
Accelerating numerical solution of Stochastic
Differential Equations with CUDA

M. Januszewski, M. Kostura

aInstitute of Physics, University of Silesia, 40-007 Katowice, Poland

Abstract

Numerical integration of stochastic differential equations is commonly used in
many branches of science. In this paper we present how to accelerate this kind of
numerical calculations with popular NVIDIA Graphics Processing Units using
the CUDA programming environment. We address general aspects of numerical
programming on stream processors and illustrate them by two examples: the
noisy phase dynamics in a Josephson junction and the noisy Kuramoto model.
In presented cases the measured speedup can be as high as 675× compared to a
typical CPU, which corresponds to several billion integration steps per second.
This means that calculations which took weeks can now be completed in less
than one hour. This brings stochastic simulation to a completely new level,
opening for research a whole new range of problems which can now be solved
interactively.

Key words: Josephson junction, Kuramoto, graphics processing unit,
advanced computer architecture, numerical integration, diffusion, stochastic
differential equation, CUDA, Tesla, NVIDIA

1. Introduction

The numerical integration of stochastic differential equations (SDEs) is a
valuable tool for analysis of a vast diversity of problems in physics, ranging from
equilibrium transport in molecular motors [1], phase dynamics in Josephson
junctions [2, 3], stochastic resonance [4] to dissipative particle dynamics [5] to
finance [6]. Stochastic simulation, as it is referred to as, is specially interesting
when the dimensionality of the problem is larger than three, and in that case
it is often the only effective numerical method. A prominent example of this is
the stochastic variation of molecular dynamics: Brownian dynamics.

Direct stochastic simulations require a significant computational effort, and
therefore merely a decade ago have been used mostly as validation tools. The
precise numerical results in theory of low-dimensional stochastic problems were
coming from solutions of the corresponding Fokker-Planck equations. Many
different sophisticated, but often complicated, tools have been applied: spectral
methods [7, 8, 9], finite element methods [10] and numerical path integrals
[11, 12].

Preprint submitted to Elsevier May 30, 2018

ar
X

iv
:0

90
3.

38
52

v2
 [

ph
ys

ic
s.

co
m

p-
ph

]
 1

2
A

ug
 2

00
9

Stochastic simulation gained acceptance due to its straightforward imple-
mentation and generic robustness with respect to different sorts of problems.
The continuous increase of the efficiency of available computer hardware has
been acting in favour of stochastic simulation, making it increasingly more pop-
ular. The recent evolution of computer architectures towards multiprocessor
and multicore platforms also resulted in improved performance of stochastic
simulation. Let us note that in the case of a low-dimensional system, stochastic
simulation often uses ensemble averaging to obtain the values of observables,
which in turn is an example of a so-called ,,embarrassingly parallel problem”
and it can, though with embarrassment, directly benefit from a parallel archi-
tecture. In other cases, mostly where a large number of interacting subsystems
are investigated, the implementation of the problem on a parallel architecture
is less trivial, but still possible.

The recent emergence of techniques collectively known as general-purpose
computing on graphics processing units (GPUs) has caused a breakthrough in
computational science. The current state of the art GPUs are now capable of
performing computations at a rate of about 1 TFLOPS per single silicon chip.
It must be stressed that 1 TFLOPS is a performance level which only in 1996
was achievable exclusively by huge and expensive supercomputers such as the
ASCI Red Supercomputer (which had a peak performance of 1.8 TFLOPS [13])
The numerical simulations of SDEs can easily benefit from the parallel GPU
architecture. This however requires careful redesign of the employed algorithms
and in general cannot be done automatically. In this paper we present a practical
introduction to solving SDEs on NVIDIA GPUs using Compute Unified Device
Architecture (CUDA) [14] based on two examples: the model of phase diffusion
in a Josephson junction and the Kuramoto model of coupled phase oscillators.

