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Abstract

We present the program EvolFMC v.2 that solves the evolution equations in QCD
for the parton momentum distributions by means of the Monte Carlo technique
based on the Markovian process. The program solves the DGLAP-type evolution
as well as modified-DGLAP ones. In both cases the evolution can be performed in
the LO or NLO approximation. The quarks are treated as massless. The overall
technical precision of the code has been established at 5 × 10−4. This way, for the
first time ever, we demonstrate that with the Monte Carlo method one can solve
the evolution equations with precision comparable to the other numerical methods.
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Catalogue identifier:
Licensing provisions: none
Programming language: C++
Computer: PC, Mac
Operating system: Linux, Mac OS X
RAM: less than 256 MB
Number of processors used: 1
Supplementary material:
Keywords: Monte Carlo, evolution equations, Markovian process, radiative correc-
tions, QCD, NLO, LHC, HERA, DGLAP, PDF
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Monte Carlo simulation of the Markovian process of a multiple emission of partons.
Restrictions:
(1) Limited to the case of massless partons.
(2) Implemented in the LO and NLO approximations only.
(3) Weighted events only.
Unusual features:
Modified-DGLAP evolutions included up to the NLO level.
Additional comments:
Technical precision established at 5× 10−4.
The EvolFMC version 1 was described in [1], but the actual code was not pub-
lished.
Running time:
For the 106 events at 100 GeV: DGLAP NLO: 27s; C’-type modified DGLAP NLO:
150s (MacBook Pro with Mac OS X v.10.5.5, 2.4 GHz Intel Core 2 Duo, gcc 4.2.4,
single thread);
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LONG WRITE-UP

1 Introduction

The evolution equations (EVEQs) for parton distribution functions (PDFs)
and parton momentum distributions are one of the most efficient tools in
calculating the radiative corrections in Quantum Chromodynamics (QCD)
because they perform resummation of certain types of corrections up to infinite
order. The PDFs are indispensable in any analysis of scattering processes
which involve hadrons. The non-perturbative information on hadron structure,
for the time being not calculable, is extracted from the experimental data
and then used to create the PDFs at low energy scale. Among various types
of evolution equations the most important is the family of the DGLAP-type
equations [2]. Other widely used types of the EVEQs include BFKL [3], CCFM
[4] or IREE [5]. In this paper we will discuss the DGLAP and modified-DGLAP
types of EVEQs. However, a comment on the relation to CCFM EVEQs will
be made.

There are various numerical methods of solving the DGLAP-type EVEQs:
Mellin transforms [6], evolution on a finite grid [7–9], expansion in Laguerre
polynomials [10, 11], expansion in Chebyshev polynomials [12, 13], etc. The
Monte Carlo (MC) methods differ from the other numerical techniques be-
cause, in addition to providing the inclusive parton distributions, they supply
also the complete tree of parton emissions during evolution. This allows one
to construct the MC Parton Shower programs which provide the actual four-
momenta of emitted quarks and gluons – a necessary input for any realistic
analysis which must include experimental apparatus effects. One can find nu-
merous implementations of the leading order DGLAP evolution in the MC
Parton Shower codes; let us quote just a few examples: PYTHIA [14, 15],
HERWIG [16, 17], ARIADNE [18], GR@PPA [19, 20]. So far the MC meth-
ods have not been considered as a realistic alternative to the other numerical
methods of solving EVEQs due to low precision and long time of computation.
The presented here MC code EvolFMC is intended to fill-in this gap, profiting
from the dramatic increase of the CPU power over two decades since NLO
DGLAP evolution was formulated and solved numerically for the first time. It
will be demonstrated in the following with the examples of numerical calcula-
tions that EvolFMC can solve the (modified) DGLAP-type EVEQs with high
precision (5× 10−4 at least) within a reasonable CPU time.

The program EvolFMC solves the EVEQs for the parton momentum distribu-
tions by means of the MC simulation of the multiple emission of partons in
the cascade. The emission process is of the Markovian type, i.e. each emission
depends on the information from the previous emission only. The algorithms
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are constructed on the basis of the Markovian process with simplified emission
kernels which retain only the leading singularities. The complete kernels in the
leading and next-to-leading approximation are then recovered by the standard
reweighting procedure.

