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Fast Multipole Methods on a Cluster of GPUs for the

Meshless Simulation of Turbulence

R. Yokotaa,∗, T. Narumia, R. Sakamakia, S. Kameokaa, S. Obia, K. Yasuokaa

aDepartment of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Yokohama,
Japan

Abstract

Recent advances in the parallelizability of fast N -body algorithms, and the
programmability of graphics processing units (GPUs) have opened a new
path for particle based simulations. For the simulation of turbulence, vor-
tex methods can now be considered as an interesting alternative to finite
difference and spectral methods. The present study focuses on the efficient
implementation of the fast multipole method and pseudo-particle method on
a cluster of NVIDIA GeForce 8800 GT GPUs, and applies this to a vortex
method calculation of homogeneous isotropic turbulence. The results of the
present vortex method agree quantitatively with that of the reference cal-
culation using a spectral method. We achieved a maximum speed of 7.48
TFlops using 64 GPUs, and the cost performance was near $9.4/GFlops.
The calculation of the present vortex method on 64 GPUs took 4, 120s, while
the spectral method on 32 CPUs took 4, 910s.

Key words: Fast multipole method, Pseudo-particle method, Graphics
processing unit, Particle method

1. Introduction

Particle-based simulations are a natural method for solving discrete sys-
tems such as in astrophysics, and molecular dynamics (MD). They also pro-
vide an interesting alternative to grid-based methods for solving continuum
systems, as seen in smooth particle hydrodynamics (SPH) and vortex meth-
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ods (VM). While much of the numerical and implementation issues have been
successfully addressed,[1] the computational cost of the N -body interaction
still remains a problem.

The use of hierarchical algorithms such as the treecode [2] and fast mul-
tipole method (FMM) [3] are a necessary but not sufficient condition for
executing particle-based simulations in a reasonable amount of time. Paral-
lelization of hierarchical N -body algorithms is also essential and there have
been many attempts to parallelize the treecode [4] and FMM [5, 6, 7]. An-
other way to extract the intrinsic parallelism of N -body problems is to design
a fully pipelined, hard-wired processor dedicated to the calculation of grav-
itational interaction (GRAPE) [8] or arbitrary central force (MDGRAPE)
[9, 10, 11, 12]. These special-purpose computers can also be parallelized [13]
and used simultaneously with fast algorithms [14, 15].

A more recent trend in the hardware industry is the development of pro-
grammable graphics processing units (GPU). The N -body simulations using
NVIDIA’s CUDA (Compute Unified Device Architecture) programming envi-
ronment have achieved a performance of over 200 GFlops on a single GPU for
both gravitational [16, 17] and MD simulations [18]. Furthermore, Schive et
al. [19] used 32 GPUs to accelerate the direct calculation of gravitational in-
teractions, and Stone et al. [20] used 6 GPUs for the calculation of the parti-
cle mesh Ewald (PME) method in their MD simulation. Stock & Gharakhani
[21] implemented the treecode on the GPU to accelerate their vortex method
calculation. Their treecode was approximately 17 times faster, whereas their
direct calculation was 127 times faster on the GPU for N = 500, 000 parti-
cles. Similarly, Gumerov & Duraiswami [22] calculated the Coulomb inter-
action using the FMM on GPUs, and achieved a 72-fold speed-up for the
FMM, while their direct calculation was 855 times faster on the GPU for
N = 1, 048, 576 particles. The difference between the absolute acceleration
ratio of Stock & Gharakhani and Gumerov & Duraiswami is mainly caused by
the difference in the speed of the CPU calculation. The relative acceleration
ratio between the fast algorithm and direct calculation was 17/127 ≈ 0.134
for Stock & Gharakhani and 72/855 ≈ 0.084 for Gumerov & Duraiswami.
The difference between the relative acceleration ratio is probably due to the
difference in the data-parallelism of the treecode and FMM. What remains
a challenge is the fact that there still remains a large gap between the accel-
eration ratio of the fast algorithms and the direct calculation.

The large gap between the acceleration ratio of the fast algorithms and
the direct calculation is due to the slightly low data-parallelism of the mul-

2



tipole moments in the hierarchical box structure. In our present study we
investigate the possibility of using pseudo-particles instead of multipole mo-
ments. The use of pseudo-particle methods (PPM) have been proposed by
Anderson [23] and improved by Makino [24]. These methods are slower than
the standard FMM on ordinary CPUs because they require so many pseudo-
particles to achieve the same accuracy as the standard FMM. However, on
GPUs, their data-parallelism may become an advantage.

For vortex methods, fast N -body algorithms on data-parallel processors
may become an interesting alternative to grid based fast Poisson solvers.
The equations that govern the pairwise interaction of vortex elements are
more complex than those of the gravitational and molecular dynamics calcu-
lations. This complicates the implementation on special-purpose computers
(MDGRAPE) [25, 26], but allows a more efficient implementation on GPUs
because it is easier to hide the memory latency.

We apply the fast multipole method on a cluster of GPUs to the cal-
culation of a homogeneous isotropic turbulence using vortex methods. The
homogeneous isotropic turbulence has been a traditional benchmark for eval-
uating the ability of supercomputers.[27, 28] It has also served as the test
case for which the vortex methods were directly compared with a spec-
tral method under the same calculation conditions, and showed quantitative
agreement.[29, 30] We wish to reduce the calculation cost of vortex methods,
by making use of the inherent parallelism of the N -body calculation, and
also the new GPU technology.

2. Vortex Method

The present vortex method solves the following set of equations.

