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ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community,
designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class
can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree
object container is optimized for statistical data analysis over very large data sets by using vertical
data storage techniques. These containers can span a large number of files on local disks, the web, or
a number of different shared file systems. In order to analyze this data, the user can chose out of a
wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms
such as integration and minimization, and various methods for performing regression analysis (fitting).
In particular, the RooFit package allows the user to perform complex data modeling and fitting while the
RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate
classification methods based on machine learning techniques are available via the TMVA package.
A central piece in these analysis tools are the histogram classes which provide binning of one- and
multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF
or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a
full recreation and rework of the graphics. Users typically create their analysis macros step by step,
making use of the interactive C++ interpreter CINT, while running over small data samples. Once the
development is finished, they can run these macros at full compiled speed over large data sets, using on-
the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available,
the user can reduce the execution time of intrinsically parallel tasks — e.g. data mining in HEP — by
using PROOF, which will take care of optimally distributing the work over the available resources in a
transparent way.
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1. Introduction

ROOT is a cross-platform C++ framework for data processing,
created at CERN.2 Every day, thousands of physicists use ROOT
based applications to analyze and visualize their data.

The ROOT project was started in 1995 by René Brun and Fons
Rademakers [1]. It started as a private project and grew to be the
officially supported LHC analysis toolkit. It is currently developed
by a small team with members from several laboratories. ROOT
benefits from a considerable amount of user contributions, both
from inside and outside science. This write-up focuses on the cur-
rent status of ROOT, as of version 5.24.00.

A typical application developed for HEP research (more details
in Section 1.2 and Fig. 2) is used to process both real and simulated
data, consisting of many events having the same data structure and
assumed to be statistically independent.3 In addition, complemen-
tary information is also needed to analyze the data, for example
detector parameters (geometry, read-out powering and configura-
tion, magnetic field maps, etc.) or input settings of the simulation
engines. Such values do not change at the event scale. Rather, they
have a slower evolution that defines a much coarser granularity:
a run is defined by a set of events with constant settings.4

1.1. Discovering ROOT

To introduce the ROOT framework, one may follow the typi-
cal approach of new users and its large collection of libraries and
tools, with the help of the sketch in Fig. 1. For a comprehensive
description of ROOT’s features see the User’s Guide [2].

Newcomers often start from their own analysis program, run-
ning over their data (usually stored in ASCII format or accessed
through a relational database engine). They simply look for a li-
brary to produce graphs to visualize their histograms. They start
by playing with the ROOT class TGraph, which can be used to dis-
play a set of (x, y) points including errors.

The next step is to use ROOT histograms (whose base class
is TH1; see Section 2.3 for more details) instead, and let the
TH1::Draw() method produce the plots. ROOT histograms can be
used for binning a data set and to estimate its density. They have a
number of useful properties, allowing the user to manipulate them,
to obtain statistical information about the underlying data, and to
perform fits without caring about the plots — they will redraw
themselves whenever changes are applied.

2 European Organization for Nuclear Research, Geneva, Switzerland.
3 Such independence is very important from the computing point of view, be-

cause it allows to gain the maximum speed-up by distributing subsets of the data
to parallel analysis nodes.

4 In real life, few of the auxiliary parameters may be allowed to vary inside a run.
Hence, they define smaller blocks that are intermediate between the event scale and
the run granularity.
Especially during the early phases, when the data analysis pro-
gram changes quite often, the users may find the interactive C++
interpreter CINT embedded in ROOT very useful. Developing pro-
grams with the help of an interpreter speeds up the typical itera-
tive approach to data analysis by removing the additional compile
and link steps. Of course, if the logic of the application is already
well known, one may prefer to develop the program in a more
structured way, relying on the compiler in the usual way.

The most common task for data access in HEP is the selective,
sparse scanning of data. Traditional RDBMS-like horizontal data
partitioning does not allow for efficient sparse reading, with the
exception of indices. Instead, ROOT uses vertical data partitioning
of arbitrary user-defined objects, implemented in its TTree class.

TTrees are partitioned into branches. During reading each
branch can be accessed independently. A TBranch stores consec-
utive objects or data members of a class or other TBranches. By
default, all branches stored in a TTree are written into separate
buffers in a file, so that iterating over the data stored in a branch
requires only the reading of these associated buffers. TTrees can
span multiple ROOT files. A ROOT file is very similar to a file sys-
tem, allowing for further internal organization using directories.
For example, the main data set could be stored into a single TTree,
whereas summary information (in the form of histograms) resides
in separate directories in the same TFile.

If the data volume grows, the user can choose to split the TTree
instance among several TFile instances. Later, when accessing data,
they can all be chained into a single logical entity, a TChain, mak-
ing accessing several files almost transparent. Because a TChain
inherits from a TTree, it provides the same benefits in terms of
optimized data access, even though the data are distributed among
different files.

The quickest way to develop the user’s analysis program is cre-
ating ROOT macros step by step using CINT. Once the development
phase has ended, performance becomes paramount. The first obvi-
ous optimization step is to convert the application into a compiled
program. Still, one does not need to abandon the use of the inter-
preter: the most efficient way to work with ROOT is to consider the
interpreter as the “glue” which binds together the compiled pieces
of code that perform most of the intensive computation. Actually,
this is less difficult than it appears: CINT macros can be compiled
during the interactive session by ACLiC (Section 2.6.2), to gain the
full speed of compiled code and the reliability of the full C++ com-
piler (CINT has e.g. limited support of C++ templates). In general,
interpreted code may call compiled code and vice versa (more de-
tails in Section 2.6). Finally, if a multi-core machine or a computing
farm is available, PROOF (Section 2.7) provides a way to make full
use of the inherent event parallelism of independent HEP events
by taking care of distributing the analysis over all available CPU’s
and disks in a transparent way.

http://root.cern.ch/drupal/content/root-development-team
http://root.cern.ch/drupal/content/root-development-team
http://root.cern.ch/drupal/content/former-root-developers
http://root.cern.ch
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Fig. 1. Most frequent approach to start using ROOT.