The paper is organized as follows: first, we briefly introduce the features and
capabilities of the NVIDIA CUDA environment and describe the two physical
models, then we present the implementation of stochastic algorithms and com-
pare their efficiency with a corresponding pure-CPU implementation executed
on an Intel Core2 Duo E6750 processor. We also provide the source code [15] of
three small example programs: PROG1, PROG2, and PROG3, which demon-
strate the techniques described in the paper. They can easily be extended to a
broad range of problems involving stochastic differential equations.

2. The CUDA environment

CUDA (Compute Unified Device Architecture) is the name of a general
purpose parallel computing architecture of modern NVIDIA GPUs. The name
CUDA is commonly used in a wider context to refer to not only the hardware
architecture of the GPU, but also to the software components used to program
that hardware. In this sense, the CUDA environment also includes the NVIDIA
CUDA compiler and the system drivers and libraries for the graphics adapter.

From the hardware standpoint, CUDA is implemented by organizing the
GPU around the concept of a streaming multiprocessor (SM). A modern NVIDIA

2

Device memory

Host memory

PCI-e

In
st

ru
ct

io
n

un
it

Texture cache

SP SP

SP SP

Const cache

SP SP

SP SP

Sh
ar

ed
m

em
or

y

Figure 1: A schematic view of a CUDA streaming multiprocessor with 8 scalar processor
cores.

GPU contains tens of multiprocessors. A multiprocessor consists of 8 scalar pro-
cessors (SPs), each capable of executing an independent thread (see Fig. 1). The
multiprocessors have four types of on-chip memory:

• a set of 32-bit registers (local, one set per scalar processor)

• a limited amount of shared memory (16 kB for devices having Compute
Capability 1.3 or lower, shared between all SPs in a MP)

• a constant cache (shared between SPs, read-only)

• a texture cache (shared between SPs, read-only)

The amount of on-chip memory is very limited in comparison to the total
global memory available on a graphics device (a few kilobytes vs hundreds
of megabytes). Its advantage lies in the access time, which is two orders of
magnitude lower than the global memory access time.

The CUDA programming model is based upon the concept of a kernel. A
kernel is a function that is executed multiple times in parallel, each instance
running in a separate thread. The threads are organized into one-, two- or three-
dimensional blocks, which in turn are organized into one- or two-dimensional
grids. The blocks are completely independent of each other and can be executed
in any order. Threads within a block however are guaranteed to be run on a
single multiprocessor. This makes it possible for them to synchronize and share
information efficiently using the on-chip memory of the SM.

In a device having Compute Capability 1.2 or higher, each multiprocessor
is capable of concurrently executing 1024 active threads [16]. In practice, the

3

number of concurrent threads per SM is also limited by the amount of shared
memory and it thus often does not reach the maximum allowed value.

The CUDA environment also includes a software stack. For CUDA v2.1, it
consists of a hardware driver, system libraries implementing the CUDA API,
a CUDA C compiler and two higher level mathematical libraries (CUBLAS
and CUFFT). CUDA C is a simple extension of the C programming language,
which includes several new keywords and expressions that make it possible to
distinguish between host (i.e. CPU) and GPU functions and data.

3. Specific models

In this work, we study the numerical solution of stochastic differential equa-
tions modeling the dynamics of Brownian particles. The two models we con-
centrate upon are of particular interest in many disciplines and illustrate the
flexibility of the employed methods of solution.

The first model describes a single Brownian particle moving in a symmetric
periodic potential V (x) = sin(2πx) under the influence of a constant bias force
f and a periodic unbiased driving with amplitude a and frequency ω:

ẍ+ γẋ = −V ′(x) + a cos(ωt) + f +
√

2γkBTξ(t) (1)

where γ is the friction coefficient and ξ(t) is a zero-mean Gaussian white noise
with the auto-correlation function 〈ξ(t)ξ(s)〉 = δ(t−s) and noise intensity kBT .