∇2u = −∇× ω (1)

Dω

Dt
= ω · ∇u + ν∇2ω (2)

where u is the velocity vector, ω is the vorticity vector, and ν is the kinematic
viscosity. When the velocity poisson equation (1) is formulated as an inte-
gral equation using Green’s functions, it yields the generalized Biot-Savart
equation. In the present vortex method the vorticity equation (2) is solved
in a fractional step manner by solving the first and second term on the right
hand side, and the left hand side separately.
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First, the vorticity field is discretized by using a superposition of Gaussian
distributions.

ωi =
N∑

j=1

αjζσ, (3)

where α is the vortex strength, and

ζσ =
1

(2πσ2
j )

3/2
exp

(
−

r2
ij

2σ2
j

)
(4)

is the Gaussian smoothing function. σ is often referred to as the core radius,
and represents the physical length scale of vortex elements. rij is the distance
between point i and point j. In N -body calculations, i is referred to as
the target, and j is referred to as the source. The generalized Biot-Savart
equation can be written as

ui =
N∑

j=1

αjgσ ×∇G (5)

where G is the Green’s function for the Laplace equation and

gσ = erf

(√
r2
ij

2σ2
j

)
−

√
4

π

√
r2
ij

2σ2
j

exp

(
−

r2
ij

2σ2
j

)
, (6)

is the cutoff function corresponding to the Gaussian distribution in Eq. (4).
The left hand side (convection term) of Eq. (2) is accounted for by ad-

vancing the coordinates according to the local velocity.

Dxi

Dt
= ui (7)

The first term on the right hand side (stretching term) of Eq. (2)

Dω

Dt
= ω · ∇u (8)

is solved by substituting Eq. (3) and Eq. (5), which yields

Dαi

Dt
=

n∑
j=1

αj∇(gσ ×∇G) · αi. (9)
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In the present calculations, we use the core spreading method (CSM) to solve
the second term on the right hand side (diffusion term)

Dω

Dt
= ν∇2ω. (10)

by changing the variance of the Gaussian distribution

σ2 = 2νt (11)

to account for the diffusion. We also perform radial basis function interpola-
tion for smaller Gaussian distributions[30] to ensure the convergence of the
CSM.

In summary, the present vortex method solves Eqs. (5), (7), (9), and
(11). Among these, Eqs. (5) and (9) involve far field interactions and must
be solved using fast N -body algorithms. The second order Adams-Bashforth
method is used for all time integration calculations.

There have been numerous attempts to accelerate vortex methods using
fast N -body algorithms and specialized hardware. Winckelmans et al. [31]
used the treecode to accelerate the vortex method calculation and also the
boundary element method calculation. Marzouk & Ghoniem [32] used K-
means clustering for load balancing their parallel treecode, and applied the
code to the simulation of a transverse jet. Cocle et al. [33] use a hybrid
of the Vortex-In-Cell method and FMM to utilize the benefit of both meth-
ods. Sbalzarini et al. [34] developed a particle-mesh library that calculates
one vortex method iteration for 268 million particles in 85 seconds using
128 processors. Using this library, Chatelain et al. [35] have performed a
calculation of wing tip vortices using 10 billion vortex elements. Sheel et
al. [25] used a special purpose computer originally designed for molecular
dynamics (MDGRAPE-2) and showed a 100-fold acceleration of the direct
interaction calculation. Later, they applied the FMM on the MDGRAPE-3
and observed a 16 times speed-up of the FMM [26].

In the present work, we will implement the FMM and pseudo-particle
method on a cluster of 64 GPUs. The details of the FMM, pseudo-particle
method, their parallelization and implementation on the GPU are given in
the following section.
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3. FMM

3.1. FMM for Vortex Methods

In order to keep this paper self-contained, the minimum requirements for
formulating the present fast multipole method are shown first. The Green’s
function for the Laplace kernel can be approximated by the multipole expan-
sion

N∑
j=1

G ≈ 1

4π

p∑
n=0

n∑
m=−n

r−n−1
i Y m

n (θi, φi)︸ ︷︷ ︸
Si


N∑

j=1

ρn
j Y

−m
n (αj, βj)︸ ︷︷ ︸

Mj

 , (12)

and also the local expansion

N∑
j=1

G ≈ 1

4π

p∑
n=0

n∑
m=−n

rn
i Y m

n (θi, φi)︸ ︷︷ ︸
Ri


N∑

j=1

ρ−n−1
j Y −m

n (αj, βj)︸ ︷︷ ︸
Lj

 , (13)

where p is the order of expansion. In these equations, the location of particle
i relative to the center of expansion is expressed in spherical coordinates
using (ri, θi, φi). Similarly, the relative location of j is noted as (ρj, αj, βj).
Y m

n (θ, φ) represents the spherical harmonics of the form

Y m
n (θ, φ) =

√
(n − |m|)!
(n + |m|)!

P |m|
n (cos θ)eιmφ. (14)

and P
|m|
n (µ) are the associated Legendre functions, which are obtained from

the following recurrence relations.

(n − m)Pm
n (x) = x(2n − 1)Pm

n−1(x) − (n + m − 1)Pm
n−2(x) (15)

Pm
m (x) = (−1)m(2m − 1)!(1 − x2)m/2 (16)

Pm
m+1 = x(2m + 1)Pm

m (x). (17)

We define the operators Si, Mj, Ri, Lj in Eqs. (12) and (13) to simplify
the equations in the following steps. Using these operators, Eq. (5) can be
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written as

ui ≈
1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

αjMj

}
×∇Si, (18)

ui ≈
1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

αjLj

}
×∇Ri. (19)

Similarly, Eq. (9) can be written as

Dαi

Dt
≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

αj ×∇Mj

}
(αi · ∇Si), (20)

Dαi

Dt
≈ 1

4π

p∑
n=0

n∑
m=−n

{
N∑

j=1

αj ×∇Lj

}
(αi · ∇Ri). (21)

The cutoff function does not appear in these equations since they are used
to calculate the effect of the far field, for which it would have negligible
effect. Unlike the potential equation, these equations require the calculation
of gradients of the spherical harmonic. For example, in Eqs. (19) and (21)
∇R must be calculated. If we take the gradient of R in spherical coordinates,
this results in

∇R =

(
nρn−1Y, ρn ∂Y

∂θ
, ιmρnY

)
. (22)

The calculation of these values is straightforward except for the derivative of
Y m

n , which from Eq. (14) becomes

∂Y m
n (θ, φ)

∂θ
=

√
(n − |m|)!
(n + |m|)!