Fig. 2. Example of typical usage of ROOT.
1.2. Typical uses of ROOT

Fig. 2 shows most of the features that a ROOT application can
have. Of course, a single application rarely has all of them: for ex-
ample, its focus could be on the detector simulation or on the data
analysis, but not both.

ROOT provides the Virtual Monte Carlo (VMC) interface (Sec-
tion 2.5) to the most important HEP simulation engines, like
Geant4 [3] (C++), Geant3 [4], Fluka [5] (FORTRAN), to simulate
the passage of particles through matter and their propagation in
a magnetic field. The VMC interface allows the user to build an
application that simulates the behavior of a particle detector, with
the freedom to switch between different simulation engines. Com-
paring the results of different simulation engines allows to esti-
mate systematic simulation uncertainties.

Usually, most ROOT users develop programs to perform statis-
tical data analysis (see also Section 2.2) of binned (histograms) or
unbinned data (TTree variables). The TMVA package5 (Section 2.2)
can be used for event classification to discriminate between signal
and background. Various methods exist for performing the best fits
of the selected data to theoretical models.

ROOT can also be used to develop an event display (Sec-
tion 2.4). An event display is an application that provides detector

5 http://tmva.sourceforge.net/.
geometry visualization, views of hits6 and clusters of hits used to
build calorimeter jets7 and physics vectors (4-momenta8). In ad-
dition, clusters and physics vectors are used to build tracks that
visualize the path of particles through the detector.

2. Description of the ROOT framework

The ROOT framework contains about 3000 classes, grouped into
about 110 packages and plugins. In addition, the latter are grouped
into top-level categories that are the subject of this section.

2.1. Input/output

ROOT is currently used for storing up to 50 petabytes of data
according to the latest estimates.9 The I/O layer stores C++ objects
into storage systems, be it file systems, databases, common pro-

6 In the HEP jargon, a “hit” is a localized energy deposition that is detected by
the read-out electronics.

7 A jet is a 3D distribution of energy deposition that is usually well contained by
a cone (think about a very big elongated drop of water, to visualize it).

8 A four-momentum is a vector of the spacetime whose time-like component is
(proportional to) the particle energy and the space-like component is the 3D mo-
mentum.

9 According to a survey of a number of experiment computing coordinators.

http://tmva.sourceforge.net/
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Fig. 3. Transient/persistent conversion in ROOT.
tocols to storage elements (like xrootd [6], dCache,10 or rfio11), or
HTTP, see Fig. 3.

2.1.1. Describing C++ objects
To be stored, C++ objects need to be described: the I/O must

know what to store. ROOT provides this description (called dictio-
nary) for all its classes and users can build dictionaries for their
own classes. The description data (commonly called reflection) are
provided by CINT, or by a combination of GCCXML [7] and Reflex,
a C++ reflection library that is part of ROOT. Based on that infor-
mation, ROOT knows where in memory an object’s data members
are, what their size is, and how to store them. ROOT I/O supports
pointer (un)swizzling, the conversion of pointers to indexes in the
output buffer. It can even deal with an object graph with circular
references (making sure each object is streamed only once to the
buffer), and it is able to restore it correctly upon reading.

Because the description of all relevant classes is stored with the
data, changes of the class definition of objects stored with ROOT
I/O are supported. When reading, the descriptions from the persis-
tent layer and the in-memory version are compared: if differences
are found, ROOT automatically translates in many cases from the
old to the new format (schema evolution). A complete framework
for arbitrary user controlled conversions is also available [8].

2.1.2. TFile
A ROOT file is read and written by the class TFile and is de-

signed to be write-once, read-many (while supporting deletion and
re-use of contained data).

The content of a ROOT file is a simple binary stream, with a
layout described in the class documentation of TFile [9]. All data
but the header is usually compressed to reduce the storage space
and I/O bandwidth usage of files at the cost of slightly increased
CPU time when reading and writing files. The file consists of a
content index, the list of type descriptions relevant for the file, and
the actual data. Each data chunk is named and it can be retrieved
given its name. TFile also supports hierarchical storage in nested
directories.

Typical file sizes range from a few kilobytes to several giga-
bytes. Files can be merged into new, larger files; this can be done
recursively, i.e. merging also the collections themselves that are
contained in the file, as long as they have the same name and
are of the same type. Collections of files can also be merged into
a zipped container; ROOT supports transparent unzipping of and
navigation in this collection of files.

The description of the classes stored in the file (Section 2.1.1)
can be used to read the data even without the C++ class definition.

10 http://www.dcache.org/.
11 http://hikwww2.fzk.de/hik/orga/ges/infiniband/rfioib.html.
Fig. 4. Automatic splitting of a container of objects.

One can thus write C++ objects using the definition from a user
library, and read them back without the user library. Any available
reflection data is used to interactively browse a ROOT file using the
TBrowser that can also expand and browse the content of all C++
objects, either from ROOT or STL, or user defined.

ROOT files can be opened via the HTTP protocol, without any
special server requirement. ROOT only asks for those parts of the
file (using http content-range requests) that are actually re-
quired. This allows a low-latency, live remote browsing of ROOT
files.

2.1.3. TTree and I/O
A TTree is a container that is optimized for I/O and memory us-

age. A TTree consists of branches, branches can contain complete
objects of a given class or be split up into sub-branches contain-
ing individual data members of the original object. This is called
splitting and can be done recursively till all sub-objects are split
into branches only containing individual data members. Splitting
can even transform containers into branches of the containee’s
data members, grouping them as shown in Fig. 4. Splitting can
be done automatically using a class’ dictionary information. Each
branch stores its data in one or more associated buffers on disk.
The desired level of splitting depends on the typical future access
patterns of a tree. If during analysis all data members of an object
will be accessed then splitting will not be needed. Typical analy-
ses access only a few data members; in this case splitting is highly
beneficial.