Equation 1 is known as the Stewart-McCumber model [3] describing phase
differences across a Josephson junction. It can also model a rotating dipole
in an external field, a superionic conductor or a charge density wave. It is
particularly interesting since it exhibits a wide range of behaviors, including
chaotic, periodic and quasi-periodic motion, as well as the recently detected
phenomenon of absolute negative mobility [17, 18].

The second model we analyze is that of N globally interacting overdamped
Brownian particles, with the dynamics of the i-th particle described by:

γẋi = ωi +
N∑
j=1

Kij sin(xj − xi) +

√
2γkBTξi(t), i = 1, . . . , N (2)

This model is known as the Kuramoto model [19] and is used as a simple
paradigm for synchronization phenomena. It has found applications in many
areas of science, including neural networks, Josephson junction and laser arrays,
charge density waves and chemical oscillators.

4. Numerical solution of SDEs

Most stochastic differential equations of practical interest cannot be solved
analytically, and thus direct numerical methods have to be used to obtain the

4

solutions. Similarly as in the case of ordinary differential equations, there is an
abundance of methods and algorithms for solving stochastic differential equa-
tions. Their detailed description can be found in references: [20, 21, 22, 23, 24,
25].

Here, we present the implementation of a standard stochastic algorithm on
the CUDA architecture in three distinctive cases:

1. Multiple realizations of a system are simulated, and an ensemble average
is performed to calculate quantities of interest. The large degree of paral-
lelism inherent in the problem makes it possible to fully exploit the com-
putational power of CUDA devices with tens of multiprocessors capable of
executing hundreds of threads simultaneously. The example system models
the stochastic phase dynamics in a Josephson junction and is implemented
in program PROG1 (the source code is available in [15]).

2. The system consists of N globally interacting particles. In each time step
N2 interaction terms are calculated. The example algorithm is named
PROG2 and solves the Kuramoto model (Eq. 2.)

3. The system consists of N globally interacting particles as in the previous
case but the interaction can be expressed in terms of a parallel reduction
operation, which is much more efficient than PROG2. The example algo-
rithm in PROG3 also solves the Kuramoto model (Eq. 2.)

We will now outline the general patterns used in the solutions of all models.
We start with the model of a single Brownian particle, which will form a basis
upon which the solution of the more general model of N globally interacting
particles will be based.

4.1. Ensemble of non-interacting stochastic systems

Algorithm 1 A CUDA kernel to advance a Brownian particle by m · ∆t in
time.

1: local i← blockIdx.x · blockDim.x+ threadIdx.x
2: load xi, vi and system parameters {parji} from global memory and store

them in local variables
3: load the RNG seed seedi and store it in a local variable
4: for s = 1 to m do
5: generate two uniform variates n1 and n2

6: transform n1 and n2 into two Gaussian variates
7: advance xi and vi by ∆t using the SRK2 algorithm
8: local t← t0 + s ·∆t
9: end for

10: save xi, vi and seedi back to global memory

For the Josephson junction model described by Eq. 1 we use a single CUDA
kernel, which is responsible for advancing the system by a predefined number
of timesteps of size ∆t.

5

Algorithm 2 The Stochastic Runge-Kutta algorithm of the 2nd order (SRK2)
to integrate ẋ = f(x) + ξ(t), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = 2Dδ(t− s).

1: F1 ← f(x0)
2: F2 ← f(x0 + ∆tF1 +

√
2D∆tψ) {with 〈ψ〉 = 0, 〈ψ2〉 = 1}

3: x(∆t)← x0 + 1
2∆t(F1 + F2)

√
2D∆tψ

We employ fine-grained parallelism – each path is calculated in a separate
thread. For CUDA devices, it makes sense to keep the number of threads
as large as possible. This enables the CUDA scheduler to better utilize the
available computational power by executing threads when other ones are waiting
for global memory transfers to be completed [16]. It also ensures that the code
will execute efficiently on new GPUs, which, by the Moore’s law, are expected to
be capable of simultaneously executing exponentially larger numbers of threads.
We have found that calculating 105 independent realizations is enough to obtain
a satisfactory level of convergence and that further increases of the number of
paths do not yield better results (see Fig. 5).