∂P
|m|
n (cosθ)

∂θ
eιmφ. (23)

The derrivative of Pm
n can be calculated from

∂Pm
n

∂θ
=

(n − m + 1)Pm
n+1 − (n + 1) cos θPm

n

sin θ
. (24)

The ∇M in Eq. (20) can be calculated in a similar fashion.
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3.2. Rotation Based Translation

The translation operators of the standard FMM have a complexity of
O(p4). For problems that require high accuracy, the order of expansion p
must be increased. There are a few methods which can reduce the complex-
ity of the translation operator. The rotation based translation [36] has a
complexity of O(p3), and the plane wave based translation [37] has a com-
plexity of O(p2 log p). However, the asymptotic constant is smaller for the
methods with higher complexity, so for calculations that do not require large
p, the effectiveness of these methods is questionable. For our case, the min-
imum accuracy requirements of the vortex method suggest that the order
of expansion should be at least p = 10. For this case, the rotation based
translation has the best performance.

The rotation based translation makes use of a certain property of the
spherical harmonic. Assuming that θ = 0, and φ = 0 in Eq. (14) yields

Y m
n (0, 0) =

√
(n − |m|)!
(n + |m|)!

P |m|
n . (25)

Following this, the translation operators can be written as

Mk
j =

j∑
n=0

M̂k
j−nA

0
nA

k
j−nρ

nY 0
n (0, 0)

(−1)nAk
j

(26)

Lk
j =

p−1∑
n=0

M̂k
nAk

nA
k
j Y

0
j+n(0, 0)

(−1)jA0
j+nρ

j+n+1
(27)

Lk
j =

p−1∑
n=j

L̂k
nA

0
n−jA

k
j ρ

n−jY 0
n−j(0, 0)

Ak
n

. (28)

where

Am
n =

(−1)n

(n − m)!(n + m)!
. (29)

The M̂ and L̂ represent the expansion coefficients before each translation,
while the unmarked M and L represent the expansion coefficients after the
translation. From the definition of M and L in Eqs. (12) and (13), we can
see that M and L are the spherical harmonic Y multiplied by values which
are independent of the angle. Thus, the rotation of M and L directly follow
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that of Y .

Mm
n (α + θ, β + φ) =

n∑
k=−n

Dkm
n (θ, φ)Mk

n(α, β) (30)

Lm
n (α + θ, β + φ) =

n∑
k=−n

Dkm
n (θ, φ)Lk

n(α, β). (31)

The Wigner D matrix can be decomposed into

Dkm
n (θ, φ) = dkm

n (θ)eι(k+m)φ. (32)

There exist a variety of recurrence relations for dkm
n . It is true that some

of these recurrence relations [38] accumulate too much round off error for
calculations with large expansion order. The recurrence relations by White
& Head-Gordon [36] are sufficient for large expansion order p > 10. The
recurrence relations can be written as

dn,n
n = cos

(
θ

2

)2n

(33)

dn,k−1
n =

√
n + k

n − k + 1
tan

(
θ

2

)
dn,k

n (34)

dm−1,k
n =

√
n(n + 1) − k(k + 1)

n(n + 1) − m(m − 1)
dm,k+1

n

− k + m√
n(n + 1) − m(m − 1)

sin θ

1 + cos θ
dm,k

n . (35)

Since the translation stencil of the multipole-to-local translation is fixed, we
precompute the Wigner D matrix and also the translation matrix in Eq. (27).

3.3. Pseudo-Particle Method (PPM)

Instead of calculating the multipole and local moments at the center of
the boxes, PPMs calculate the physical properties of interest at quadrature
points placed on a spherical shell surrounding the boxes.[24] The multipole
expansion and translation is expressed as

qi =
N∑

j=1

qj

p∑
n=0

2n + 1

K

(
ρj

rs

)n

Pn(cos γij) (36)
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Table 1: Number of quadrature points K corresponding to p

p K

1 4
2 14
3 26
4 36
5 60
6 84
7 108
8 144
9 180
10 216

and the local expansion and translation becomes

qi =
N∑

j=1

qj

p∑
n=0

2n + 1

K

(
rs

ρj

)n+1

Pn(cos γij). (37)

q is the physical property of interest, K is the number of quadrature points
on the sphere circumscribing the box, and rs is the radius of this sphere.
Pn(µ) is the Legendre polynomial, and γij is the angle between the position
vector of source and target particles. The quadrature points are positioned
according to the spherical-t design [24]. The number of quadrature points K
that are required to achieve the same accuracy as a multipole expansion of
order p is shown in Table 1. The multipole-to-local translation requires the
calculation of K2 interactions, and may become quite expensive for large K.