Branch-based storage is called vertical or column-wise storage
(CWS; Fig. 5), as opposed to horizontal or row-wise storage (RWS)
as is usually found in RDBMS databases. In CWS, just like in RWS, a

http://www.dcache.org/
http://hikwww2.fzk.de/hik/orga/ges/infiniband/rfioib.html
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Fig. 5. Column-wise layout of TTree data in memory buffers.
collection (“table”) of similar objects (“rows”) is assumed. However,
in RWS all data members of an object are always read, while in
CWS only the needed buffers (e.g. data members) are read. Split-
ting is an automated way to create these columns.

CWS reduces the number of I/O operations and the amount of
transferred data, because it reads only the needed parts of each
object. All other members of the object keep the values defined
by the class default constructor. When iterating through the col-
lection, data members that need to be read are consecutive on the
storage medium in the case of CWS. This allows block-wise reading
of the data for several entries (rows) in one go, something mas-
sively favored by all modern operating systems and storage media.
Another advantage stems from the fact that ROOT compresses the
data buffers using Huffman encoding [10], which benefits from
seeing the same byte pattern more often, because the same data
member usually has similar values (e.g. a particle’s type ID).

Because a TTree describes the objects it contains, one can read
objects from a TTree even without their original class definition.
The TTree can even generate a C++ header file representing the
layout of the object’s data as stored in the TTree. Combined with
the power of the interpreter and ACLiC (Section 2.6.2) this allows
a smooth transition from stored binary data to C++ objects, even
without C++ libraries. TTrees can also generate a TSelector skeleton
(Section 2.7.4) for data analysis automatically.

Given the huge amount of data commonly processed by users
of ROOT, TTrees often do not fit into a single file, or the file grows
to impractical sizes. In addition, in (parallel) batch system-based
analyses, splitting TTrees across several files facilitates the distri-
bution of data. ROOT supports this with TChain, by implementing
a collection of TFiles that all contain a part of the same12 TTree.
The TChain inherits from TTree, hence making it irrelevant to the
user whether the TTree is stored in one or several physical files.

Analyses commonly access the same part of a TTree for all
its entries. ROOT implements an auto-adaptive pre-fetch mecha-
nism reading the next entry while the previous entry is still be-
ing processed. This reduces the effect of high latency networks

12 With identical name and structure.
dramatically: reasonable sized analyses become viable even over
ADSL. Fig. 6 shows the duration of an example data analysis. The
280 MB data file is hosted at CERN with a 100 Mbit/sec network
connection; the analysis reads 6.6 MB. The bandwidth shown is
the smallest bandwidth found on the connection path. For a low-
occupancy connection bandwidth is clearly not the limiting factor.

2.1.4. I/O formats
ROOT can store via its I/O interface any C++ objects in binary

ROOT files. It also supports the XML representation, though mostly
for didactic purposes13: it nicely demonstrates the layout, but its
performance (due to XML’s ASCII-based representation) and disk
usage (due to XML’s verbose meta-data) prohibits its used as a
production storage format.

Data can also be stored into database tables through an ab-
straction layer; the description of objects and their member is
translated into tables and their columns.

2.2. Mathematical and statistical tools

One may need to manipulate data in a number of different
ways. Because ROOT is a C++ framework, all C and C++ standard
functions are available. In addition, ROOT provides a number of ad-
vanced mathematical and statistical functions, well integrated into
the framework, that allow to perform virtually all possible opera-
tions with a few simple commands.

The minimal set of tools required for numerical computing is
provided by the MathCore library. It consists of the following com-
ponents.

• Commonly used mathematical functions like special functions
not provided yet by the C++ standard and statistical distribu-
tion functions. For each statistical distribution, the probability
density, the cumulative and its inverse functions are provided.
These functions are provided in the namespaces ROOT::Math
and TMath.

13 This format has been implemented originally as an exchange format with non-
ROOT-based applications, but only a few applications have made use of it.
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Location of
data analysis

Bandwidth
(Mbit/s)

Latency
(ms)

Analysis
CPU

Duration (s)

Cache size (KB)

0 64 10240

Local (no network) Pentium4, 2.4 GHz 3.4 3.4 3.4
CERN 100 0.3 Pentium4, 3 GHz 8.0 6.0 4.0
CERN wireless 10 2.0 Core Duo, 2 GHz 12 5.6 4.9
Orsay, France 100 11.0 Pentium4, 3 GHz 130 12 9.0
Amsterdam, NL 100 22.0 Opteron 280 230 12 8.4
ADSL 8 72.0 Core Duo, 2 GHz 740 48 28
Caltech, USA 10,000 240.0 Opteron 280 >1800 130 9.9

Fig. 6. Performance improvements by the TTree cache, see text.
• Classes for random number generations (TRandom classes).
The default pseudo-random number generator is the Mersenne
and Twister generator (TRandom3 class) [11].

• Basic implementation and interfaces of numerical algorithms,
like integration, derivation or simple (one-dimensional) mini-
mization.

• Classes and interfaces required for fitting all the ROOT data
objects.

• Abstract interfaces and adapter classes for function evaluation
in one or more dimensions.

The MathMore library complements MathCore by providing ad-
ditional mathematical functionality. It is based on the GNU Sci-
entific Library (GSL) [12], which is used as an external library.
MathMore implements extra special functions like Bessel functions
of various types and fractional order, elliptic integrals, Laguerre and
Legendre polynomials, hypergeometric functions. MathMore con-
tains additional implementations of the numerical algorithms and
extra random number generators which are present in GSL.

Various libraries exist for numerical minimization and fit-
ting. These libraries include the numerical methods for solving
the fitting problem by finding minimum of multi-dimensional
functions. A common interface exists in MathCore (the class
ROOT::Math::Minimizer ) for multi-dimensional numerical mini-
mization. Several implementations of this interface are present in
ROOT:

• Minuit provides an implementation of the popular MINUIT min-
imization package [13]. It is a direct translation from the orig-
inal Fortran code to C++ and provides a very similar API.