The evolution is two-dimensional (x and t) by construction. However, the az-
imuthal angle can always be added with a flat probability density distribution.
Having identified the evolution time with certain kinematical variable, one can
then reconstruct the four-momenta of all emitted partons. Such a procedure
of reconstructing the four-momenta is, of course, exact only in the LO ap-
proximation. In the NLO approximation the differential distributions will be
strictly speaking correct only in the ”inclusive” sense of the overall normalisa-
tion. This is, however, the common (and in fact the only available) approach
to the Parton Shower MCs. It should be mentioned here that recently there
have been a few attempts to construct a true NLO Parton Shower algorithm
with the help of ”fully unintegrated” or ”exclusive” partonic functions [21–24].

Apart from the standard DGLAP, two modified-DGLAP-type EVEQs can
be solved by EvolFMC. The modifications involve a change of the argument
of the coupling constant together with the introduction of a finite cut-off on
its minimal value. The program works in the weighted mode only. The first
version of the code, the EvolFMC v.1, was described in [1], but the actual code
was not published. The version v.1 solved modified-DGLAP-type in the LO
approximation only. The NLO evolution was available only in the standard
DGLAP case. Also the structure of the code is rebuilt in version v.2.

Let us conclude this introduction with the following remark. The MC ap-
proach to EVEQs has one important general advantage: with the help of the
reweighting technique it is easy to introduce into evolution some additional
effects or modifications. As an example let us mention the possibility of emu-
lating the CCFM-type evolution. From the algorithmic point of view, having
generated the azimuthal angles and reconstructing the transverse momenta
of the partons in the shower, one can trivially construct the so-called “non-
Sudakov” form factor and include it as a correcting weight. Of course, one
has to remember that from the theoretical point of view the definition of the
non-Sudakov form factor in the NLO case is a highly nontrivial problem; even
the complete LO analysis is difficult in the context of the CCFM equation [25].
Additional modifications in evolution kernels can be done as well.

The paper is organized as follows. In Section 2 we give a short theoretical
overview of the evolution equations and their solutions by means of MC meth-
ods. Section 3 describes in some detail the architecture of the presented MC
code, EvolFMC version 2. Section 4 contains instructions on how to install
the code on Linux and Mac OS X platforms. In Section 5 we present two
demonstration programs included in the distributed version of the code. Sec-
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tion 6 contains a detailed study of the technical precision of EvolFMC at the
level of 5× 10−4. A short summary in Section 7 concludes the paper.

2 Theoretical background

In this short theoretical overview we will only give a few formulae and defini-
tions necessary to explain the notation, to define the problem and to present
the solution. For detailed derivations and technical description of the algo-
rithms we refer the reader to the extensive bibliography, which we will present
here in more detail. The short and elementary description of the solution of the
DGLAP-type EVEQs in terms of the Markovian process and its MC realiza-
tion in the LO approximation has been presented in Ref. [26]. The extension to
the NLO level and comprehensive description of MC algorithms that solve the
Markovian evolutions of PDFs and parton momentum distributions has been
given in Refs. [1, 27]. The algorithms presented in [1] have been implemented
in the first version of the code, EvolFMC v.1. The extension to the modified-
DGLAP-type evolutions and the detailed description of appropriate modified-
DGLAP Markovian algorithms has been given in Refs. [28,29] for the LO case
(implemented in EvolFMC v.1) and in Ref. [30] for the NLO approximation.
The implementation of algorithms from Ref. [30] as well as re-organization
of the implementation of the DGLAP-type algorithms from Ref. [1] has been
done in the second version of the code, EvolFMC v.2, presented in this pa-
per. Finally, in Ref. [13] the general and universal formalism of constructing
Markovian algorithms, common for all DGLAP-type and modified-DGLAP-
type evolutions, has been presented on the basis of the operator language. It
is this formulation [13] that we will use in the rest of this section to describe
the principles of the Markovian MC evolution.

The evolution equation and its solution in the form of a master iterative
formula for the Markovian MC algorithm can be expressed as follows:

∂tD(t) = K(t) D(t), i.e. ∂tDf (t, x) =
∑
f ′

∫ 1

0
dw Kff ′(t, x, w)Df ′(t, w),

(1)

5



and

ĒD(t) =
∫ t

t0
dt1

(∫ t

t1
dt2

[ ∫ t

t2
dt3

{
. . .