Given that xi = (ri, θi, φi) and xj = (ρj, αj, βj), cos γij can be written as

cos γij =
xi · xj

riρj

(38)

The physical property of interest q in Eqs. (36) and (37) can be the source
strength α during the upward pass and velocity u during the downward pass.
In this case the multipole to local translation can be calculated by Eq. (5),
and becomes similar to the direct summation, but for pseudo-particles instead
of particles.
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3.4. Parallelization of FMM

The present study involves the parallelization of the FMM on distributed
memory architectures using MPI. Balancing the computational workload and
amount of data transfer between the processes is a challenging task for adap-
tive FMMs. However, for the present calculation of the homogeneous tur-
bulence, the particle density remains constant throughout the entire domain
and varies little over time. Furthermore, the periodic boundary condition
prevents the load of the boarder cells from becoming small. Therefore, the
workload between different processes can be balanced by simply partitioning
the parallel computation domain according to the oct-tree structure of the
FMM. In order to minimize memory requirements, each process holds only
the particle information within the partitioned domain, throughout most of
the vortex method calculation. Thus, the particle information and multipole
moments near the borders of the partitioned domain must be communicated.
The flow of calculation is as follows.

1. Communicate particle data (P2Pcomm)
2. Particle to particle interaction (P2P) : Calculated on GPUs
3. Multipole expansion from particles (P2M)
4. Multipole to multipole translation (M2M)
5. Communicate multipole data (M2Lcomm)
6. Multipole to local translation (M2L) : Calculated on GPUs for PPM
7. Local to local translation (L2L)
8. Local expansion to particles (L2P)

At step 1. the information necessary for calculating the direct summation
of all particles within the partitioned domain is communicated. At step
2. the direct summation is performed. Steps 3 and 4 do not require any
communication, and are performed locally. At step 5. all the multipole
moments that are necessary for the multipole to local translation at that
particular level, are transmitted. Then, the multipole to local translation is
calculated at step 6. Steps 7 and 8 also do not require any communication,
and are performed locally.

4. Graphics Processing Units

4.1. Hardware Specifications

In the present calculations, we use NVIDIA’s GeForce 8800 GT which has
112 streaming processors, where eight streaming processors are grouped into
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Gigabit Network Switch

GPU
(GeForce8800GT)

GPU
(GeForce8800GT)

CPU
(Core2 Duo E6850)

HP xw4600 workstation

4 Gbyte memory

32

Figure 1: Block diagram of the computing system (left) and its photo (right)

a multiprocessor. It performs 32 SIMD (Single Instruction Multiple Data)
operations in four clock cycles. Each multiprocessor has only 16 Kbyte of
shared memory, which can be accessed at high speed. Larger data must be
stored in the global memory (the memory chip outside of the GPU processor),
which then requires a very large latency (400-600 clock cycles) when loading
to the multiprocessor. Therefore, the key to achieving high efficiency on
GPUs, is to run as many threads as possible in order to obscure the memory
latency. The clock frequency of the multiprocessor of our XFX’s GPU is 1,562
MHz, which is slightly higher than the NVIDIA’s reference board (1, 500
MHz). The peak performance of the GeForce 8800 GT is 350 GFlops (=
1, 562 × 2 × 112).

Fig. 1 shows a schematic of our GPU cluster system. We used 32 nodes
of PCs (HP xw4600), each of them having a dual-core CPU (Intel Core2 Duo
E6850), 4Gbyte of memory, and two GPUs (XFX PV-T88P-YDQ4 which has
NVIDIA’s GeForce 8800 GT). A GPU is plugged in via 16x PCI Express 2.0
slots. We added a cooling fan next to each GPU slot to enhance the reliability
of the system. The PCs are connected by a gigabit ethernet network through
a 48-port HUB (NETGEAR GS748TS-100JPS).

4.2. Direct Summation on GPU

Our vortex method code is written in Fortran, and the subroutines for
the calculation of Eqs. (5) and (9) are modified to call a library routine that
uses the GPU. This library routine is developed using the NVIDIA’s CUDA
programming environment. We used 128 threads per multiprocessor, where
each thread handles one target particle. We use a one dimensional grid of one
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dimensional blocks of threads. All the arithmetic operations on the GPU are
performed in single precision. The flow of the library routine is as follows.

1. The coordinates xj, strengths αj, volume Vj, and core radius σj of the
source particles are stored in a single array of size 8N in the global
GPU memory. The coordinates xi, strengths αi, volume Vi of the target
particles are also stored in a single array of size 7N in the global GPU
memory. If the number of vortex elements N is too large for the global
GPU memory to handle at once, the library automatically divides the
arrays to manageable sizes and passes them to the GPU sequentially.

2. Each thread handles one target particle. The information of target par-
ticles is copied from the global memory to the register.

3. Each block handles a group of source particles, which is composed of
chunks of 128. The information of source particles is copied from the
global memory to the shared memory in chunks of 128. Each thread
reads a different part of the chunk in a coalesced manner before the
thread is synchronized.

4. A loop is executed to run through all 128 particles of the chunk and
sums the effect to the target variable in the local memory. The threads
are synchronized after each loop is finished.

5. After the summation loop is completed for all chunks of the source par-
ticles, the information of the target particles is copied to the global
memory. Once the information is copied to the global memory, the next
thread block is executed.

In order to evaluate the performance of the present GPU calculation, we
first measured the performance of a serial GPU direct summation routine.
The particles are randomly positioned in a [−π, π]3 domain, and given a
random vortex strength between 0 and 1/N . The core radius is set to σ =
2πN−1/3, which results in an average overlap of σ/∆x = 1.

The calculation time of the direct summation on a serial CPU and GPU
is shown in Fig. 2 for different number of particles N . Calculation of the
stretching is slightly more complex than the velocity calculation, thus requires
a slightly longer time. Both the CPU and GPU calculation scale as O(N2),
but the GPU is approximately 160 times faster. The CPU is a Intel Core2
Duo E6850 and the code is written in Fortran 90 and compiled on a Intel
Fortran compiler 10.0, which performs vectorization of the code by default.
Both cores are used by explicitly defining openmp routines and compiling
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Figure 2: Cputime of the direct summation on a serial CPU and GPU. Dotted lines are
functional fits as y = f(N), where y is the time, and N is the number of particles.

with the “-openmp” option. The GPU is a NVIDIA GeForce 8800 GT and
the Fortran code calls a CUDA library, which was compiled with NVCC using
the ”-use fast math” option.