• Minuit2 is a completely new objected-oriented implementation
of MINUIT [14]. The same minimization algorithms like Mi-
grad and Simplex are present, but with new objected-oriented
interfaces. Furthermore, it provides an implementation of a
specialized method for finding the minimum of a standard
least-square or likelihood functions, by linearizing the Hessian
matrix. This algorithm is called in ROOT Fumili2.

• Fumili: library providing the implementation of the Fumili fit-
ting algorithm [15], another specialized minimization method
for least-square or likelihood functions.

• MathMore offers minimizers based on GSL. These include var-
ious minimization methods based on conjugate gradient algo-
rithms, the Levenberg–Marquardt algorithm [16] for non-linear
least-squares fitting and a stochastic minimization method
based on simulated annealing.

• The TLinearFitter class implements linear least-squares fitting
with a possibility for using robust fitting.

ROOT contains two libraries providing matrices and vector
classes and linear algebra operations:

• Matrix: general matrix package including matrix TMatrix and
vector TVector classes and the complete environment to per-
form linear algebra calculations, like equation solving and
eigenvalue decompositions.

• SMatrix: package optimized for high performance matrix and
vector computations of small and fixed size. It is based on ex-
pression templates to achieve a high level optimization and to
minimize memory allocation in matrix operations. It derives
from a package originally developed for HeraB [17]. Perfor-
mance studies of the matrix packages in benchmark applica-
tions used in HEP have been shown elsewhere [18].

Two libraries exist in ROOT also for describing physics vectors
in 2, 3 and 4 dimensions (relativistic vectors) with rotation and
transformation algorithms:

• Physics: library with the TVector3 and TLorentzVector classes.
• GenVector: package with generic class templates for modeling

geometric vectors in 2 and 3 dimensions and Lorentz vectors.
The user may control how the vector is internally represented,
by making a choice of coordinate system and underlying scalar
type.

Other mathematical and statistical packages in ROOT are:

• Unuran: universal algorithms for generating non-uniform
pseudo-random numbers, from a large set of classes of contin-
uous or discrete distributions in one or several dimensions.14

• Foam: multi-dimensional general purpose Monte Carlo event
generator (and integrator). It randomly generates points (vec-
tors) according to an arbitrary probability distribution in n
dimensions [19].

• FFTW: library with implementation of the fast Fourier trans-
form (FFT) using the FFTW package.15 It requires a previous
installation of FFTW.

• MLP: library with the neural network class, TMultiLayerPercep-
tron based on the NN algorithm from the mlpfit package.16

• Quadp: optimization library with linear and quadratic pro-
gramming methods. It is based on the Matrix package.

• Statistic classes for computing limits and confidence levels. Some
of these classes are currently provided by libPhysics.

• TMVA: toolkit for multivariate data analysis, providing ma-
chine learning environment for the processing and paral-
lel evaluation of sophisticated multivariate classification tech-
niques. Though specifically designed to the needs of high-
energy physics applications, it offers general methods that can
be used in other fields, too [20].

• RooFit: toolkit for modeling statistical distributions (especially
the ones used in physics analysis). Models can be used to per-
form likelihood fits, produce plots, and generate “toy Monte
Carlo” samples for various studies [21].

14 http://statmath.wu-wien.ac.at/unuran/.
15 The “Fastest Fourier Transform in the West”, http://www.fftw.org/.
16 http://schwind.web.cern.ch/schwind/MLPfit.html.

http://statmath.wu-wien.ac.at/unuran/
http://www.fftw.org/
http://schwind.web.cern.ch/schwind/MLPfit.html
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Fig. 7. The ROOT fit panel: the General tab (left) for selecting function, fit methods and options, the Set Parameter dialog (up right) for setting initial values and limits, and
the Minimization tab (bottom right) for selecting the minimization library and method.
• RooStats: package providing the required advanced statistical
tools needed by the LHC experiments for their final data anal-
ysis in order to calculate confidence intervals, to perform hy-
pothesis tests and combinations of different analysis channels.
It provides common interfaces to the major tools with im-
plementations based on different statistical techniques, which
have been approved by the experiment statistical committees.
It is based on the RooFit classes for describing probability den-
sity functions or likelihood functions.

2.3. Histograms

When dealing with many events, one usually adopts statistical
methods to analyze them. Two different approaches are possible:
statistical data analysis of binned or unbinned data. The most fre-
quently used approach involves binned data, in the form of his-
tograms, whereas unbinned data are saved into instances of the
TTree class (see Section 2.1.3).

In ROOT, one-dimensional histograms are defined by the base
class TH1: actual classes inherit from TH1 with the type of the bin
count (char, float, double, . . .) defined by the derived class. TH1
is also the base class for 2D and 3D histograms (again, support-
ing different types of entries) and for profile histograms (TProfile,
TProfile2D and TProfile3D). Profile histograms are used to display
the mean value of a variable and its standard deviation in each
bin of another dependent variable (or variables in case of multi-
dimensional profile histograms). Histogram classes can also be
used to analyze weighted data sets.

ROOT histograms internally contain a pair (value, uncertainty)
for each bin, plus the numbers of entries which fall outside its lim-
its (both overflow and underflow). Additional information like the
total number of entries and the integral of the histogram are also
stored. Statistical information such as the mean and standard devi-
ation along the histogram axis can be obtained. The binning can be
defined with constant or variable step size and higher-dimensional
histograms support projecting and slicing. Histograms can also be
fitted with a user provided function.
Many types of operations are supported on histograms or be-
tween histograms: addition and subtraction, multiplication and
division with histograms, functions, or scalars. They can also be
rebinned and compared using statistical hypothesis tests like the
chi-square test.

Histograms can be plotted by invoking the Draw() method and
the result can be interactively manipulated (see Section 2.4). Labels
can be numerical or textual and the user can define titles17 for the
histogram and each axis.

