Sym m etries and exponential error reduction in Y ang $-M$ ills theories on the lattice

M ichele D ella M orte and Leonardo G iusti

C ERN , Physics D epartm ent, TH D ìision, CH-1211 G eneva 23, Sw itzerland

Abstract

The partition function of a quantum eld theory w ith an exact sym m etry can be decom posed into a sum of functional integrals each giving the contribution from states w ith de nite sym m etry properties. T he com position rules of the corresponding transfer m atrix elem ents can be exploited to devise a m ulti-levelM onte C arlo integration schem e for com puting correlation functions whose num erical cost, at a xed precision and at asym ptotically large tim es, increases pow er-like w ith the tim e extent of the lattice. A s a result the num ericale ort is exponentially reduced w ith respect to the standard M onte C arlo procedure. W e test this strategy in the SU (3) Yang\{M ills theory by evaluating the relative contribution to the partition function of the parity odd states.

1 Introduction

D ynam ical properties of quantum eld theories can be determ ined on the lattice by com puting appropriate functional integrals via M onte C arlo sim ulations. For the m ost interesting theories this is, up to now, the only tool to carry out non-pertunbative com putations from rst principles. The m ass of the lightest asym ptotic state w ith a given set of quantum numbers can, for instance, be extracted from the Euclidean tim e dependence of a suitable two-point correlation function. Its contribution can be disentangled from those of other states by inserting the source elds at large-enough tim e distances. The associated statistical error can be estim ated from the spectral properties of the theory $[1,2]$. Very often the latter grow s exponentially w ith the tim e separation, and in practice it is not possible to nd a window where statistical and system atic errors are both under control. This is a well known m ajor lim iting factor in m any num erical com putations such as, for exam ple, the com putation of the gheball m asses in the Yang\{M ills theory. A w idely used strategy to m itigate this problem is to reduce the system atic error by constructing interpolating operators w ith a sm alloverlap on the excited states $[3,4]$. T he low est energy is then extracted at short tim e-distances by assum ing a negligible contam ination from excited states, som etim es also w ith the help of anisotropic lattices $[5,6]$. This procedure is not entirely satisfactory from a conceptual and a practical point of view. T he exponential problem rem ains unsolved, and the functional form of the sources are usually optim ized so that the correlator show s a single exponentialdecay in the short tim e range allow ed by the statisticalnoise. A solid evidence that a single state dom inates the correlation function, i.e. a long exponential decay over m any orders of m agnitude, is thus m issing.

In this paper we propose a com putational strategy to solve the exponential problem. The latter arises in the standard procedure since for any given gauge con guration all asym ptotic states of the theory are allow ed to propagate in the tim e direction, regardless of the quantum numbers of the source elds. By using the transfer m atrix form alism, we introduce projectors in the path integralwhich, con guration by con $g-$ uration, perm it the propagation in tim e of states w ith a given set of quantum num bers only. T he com position properties of the projectors can then be exploited to im plem ent a hierarchicalm ulti-level integration procedure sim ilar to those proposed in R efs. [7,8] for the P olyakov loops. By iterating over several levels the num erical cost of com puting the relevant observables grow s, at asym ptotically large tim es, w ith a pow er of the tim e extent of the lattice.

W e test our strategy of a \sym m etry constrained" M onte C arlo in the SU (3) Yang\{ M ills theory by determ ining the relative contribution to the partition function of the parity-odd states on lattices w ith a spacing of roughly $0: 17 \mathrm{fm}$, spatial volum es up to $2: 5 \mathrm{fm}^{3}$, and tim e extent up to $3: 4 \mathrm{fm}$. The algorithm behaves as expected, and in particular the multi-level integration schem e achieves an exponential reduction of the num ericale ort. In the speci c num erical im plem entation adopted here the com putation of the projectors is the m ost expensive part, and its cost scales roughly w th the
square of the threedim ensional volum e. T he realistic lattices considered in this paper, how ever, were sim ulated with a m odest com putationale ort.

The strategy proposed here is rather general and we expect it to be applicable to other sym m etries and other eld theories including those having ferm ions as fundam ental degrees of freedom. It can, of course, be quite useful also for com puting excited levels in other quantum m echanical system s . T he basic ideas were indeed checked in a considerable sim pler and solvable quantum system w ith a non-trivial parity sym m etry, nam ely the one dim ensional harm on ic oscillator [9].

2 Prelim inaries and basic notation

W e set up the $S U$ (3) Yang \{M ills theory on a nite four-dim ensional lattice of volum e $V=T \quad L^{3} w$ ith a spacing a and periodic boundary condition. T he ghons are discretized through the standard W ilson plaquette action
where the trace is over the color index, $=6=9_{0}^{2} \mathrm{w}$ ith g_{0} the bare coupling constant, and the plaquette is de ned as a function of the gauge links $U(x)$ as

$$
\begin{equation*}
U \quad(x)=U \quad(x) U\left(x+{ }^{\wedge}\right) U^{y}(x+\wedge) U^{y}(x) ; \tag{2.2}
\end{equation*}
$$

w ith ; $=0 ;::: ; 3, \wedge$ is the unit vector along the direction and x is the space-tim e coordinate. The action is invariant under a gauge transform ation

$$
\begin{equation*}
U(x) \quad!\quad U \quad(x)=(x) U \quad(x) \quad{ }^{y}(x+\wedge) \tag{2.3}
\end{equation*}
$$

with (x) 2 SU (3). The path integral is de ned as usual

$$
\begin{equation*}
Z=D_{4}[U] e^{S[U]} ; \quad D_{4}[U]=\underbrace{Y \quad Y^{3}} \quad D U(x) ; \tag{2.4}
\end{equation*}
$$

where D U is the invariant H aar m easure on the SU (3) group, which throughout the paper will be alw ays norm alized such that $D U=1$. The average value of a generic operator O can thus be w ritten as

$$
\begin{equation*}
h O i=\frac{1}{Z}^{Z} D_{4}[U] e^{S[U]} O[U]: \tag{2.5}
\end{equation*}
$$