In order to compare the performance of our code with the ones by Stock
& Gharakhani [21] and Gumerov & Duraiswami [22] more directly, we have
performed “potential+force” and “velocity+stretching” calculations on the
CPU and GPU. The calculation time is shown in Fig. 3. First, by com-
paring Fig. 2 with Fig. 3, we see that the “velocity+stretching” takes only
about 1.1 times longer than just the stretching on the CPU, while it takes
around 1.5 times longer on the GPU. The GPU calculations slow down be-
cause of the extra data transfer that is necessary for writing both the velocity
and stretching results to the global memory. The calculation for “stretch-
ing+velocity” adds only 18 floating point operations to the stretching only,
because the cutoff function used for the first term of the stretching can also
be used for the velocity calculation. Second, it can be seen from Fig. 3 that
the calculation of “potential+force” takes only 1/5 of the execution time
of “velocity+stretching”. This ratio can be used to compare the results of
Stock & Gharakhani [21] and Gumerov & Duraiswami [22]. Third, Stock
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Figure 3: Cputime of the direct summation on a serial CPU and GPU. Dotted lines are
functional fits as y = f(N), where y is the time, and N is the number of particles.

& Gharakhani [21] report that their direct N2 calculation for the “veloc-
ity+stretching” for N = 500, 000 takes 11, 242s on the CPU and 88.7s on
the GPU. From Fig. 3 we see that our code would take 20, 000s on the
CPU and 150s on the GPU. The speed-up ratio by Stock & Gharakhani [21]
11, 242/88.7 ≈ 127 is similar to ours 20, 000/150 ≈ 133. The difference in the
absolute speed is likely to be caused by the difference in hardware, and also
the difference in the way the velocity gradient is handled in our stretching
calculation. Fourth, Gumerov & Duraiswami [22] report that their direct
N2 calculation for the “potential+force” for N = 1, 048, 576 takes around
107,100s on the CPU and 125.36s on the GPU. From Fig. 3 we see that our
calculation for the “potential+force” takes approximately 16, 500s on the
CPU and 110s on the GPU. The speed-up ratio of Gumerov & Duraiswami
[22] 107, 100/125.36 ≈ 855 is quite different from ours 16, 500/110 ≈ 150.
Considering the fact that both Stock & Gharakhani [21] and Gumerov &
Duraiswami [22] use the GeForce 8800GTX, which is 128/112 times faster
than our GeForce 8800GT, the large acceleration rate of Gumerov & Du-
raiswami [22] suggests that their CPU is nearly 6 times slower than the
dual-core CPU used by Stock & Gharakhani [21] and the present authors.
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Table 2: Flops count of the velocity and stretching kernel

velocity stretching

Operation Count Flo Total Count Flo Total

+ − ∗ 33 1 33 64 1 64
fdividef 1 5 (1) 5 (1) 1 5 (1) 5 (1)
sqrtf 1 4 (1) 4 (1) 1 4 (1) 4 (1)
expf 1 8 (1) 8 (1) 1 8 (1) 8 (1)
erff 1 8 (1) 8 (1) 1 8 (1) 8 (1)
powf 1 13 (1) 13 (1) 2 13 (1) 26 (2)

Total 70 (38) 115 (70)

The CPU/GPU speed-up ratio is only a relative indicator for speed. We
will look at the speed of the present GPU calculation in terms of Flops, in
order to evaluate the absolute speed. When measuring the Flops, we used the
operation count shown in Table 2. While the standard Flops count (shown
in parentheses), treats the sqrt, exp, pow as one floating point operation,
we adopt a measure that takes into account the the number of clock cycles
it takes relative to a single-precision floating-point add. For N -body prob-
lems, which often involve sqrt, exp, pow, and even erf operations, the
standard Flops count equates complex kernels to bad performance. There-
fore, we believe the standard Flops count alone is insufficient for evaluating
the computational efficiency of our complex kernel and wish to provide an
alternative measure along with the standard Flops count. Operation denotes
the type of operation performed on the GPU, Count is the number of times
these operations appear during a pairwise interaction, Flo is the number of
clock cycles relative to a single-precision floating-point add.. These numbers
were taken from the NVIDIA CUDA programing guide [41], except for the
erff, which we assumed to be equal to expf.

Fig. 4 shows the Flops for the direct interaction on a serial GPU. The
stretching term calculation reaches 260 GFlops, while the velocity reaches
225 GFlops. When the standard Flops count is used, the stretching term
calculation achieves 260/115×70 ≈ 158 GFlops, while the velocity calculation
reaches 225/70×38 ≈ 122 GFlops. The calculations of Hamada & Iitaka [18]
and Nyland et al. [16] suggest that there is still some room for improvement

16



1.E+03 1.E+04 1.E+05 1.E+06

50

100

150

200

250

300

N

G
F

lo
ps

 

 

GPU(Stretching)
GPU(Biot−Savart)

Figure 4: Flops of the direct summation on a serial GPU. Dotted lines are functional fits
as y = f(N), where y is the time, and N is the number of particles.

in the 103 < N < 104 region.