. . .
∫ t

tN−1

dtN

{
ĒKR(tN)GKV (tN , tN−1) + ĒGKV (t, tN−1)δtN =t

}
×

...

×KR(t2)GKV (t2, t1) + ĒGKV (t, t1)δt2=t

]
×

×KR(t1)GKV (t1, t0) + ĒGKV (t, t0)δt1=t

)
D(t0).

(2)

Let us describe all the ingredients of eqs. (1) and (2).

• The multiplication of the matrices is understood as:
∑
f ′
∫ 1

0 dw.
• Df (t, w) is the parton density function of the parton f .
• Kff ′(t, x, w) is the generalized evolution kernel built from the real and vir-

tual parts:

Kff ′(t, x, w) =KV
ff ′(t, x, w) + KR

ff ′(t, x, w),

KV
ff ′(t, x, w) =− δff ′δx=wKv

ff (t, x).
(3)

• The operator Ē is defined as {Ē}f (x) ≡ x, i.e. it turns parton distributions
into parton momentum distributions, whereas summing and integrating over
final degrees of freedom means in the MC language that we generate all
possible final state configurations without any constraints.
• GKV is the solution of the evolution equation with the virtual kernel KV

ff ′(t, x, w)
only

{GKV (t, t′)}ff ′(x,w) = δff ′δx=w e
−Φf (t,t′|w). (4)

• Φf (t, t
′|x) is the Sudakov form factor, expressed in terms of the real emission

part of the evolution kernel

Φf (t, t
′|x) =

t∫
t′

dt′′ Kv
ff (t

′′, x) =
∑
f ′

t∫
t′

dt′′
x∫

0

dx′

x
x′ KR

f ′f (t
′′, x′, x)

=
∑
f ′

Φf ′f (t, t
′|x). (5)

The actual, normalized to unity, probability densities of the variables in each
step of the Markovian process are visible in each of the lines of the eq. (2),
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representing a single step in the emission chain:

1 =
1

xi−1

t∫
ti−1

dti

{
ĒKR(ti)GKV (ti, ti−1) + ĒGKV (t, ti−1)δti=t

}
fi−1

(xi−1)

= e−Φfi−1
(t,ti−1|xi−1) +

1∫
e
−Φfi−1

(t,ti−1|xi−1)

d
(
e−Φfi−1

(ti,ti−1|xi−1)
)

×
[∑
fi

∂tiΦfifi−1
(ti, ti−1|xi−1)

∂tiΦfi−1
(ti, ti−1|xi−1)

×
∫
dxi

1

∂tiΦfifi−1
(ti, ti−1|xi−1)

xi
xi−1

KR
fifi−1

(ti, xi, xi−1)

]
.

(6)

In the program EvolFMC v.2 we have implemented three types of the evolution
differing by the definition of the evolution kernel K

R(X)
f ′f (t, x, w), X = A,B′, C ′:

xK
R(X)
f ′f (t, x, w) =θt+lnφX>lnλ

[
αNLO(t+ lnφX)

2π
2zP

R(0)
f ′f (z)

+
(
αNLO(t+ lnφX)

2π

)2

2z
(
P
R(1)
f ′f (z) + ∆P

R(1)X
f ′f (z)

)]
,

(7)

where z = x/w. The parameter λ is an arbitrary cut-off on the argument
of the coupling constant, greater than ΛQCD, necessary in order to avoid the
singularity in the coupling constant. Note that the part of the real emission
phase space excluded by the cut-off λ is compensated for by the virtual form
factor defined in eq. (5) as the integral over phase space of a real emission. As
a consequence the momentum sum rule is preserved. lnφX takes one of the
following three forms:
A : lnφX = 0, (the DGLAP evolution)
B’: lnφX = ln(1− z), (the modified-DGLAP B’-type evolution)

C’: lnφX = ln
(
w(1− z)

)
, (the modified-DGLAP C’-type evolution).