[^0]
2.1 H illbert space

T he H ilbert space of the theory is the space of allsquare-integrable com plex-valued functions $\left[V\right.$] of $V_{k}(x) 2 S U(3) w$ ith a scalar product de ned as (x is the three dim ensional space-coordinate and $k=1 ; 2 ; 3$)

$$
\begin{equation*}
h j i=D_{3}[V][V][V] ; \quad D_{3}[V]=\sum_{x=1}^{Y} Y_{k}^{3}(x): \tag{2.6}
\end{equation*}
$$

The \coordinate" basis is the set of vectors which diagonalize the eld operator at all points x, i.e.

$$
\begin{equation*}
\hat{V}_{k}(x) J V i=V_{k}(x) J V i ; \tag{2.7}
\end{equation*}
$$

and which are norm alized such that

$$
\begin{equation*}
\mathrm{hV} j i=[V]: \tag{2.8}
\end{equation*}
$$

From a quantum m echanicalpoint ofview, the eld values $V_{k}(x)$ form the set ofquantum num bers that label the vectors of the basis. In a gauge theory physical states are wave functions which satisfy

$$
\begin{equation*}
[\mathbb{V}]=[\mathbb{V}] \tag{2.9}
\end{equation*}
$$

for all gauge transform ations. A projector onto this subspace can be de ned as

$$
h V \hat{P}_{G} j i=\frac{Z}{D}[][V \quad] ; \quad D[]=\underbrace{Y}_{x} D(x) ;
$$

and it is straightforw ard to verify that $\hat{P}_{G}^{2}=\hat{P}_{G}$.

2.2 Transfer matrix

The transfer m atrix of a Y ang M ills theory discretized by the W ilson action has been constructed m any years ago [10\{13]. T he sub ject is $w e l l$ know n and it appears on text books, therefore we report only those form ul which are relevant to the paper. The starting point is to rew rite the functional integral in Eq. 2.4) as

$$
\begin{equation*}
Z=\mathrm{Z}_{\mathrm{x}_{0}=0}^{\mathrm{F}} \mathrm{D}_{3}\left[\mathrm{~V}_{\mathrm{x}_{0}}\right] \mathrm{T} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{i}} \tag{2.11}
\end{equation*}
$$

w here the transfer m atrix elem ents are de ned as

$$
\begin{equation*}
\mathrm{T}^{\mathrm{h} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}}{ }^{\mathrm{i}}{ }^{\mathrm{Z}} \mathrm{D}[] e^{\left.\mathrm{L} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}\right]} \tag{2.12}
\end{equation*}
$$

w ith

$$
\begin{equation*}
\mathrm{L} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{X}_{0}}^{\mathrm{i}}=\mathrm{K} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}+\frac{1}{2} \mathrm{~W} \mathrm{~V}_{\mathrm{x}_{0}+1}+\frac{1}{2} \mathrm{~W}^{\mathrm{h}} \mathrm{~V}_{\mathrm{x}_{0}} \text {; } \tag{2.13}
\end{equation*}
$$

and being identi ed w ith the link in the tem poral direction. The kinetic and the potential contributions to the Lagrangian are given by
and

$$
\begin{equation*}
\mathrm{W} \mathrm{~V}_{\mathrm{x}_{0}}^{\mathrm{i}}=\frac{\mathrm{X}}{2} \underset{\mathrm{x}}{\mathrm{x} ; \mathrm{l}} \mathrm{X} \quad \frac{1}{3} \operatorname{ReTr} \mathrm{~V}_{\mathrm{kl}}\left(\mathrm{x}_{0} ; \mathrm{x}\right)^{\mathrm{O}} \text {; } \tag{2.15}
\end{equation*}
$$

respectively, where $V_{k l}$ is the plaquette de ned in F_{N}. (2.2) cqm puited w ith the links $V_{k}(x)$. The potential term is gauge-invariant, i.e. $W V_{x_{0}}=W V_{x_{0}}$, while the dependence of the kinetic term on the gauge transform ations ${ }^{0}$ at time $\left(x_{0}+1\right)$ and at time x_{0} is only via the product $y \quad 0$. Thanks to the invariance of the H aar m easure under left and right m ultiplication, this im plies that the transfer m atrix is gauge-invariant

$$
\begin{equation*}
\stackrel{h}{\mathrm{~T}} \mathrm{~V}_{\mathrm{x}_{0}+1}^{0} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{i}}=\mathrm{T} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{i}} ; \tag{2.16}
\end{equation*}
$$

and that

$$
\begin{equation*}
\stackrel{h}{\mathrm{~T}} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}{ }^{\mathrm{i}}=\mathrm{Z} \quad \mathrm{D}\left[{ }^{0} \mathrm{D}[] \mathrm{e}^{\mathrm{L}\left[\mathrm{~V}_{\mathrm{x}_{0}+1}^{0} ; \mathrm{N}_{\mathrm{x}_{0}}{ }^{\mathrm{y}}\right]}:\right. \tag{2.17}
\end{equation*}
$$

T he latter are thus m atrix elem ents of a transfer operator \hat{T} betw een gauge invariant states

$$
\begin{equation*}
\stackrel{h}{\mathrm{~T} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}} \stackrel{\mathrm{i}}{=} \mathrm{V}_{\mathrm{x}_{0}+1} \hat{\mathrm{P}}_{\mathrm{G}} \hat{\mathrm{~T}} \hat{\mathrm{P}}_{\mathrm{G}} \mathrm{JV}_{\mathrm{x}_{0}}^{\mathrm{E}} ; \tag{2.18}
\end{equation*}
$$

and the functional integral can then be w ritten as

$$
\begin{equation*}
\mathrm{Z}=\operatorname{Tr} \stackrel{\mathrm{h}}{\hat{\mathrm{~T}} \hat{\mathrm{P}}_{\mathrm{G}}}{ }^{\mathrm{i}_{\mathrm{T}}} ; \tag{2.19}
\end{equation*}
$$

where the trace is over allgauge invariant states. For a thick tim e-slice, i.e. the en sem ble of points in the sub-lattice w ith tim e coordinates in a given interval [$\mathrm{x}_{0} ; \mathrm{y}_{0}$] and bounded by the equal-tim e hyper-planes at tim es x_{0} and y_{0}, the transfer m atrix elem ents can be introduced by the form ula

3 D ecom position of the functional integral
T he invariance of the system under a global sym m etry can be exploited to decom pose the partition function into a sum of functional integrals each giving the contribution from states w ith de nite sym m etry properties. In the follow ing we will focus on the invariance of the Y ang $\{\mathrm{M}$ ills theory under parity.