4.3. FMM on GPU

There have been few previous attempts to efficiently implement fast al-
gorithms on GPUs. Stock & Gharakhani [21] ported the entire treecode onto
a NVIDIA GeForce 8800 GTX. They fixed the number of particles per box
to 64 by excluding the particles far from the pole axis of the spherical har-
monics, and calculating them directly. As a result, they could use one block
of threads per box, while using 64 threads per block and having one thread
per target particle without wasting any threads. Their treecode on the GPU
was approximately 17 times faster than their treecode on the CPU.

Gumerov & Duraiswami [22] implemented the entire FMM on a NVIDIA
GeForce 8800 GTX. Their FMM used many effective techniques, such as real
basis functions, the RCR decomposition, a translation stencil that reduces
the multipole-to-local translations from 189 to 119, and a variable truncation
number. On the GPU, they used one thread block per box for the particle-to-
particle interaction, one thread per box for the particle-to-multipole, local-to-
particle, and multipole-to-local translation. They achieved a 72-fold speed-up
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18



for the FMM, while their direct calculation was 855 times faster on the GPU
for N = 1, 048, 576 particles. However, they report that the multipole-to-
local translation itself achieved only speed-ups in the range of 2-5. This is
less than 1% of the speed-up of their direct interaction.

In the present calculation we have adopted all of the techniques used by
Gumerov & Duraiswami [22], except for the reduced translation stencil. All
parts of the FMM algorithm are ported to the GPU. The basic approach
of our GPU implementation is also similar to Gumerov & Duraiswami [22],
in the sense that we both use a one dimensional block of threads to handle
each FMM box, and how each thread writes one expansion coefcient to the
shared memory. However, the details of the actual CUDA kernel may differ
significantly since this information is not given in Gumerov & Duraiswami
[22]. In our CUDA kernel, the translation coefficients are generated on-th-
fly but recurrence relations are calculated only up to the necessary order.
For example, the thread that calculates L0

0 in Eq. (27) requires only the
translation coefficients for j = 0 and k = 0. Even though this creates an
imbalance in the work load among different threads, we have observed a
significant speed-up by using this technique. Furthermore, we associate the
target expansion coefficients/particles to the threads and sum the effect of
the different source expansion coefficients/particles as they are calculated.
Therefore, it is not necessary to perform any kind of reduction calculation
on the GPU. The loops are run from higher order expansions to lower order
expansions so that smaller coefficients are summed first. This allows us to
minimize the round-off error in the single precision calculations on the GPU.

We first present the results of the velocity calculation using the FMM
and PPM on a serial CPU and GPU. The observations made for the velocity
calculation are directly applicable to the stretching or velocity+stretching
calculation. Thus, we will show only the results for the velocity calculations
hereafter. The order of multipole expansions is set to p = 10 unless otherwise
noted.

Fig. 5 shows the calculation time of the FMM on a serial CPU and
GPU. Our FMM does not scale exactly as O(N), but rather shows a scaling
close to O(N1.15). This is observed from the results of both the CPU and
GPU. Judging from the asymptotic constants of the two lines, the FMM on
the GPU is approximately 80 times faster than the FMM on the CPU. The
optimum level of the oct-tree differs between the CPU and GPU calculations.
For the FMM on the CPU the box level switches from 2 to 3 at N = 104, 3 to
4 at N = 105, 4 to 5 at N = 106, and 5 to 6 at N = 107. On the other hand,

19



1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
1.E−02

1.E−01

1.E+00

1.E+01

1.E+02

1.E+03

N

cp
ut

im
e 

[s
]

 

 
nprocs=1
nprocs=2
nprocs=4
nprocs=8
nprocs=16
nprocs=32

Figure 7: Cputime of the FMM on parallel CPUs

the box level of the FMM on the GPU switches from 2 to 3 at N = 7 × 104

and 3 to 4 at N = 5 × 105, and 4 to 5 at N = 3 × 106. In other words, the
FMM box contains more particles for the GPU calculations.

The calculation time of the PPM on a serial CPU and GPU are shown
in Fig. 6. Our PPM also scales as O(N1.15). By comparing Figs. 5 and
6, it can be seen that the calculation time of the FMM on the GPU is 1.5
times faster than the PPM, while the FMM on the CPU is around 3.75 times
faster than the PPM on the CPU. The multipole-to-local translation of the
rotation based FMM requires the calculation of Eq. (27) for p = 10, while the
multipole-to-local translation of the PPM requires the calculation of Eq. (5)
for K = 216 to achieve the same accuracy. Thus, the calculation load of
the multipole-to-local translation of the PPM is much larger than the FMM,
so when it is processed on the CPU it takes much longer. However, when
it is processed on the GPU it hides the memory latency due to its larger
calculation load, and the inefficiency of the PPM is canceled out.

Before showing the results of the FMM on parallel GPUs, we will present
the results of the FMM on parallel CPUs for reference. Fig. 7 shows the
calculation time of the FMM for different number of CPUs. nprocs is the
number of MPI processes (number of CPUs/GPUs). The parallel efficiency
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Figure 8: Cputime of the FMM on parallel GPUs
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Figure 9: Cputime of the PPM on parallel GPUs
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Figure 10: L2 norm error of the velocity calculation

for 32 CPUs is 49% at N = 104, 63% at N = 105, and 68% at N = 106.
Fig. 8 shows the calculation time of the FMM for different number of

GPUs. Since there are two GPUs per workstation, the parallel calculation
on GPUs has results for until nprocs = 64. For fairness, we will first compare
the results of 32 GPUs with the results of 32 CPUs shown above. The parallel
efficiency for 32 GPUs is 3% at N = 104, 10% at N = 105, 41% at N = 106,
and 66% at N = 107. The low parallel efficiency for small N is a direct
consequence of the low performance of GPUs for small N, as shown in Fig.
4. Especially, when the FMM is parallelized the number of target particles
handled by each GPU becomes N/nprocs, and high parallel efficiency can
only be achieved when N/nprocs is large. The parallel efficiency for 64 GPUs
is 1% at N = 104, 5% at N = 105, 24% at N = 106, and 60% at N = 107.
It can be seen from Fig. 8 that the calculation time for N < 104 increases
for nprocs ≥ 16. This is because the time spent on communication becomes
large compared to the calculation time. The communication time increases
monotonically as nprocs increases.