The term ∆P
R(1)X
f ′f (z) is added to remove the double counting caused by the

change of the argument of the coupling constant, according to the prescription
of Ref. [31]. Namely, from the expansion

αNLO(t+ lnφ) = αNLO(t)− (β0/2π)α2
NLO(t) lnφ+O(1/t3)

one obtains

∆P
R(1)B′

f ′f (z) = ∆P
R(1)C′

f ′f (z) = β0 ln(1− z)P
R(0)
f ′f (z). (8)

Note that in the case C’ we use the counter term identical as in the B’ case.
The additional piece related to lnw is of a genuine beyond-DGLAP origin,
i.e. it is absent in the DGLAP kernel. Therefore, there is no double counting
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and no need to subtract it. The universal LO part P
R(0)
f ′f (z) and the NLO part

P
R(1)
f ′f (z) are given in [32, 33]. Finally, the coupling constant at the NLO level

has the standard form

αLO(t) =
2π

β0(t− ln Λ0)
, αNLO(t) = αLO(t)

(
1− αLO(t)

β1 ln(2t− 2 ln Λ0)

4πβ0

)
.

(9)

On the technical side, in the actual MC algorithms implemented in EvolFMC

v.2 we do not use the complicated kernels (7). Instead, a series of simplified
kernels K̄R(X) is introduced. Each of them is chosen in such a way that it
retains only the leading singularities of the exact kernel KR(X) while all the
complicated but finite structure is temporarily discarded:

xK̄
R(A)
f ′f (t, x, w) ≡αLO(t)

2π
2zP

R(0)
f ′f (z), (10)

for the X = A case and

xK̄
R(X)
f ′f (t, x, w) ≡αNLO(t+ lnφX)

2π
2zP̄

R(0)
f ′f (z)θt+lnφX>lnλ, (11)

zP̄
R(0)
f ′f (z) =

1

1− z
(δf ′fA

(0)
ff + max

z
F

(0)
f ′f (z) +MNLO

f ′f )

for the cases X = B′ and X = C ′. The variable z = x/w. The constant MNLO
f ′f

is defined as

MNLO
f ′f =

 0, if P
R(0)
f ′f (z) 6= 0,

η, if P
R(0)
f ′f (z) = 0,

(12)

and η is a dummy technical parameter. The functions A
(0)
ff (z) and F

(0)
f ′f (z) are

a convenient parametrization of the full LO kernels P
R(0)
f ′f (z)

zP
R(0)
f ′f (z) =

1

1− z
δf ′fA

(0)
ff + F

(0)
f ′f (z), (13)

see Appendix C of Ref. [1] for the complete list of them (for example, for the
zPR(0)

qq (z) kernel we have A(0)
qq = 2CF and F (0)

qq (z) = CF (−2 − z − z2)). The

NLO kernels zPR(1)
qq (z) in the form used in the code are explicitly given in

Appendix A of Ref. [1]. The exact kernel KR(X) is recovered at the end by the
standard reweighting procedure. The correcting weight is

w(n) =eΦ̄fn (t,tn|xn)−Φfn (t,tn|xn)

×
(

n∏
i=1

KR
fifi−1

(ti, xi, xi−1)

K̄R
fifi−1

(ti, xi, xi−1)
eΦ̄fi−1

(ti,ti−1|xi−1)−Φfi−1
(ti,ti−1|xi−1)

)
. (14)
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The product runs over all generated partons in a given MC event with multi-
plicity n, and the form factor Φ̄fi−1

(ti, ti−1|xi−1) is constructed from K̄R
fifi−1

(ti, xi, xi−1),
in analogy to eq. (5).

The actual expressions for the form factors Φ and Φ̄ are fairly complicated,
especially for the cases B’ and C’, and we will not quote them here, referring
the interested reader to the original papers. Let us only remark that, as seen
in eq. (5), the form factors are defined as two-dimensional integrals. In the
case of the simplified form factor Φ̄ both integrals can be done analytically 1 .
On the contrary, in the full form factor Φ only one integration can be done
analytically. The other one has to be done numerically on an event-per-event
basis.