In order to increase the number of threads, we structured our code so that
Eq. 1 is solved for multiple values of the system parameters in a single run. The
default setup calculates trajectories for 100 values of the amplitude parameter
a. This makes it possible to use our code to efficiently analyze the behavior of
the system for whole regions of the parameter space {a, ω, γ}.

Multiple timesteps are calculated in a single kernel invocation to increase
the efficiency of the code. We observe that usually only samples taken every
M steps are interesting to the researcher running the simulation, the sampling
frequency M being chosen so that the relevant information about the analyzed
system is retained. In all following examples M = 100 is used. It should be
noted that the results of the intermediate steps do not need to be copied to
the host (CPU) memory. This makes it possible to limit the number of global
memory accesses in the CUDA threads. When the kernel is launched, path
parameters x, v = ẋ and a are loaded from the global memory and are cached
in local variables. All calculations are then performed using these variables and
at the end of the kernel execution, their values are written back to the global
memory.

Each path is associated with its own state of the random number genera-
tor (RNG), which guarantees independence of the noise terms between different
threads. The initial RNG seeds for each thread are chosen randomly using a
standard integer random generator available on the host system. Since CUDA
does not provide any random number generation routines by default, we imple-
mented a simple xor-shift RNG as a CUDA device function. In our kernel, two
uniform variates are generated per time step and then transformed into Gaussian
variates using the Box-Muller transform. The integration is performed using a
Stochastic Runge-Kutta scheme of the 2nd order, which uses both Gaussian
variates for a single time step.

In the example in Fig. 2 we present the results coming from the simultaneous

6

−150

−100

−50

0

50

xx

0 1000 2000
tt

N = 0.5× 106

GPU : 21s

0 0.0025 0.005

P (x; t = 2500)P (x; t = 2500)

single
double

Figure 2: The ensemble of 524288 Brownian particles, modeling the noisy dynamics of phase
in a Josephson junction described by Eq. 1 is simulated for time t ∈ (0, 2000 2π

ω
) with time

step ∆t = 0.01 2π
ω

. On the left panel sample trajectories are drawn with black lines and
the background colors represent the coarse-grained (averaged over a potential period) density
of particles in the whole ensemble. The right panel shows the coarse-grained probability
distribution of finding a particle at time t = 2000 2π

ω
obtained by means of a histogram with

200 bins. The histogram is calculated with both single and double precision on a GPU with
Compute Capability v1.3. The same calculation has also been performed on the CPU but
their identical results are not presented for clarity purposes. The total simulation times were:
20 seconds and 13 minutes on NVIDIA Tesla 1060C when using single and double precision
floating-point arithmetics, respectively. The CPU-based version of the same algorithm needed
over three hours. Used parameters: a = 4.2, γ = 0.9, ω = 4.9, D0 = 0.001, f = 0.1 correspond
to the anomalous response regime (cf. [17]).

7

solution of N = 219 = 524288 independent Eqs. 1 for the same set of parameters.
The total simulation time was less than 20 seconds. In this case the CUDA
platform turns out to be extremely effective, outperforming the CPU by a factor
of 675. In order to highlight the amount of computation, let us note that the
size of the intermediate file with all particle positions used for generation of the
background plot was about 30 GB.