In the coordinate basis, the parity transform ation on gauge invariant states can be de ned as

$$
\}^{\wedge} J i=J^{\}} i ; \quad \forall V i=\hat{P}_{G} \mathcal{J V i} ; \quad V_{k}^{\}}(x)=V_{k}^{y}\left(\begin{array}{cc}
\mathrm{x} & \hat{k}) ; ~ \tag{3.1}
\end{array}\right.
$$

which im plies that $\xi^{2}=\mathbb{1}$. T he parity eigenstates can then be w ritten as
and their transfer m atrix elem ents are given by

$$
\begin{align*}
& h^{0} ; V_{x_{0}+1} \hat{\mathcal{T}} \mathcal{J}_{\mathrm{x}_{0}} ; \text { si }=2 \mathrm{~s}^{0} \mathrm{~T}^{\mathrm{h}} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}{ }^{\mathrm{i}} ; \tag{3.3}\\
& T^{s} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\text {i }}=\frac{1}{2}{ }^{\mathrm{n}} \mathrm{~T}^{\mathrm{h}} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\text {i }}+\mathrm{sT} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\}} \text {io } \text { : } \tag{3.4}
\end{align*}
$$

T he invariance of the action yields

$$
\begin{gather*}
\mathrm{h} \tag{3.5}\\
\mathrm{~T} \mathrm{~V}_{\mathrm{x}_{0}+1}^{\}} ; \mathrm{V}_{\mathrm{x}_{0}}^{\}}
\end{gather*} \mathrm{i}_{\mathrm{T}}^{\mathrm{h}} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{i}} ; \quad \mathrm{T} \mathrm{~V}_{\mathrm{x}_{0}+1}^{\}} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{i}}=\mathrm{T} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\}}{ }^{\mathrm{i}} ;
$$

and therefore

$$
\begin{equation*}
T^{s} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\}} \stackrel{i}{\mathrm{~h}}=\operatorname{sT}^{\mathrm{S}} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{i}}: \tag{3.6}
\end{equation*}
$$

For a thick tim eslice the m atrix elem ents betw een parity states can be introduced by exploiting the com position rule

$$
\begin{equation*}
\mathrm{T}^{\mathrm{s}} \mathrm{~V}_{\mathrm{y} 0} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{i}}={ }^{\mathrm{n}} \mathrm{~T}^{\mathrm{s}} \mathrm{~V}_{\mathrm{y} 0} ; \mathrm{V}_{\mathrm{z}_{0}}^{\text {i }} \mathrm{T}^{\mathrm{s}} \mathrm{~V}_{\mathrm{z}_{0}} ; \mathrm{V}_{\mathrm{x}_{0}}^{\text {io }} ; \tag{3.7}
\end{equation*}
$$

where $x_{0}<\mathrm{z}_{0}<\mathrm{y}_{0}$ and in general

It is easy to show that, in addition to relations analogous to those in Eqs. 3.4) $\{$ (3.6), the identities

$$
\begin{align*}
& { }_{\mathrm{T}} \mathrm{~S}^{\mathrm{h}} \mathrm{~V}_{\mathrm{y} 0} ; \mathrm{V}_{\mathrm{z}_{0}} \mathrm{~T}^{\mathrm{i}}{ }^{\mathrm{s}} \mathrm{~V}_{\mathrm{z}_{0}} ; \mathrm{V}_{\mathrm{x}_{0}}^{\text {io }}=0 \text {; } \tag{3.9}
\end{align*}
$$

hold. In particular they im ply that

$$
\begin{equation*}
\frac{\mathrm{T}^{\mathrm{s}}\left[\mathrm{~V}_{\mathrm{y}_{0}} ; \mathrm{V}_{\mathrm{x}_{0}}\right]}{\mathrm{T}\left[\mathrm{~V}_{\mathrm{Y}_{0}} ; \mathrm{V}_{\mathrm{x}_{0}}\right]}=\frac{1}{\mathrm{Z}_{\text {sub }}} \quad \mathrm{D}_{4}\left[\mathrm{U} \text { lsub }^{\mathrm{Z}} \mathrm{e}^{\mathrm{S}[\mathrm{U}]} \frac{\mathrm{T}^{\mathrm{s}}\left[\mathrm{U}_{\mathrm{Y}_{0}} ; \mathrm{U}_{\mathrm{Y} 0} \quad 1\right]}{\mathrm{T}\left[\mathrm{U}_{\mathrm{Y} 0} ; \mathrm{U}_{\mathrm{Y} 0} \quad 1\right]} ;\right. \tag{3.11}
\end{equation*}
$$

an useful expression for the practical im plem entation of the m ulti-level algorithm described in the follow ing section. T he subscript \sub" indicates that the integral is
perform ed over the dynam ical eld variables in the thick tim e-slice $\left[x_{0} ; Y_{0}\right]$ w ith the spatial com ponents $U_{k}(x)$ of the boundary elds $x \in d$ to $V_{k}\left(x_{0} ; x\right)$ and $V_{k}\left(y_{0} ; x\right)$ respectively. Finally, by inserting Eq. 3.4) into Eq. 2.11) and repeatedly applying Eq. 3.9), it is possible to rew rite the path integral as a sum of functional integrals

$$
\begin{equation*}
\mathrm{Z}=\mathrm{X}_{\mathrm{s}=}^{\mathrm{X}} \mathrm{Z}^{\mathrm{s}} ; \quad \mathrm{Z}^{\mathrm{s}}=\mathrm{Z}_{\mathrm{x}_{0}=0}^{\mathrm{T}} \mathrm{D}_{3}\left[\mathrm{~V}_{\mathrm{x}_{0}}\right] \mathrm{T}^{\mathrm{s}} \mathrm{~V}_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{i}} ; \tag{3.12}
\end{equation*}
$$

each giving the contribution from gauge-invariant parity-even and -odd states respectively

$$
Z^{+}=e^{E_{0} T} 1+X_{n=1}^{\#} w_{n}^{+} e^{E_{n}^{+} T} ; \quad Z \quad e^{E_{0} T}{ }_{m=1}^{X} w_{m} e^{E_{m} T}:
$$

In these expressions E_{0} is the vacuum energy, $\mathrm{E}_{\mathrm{n}}^{+}$and E_{m} are the energies (w ith respect to the vacuum one) of the parity even and odd eigenstates, and $\mathrm{w}_{\mathrm{n}}^{+}$and w_{m} are the corresp onding weights. T he latter are integers and positive since for the W ilson action the transfer operator \hat{T} is self-adjoint and strictly positive [11].