Sets of (x, y) or (x, y, z) data can be displayed and analyzed
in ROOT using the TGraph or TGraph2D classes. The data errors
can also be displayed using the derived classes TGraphErrors and
TGraphAsymErrors. In addition to fitting, the TGraph classes pro-
vide the functionality for interpolating the data points using dif-
ferent techniques such as cubic splines and for smoothing.

ROOT allows the user to fit both binned and unbinned data
with parametric functions which can be displayed together with
the data. The plottable functions are represented by the classes
TF1, TF2 or TF3 depending on the dimension. They can be created
either from precompiled user code, using global functions or class
member functions or from mathematical expressions which are
handled by the TFormula class. TFormula is able to parse expres-
sions containing mathematical functions, including those in TMath
and using a special syntax for defining the parameters. Predefined
expression representing functions like polynomial, Gaussians, ex-
ponential or Landau are also available to facilitate the usage.

In addition to invoking the Fit() method from a macro, the user
can also make use of the GUI provided by the fit panel (Fig. 7) dur-
ing interactive sessions. It can be opened directly from the ROOT
TCanvas menu or via the context menu of any ROOT object which
is suitable for fitting, available after a right mouse click on the ob-
ject. With the fit panel, the user can select the fit function, set the
initial parameter and control all the available fit options. It offers

17 LATEX-like strings are supported.
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Fig. 8. Example of graphical output. The canvas contains 6 pads.
also the possibility to draw scan plots and contour plots of the fit-
ted parameters.

2.4. Graphics and User Interface

Whenever ROOT draws an object, it puts it into a TCanvas in-
stance, representing an area mapped to a window directly under
the control of the display manager. One can save the TCanvas into
several possible formats: for standard graphics formats, publication
quality is obtained by means of vector graphics like PostScript or
PDF, but raster graphics is usually a better choice for images to
be included into web pages. One can also store it as a C++ macro
where the C++ statements reproduce the state of the TCanvas and
its contents. This allows complete reproduction from within ROOT.

Of course, we can open multiple canvases if we want to dis-
play different things, but it is often better to organize everything
into a single TCanvas. For this reason, a TCanvas instance can be
subdivided into independent graphical areas, called “pads” (by de-
fault, a canvas contains a single pad, occupying the whole space —
TCanvas inherits from TPad), as shown in Fig. 8.

All ROOT classes inheriting from TObject can be displayed on
a pad with the Draw() method. Graphical object sizes are usually
expressed in user coordinates. For instance, after a histogram or a
graph has been drawn, the user coordinates coincide with those
defined by the plot axes. The pad position in its parent pad is ex-
pressed in normalized coordinates, in which the pad is mapped to
a unit rectangle. The TCanvas requires dimensions in pixels to be
positioned on the desktop.

In ROOT, the Draw() method does not actually draw the object
itself. Rather, it adds the object to the display list of the pad (so
that it gets drawn every time the pad is redrawn) and invokes the
Paint() method, that draws the actual graphics primitives. ROOT
manages the repainting of the TCanvas automatically when either
the object is updated of the operating system requires.

Every ROOT object drawn on a pad can be edited interactively.
In addition to the pop-up editor (opened from the menu obtained
by right-clicking on any object), each canvas can also host an edi-
tor (opened by selecting “Editor” from the “View” menu provided
by the window). To modify any object shown by the canvas, simply
open the latter editor and click on the object.

2.4.1. 2D graphics
2D graphics include everything we can display on the monitor

or print on paper. ROOT needs to be interfaced with the operating
system’s graphics engine, in order to be able to display windows
containing some plot, for example. ROOT uses the X11 graphics
engine on Unix-like systems and Win32 on Windows, but can also
use the multi-platform Qt library.18

18 Originally provided by Trolltech, that was renamed to Qt Software (http://
www.qtsoftware.com/) after acquisition by Nokia in 2008.

http://www.qtsoftware.com/
http://www.qtsoftware.com/
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Fig. 9. Screenshot of AliEVE showing a simulated proton–proton event at the LHC collider as seen by the ALICE detector. The reconstructed particle trajectories are shown
as black lines and the measured particle passage-points as colored dots.
Through the libAfterImage library,19 ROOT is also able to
load bitmap images and to manipulate them. This package also al-
lows to produce bitmap output files in all common formats such
as GIF, PNG, JPEG, etc.

2.4.2. 3D graphics
There are several ways to render 3D graphics in ROOT, the pre-

ferred one using the OpenGL20 graphics library, which is used in
ROOT to display data using lego and surface plots and to ren-
der detector geometries. Work is in progress to also use it for 2D
graphics and thus have a single, portable rendering interface for
2D and 3D screen graphics.

2.4.3. Geometry and event display
Geometry in the 3D space is described in ROOT by means of

basic solids that can be joined, intersected or subtracted to cre-
ate more complex shapes. The possibility to visualize 3D objects
is very important. ROOT implements its own scene-graph manage-
ment library and rendering engine that provides advanced visual-
ization features and real-time animations. OpenGL library is used
for actual rendering.

Event display programs are an important application of 3D visu-
alization. EVE, the event visualization environment of ROOT, uses
extensively its data-processing, GUI and OpenGL interfaces. EVE
can serve as a framework for object management offering hier-
archical data organization, object interaction and visualization via
GUI and OpenGL representations and automatic creation of 2D

19 http://www.afterstep.org/afterimage/.
20 http://www.opengl.org/.
projected views. On the other hand, it can serve as a toolkit sat-
isfying most HEP requirements, allowing visualization of geome-
try, simulated and reconstructed data such as hits, clusters, tracks
and calorimeter information. Special classes are available for visu-
alization of raw-data and detector response. EVE is used in the
ALICE21 experiment as the standard visualization tool, AliEVE
(Fig. 9), using the full feature set of the environment. In the
CMS22 experiment, EVE is used as the underlying toolkit of the
cmsShow physics-analysis oriented event-display. Both AliEVE
and cmsShow are also used for the online data-quality monitor-
ing.