4.2. N globally interacting stochastic systems

Algorithm 3 The AdvanceSystem CUDA kernel.
1: local i← blockIdx.x · blockDim.x+ threadIdx.x
2: local mv ← 0
3: local mx← xi
4: for all tiles do
5: local tix← threadIdx.x
6: j ← tile · blockDim.x+ threadIdx.x
7: shared sxtix ← xj
8: synchronize with other threads in the block
9: for k = 1 to blockDim.x do

10: mv ← mv + sin(mx− sxk)
11: end for
12: synchronize with other threads in the block
13: end for
14: vi ← mv

For the general Kuramoto model described by Eqs. 2 or other stochastic
systems ofN interacting particles, the calculation ofO(N2) interaction terms for
all pairs (xj , xi) is necessary in each integration step. In this case the program
PROG2 is split into two parts, implemented as two CUDA kernels launched
sequentially. The first kernel, called UpdateRHS calculates the right hand
side of Eq. 2 for every i. The second kernel AdvanceSystem actually advances
the system by a single step ∆t and updates the positions of all particles. In our
implementation the second kernel uses a simple first-order Euler scheme. It is
straightforward to modify the program to implement higher-order schemes by
interleaving calls to the UpdateRHS kernel with calls to kernels implementing
the sub-steps of the scheme.

The UpdateRHS kernel is organized around the concept of tiles, introduced
in [26]. A tile is a group of T particles interacting with another group of T
particles. Threads are executed in blocks of size T and each block is always
processing a single tile. There is a total of N/T blocks in the grid. The i-th
thread computes the interaction of the i-th particle with all other particles.

The execution proceeds as follows. The i-th thread loads the position of
the i-th particle and caches it as a local variable. It then loads the position
of another particle from the current tile, stores it in shared memory and syn-
chronizes with other threads in the block. When this part is completed, the

8

th
re

ad
s

time

Figure 3: All-pairs interaction of 12 particles calculated using the tile-based approach with 9
tiles of size 4x4. The chosen number of particles and the size of the tiles are made artificially
low for illustration purposes only. A small square represents the computation of a single
particle-particle interaction term. The highlighted part of the schematic depicts a single tile.
The bold lines represent synchronization points where data is loaded into the shared memory
of the block. The filled squares with circles represent the start of computation for a new tile.
Threads in the red box are executed within a single block.

9

N = 17× 106

GPU : 20s

t x0

π

2π0
5

10
15

20

0

0.25

0.5

0.75

P
(x

; t
)

Figure 4: An example result of the integration of the Kuramoto system (Eq. 2). The time
evolution of the probability density P (x; t) is shown for ωi = 0, Kij = 4, T = 1. The density
is a position histogram of 224 particles. The total time of simulation was approximately 20
seconds using the single precision capabilities of NVIDIA Tesla C1060.

positions of all particles from the current tile are cached in the shared memory.
The computation of the interaction is then commenced, with the i-th thread
computing the interaction of the i-th particle with all particles from the current
tile. Afterwards, the kernel advances to the following tile, the positions stored
in shared memory are replaced with new ones, and the whole process repeats.

This approach might seem wasteful since it computes exactly N2 interaction
terms, while only (N − 1)N/2 are really necessary for a symmetric interaction.
It is however very efficient, as it minimizes global memory transfers at the cost
of an increased number of interaction term computations. This turns out to be
a good trade-off in the CUDA environment, as global memory accesses are by
far the most costly operations, taking several hundred clock cycles to complete.
Numerical computations are comparatively cheap, usually amounting to just a
few clock cycles.

The special form of the interaction term in the Kuramoto model when
Kij = K = const, allows us to significantly simplify the calculations. Using
the identity:

N∑
j=1

sin(xj − xi) =

cos(xi)
N∑
j=1

sin(xj)− sin(xi)
N∑
j=1

cos(xj) (3)

we can compute two sums:
∑N
j=1 sin(xj) and

∑N
j=1 cos(xj) only once per inte-

gration step, which has a computational cost of O(N). The calculation of the
sum of a vector of elements is an example of the vector reduction operation,
which can be performed very efficiently on the CUDA architecture. Various
methods of implementation of such an operation are presented in the sample
code included in the CUDA SDK 2.1 [27]. The integration of the Kuramoto sys-
tem taking advantage of Eq. 3 and using a simple form of a parallel reduction
is implemented in PROG3.