It is interesting to notice that even though the transfer m atrix form alism inspired the construction, the above considerations hold independently of the existence of a positive selfad joint transfer operator. The insertion of $T^{s}\left[V_{Y_{0}} ; V_{x_{0}}\right]$ in the path integral plays the role of a projector, as on each con guration it allows the propagation in the tim e direction of states w ith parity s only. Indeed the parity transform ation of one of the boundary elds in $T\left[V_{y_{0}} ; \mathrm{V}_{\mathrm{x}_{0}}\right]$ ips the sign of all contributions that it receives from the parity-odd states while leaving invariant the rest. T he very sam e applies to the path integral in Eq. (2.4) if the periodic boundary conditions are replaced by \}periodic boundary conditions, i.e. $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{0}{ }^{\}}$. A $l l$ contributions from the parity odd states are then m ultiplied by a m inus sign. Sim ilar considerations have already been exploited in di erent contexts, for instance in the study of the interface free energy of the three-dim ensional Ising m odel [14].

4 M ulti-level sim ulation algorithm

The com position rules in Eqs. 3.7) \{ 3.10) are at the basis of our strategy for com puting $Z^{s}=Z$ (as wellas a generic correlation function) w ith a hierarchicalm ulti-levelintegration procedure.

4.1 P rojector com putation

To determ ine the parity pro jector betw een tw o boundary elds of a thick tim e-slice, the basic building block to be com puted is the ratio of transfer m atrix elem ents

$$
\begin{equation*}
\mathrm{R}\left[\mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}}\right]=\frac{\mathrm{T}\left[\mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}}^{\}}\right]}{\mathrm{T}\left[\mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}}\right]}: \tag{4.1}
\end{equation*}
$$

T he parity transform ation in the num erator changes one of the boundary elds over the entire spatial volum e of the corresponding tim e-slice, a global operation which could m ake the logarithm of this ratio proportional to the spatialvolum e, see for instance [14]. T he transfer m atrix form alism and the expected spectral properties of the Yang\{M ills theory how ever suggest that, in a nite volum e and for d large enough, only a few of the physical states give a sizeable contribution to this ratio, which is therefore expected to be of O (1). These general properties can be studied analytically for the free lattice scalar theory, see for instance [15]. It goes w ithout saying that the latter has a di erent spectrum from the Y ang $\{\mathrm{M}$ ills theory, and therefore can be used only as an exam ple where our strategy can be studied analytically.

Even tough the ratio R is expected to be of $O(1)$, the integrands in the num erator and in the denom inator on the r.h.s of Eq. 4.1) are, in general, very di erent and the m ain contributions to their integrals com efrom di erent regions of the phase space. T he most straightforw ard way for com puting R is to de ne a set of n system s w ith partition functions $Z_{1}::: Z_{n}$ designed in such a w ay that the relevant phase spaces of successive integrals overlap and that $Z_{1}=T\left[V_{x_{0}+d} ; V_{x_{0}}^{\}}\right]$and $Z_{n}=T\left[V_{x_{0}+d} ; V_{x_{0}}\right]$. The ratio R can then be calculated as

$$
\begin{equation*}
R=\frac{Z_{1}}{Z_{2}} \quad \frac{Z_{2}}{Z_{3}} \quad::: \frac{Z_{n} 2}{Z_{n}} \quad \frac{Z_{n} 1}{Z_{n}} ; \tag{4.2}
\end{equation*}
$$

w ith each ratio on the r.h.s. being com putable in a single M onte C arlo sim ulation by averaging the proper rew eighting factor. To im plem ent this procedure we start by generalizing the de nition of the transfer m atrix elem ent in Eq. (2.17) as

$$
\begin{equation*}
\bar{T}^{h} V_{\mathrm{x}_{0}+1} ; \mathrm{V}_{\mathrm{x}_{0}} ; \mathrm{r}^{\mathrm{i}}=\mathrm{Z}\left[{ }^{0}\right] \mathrm{D}[] \mathrm{e}^{\left.\overline{\mathrm{L}} \mathrm{~V}_{\mathrm{x}_{0}+1}^{0} ; \mathrm{V}_{\mathrm{x}_{0}}^{\mathrm{y}} ; \mathrm{r}\right]} ; \tag{4.3}
\end{equation*}
$$

where r $2[1=2 ; 1=2]$ and

$$
\begin{align*}
& +\frac{1}{2} W_{V_{x_{0}+1}}^{i}+\frac{1}{2} W_{V_{x_{0}}}^{i} \text { : } \tag{4.4}
\end{align*}
$$

A nalogously, Eq. 3.11) can be generalized as
and the ratio $\mathrm{R}\left[\mathrm{V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}}\right]$ can be w ritten as

$$
\begin{equation*}
\mathrm{R}\left[\mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}}\right]=\mathrm{Y}_{\mathrm{k}=1}^{\mathbb{T}^{3}} \overline{\mathrm{R}}\left[\mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; \quad 1=2+(\mathrm{k} \quad 1=2) "\right] \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathrm{R}}\left[\mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; r\right]=\frac{\overline{\mathrm{T}}\left[\mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; \mathrm{r} \quad \text { " }=2\right]}{\left.\overline{\mathrm{T}} \mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; r+\quad "=2\right]} \tag{4.7}
\end{equation*}
$$

and " $=1=L^{3}$. W ith this choice of " the relevant phase spaces of two consecutive integrals overlap since the actions di er by a quantity of O (1), while their uctuations are of $O(\bar{V})$. To com pute each ratio on the r.h.s. of Eq. 4.6) one starts by noticing that the group integrals on ${ }^{0}$ and in Eq. (4.3) can be factorized by introducing on each point of the tim e-slice x_{0} the usual tem poral link $U_{0}\left(x_{0} ; x\right)=y_{(x)}{ }^{0}(x)$ and a second tem poral link $U_{4}\left(x_{0} ; x\right)=y_{(x)}{ }^{0}(x)$. T he average of the rew eighting factor is then com puted w ith the three-levelalgorithm described in A ppendix A. A s otherm ethods for com puting ratios of partition functions which are present in the literature [16\{18], the num erical cost scales roughly quadratically w ith the threedim ensional volum e. Since the m ain goal of this paper is to present and test the validity of the strategy, we leave to future studies the developm ent of a m ore re ned and better scaling algorithm for the com putation of the projector.