2.4.4. Graphical User Interface
The ROOT Graphical User Interface (GUI) integrates typical GUI

functionality with ROOT features, like storing the GUI as C++
source, interpreted GUI via CINT and CINT-based signal/slot com-
munication. The result is a flexible GUI toolkit, rich of functional-
ities and offering all widgets that are provided by other toolkits,
including a GUI builder.23

The ROOT GUI builder provides tools for developing user inter-
faces based on the ROOT GUI classes. It offers a palette of user
interface elements. They can be selected, positioned, and grouped,
laid out in the main application frame. According to the selected
widget, a dynamically created context menu provides detailed con-

21 http://aliceinfo.cern.ch/Public/Welcome.html.
22 http://cms.web.cern.ch/cms/index.html.
23 The development of a dedicated ROOT GUI was required because when the

project started there were no good cross platform toolkit; Qt existed but had li-
cense problems.

http://www.afterstep.org/afterimage/
http://www.opengl.org/
http://aliceinfo.cern.ch/Public/Welcome.html
http://cms.web.cern.ch/cms/index.html
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trol of widget attribute settings. One can save on a ROOT macro the
result, and take such C++ code as starting point for further devel-
opments.

2.5. Simulation

TVirtualMC provides a virtual interface to Monte Carlo applica-
tions, allowing the user to build a simulation independent of any
actual underlying Monte Carlo implementation itself. A user will
have to implement a class derived from the abstract Monte Carlo
application class, and provide functions like ConstructGeometry(),
BeginEvent(), FinishEvent(), . . . . The concrete Monte Carlo imple-
mentation (Geant3, Geant4, Fluka) is selected at run time — when
processing a ROOT macro where the concrete Monte Carlo object is
instantiated. This allows for comparison between different engines
(often used to estimate the systematic simulation uncertainties)
using a single application. ROOT thus offers a single interface com-
mon to all of the most common simulation engines; it offers a
centrally managed, performant C++ geometry system instead of a
plethora of different, often incompatible and too specialized geom-
etry systems as provided by the simulation engines. Its geometry
system offers I/O capabilities and an interface to ROOT’s event dis-
play. Examples of VMC can be found in AliROOT [27] for the ALICE
experiment at the LHC or FAIRROOT [28] for the FAIR experiments
at GSI, Darmstadt.

Monte Carlo simulations always have to describe the input par-
ticles, together with their interactions, and the detector (geome-
try, materials and read-out electronics). The definition of particles,
available interactions and detector is done during the initialization
phase. The main body of the application is then a loop over all par-
ticles that are traced through all materials until they exit, stop or
disappear (by decay or annihilation). The tracing is done in a dis-
crete fashion: at each step, the detector volume is found in which
the particle is located and pseudo-random numbers are used to
“draw” one among possibly several physical processes, to simulate
the interaction of the particle with the matter. If an interaction
occurs, the energy lost by the particle is computed (again, it is
usually a random process) and subtracted from its kinetic energy.
When the latter reaches zero, the particle stops, otherwise a new
step is performed.

Having computed the energy lost by all particles inside the de-
tector, one has to simulate the behavior of the read-out electronics.
This is usually done later, with another program that receives the
energy lost in different locations as input, but it can also be done
by the very same application that is performing the particle tracing
inside the detector. Usually, the simulation of the read-out elec-
tronics also involves some use of pseudo-random generators, at
least to simulate the finite resolution of any real measuring de-
vice.

In any detector simulation, the definition of its geometry has
special importance. The ROOT geometry package is a tool to build,
browse and visualize detector geometries. It is independent from
any Monte Carlo simulation engine, though it has been designed to
optimize particle transport in correlation with simulation packages
as Geant3, Geant4 and Fluka.

Most detectors in HEP have been modeled with the ROOT ge-
ometry (experiments at LEP, LHC, FNAL, HERA, GSI, etc.). For ex-
ample, the standard ROOT test suite tracks particles to 35 large
detectors. The Geometry Description Markup Language (GDML)24

system can be used to export/import geometries from/to other for-
mats (e.g. Geant3, Geant4).

The building blocks of any geometry are the volumes. Volumes
may contain other volumes, producing a hierarchy of volumes. The

24 http://gdml.web.cern.ch/GDML/.
biggest one, called the “world”, contains all other volumes and pro-
vides the master reference system (MARS) in which the others are
positioned. Each volume (except for the “world”) needs to be asso-
ciated with a medium, that can be a mixture of different materials
(whose weights are the relative densities).

Complex geometries can be built in a hierarchical way, through
the concept of containment: one has to define and position some
volumes inside other ones. Positioning is done with spatial trans-
formations with respect to the “mother reference system” (i.e. the
system defined by the containing volume). Complex volumes are
built using basic or primitive shapes, already defined by ROOT
(e.g. box, tube, cone, etc.), through operations like join or subtract.
Finally, a given volume can be positioned several times in the ge-
ometry or it can be divided accordingly to user-defined patterns,
automatically defining new contained volumes.

Once a geometry has been created, it can be saved into a ROOT
file or as C++ macro with the Export() method of TGeoManager.
Loading the geometry is done with its Import() method. In addi-
tion, individual volumes can also be saved into a ROOT file. Finally,
ROOT provides a graphical user interface to edit or build a geome-
try. The editor can be opened with the Edit() method of TGeoMan-
ager.

Having defined the detector geometry, particles need to be
tracked inside all volumes, and their interaction simulated. The ap-
plication can make use of the ROOT geometry package to build a
detector and the virtual Monte Carlo interface to access one or
more simulation engines. ROOT makes it possible also to store and
visualize tracks, as it is done inside the drawing package with the
TGeoTrack class.

2.6. Interpreters

CINT is an almost full ANSI compliant C/C++ interpreter. It
serves as ROOT’s non-graphical user interface, both for interactive
use (through CINT’s prompt) and in headless “batch” mode, where
CINT processes C++ code without showing any graphics. Other use
cases are shown in Section 2.6.1.