10

In Fig. 4 we present a solution of the classical Kuramoto system described
by Eqs. 2 for parameters as in Fig. 10 of the review paper [19]. In this case we
apply the program PROG3 which makes use of the relation from Eq. 3. The
number of particles N = 224 ≈ 16.8 · 106 and the short simulation time clearly
demonstrate the power of the GPU for this kind of problems.

5. Note on single precision arithmetics

The fact that the current generation of CUDA devices only implements single
precision operations in an efficient way is often considered a significant limitation
for numerical calculations. We have found out that for the considered models
this does not pose a problem. Figure 2 presents sample paths and position
distribution functions of a Brownian particle whose dynamics is determined by
Eq. 1 (colored background on the left panel and right panel). Let us note that
we present coarse-grained distribution functions where the position is averaged
over a potential period by taking a histogram with bin size being exactly equal
to the potential period. We observe that the use of single precision floating-point
numbers does not significantly impact the obtained results. Results obtained by
single precision calculations even after a relatively long time t = 2000 2π

ω differ
from their double precision counterparts only up to the statistical error, which
in this case can be estimated by the fluctuations of the relative particle number
in a single histogram bin. Since in the right panel of Fig. 2 we have approxi-
mately 104 particles in one bin, the error is of the order of 1%. If time-averaged
quantities such as the asymptotic velocity 〈〈v〉〉 = limt→∞〈v(t)〉 are calculated,
the differences are even less pronounced. However, the single and double preci-
sion programs produce different individual trajectories as a direct consequence
of the chaotic nature of the system given by Eq. 1. Moreover, we have no-
ticed that even when changing between GPU and CPU versions of the same
program, the individual trajectories diverged after some time. The difference
between paths calculated on the CPU and the GPU, using the same precision
level, can be explained by differences in the floating-point implementation, both
in the hardware and in the compilers.

When doing single precision calculations special care must be taken to ensure
that numerical errors are not needlessly introduced into the calculations. If one
is used to having all variables defined as double precision floating-point numbers,
as is very often the case on a CPU, it is easy to forget that operations which work
just fine on double precision numbers might fail when single precision numbers
are used instead. For instance, consider the case of keeping track of time in
a simulation by naively increasing the value of a variable t by a constant ∆t
after every step. By doing so, one is bound to hit a problem when t becomes
large enough, in which case t will not change its value after the addition of a
small value ∆t, and the simulation will be stuck at a single point in time. With
double precision numbers this issue becomes evident when there is a difference
of 17 orders of magnitude between t and ∆t. With single precision numbers,
a 8-orders-of-magnitude difference is enough to trigger the problem. It means
that if, for instance, t is 105 and ∆t is 10−4, the addition will no longer work

11

0

100

200

300

400
G
F
L
O
P
S

G
F
L
O
P
S

103 104 105 106 107

NN

PROG1
PROG2
PROG3

C
P
U
×

10

C
P
U
×

10

C
P
U
×

10

PROG1 PROG2 PROG3
0

100

200

300

400
G

F
L

O
P

S
G

F
L

O
P

S

Figure 5: (Left panel) Performance estimate for the programs PROG1 -PROG3 as a function
of the number of particles N . (Right panel) Performance estimate for the programs PROG1 -
PROG3 on an Intel Core2 Duo E6750 CPU and NVIDIA Tesla C1060 GPU. We have counted
79, 44 + 6N and 66 operations per one integration step of programs PROG1, PROG2 and
PROG3, respectively.

as expected. 105 and 10−4 are values not uncommon in simulations of the type
we describe here, hence the need for extra care and reformulation of some of
the calculations so that very large and very small quantities are not used at the
same time. In our implementations, we avoided the problem of spurious addition
invariants by keeping track of simulation time modulo the system period 2π/ω.
This way, the difference between t and ∆t was never large enough to cause any
issues.

6. Performance evaluation

In order to evaluate the performance of our numerical solution of Eqs. 1
and 2, we first implemented Algs. 3 and 1 using the CUDA Toolkit v2.1. We then
translated the CUDA code into C++ code by replacing all kernel invocations
with loops and removing unnecessary elements (such as references to shared
memory, which does not exist on a CPU).