4.2 H ierarch ical integration

O nce the projectors have been com puted, the ratio of partition functions $Z^{s}=Z$ can be calculated by im plem enting the hierarchical tw o-level integration form ula

$$
\begin{equation*}
\frac{Z^{s}}{Z}=\frac{1}{Z}^{Z} D_{4}[U] e^{s[U]} P_{m \neq}^{s}{ }^{h} ; 0^{i} \tag{4.8}
\end{equation*}
$$

h i
where $P_{m}^{s} \not{ }_{d} Y_{0} ; x_{0}$ is de ned as
w ith $\mathrm{m} \quad 1$ and $y 0=x_{0}+m \quad d$. The procedure can, of course, be generalized to a m ultilevelalgorithm . For a three-level one, for instance, each ratio on the r.h .s of Eq. 4.9) can be com puted by a tw o-level schem e. Thanks to the com position rules in Eqs. 3.7) and (3.9), the r.h.s. of Eq. (4.8) does not depend on m and d. W hen com puted by a M onte C arlp procedure, how ever, its statistical error depends strongly on the speci c form of $P_{m}^{s} \not d^{\prime} Y_{0} ; x_{0}$ chosen. The algorithm therefore requires an optim ization which in general depends on the spectral properties of the theory. It is how ever im portant to stress that the m ulti-level hierarchical integration gives alw ays the correct result independently on the details of its im plem entation. This can be show n by follow ing the sam e steps in the A ppendix A of Ref. [8]. There are two main di erences: auxiliary link variables and their ow n actions need to be introduced for each value of r, and the com putation of \bar{R} requires a them alization procedure for each value ofr. W edo not expect the latter to be particularly problem atic since, as m entioned earlier, expectation values for consecutive values of r refer to path integrals w ith the relevant phase spaces which overlap. The
ratios $\overline{\mathrm{R}}$ are com puted by sim ulating system s corresponding to consecutive values of r one after the other, and by starting from the one used to extract the boundary elds ($r=0: 5$).

4.3 Exponential error reduction

T he statistical variance of the estim ate of a two-point correlation function ho (x_{0}) (O) i of a parity-odd interpolating operator O, com puted by the standard M onte C arlo procedure, is de ned as

$$
\begin{equation*}
{ }^{2}=h^{2}\left(x_{0}\right) 0^{2}(0) i \quad h o\left(x_{0}\right) O(0) i^{2}: \tag{4.10}
\end{equation*}
$$

A tasym ptotically-large tim e separations the signal-to-noise ratio can be easily com puted via the transfer m atrix form alism which, for $0 \quad x_{0} \quad T=2$, gives $[1,2]$

$$
\begin{equation*}
\frac{h 0\left(x_{0}\right) O(0) i}{\hbar E_{1} \hat{j \hat{O}-j D i \mathcal{J}^{2}}} e^{E_{1} x_{0}}+ \tag{4.11}
\end{equation*}
$$

The exponential decrease of this ratio w ith the tim e distance can be traced back to the fact that for each gauge con guration the standard M onte C arlo allows for the propagation in tim e of all asym ptotic states of the theory regardless of the quantum num bers of the source eld O. Therefore each con guration gives a contribution to the signal which decreases exponentially in tim e, whereas it contributes O (1) to the noise (variance) at any tim e distance. On the contrary, if in Eq. 4.8) d is chosen large enough for the single thick-slice ratio to be roughly dom inated by the contribution of the lightest state, then each factor is of order $e^{E_{1}}$ d. For each con guration of the boundary elds, the m agnitude of the product is proportional to $e^{E_{1}} \mathrm{~T}$, and the statistical uctuations are reduced to this level. To achieve an analogous exponential gain in the com putation of the correlation functions, the projectors T^{s} have to be inserted in the proper way am ong the interpolating operators (see Ref. [9] for a m ore detailed discussion).

5 N um erical sim ulations

W e have tested the hierarch icalm ulti-level integration strategy described in the previous section for the $S U(3) Y$ ang $\{M$ ills theory by perform ing extensive num erical com putations. W e have sim ulated lattices w ith an inverse gauge coupling of $=6=9_{0}^{2}=5: 7$ which corresponds to a value of the reference scale r_{0} of about $2: 93 a[19,20]$. T he num ber of lattice points in each spatialdirection has been set to $L=6 ; 8$ corresponding to a linear size of 1:0 and 1:4 fm respectively. For each spatial volum e we have considered several tim e extents T, the fiull list is reported in T able 1 together w ith the num ber of con gurations generated and the details of the m ulti-level sim ulation algorithm used for each run. T he lattices have been chosen to test the strategy in a realistic situation w ith the com putational resources at our disposal, i.e. a m ach ine equivalent to approxim atively 6 dual processor quad-core PC nodes of the last generation running for a few m onths.

Lattice	L	T	$\mathrm{N}_{\text {conf }}$	$\mathrm{N}_{\text {lev }}$	d
A_{1}	6	4	50	2	4
$\mathrm{~A}_{2}$		5	50	2	5
$\mathrm{~A}_{3}$		6	50	2	6
$\mathrm{~A}_{4}$		8	175	2	4
$\mathrm{~A}_{5}$		10	50	2	5
$\mathrm{~A}_{6}$		12	90	2	6
$\mathrm{~A}_{7}$		16	48	2	8
$\mathrm{~A}_{8}$		20	48	3	$\mathrm{f5,109}$
$\mathrm{~B}_{1}$	8	4	20	2	4
$\mathrm{~B}_{2}$		5	25	2	5
$\mathrm{~B}_{3}$		6	75	2	3
$\mathrm{~B}_{4}$		8	48	2	4

Table 1: Sim ulation param eters: N conf is the num ber of con gurations of the upperm ost level, $N_{\text {lev }}$ is the num ber of levels and d is the thickness of the thick tim e-slice used for the various levels.