In most cases, physicists develop data analysis programs grad-
ually, through repeated cycles of changing and running the code.
Traditionally, the code needed to be compiled, linked, loaded, and
then again unloaded so the next iteration could be started. The
ability to use an interpreter is a fundamental improvement for this
approach of rapid development.

CINT allows interpreted and compiled code to interact: it can
call compiled code just like it can be called from compiled code,
in a re-entrant way. With that, code like histogram->Draw()
can be interpreted, resulting in the function TH1::Draw() in one
of ROOT’s libraries being called. On the other hand, compiled code
can contain the statement gROOT->ProcessLine("myobj
->Go()"), which could execute the interpreted function My-
Obj::Go(). The transition of the call chain from interpreted
to compiled code happens through stubs; CINT keeps a function
pointer to the stub for each function that can be called from the
interpreter. The stubs are generated as part of the dictionary, see
Section 2.1.1.

ROOT also provides the Python interface PyROOT [22] that uses
some of CINT features. This allows it to do dynamic call translation
instead of relying on a fixed wrapper. Also provided is an inter-
face to Ruby. Python and Ruby offer late binding and an easy to
learn syntax. For a C++ framework, the major advantage of pro-
viding a C++ interpreter (e.g. compared with a Python interpreter)
is the homogeneity of languages: users write compiled and inter-
preted code in the same language, they can transfer code or parts
of it from the interpreted “world” to the compiled one without any
transition.

http://gdml.web.cern.ch/GDML/
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2.6.1. Interpreter use cases
While interpreters’ use cases are virtually unlimited, there are

several key examples of use already in ROOT’s context. The graph-
ical user interface implements the signal slot mechanism through
the interpreter: the signal is emitted as strings interpreted by the
interpreter, which are evaluated dynamically. This allows powerful
expressions and loose coupling between the caller and the callee,
because the called function does not need to be resolved at link
time.

Another use case is ROOT’s auto-documentation component: it
parses sources on demand, extracting documentation strings. It can
even interpret code that is embedded in the documentation, run it,
and embed the output and the code into the documentation. This
is an elegant way of keeping graphical output up to date and of
showing examples of use for the documented class.

As already mentioned for signal/slot, the interpreter allows a
loose coupling of libraries through strings resolved at runtime, in-
stead of symbols resolved at link time. ROOT makes use of this fea-
ture for its plugin manager: instead of hard-wiring dependencies
or implementations of interfaces at link time, ROOT determines
the plugin to use at run time, by executing a registered piece of
C++ code that will instantiate the plugin. This approach is dynamic
and extensible, even by the user. It saves resources because it does
not load unused plugins.

ROOT even relies on CINT for some parts of the I/O framework:
the interpreter allows ROOT to call a helper function on an object
given only its memory address and type name. This, too, is an ideal
use case for an interpreter.

2.6.2. Automatic library builds
Interpreting code is always slower than compiled code. Once

code has been developed it should thus be “moved into the com-
piled world” and the transitioning of code should be seamless. But
it is not: code needs to be compiled, linked, and loaded. ROOT’s
serialization framework and the interpreter require an additional
build step, see Section 2.1.1. For that, the interpreter scans the
user’s header files and generates a source file containing the dic-
tionary. These dictionaries, too, need to be compiled, linked, and
loaded.

Tracking of dependencies is a common request, to only update
the binary if a relevant source file has been changed. Traditionally,
users would write a Makefile to compile the code which they then
link into a binary, either into a shared library to be loaded into
ROOT, or into a stand-alone executable. This is a symptom that
the migration of code from the interpreter to a binary is far from
smooth.

ROOT removes this hurdle altogether, by completely hiding the
complexity from the user. To load the source file myCode.cxx
into the interpreter, one would usually call

.L myCode.cxx

This file’s functions and types are then available for interpretation.
To instead load the file as a shared library, and if needed to

build it on the fly, users issue this command:

.L myCode.cxx+

This invokes an integrated build system called ACLiC that works on
all supported platforms. It is a powerful replacement for external
build systems hiding all of the build complexity. Multiple source
files can be compiled into a library by including them in a wrapper
source file.

The smooth transition from interpreted to compiled code of-
fered by ACLiC has been so successful that ROOT is now consid-
ering the implementation of true just-in-time compilation made
possible e.g. though LLVM [23,24], instead of the invocation of ex-
ternal tools through ACLiC.

2.7. Parallel processing using PROOF

The Parallel ROOT Facility, PROOF [25], is an extension of ROOT
enabling interactive analysis of large sets of ROOT files in parallel
on clusters of computers or many-core machines. More generally
PROOF can parallelize the class of tasks for which solutions can
be formulated as a set of independent sub-tasks (embarrassingly or
ideally parallel).

The main design goals for the PROOF system are:

• Transparency: there should be as little difference as possible
between a local ROOT based analysis session and a remote
parallel PROOF session. Typically analysis macros should work
unchanged.

• Scalability: the basic architecture should not put any implicit
limitations on the number of computers that can be used in
parallel.

• Adaptability: the system should be able to adapt itself to varia-
tions in the remote environment (changing load on the cluster
nodes, network interruptions, etc.).

PROOF is primarily meant as an alternative to batch sys-
tems for Central Analysis Facilities and departmental work groups
(Tier-2’s and Tier-3’s [26]) in particle physics experiments. How-
ever, thanks to a multi-tier architecture allowing multiple levels of
masters, it can be easily adapted to a wide range of virtual clusters
distributed over geographically separated domains and heteroge-
neous machines (GRID’s).

The PROOF technology has also proven to be very efficient in
exploiting all the CPU’s provided by many-core processors. A ded-
icated version of PROOF, PROOF-Lite, provides an out-of-the-box
solution to take full advantage of the additional cores available in
today desktops or laptops.