Fig. 9 shows the calculation time of the PPM for different number of
GPUs. In this case, The parallel efficiency for 32 GPUs is 4% at N = 104,
26% at N = 105, 73% at N = 106, and 78% at N = 107. Also, for 64 GPUs
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the parallel efficiency is 1% at N = 104, 11% at N = 105, 49% at N = 106,
and 71% at N = 107. The PPM seems to have higher parallel efficiency
compared to the FMM. Though, the FMM for N = 107 on 64 GPUs takes
approximately 2.5s, and is slightly faster than the PPM for the same N on
64 GPUs, which takes approximately 3.0s.

Finally, the error of the present FMM and PPM are investigated by com-
paring them with the results of the direct interaction on the CPU. The |L2|
error is shown in Fig. 10 for different p. The large error for small N is due
to the following reason. The Biot-Savart law has a cutoff function as shown
in Eq. (6), but the FMM and PPM calculate for a singular kernel as shown
in Eqs. (18)-(21), (36), and (37). This has negligible effect if the neighbor
region of the FMM is significantly large compared to σ, because the effect
of the cutoff function decays rapidly. However, for the present calculations
we use σ = 2πN−1/3 and the FMM box level is always larger than 2. Thus,
for small N , the neighbor region is relatively small compared to σ, so the
FMM would be assuming a singular function at a location where the cutoff
function is non-negligeble.

For the FMM the error decreases as p increases. For p = 10 the er-
ror remains below 10−4 for all N . On the other hand, the PPM error is
large for p = 6, but is almost the same for p = 8 and p = 10. Fur-
thermore, in contrast to the FMM, the PPM error increases significantly
when the box level is changed from 2 to 3. This is caused by the accu-
racy of the particle-to-multipole calculation being significantly higher than
the multipole-to-multipole translations in the pseudo-particle method. This
allows us to achieve high accuracy when the box level is 2, where multipole-
to-multipole translations are not necessary. We have also confirmed that
the |L2| error of the FMM and PPM are the same for the CPU and GPU
calculation and also the parallel calculations using CPUs and GPUs.

5. Calculation of Isotropic Turbulence

5.1. Calculation Conditions

The flow field of interest is a decaying isotropic turbulence with an initial
Reynolds number of Reλ ≈ 100. The calculation domain is [−π, π] and
has periodic boundary conditions in all directions. In the present vortex
method calculation, the periodic boundary condition is approximated by the
use of periodic images. The calculation of the periodic images is done by the
FMM by extending the oct-tree outwards, thus adding only a few percent of
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additional calculation time to the non-periodic FMM. Details of the periodic
FMM are shown in our previous publication [30]. The number of calculation
points was N = 2563 for both the vortex method and spectral method. The
order of multipole expansion was set to p = 10, and the number of periodic
images was 25 × 25 × 25 for the present calculations. We used a total of 64
GPUs for the calculation of the isotropic turbulence.

The spectral Galerkin method with primitive variable formulation is used
in the present study as reference. A pseudo-spectral method was used to
compute the convolution sums, and the aliasing error was removed by the
3/2-rule. The time integration was performed using the fourth order Runge-
Kutta method for all terms. No forcing was applied to the calculation, since
it would be difficult to do so with vortex methods. The spectral method was
calculated on the a single processor without using any GPUs.

The initial condition was generated in Fourier space as a solenoidal isotropic
velocity field with random phases and a prescribed energy spectrum, and
transformed to physical space. The spectral method calculation used this
initial condition directly. The strength of the vortex elements was calculated
from the vorticity field on the grid by solving a system of equations for (3).
The core radius of the vortex elements were set to 2π/N so that the overlap
ratio was 1.

5.2. Calculation Results

Fig. 11 shows the decay of kinetic energy, which is defined as

K =
1

2

N∑
i=1

u2
i + v2

i + w2
i . (39)

Spectral is the spectral method and Vortex is the vortex method calculation,
respectively. The time is normalized by the eddy turnover time T . The
integral scale and eddy turnover time have the following relation.

L =
π

2u′2

∫
k−1E(k)dk (40)

T = L/u′. (41)

where u′ = 2
3
K. The homogeneous isotropic turbulence does not have any

production of turbulence, and thus the kinetic energy decays monotonically
with time. This decay rate is known to show a self-similar behavior at the
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(a) Spectral method (b) Vortex method

(c) IIspec − IIvor = 2 × 10−4

Figure 13: Isosurface of the second invariant (II) of the velcoity derivative tensor

finial period of decay. This is confirmed by the straight drop of K that
appears at the end of this log-log plot. The results of the two methods
agree perfectly until t/T = 10, where the kinetic energy drops an order of
magnitude from the initial value.

Fig. 12 shows the energy spectrum at t/T = 10. k is the wave number,
and E(k) is the kinetic energy contained in the wave number k. At this
Reynolds number it is difficult to observe an inertial subrange of k−5/3, nor a
k4 behavior at low wave numbers. The results of the two methods are in good
agreement, except for the fact that the vortex method slightly underestimates
the energy at higher wave numbers.