5.1 A lgorithm im plem entation and tests

T he basic M onte C arlo update of each link variable is a com bination of heatbath and over-relaxation updates which im plem ents the C abibbo\{M arinarischem e [21]. D epending on the value of the coupling constant associated to the link at a given stage of the sim ulation, the heatbath updates the $S U(2)$ sub-m atrices by the M etropolis, the C reutz [22] or the Fabricius\{H aan $[23,24]$ algorithm. In the upperm ost level the generation of the gauge eld con gurations consum es a negligible am ount of com puter tim e. At this level we perform m any update cycles betw een subsequent con gurations (typically 500 iterations of 1 heatbath and $\mathrm{L}=2$ over-relaxation updates of all link variables) so that they can be assum ed to be statistically independent. On each of these con $9-$ urations w e com pute the \observables" $P_{m p d}^{s}[T ; 0]$, w ith the m ost expensive part being the estim ate of the thick-slice ratio $R\left[V_{x_{0}+d} ; V_{x_{0}}\right]$ at the low est algorithm ic level. The latter is com puted by using the three-level algorithm described in the previous section, w ith the param eter values tuned sequentially level by level so to m in im ize the actual CPU cost for the required statistical precision. In all runs this has been set to be at m ost 30% of the expected absolute value of the deviation of R from 1 , the latter being determ ined by som e prelim inary exploratory tests. A s m entioned in section 4.2, the algorithm requires a them alization step for each value of r which has been $x e d$, after several exploratory runs, to 500 sw eeps of the full sub-lattice.

Figure 1: Left: the natural logarithm of $\bar{R}\left[V_{x_{0}+d} ; V_{x_{0}} ; r\right]$ is shown as a function of r (statistical errors are sm aller than sym bols) for a typical con guration of the run B_{3}. R ight: the sum of the points in the interval [$r ; r$] is plotted as a function of r (one each eighth point for visual conven ience).

A part from m any consistency checks of the program s, we have veri ed several non-trivial properties of the basic ratios in Eqs. 4.1) and 4.7). W e have m onitored the deviation from the equality

$$
\begin{equation*}
\overline{\mathrm{R}}^{\mathrm{h}} \mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}}^{\}} ; r^{i}=\overline{\mathrm{R}}^{\mathrm{h}} \mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; \mathrm{r}_{1}^{\mathrm{r}_{1}} \tag{5.1}
\end{equation*}
$$

for several boundary con gurations and all values of r, and it tums out to be com patible with being a Gaussian statistical uctuation. For the runs with $d=T$ we have veri ed that, on each con guration and within the statistical error, the ratio $\mathrm{T} \quad\left[\mathrm{V}_{\mathrm{T}} ; \mathrm{V}_{0}\right]=\mathrm{T}\left[\mathrm{V}_{\mathrm{T}} ; \mathrm{V}_{0}\right]$ is alw ays positive as predicted by the transfer m atrix representation. For $d=T=2$ the two thick-slice ratios in Eq. 4.8) have to be equal. W e have m onitored the di erence in a signi cant sam ple of our con gurations, and it tums out to be com patible w ith a G aussian statistical uctuation as well.

The natural logarithm of $\overline{\mathrm{R}}\left[\mathrm{V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; r\right]$ is shown as a function of r in the left panel of Fig . 1 for a typical con guration of the run B_{3}. As expected, its value is of $O(1)$ for each value of r. Its alm ost perfect asym m etry under $r!\quad r$, how ever, m akes the sum of all the L^{3} points a quantity of $O(1)$. This im pressive cancellation, which is at work for $\mathrm{T}>3$ on both volum es, can be better appreciated in the right panel of

F igure 2: M onte C arlo history of the quantity $P_{2 ; 5}[10 ; 0]$ for the run A_{5}. T he central dashed line corresponds to the average value, while the other tw o delim it the one standard deviation region.
the sam e Figure, where the sum of the function in the interval [rir] is plotted for a subset of values of r. It is the deviation from the exact asym m etry which ips in sign under a parity transform ation of one of the boundary elds, and form s the signal we are interested in. A sim ilar behaviour is observed for all other con gurations and runs.
T he M onte C arlo history of $P_{2 ; T=2}[T ; 0]$ is show n in F igure 2 for the lattice A_{5}. A lso for all other runs we have observed reasonable M onte C arlo histories, and therefore we have com puted $Z^{s}=Z$ and its statistical error in the standard way. The run A_{4} how ever is m uch noisier than the others, w ith rather large uctuations due to a few con gurations. This could be related to the fact that $d=4$ is not yet large enough, and sizeable contam inations from the heavier states am plify the statistical uctuations. To check our statistical errors, we have also carried out a m ore re ned analysis follow ing Ref. [25]. N o autocorrelations am ong con gurations have been observed, and the errors are fully com patible w ith those of the standard analysis.

B efore describing the m ain num erical results of the paper $w e m$ ention that, for the runs where $m=2$ is available, we have com puted the quantity on the rh.s of Eq. 3.9). A s expected, it tums out to be alw ays com patible w ith zero.