We used the NVIDIA CUDA Compiler (NVCC) and GCC 4.3.2 to compile
the CUDA code and the Intel C++ Compiler (ICC) v11.0 for Linux to compile
the C++ version. We have determined through numerical experiments that
enabling floating-point optimizations significantly improves the performance of
our programs (by a factor of 7 on CUDA) and does not affect the results in a
quantitative or qualitative way. We have therefore used the -fast -fp-model
fast=2 ICC options and --use fast math in the case of NVCC.

All tests were conducted on recent GNU/Linux systems using the following
hardware:

• for the CPU version: Intel Core2 Duo E6750 @ 2.66GHz and 2 GB RAM
(only a single core was used for the calculations)

12

• for the GPU version: NVIDIA Tesla C1060 installed in a system with Intel
Core2 Duo CPU E2160 @ 1.80GHz and 2 GB RAM

Our tests indicate that speedups of the order of 600 and 100 are possible
for the models described by Eqs. 1 and 2, respectively. The performance gain
is dependent on the number of paths used in the simulation. Figure 5 shows
that it increases monotonically with the number of paths, and then saturates
at a number dependent on the used model: 450 and 106 GFLOPS for the
Eqs. 1 and 2, respectively (which corresponds to speedups: 675 and 106). The
saturation point indicates that for the corresponding number of particles the
full computational resources of the GPU are being exploited.

The problem of lower performance gain for small numbers of particles could
be rectified by dividing the computational work between threads in a different
way, i.e. by decreasing the amount of calculations done in a single thread, while
increasing the total number of threads. This is a relatively straightforward thing
to do, but it increases the complexity of the code. We decided not to do it since
for models like 1 and 2 one is usually interested in calculating observables for
whole ranges of system parameters. Instead of modifying the code to run faster
for lower number of paths, one can keep the number of paths low but run the
simulation for multiple system parameters simultaneously, which results in a
higher number of threads.

7. Conclusions

In this paper we have demonstrated the suitability of a parallel CUDA-based
hardware platform for solving stochastic differential equations. The observed
speedups, compared to CPU versions, reached an astonishing value 670 for non-
interacting particles and 120 for a globally coupled system. We have also shown
that for this kind of calculations single precision arithmetics poses no problems
with respect to accuracy of the results, provided that some kind of operations,
such as adding small and large numbers, are avoided.

The availability of cheap computer hardware which is over two orders of
magnitude faster clearly announces a new chapter in high performance com-
puting. Let us note that the development of stream processing technology for
general-purpose computing has just started and its potential is surely not yet
fully revealed. In order to take advantage of the new hardware architecture, the
software and its algorithms must be substantially redesigned.

8. Appendix: Estimation of FLOPS

We counted the floating-point operations performed by the kernels in our
code, and the results in the form of the collective numbers of elementary op-
erations are presented in Table 1. The number of MAD (Multiply and Add)
operations can vary, depending on how the compiler processes the source code.

13

Table 1: Number of elementary floating-point operations performed per one time step in the
AdvanceSystem kernel for Eq. 1.

count type FLOPs totalFLOPs
22 multiply, add 1 22
11 MAD 1 11
2 division 4 8
3 sqrt 4 12
1 sin 4 4
5 cos 4 20
1 log 2 2

TOTAL: 79

For the purposes of our performance estimation, we assumed the most opti-
mistic version. A more conservative approach would result in a lower number
of MADs, and correspondingly a higher total number of GFLOPS.

The amount of FLOPs for functions such as sin, log, etc. is based on [16],
assuming 1 FLOP for elementary arithmetical operations like addition and mul-
tiplication and scaling the FLOP estimate for complex functions proportionately
to the number of processor cycles cited in the manual. The numbers of floating-
point operations are summarized in Table 1.