The isosurface of the second invariant of the velocity derivative tensor
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II = ui,juj,i at time t/T = 10 is shown in Fig. 13. Fig. 13(a) is the
isosurface of the spectral method, Fig. 13(b) shows the isosurface from the
vortex method calculation, while the isosurface of the difference of II between
the two methods is shown in Fig. 13(c). Although, the larger structures
match between the two methods, the smaller structures behave differently.
The difference in the small structures can also be observed in Fig. 12, where
the kinetic energy at higher wave numbers do not match.

These results indicate the soundness of the present vortex method calcu-
lation using GPUs. It is fair to say that the single precision calculation of
the velocity does not have any detrimental effect on the final accuracy of our
turbulence simulations. Furthermore, the calculation of the present vortex
method on 64 GPUs took 4, 120s, while the spectral method on 32 CPUs
took 4, 910s.

5.3. Cost Performance of the Present Simulation

Table 3 shows the number of floating point operations involved in the
present calculation. The operation count is only for the direct summation
(P2P) part, because the number of operations of other parts are relatively
small and also difficult to calculate exactly. The simulation domain is divided
into 32× 32× 32 sub-cells. The number of floating point operations required
for a time step is counted as 3.08 × 1013 based on the relative clock cycle
count, and 2.04 × 1013 using the standard Flops count.

Table 4 shows the cost of our computing hardware. We used 32 HP work-
stations for the host computer. Two GPUs are installed in a PC. Additional
4 Gbyte of memory and two cooling fans are also installed on each of the host
computers. The conversion rate between US dollar and Japanese yen (JPY)
is $1=107 JPY, which is the rate at Jan. 31, 2008, when the hardware was
installed. The total price amounts to $70,323.

Finally, Table 5 shows the performance and the cost performance of our
simulation. We have calculated the isotropic turbulence for 1000 steps, which
took 4, 120 seconds. The performance is 7.48 TFlops based on the relative
clock cycle count and 4.95 TFlops based on the standard Flops count. The
cost performance is $9.4/GFlops for the former and $14.2/GFlops for the
latter.

27



Table 3: Number of floating point operations for Run2

Description Equation Value

Total number of particles N 16,777,216
Number of level of cell subdivisions Nlevel 5
Average number of particles in a cell Ncell = N/(8Nlevel) 512
Average number of source particles Nj = 27Ncell 13,824
per target particle
Flos per pairwise velocity+ K 133 (88)
stretching interaction

Flos per time step KNNj 3.08 × 1013

(2.04 × 1013)

Table 4: Price of the computing system (JPY)

Parts Price per unit Number of units Sum

Host PC (HP xw4600) 131,300 32 4,201,600
2 Gbyte DIMM 10,000 64 640,000
GPU (GeForce8800GT) 38,200 64 2,444,800
Cooling fan 1,000 64 64,000
HUB (48-port gigabit) 164,200 1 164,200
Cables 10,000 1 10,000

Total 7,524,600
(1$=107JPY) $70,323
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Table 5: Performance and cost performance

Description Equation Value

Flos per time step Nfp,step 3.08 × 1013

(2.04 × 1013)
Number of time steps Nstep 1000
Total of Flos Nfp = Nfp,stepNstep 3.08 × 1016

in the simulation (2.04 × 1016)
Total time for the simulation (sec) Ttotal 4,120
Performance (TFlops) S = Nfp/Ttotal 7.48 (4.95)
Price (US dollar) P 70,323

Price per performance ($/GFlops) P/S 9.40 (14.2)

6. Conclusion

The fast multipole method (FMM) and pseudo-particle method (PPM)
have been calculated on a cluster of NVIDIA GeForce 8800 GT GPUs. All
parts of the algorithm for both the FMM and PPM have been ported to the
GPU. We applied our acceleration method to the vortex method calculation
of a homogeneous isotropic turbulence using 2563 vortex elements and com-
pared the results with a spectral method calculation using 2563 grid points.
The following conclusions were obtained from the results of our calculation.

The direct summation on a single GPU (GeForce 8800GT) for veloc-
ity, stretching, velocity+stretching, and potential+force show an acceleration
rate between 133 and 160 over the CPU (Intel Core2Duo E6850, using both
cores). We have calculated the Flops using the standard Flops count, and
also an alternative Flops count that takes into account the different number
of clock cycles required for different operations. The standard Flops count
reaches 158 GFlops, while the alternative Flops count reaches 260 GFlops
using a single GPU for the direct summation of the stretching calculation.

Both our FMM and PPM scale as O(N1.15), and the speed of the calcula-
tion on the GPU are similar, while the calculation on the CPU is 3.75 times
faster when using the FMM. The parallel calculation of the FMM using 32
CPUs yields a parallel efficiency of 68% for N = 106 particles. The FMM
on 32 GPUs has only a 41% parallel efficiency for N = 106 particles, though
it rises to 66% for N = 107 particles. On the other hand, the PPM on 32
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GPUs has a 73% parallel efficiency even at N = 106.
The |L2| error of the PPM is lower than that of the FMM for the equiv-

alent order of expansion p. Furthermore, there still remains some room for
acceleration for the GPU calculation for small N . Accelerating for small N
may lead to the further acceleration of the PPM calculation on the GPU.
Thus, the PPM is an interesting alternative to standard FMMs for the cal-
culation on parallel GPUs.

The present acceleration technique enabled the calculation of a homo-
geneous isotropic turbulence using a relatively large number of vortex ele-
ments. The kinetic energy decay and energy spectrum of the well resolved
vortex method calculation agreed quantitatively with that of the reference
calculation using a spectral method. Such accuracy for completely meshless
turbulence simulations have not been reported previously. We also achieved
a maximum speed of 7.48 TFlops, and a cost performance near $9.4/GFlops.
The calculation of the present vortex method on 64 GPUs took 4, 120s, while
the spectral method on 32 CPUs took 4, 910s to calculate 1000 time steps.
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