Lattice	$\frac{\mathrm{Z}_{1 ; \mathrm{T}}^{+}}{\mathrm{Z}}$	$\frac{\mathrm{Z}_{1 ; \mathrm{T}}}{\mathrm{Z}}$	$\frac{\mathrm{Z}_{1 ; \mathrm{T}=2}^{+}}{\mathrm{Z}}$	$\frac{\mathrm{Z}_{2 ; \mathrm{T}=2}^{+}}{\mathrm{Z}}$	$\frac{\mathrm{Z}_{1 ; \mathrm{T}=2}}{\mathrm{Z}}$	$\frac{\mathrm{Z}_{2 \text {; }}}{} \mathrm{Z}$		M
A_{1}	0.591 (8)	0.409 (8)	-	-	-	-		$0.223(5)$
A_{2}	0.823 (13)	$0.177(13)$	-	-	-	-		0.346 (14)
A_{3}	0.931 (7)	0.069 (7)	-	-	-	-		0.446 (17)
A_{4}	-	-	0.995 (9)	1.004 (20)	0.005 (9)	1:47(28)	10^{2}	0.528 (24)
A_{5}	-	-	$1.003(7)$	$1.009(14)$	-0.003(7)	2:2 (5)	10^{3}	0.611 (20)
A_{6}	-	-	0.998 (3)	0.996 (5)	$0.002(3)$	6:6 (17)	10^{4}	0.610 (21)
A_{7}	-	-	1.0006 (9)	1.0012 (17)	-0.0006(9)	2:8 (8)	10^{5}	0.655 (18)
A_{8}	-	-	0.9988 (20)	$0.998(4)$	$0.00024(20)$	1:5 (5)	10^{6}	0.670 (15)
B_{1}	0.574 (8)	0.426 (8)	-	-	-	-		$0.213(5)$
B_{2}	$0.939(6)$	0.061 (6)	-	-	-	-		0.558 (21)
B_{3}	-	-	0.979 (15)	0.97 (3)	0.021 (15)	1:65(26)	10^{2}	0.685 (27)
B_{4}	-	-	0.997 (5)	0.995 (11)	$0.003(5)$	1:37(26)	10^{3}	$0.824(24)$

Table 2: N um erical results for various prim ary observables and for M (see text).

5.2 Sim ulation results

T he ratios $Z^{s}=Z$ have been com puted for all values of m available in each run by using Eq. 4.8). The results are collected in Tablen, where they are identi ed by the obvious notation $Z_{m}^{s}{ }_{d}=Z$.

O n each lattice the di erent determ inations of $Z \underset{m}{s} ; \mathrm{d}=\mathrm{Z}$ are in good agreem ent, and the sum ($Z^{+}=Z+Z \quad=Z$) is alw ays consistent w ith 1 . For $Z=Z$ a clear statistical signal is obtained for $m=2$ only, and the larger error at $m=1$ indicates that the exponential reduction of the noise is working as expected. To better appreciate the e ciency of the m ethod, it is useful to de ne the quantity

$$
\begin{equation*}
M=\frac{1}{T} \operatorname{Ln} \frac{Z}{Z} \tag{5.2}
\end{equation*}
$$

whose values are reported in Table 2. W ith the exception of the lattice A_{4}, it is clear that O (50) m easurem ents are enough to obtain a precision on M of the order of 5% on both spatial volum es. Sticking to the A lattices, the com parison of the relative errors on M at $\mathrm{T}=5 ; 6 ; 10 ; 12$ and at $\mathrm{T}=20$ indicates that the m ulti-level integration indeed achieves an exponential reduction of the noise. T he m ost precise determ ination of $Z=Z$ at each value of T is plotted in $F i g$. 3. Its value decreases by m ore than ve orders of m agnitude over the tim e range spanned. T he sym m etry constrained M onte C arlo clearly allow s to follow the exponential decay over m any orders of m agnitude, a fact which represents one of the m ain results of the paper.

Figure 3: The quantity $Z=Z$ as a function of T.

The data in Table Z con m the expectation that at these volum es the ratio $Z=Z$ su ers from large nite-size e ects. If we enforce the theoretical prejudice that a single state w ith m ultiplicity 1 dom inates $Z=Z$ for large T, then M can be interpreted as an e ective parity-odd glueballm ass, which should approach its asym ptotic value from below. Indeed this is veri ed at both values of L, as shown in F ig. 4 for the A lattices.

6
 C onclusions

T he exponential grow th of the statistical error w ith the tim e separation of the sources is the m ain lim iting factor for com puting m any correlators on the lattice by a standard M onte C arlo procedure. The integration schem e proposed here solves this problem by exploiting the sym m etry properties of the underlying quantum theory, and it leads to an exponential reduction of the statistical error. In particular the cost of com puting the energy of the low est state in a given sym m etry sector grow s linearly w ith the tim e extent of the lattice.

In extensive sim ulations of the SU (3) Yang\{M ills theory, we have observed a defin ite exponential reduction of the statistical error in the com putation of the relative contribution of the parity-odd states to the partition function. T he sim ulations needed at larger volum es and ner lattice spacings to provide a theoretically solid evidence for the presence of a glueball state, and to precisely determ ine its m ass are now feasible w ith the present generation of com puters.

Figure 4: The ective m ass M as a function of T.

Since the strategy is rather general, we expect it to be applicable to other sym $m e-$ tries and other eld theories including those w ith ferm ions as fundam ental degrees of freedom. In Q CD, for instance, the very sam e problem occurs already in the com putation of rather sim ple quantities such as the energy of the vectorm eson resonance, and it becom es even m ore severe for the ${ }^{0}$ and baryon m asses. The approach presented here o ers a new perspective for tackling these problem s on the lattice.

The integration schem e described is yet another exam ple of how the properties of the underlying quantum system, nam ely the parity sym m etry, can be exploited to design m ore e cient exact num erical algorithm s for the com putation of the dynam ical properties of the theory.

A cknow ledgm ents
W e thank M artin Luscher for m any illum inating discussions, for a carefiul reading of the rst version of the m anuscript, and for the constant encouragem ent throughout the last year. O ur sim ulations w ere perform ed on PC clusters at the U niversity of B em, at C ILEA, and at the U niversity of R om e \La Sapienza". W e thankfully acknow ledge the
com puter resources and technical support provided by all these institutions and their technical sta.

A N um erical com putation of \bar{R}

In this A ppendix we describe how the ratio $\overline{\mathrm{R}}\left[\mathrm{V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; r\right]$, de ned in Eq. 4.7), has been com puted by a three-level algorithm. The partition function $\bar{T}\left[V_{x_{0}+d} ; V_{x_{0}} ; r\right]$ is rew ritten as

$$
\begin{equation*}
\overline{\mathrm{T}}^{\mathrm{h}} \mathrm{~V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; r^{\mathrm{i}}=\mathrm{D}_{4}[\mathrm{U}]_{\text {sub }} \mathrm{D}\left[\mathrm{U}_{4}\right] \mathrm{e}^{\overline{\mathrm{S}}[\mathrm{U} ; \mathrm{r}]} ; \tag{A.1}
\end{equation*}
$$

