2,wherethey areidenti�ed by theobvious

notation Z s
m ;d

=Z.

O n each latticethedi�erentdeterm inationsofZ s
m ;d

=Z arein good agreem ent,and

thesum (Z + =Z + Z � =Z)isalwaysconsistentwith 1.ForZ � =Z a clearstatisticalsignal

isobtained form = 2 only,and thelargererroratm = 1 indicatesthattheexponential

reduction ofthenoiseisworking asexpected.To betterappreciatethee�ciency ofthe

m ethod,itisusefulto de�nethequantity

M
� = �

1

T
Ln

�
Z �

Z

�

(5.2)

whose valuesare reported in Table 2. W ith the exception ofthe lattice A 4,itisclear

thatO (50)m easurem entsareenough to obtain a precision on M � oftheorderof5% on

both spatialvolum es. Sticking to the A lattices,the com parison ofthe relative errors

on M � at T = 5;6;10;12 and at T = 20 indicates that the m ulti-levelintegration

indeed achievesan exponentialreduction ofthe noise.Them ostprecise determ ination

ofZ � =Z ateach value ofT isplotted in Fig.3. Itsvalue decreasesby m ore than �ve

orders ofm agnitude over the tim e range spanned. The sym m etry constrained M onte

Carlo clearly allowsto follow the exponentialdecay overm any ordersofm agnitude,a

factwhich representsoneofthe m ain resultsofthe paper.
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Figure 3:Thequantity Z � =Z asa function ofT.

Thedata in Table2 con�rm theexpectation thatatthesevolum estheratio Z � =Z

su�ersfrom large�nite-size e�ects.Ifweenforcethetheoreticalprejudicethata single

state with m ultiplicity 1 dom inatesZ � =Z forlarge T,then M � can be interpreted as

an e�ective parity-odd glueballm ass,which should approach itsasym ptoticvaluefrom

below.Indeed thisisveri�ed atboth valuesofL,asshown in Fig.4 forthe A lattices.

6 C onclusions

The exponentialgrowth ofthe statisticalerrorwith the tim e separation ofthe sources

isthem ain lim iting factorforcom puting m any correlatorson thelattice by a standard

M onte Carlo procedure. The integration schem e proposed here solvesthisproblem by

exploiting the sym m etry propertiesofthe underlying quantum theory,and itleadsto

an exponentialreduction ofthe statisticalerror. In particular the cost ofcom puting

the energy ofthe loweststate in a given sym m etry sectorgrowslinearly with the tim e

extentofthe lattice.

In extensive sim ulationsofthe SU(3)Yang{M ills theory,we have observed a def-

inite exponentialreduction ofthe statisticalerror in the com putation ofthe relative

contribution oftheparity-odd statesto thepartition function.Thesim ulationsneeded

atlargervolum esand �nerlattice spacingsto providea theoretically solid evidencefor

the presence ofa glueballstate,and to precisely determ ine its m ass are now feasible

with the presentgeneration ofcom puters.
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Figure 4:Thee�ective m assM � asa function ofT.

Sincethestrategy israthergeneral,weexpectitto beapplicableto othersym m e-

tries and other �eld theories including those with ferm ions as fundam entaldegrees of

freedom .In Q CD,forinstance,the very sam e problem occursalready in thecom puta-

tion ofrathersim plequantitiessuch astheenergy ofthevectorm eson resonance,and it

becom eseven m ore severe forthe �0and baryon m asses.The approach presented here

o�ersa new perspective fortackling these problem son the lattice.

The integration schem e described is yet another exam ple ofhow the properties

ofthe underlying quantum system ,nam ely the parity sym m etry,can be exploited to

design m ore e�cientexactnum ericalalgorithm sforthe com putation ofthe dynam ical

propertiesofthe theory.
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A N um ericalcom putation of R

In this Appendix we describe how the ratio R[Vx0+ d;Vx0;r],de�ned in Eq.(4.7),has

been com puted by a three-levelalgorithm . The partition function T[Vx0+ d;Vx0;r]is

rewritten as

T

h

Vx0+ d;Vx0;r

i

=

Z

D 4[U ]subD [U4]e
� S[U;r]

; (A.1)

where a second tem porallink U4(y0;~y) has been added to the standard degrees of

freedom ateach pointofthetim e-slicey0 = (x0+ d� 1).Thesubscript\sub" indicates

theintegration overthestandard active-link variablesofthethick tim e-slice[x0;x0+ d]

with thespatialcom ponentsUk(x)oftheboundary �elds�xed to Vk(x0;~x)and Vk(x0+

d;~x)respectively.Them odi�ed action S[U;r]reads

S[U;r]= S[U ]+
�

6
(1� 2r)

X

~y;k

ReTr

n

U0k(y0;~y)� U4k(y0;~y)

o

; (A.2)

whereU0k(y)isde�ned in Eq.(2.2)and

U4k(y)= U4(y0;~y)U
y

k
(y0 + 1;� ~y�~k)U

y

4
(y0;~y+ k̂)U

y

k
(y0;~y): (A.3)

Ifone de�nesthe \reweighting" observableas

O [U;r+ "=2]= e
S[U;r+ "=2]� S[U;r� "=2]

; (A.4)

then theratio R[Vx0+ d;Vx0;r]can becom puted asitsexpectation valueon theensem ble

ofgauge con�gurations generated with the action S[U;r+ "=2]. In practice the aver-

age value ofthe observable O is estim ated by im plem enting the following three-level

algorithm :

1. G enerate a therm alized con�guration with the action S[U;r+ "=2]by spanning

the sub-lattice with severalsweepsoftheupdatealgorithm (see section 5.1);

2. Com putean estim ate ofhO iby averaging overn0 (level0)con�gurations
2 gener-

ated by keeping �xed alllink variableswith the exception ofthe linksU 0 and U4

on thetim e-slice y0;

3. Repeatstep 2 overn1 (level1)con�gurationsgenerated by keeping �xed alllinks

ofthe sub-system with the exception ofthose on the tim e-slice y0,and average

overthe resultsobtained;

2
Notice that when spatiallinks are kept �xed,the set ofU0 and U4 factorize and are generated

independently.
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4. Repeatstep 3 over n2 (level2)con�gurationsgenerated by updating alllinksof

thesub-latticewith theaction S[U;r+ "=2],and averageovertheresultsobtained.

At each levelthe num bers n0, n1 and n2 of con�gurations generated are chosen to

m inim ize the num ericalcost required to reach the desired statisticalprecision. Their

values depend on d and r. In the sim ulations that we have carried out they range in

the intervalsn0 = 12� 50,n1 = 50� 120 and n2 = 50� 300.
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