On a Tesla C1060 device our code PROG1 evaluates 6.178 · 109 time steps
per second. The cost of each time step is 79 FLOPs, which implies that the
overall performance estimate accounts for 490 GFLOPS.

In the case of PROG2 the number of operations per one integration step
depends on the number of particles N . A similar operation count as the one
presented in Table 1 resulted in the formula 44 + 6N FLOPs per integration
step.

References

[1] Reimann, P., Physics Reports 361 (2002) 57 .

[2] Kostur, M., Machura, L., Talkner, P., Hänggi, P., and Luczka, J., Physical
Review B (Condensed Matter and Materials Physics) 77 (2008) 104509.

[3] Kautz, R. L., Reports on Progress in Physics 59 (1996) 935.

[4] Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F., Rev. Mod.
Phys. 70 (1998) 223.

[5] Groot, R. and Warren, P., J. Chem. Phys. 107 (1997) 4423.

[6] McLeish, D. L., Monte Carlo Simulation and Finance, John Wiley and
Sons, 2005.

[7] Bartussek, R., Reimann, P., and Hänggi, P., Phys. Rev. Lett. 76 (1996)
1166.

14

[8] Lindner, B., Schimansky-Geier, L., Reimann, P., Hänggi, P., and Nagaoka,
M., Phys. Rev. E 59 (1999) 1417.

[9] Kalmykov, Y. P., Phys. Rev. E 61 (2000) 6320.

[10] Kostur, M., Internat. J. Modern Phys. C 13 (2002) 1157.

[11] Yu, J. and Lin, Y., Internat. J. Non-Linear Mech. 39 (2004) 1493.

[12] Naess, A., Dimentberg, M. F., and Gaidai, O., Physical Review E (Statis-
tical, Nonlinear, and Soft Matter Physics) 78 (2008) 021126.

[13] http://www.computermuseum.li/testpage/asci-red-supercomputer.htm.

[14] Nvidia cuda webpage, http://www.nvidia.com/object/cuda home.html.

[15] Source code of all examples can be found on http://fizyka.us.edu.pl/cuda.

[16] Corporation, N., Nvidia cuda programming guide v2.1, available from
nvidia cuda webpage, http://www.nvidia.com/object/cuda home.html,
2008.

[17] Machura, L., Kostur, M., Talkner, P., Luczka, J., and Hänggi, P., Physical
Review Letters 98 (2007) 040601.

[18] Speer, D., Eichhorn, R., and Reimann, P., EPL (Europhysics Letters) 79
(2007) 10005 (5pp).

[19] Acebron, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F., and Spigler, R.,
Reviews of Modern Physics 77 (2005) 137.

[20] Mannella, R. and Palleschi, V., Phys. Rev. A 40 (1989) 3381.

[21] Mannella, R., Internat. J. Modern Phys. C 13 (2002) 1177.

[22] Sancho, J. M., Miguel, M. S., Katz, S. L., and Gunton, J. D., Phys. Rev.
A 26 (1982) 1589.

[23] Fox, R. F., Gatland, I. R., Roy, R., and Vemuri, G., Phys. Rev. A 38
(1988) 5938.

[24] Honeycutt, R. L., Phys. Rev. A 45 (1992) 600.

[25] Kloeden, P. E. and Platen, E., Numerical Solution of Stochastic Differential
Equations (Stochastic Modelling and Applied Probability), Springer, 2000.

[26] L. Nyland, M. Harris, J. P., GPU Gems 3 - Fast N-body simulation with
CUDA, chapter 31, pages 677–695, Addison-Wesley Professional, 2007.

[27] Nvidia cuda software development kit, available from nvidia cuda webpage,
http://www.nvidia.com/object/cuda home.html.

15

	Introduction
	The CUDA environment
	Specific models
	Numerical solution of SDEs
	Ensemble of non-interacting stochastic systems
	N globally interacting stochastic systems

	Note on single precision arithmetics
	Performance evaluation
	Conclusions
	Appendix: Estimation of FLOPS