where a second tem poral link $U_{4}\left(y_{0} ; y\right)$ has been added to the standard degrees of freedom at each point of the tim e-slice $y_{0}=\left(x_{0}+d \quad 1\right) . T$ he subscript \backslash sub" indicates the integration over the standard active-link variables of the thick tim eslice $\left[x_{0} ; x_{0}+d\right]$ w ith the spatial com ponents $U_{k}(x)$ of the boundary elds $x e d$ to $V_{k}\left(x_{0} ; x\right)$ and $V_{k}\left(x_{0}+\right.$ $d ; x)$ respectively. Them odi ed action $\bar{S}[U ; r]$ reads
where $\mathrm{U}_{0 \mathrm{k}}(\mathrm{y})$ is de ned in Eq. (2.2) and

$$
\begin{equation*}
\mathrm{U}_{4 \mathrm{k}}(\mathrm{y})=\mathrm{U}_{4}\left(\mathrm{Y}_{0} ; \boldsymbol{y}\right) \mathrm{U}_{\mathrm{k}}^{\mathrm{Y}}\left(\mathrm{y}_{0}+1 ; \quad \mathbb{y} \quad \widetilde{\mathrm{K}}\right) \mathrm{U}_{4}^{\mathrm{Y}}\left(\mathrm{Y}_{0} ; \mathbb{y}+\hat{\mathrm{k}}\right) \mathrm{U}_{\mathrm{k}}^{\mathrm{Y}}\left(\mathrm{Y}_{0} ; \mathbb{y}\right): \tag{A.3}
\end{equation*}
$$

If one de nes the \rew eighting" observable as

$$
O[U ; r+"=2]=e^{\bar{S}[U ; r+"=2] \bar{S}[U ; r \quad "=2]}
$$

then the ratio $\overline{\mathrm{R}}\left[\mathrm{V}_{\mathrm{x}_{0}+\mathrm{d}} ; \mathrm{V}_{\mathrm{x}_{0}} ; \mathrm{r}\right]$ can be com puted as its expectation value on the ensem ble of gauge con gurations generated w ith the action $\bar{S}[U ; r+"=2]$. In practice the average value of the observable O is estim ated by im plem enting the follow ing three-level algorithm :

1. Generate a therm alized con guration w ith the action $\bar{S}[U ; r+"=2]$ by spanning the sub-lattice w ith several sw eeps of the update algorithm (see section 5.1);
2. C om pute an estim ate of ho i by averaging over n_{0} (level 0) con guration $\2 generated by keeping xed all link variables w ith the exception of the links U_{0} and U_{4} on the tim e-slice yo ;
3. R epeat step 2 over n_{1} (level 1) con gurations generated by keeping xed all links of the sub-system w ith the exception of those on the tim eslice $y 0$, and average over the results obtained;

[^1]4. Repeat step 3 over n_{2} (level 2) con gurations generated by updating all links of the sub-lattice w ith the action $\bar{S}[\mathbb{U} ; r+"=2]$, and average over the results obtained.

At each level the num bers $\mathrm{n}_{0}, \mathrm{n}_{1}$ and n_{2} of con gurations generated are chosen to m inim ize the num erical cost required to reach the desired statistical precision. T heir values depend on d and r. In the sim ulations that we have carried out they range in the intervals $\mathrm{n}_{0}=12 \quad 50, \mathrm{n}_{1}=50 \quad 120$ and $\mathrm{n}_{2}=50 \quad 300$.

R eferences
[1] G . Parisi, Phys. R ept. 103 (1984) 203.
[2] G P. Lepage, TASI 89 Sum m er School, B oulder, C O , Jun 4-30, 1989.
[3] M . A lbanese et al., Phys. Lett. B 192 (1987) 163.
[4] M . Teper, Phys. Lett. B 183 (1987) 345.
[5] C J.M omingstar and M J.P eardon, Phys.R ev.D 56 (1997) 4043, hep-lat/9704011.
[6] C J. M omingstar and M J. Peardon, Phys. Rev. D 60 (1999) 034509, heplat/9901004.
[7] G. Parisi, R . Petronzio and F. R apuano, Phys. Lett. B 128 (1983) 418.
[8] M . Luscher and P.W eisz, JH EP 09 (2001) 010, hep-lat/0108014.
[9] M . D ella M orte and L. G iusti, C ER N P H -T H -2007-196.
[10] K G. W ilson, in "N ew developm ents in quantum eld theory and statisticalmechanics", C argese 1976, Eds. M . Levy and P. M itter, Plenum (NY 1977).
[11] M . Luscher, C om m un. M ath. Phys. 54 (1977) 283.
[12] M . C reutz, Phys. Rev. D 15 (1977) 1128.
[13] K . O sterw alder and E. Seiler, A nn. P hys. 110 (1978) 440.
[14] M . C aselle, M . H asenbusch and M . Panero, JH EP 09 (2007) 117, 0707.0055.
[15] H J. R othe, W orld Sci. Lect. N otes Phys. 59 (1997) 1.
[16] A M . Ferrenberg and R H. Swendsen, Phys. R ev. Lett. 63 (1989) 1195.
[17] C . H oelbling, C . R ebbi and V A. R ubakov, Phys. R ev. D 63 (2001) 034506, heplat/0003010.
[18] P. de Forcrand, M . D E lia and M . Pepe, Phys. R ev. Lett. 86 (2001) 1438, heplat/0007034.
[19] A LP H A C oll., M . G uagnelli, R . Som m er and H . W ittig, N ucl. Phys. B 535 (1998) 389 , hep-lat/9806005.
[20] S. N ecco and R . Som m er, N ucl. Phys. B 622 (2002) 328, hep-lat/0108008.
[21] N . C abibbo and E. M arinari, Phys. Lett. B 119 (1982) 387.
[22] M . C reutz, Phys. R ev. D 21 (1980) 2308.
[23] K . Fabricius and O . H aan, Phys. Lett. B 143 (1984) 459.
[24] A D. . K ennedy and B J. Pendleton, Phys. Lett. B 156 (1985) 393.
[25] A LPHA , U .W ol , C om put. Phys. C om m un. 156 (2004) 143, hep-lat/0306017.

[^0]: ${ }^{1}$ T hroughout the paper dim ensionful quantities are alw ays expressed in units of a.

[^1]: ${ }^{2} N$ otice that when spatial links are kept $x e d$, the set of U_{0} and U_{4} factorize and are generated independently.