Apart from the pure interactive mode, PROOF has also an
interactive-batch mode. With interactive-batch the user can start
very long running queries, disconnect the client and at any time,
any location and from any computer reconnect to the query to
monitor its progress or retrieve the possibly intermediate results.
This feature gives it a distinct advantage over purely batch based
solutions, that only provide an answer once all sub-jobs have been
finished and merged.

2.7.1. PROOF architecture
The PROOF system is implemented using a multi-tier architec-

ture as shown in Fig. 10.
The client is the user that wants to use the resources to per-

form a task. The master is the entry point to the computing fa-
cility: it parses the client requests, it distributes the work to the
workers, it collects and merges the results. The master tier can be
multi-layered. This allows, for example, to federate geographically
separated clusters by optimizing the access to auxiliary resources,
like mass storage systems (MSS). It also allows to distribute the
distribution and merging work, which could otherwise become the
bottle-neck in the case of many workers.

PROOF-Lite, the version of PROOF dedicated to multicore desk-
tops, implements a two-tier architecture where the master is
merged into the client, the latter being in direct control of the
workers.

2.7.2. Event level parallelism
One of the ideas behind PROOF is to minimize the execution

time by having all contributing workers terminating their assigned
tasks at the same time. This is achieved by using fine-grained work
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Fig. 10. PROOF multi-tier master–worker architecture.

Fig. 11. Schematic view of the PROOF workflow.
distribution, where the amount of work assigned to a worker, is
adapted dynamically following the real-time performance of each
worker. In principle, the packet can be as small as the basic unit,
the event.

A schematic view of the execution flow is given in Fig. 11.

2.7.3. The packetizer
The packetizer is responsible for load balancing a job between

the workers assigned to it. It decides where each piece of work
— called a packet — should be processed. An instance of the pack-
etizer is created on the master node. In case of a multi-master
configuration, there is one packetizer created for each of the sub-
masters.

The performance of the workers can vary significantly as well
as the file data transfer rates (local or remote files). In order to
dynamically balance the work distribution, PROOF uses a “pull ar-
chitecture”: when workers are ready for further processing they
ask the packetizer for a next packet, see Fig. 12. The packetizer
uses a worker’s processing rate to determine the size of the next
packet for that worker. The packetizer tries to size all packets such
that all workers will end at about the same time. At the beginning
of a query the packets will be small, to quickly get an idea of the
performance of the workers. Then the packet size will be increased
to allow optimal disk access patterns (avoiding small reads) and to
best suite the workers CPU performance.
2.7.4. The selector framework
To be able to perform event-level parallelism, PROOF needs to

be in charge of the event-loop, i.e. the execution flow steering the
job. This requires that the code to be executed must have a pre-
defined, though flexible structure. In ROOT this is provided by the
Selector framework, defined by the abstract class TSelector, which
defines three logical steps:

(1) Begin, where the job definition (parameters, input data, out-
puts) is given; executed on the client and the workers;

(2) Process, where the actual job is done; called for each event,
on the workers;

(3) Terminate, where the results are finally manipulated (fitted,
visualized, etc.); called on the client and the workers.

Process is the part that can be parallelized for the class of prob-
lems addressed by PROOF.

2.7.5. Aggregation of results
PROOF has a powerful feature that complements the use of

the TSelector framework. After each worker has executed the Ter-
minate method described above, it sends the set of named results
back to its master. The master collects these intermediate results
and aggregates them depending on their type. For several com-
mon types, like for example histograms, there is a natural way to
combine these results. The histogram obtained by adding all in-
termediate histograms together is identical to the one that would
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Fig. 12. The PROOF packetizer distributes the work.

have resulted from a single worker processing all events. Similarly,
event lists can be aggregated etc. PROOF uses a well defined API
for this process allowing user defined classes to make use of this
feature. Intermediate results that cannot be combined are returned
“as is” in a single collection for each resulting object.

2.7.6. Real time monitoring and feedback
The user can monitor the progress of a PROOF query or job in

a number of different ways. A widget shows the number of events
and files processed, the % completed and the estimated time to
completion. This feedback is useful to get a high level idea of the
behavior and performance of the PROOF system and its underlying
components.

If the user registered histograms in the Begin method of the
TSelector class, PROOF can show these histograms, updating dy-
namically, during the running of the query. This feature allows the
progress of the query to be monitored in detail, especially if a very
large data-set is being processed. The dynamically updating display
is also very effective in educational and demonstration settings.

3. Installation instructions

ROOT can be build from source on all supported platforms us-
ing the well known Open Source tools like Subversion, config-
ure and make.

3.1. Getting the source

The ROOT source tar-ball is distributed by the CPC Program Li-
brary as aefa_v1_0.tar.gz. Uncompress the tar file and extract its
contents e.g. using the UNIX commands,

gzip -dc aefa.tar.gz | tar -xf -

3.2. Compiling

Compiling ROOT is just a matter of:

$ ./configure
$ make

The ./configure script will discover the platform and check for
the existence of third party libraries needed for a number of op-
tional plugins. To see all available options do:
$ ./configure -help

For a complete description of the build procedure see the ROOT
web site.

4. Test run description

After installing ROOT one can find a large set of test programs
in the tutorials and test directories. The test programs in the
tutorials directory are all in the form of macro’s that can be
either run via the CINT interpreter or compiled via ACLiC. A stan-
dard test macro is benchmarks.C that can be run via:

$ cd tutorials

$ root

root [0] .x benchmarks.C

root [1] .q

If ROOT is properly installed this macro should finish without er-
rors and report a ROOTMARKS number:

****************************************************
* Your machine is estimated at 1120.18 ROOTMARKS *
****************************************************

The programs in the test directory are all stand-alone programs
that are build by running make, like:

$ cd test

$ make

This will compile a number of “demo” programs like, guitest,
threads, etc. and “stress” programs, like stress, stressGe-
ometry, stressGraphics, etc. All “stress” programs will also
return a performance ROOTMARKS number, like:

$ ./stress -b 30
...
...
****************************************************
* ROOTMARKS = 859.2 * Root5.23/03 20090226/1824
****************************************************
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