3 Overview of the software structure

The program EvolFMC is written in the C++ language. To compile and link the
code we use the autotools utility. It allows us to compile/link the code on
many platforms in a simple way. The code has been routinely compiled and run
under the Linux and Mac OS X 10.5 operating systems. From the user point
of view, the only difference between these two systems is in the compiler’s
options inside the file configure.in, which is included in the main folder
of the project. The central part of the EvolFMC source code is the MarkovMC

library located in the MarkovMC folder. This folder includes the essential source
code necessary to solve evolution equations. This part of the code requires only
basic C++ libraries and an external random number generator (RNG). We use
the generator TRandom3 from the ROOT package as a default RNG. With this
generator we have reached the precision below 0.05%. In case when ROOT is not
available on a given system platform, one should replace in the wrapper class
rndm the name TRandom3 with the name of the other RNG. A simple main
program in the Demo0 folder uses only the standard C++ libraries and can be
built and executed without ROOT. On the other hand, the more sophisticated
source code in the Demo1 folder of the distribution version of the project uses
the ROOT library, mainly for booking, filling and drawing histograms and more,
see below.

The library in the MarkovMC folder has a modular structure in the sense that
the algorithms that solve a particular type of the evolution equations are
implemented in separate classes and located in separate source files. Each

1 In fact this analytical integrability is one of the criteria in choosing the form of the
simplified kernels (11). This is for example why the 1/(1− z) term multiplies artifi-
cially also the F -function in eq. (11). The constant M is added to avoid potentially
dangerous zeroes at the NLO level.
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class implementing the Markovian MC algorithm for a given type of evolution
equation includes all formulae, in particular the Sudakov form factors, specific
to a given evolution type. All classes specific to one type of evolution inherit
from the common base class MarkovianGen. This modular structure also makes
it easier to add in the future any new type of the QCD evolution of the parton
distributions to the code.

3.1 Structure of folders

In the following the structure of the folders of EvolFMC is described:

• MarkovMC – the folder containing the library of the Markovian MC engines.
Source codes of the classes solving various types of the evolution equations
are placed in separate files.
• Demo0 – the folder with the simple demonstration program Demo0 written

in the C language. This program demonstrates the standalone usage of the
library MarkovMC, without the use of ROOT.
• Demo1 – the folder hosting the demonstration program Demo1, a template

program for the advanced user of EvolFMC. Demo1 requires ROOT to be in-
stalled in the system. The subfolder Demo1/work contains scripts necessary
to run Demo1.
• m4 – the folder containing a script which defines properly a path for the
ROOT libraries. This script is used by the automake program.

Each of the above folders contains also scripts (in the files Makefile.am),
which are required by the automake utility.

3.2 Source code in folder MarkovMC

The source code of the MarkovMC library consists of three categories of files:
(1) the files containing base classes of the Markovian MC generator, (2) the
files which contain classes specific to a particular type of the QCD evolution
equations, and (3) the files with some auxiliary classes.

(1) Base classes
• markoviangen.cxx, markoviangen.h:

The class MarkovianGen contains the essential part of the Markovian
MC algorithm, member functions and data members common to all
types of the QCD evolution. In particular, it executes the main Marko-
vian loop over parton emissions. Virtual member functions encapsulate
evolution details.
• kernels.cxx, kernels.h: This class defines the DGLAP LO kernels.
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• kernels nlo.cxx, kernels nlo.h: This class defines the DGLAP NLO
kernels; it inherits from the simpler class kernels.

(2) Auxiliary classes
• gaussintegral.cxx, gaussintegral.h: the standard Gauss integra-

tion procedure, translated from the Fortran GNU library to C++.
• rndm.cxx, rndm.h: the wrapper class of the random number generator;

it is derived from the ROOT class TRandom3.
(3) Classes implementing one particular type of the QCD evolution equation

for the parton momentum distributions:
• dglap lo.cxx, dglap lo.h: implementation of the DGLAP LO evolu-

tion; this class is derived from the classes MarkovianGen and kernels.
• dglap nlo.cxx dglap nlo.h: implementation of the DGLAP NLO evo-

lution; this class is derived from the classes MarkovianGen and kernels nlo.
• bprim lo.cxx, bprim lo.h: implementation of the modified-DGLAP

evolution scheme B’, the LO case; this class is derived from the classes
MarkovianGen, kernels and gaussIntegral.
• bprim nlo.cxx, bprim nlo.h: implementation of the modified-DGLAP

evolution scheme B’, the NLO case, the basic algorithm; this class is de-
rived from the classes MarkovianGen, kernels nlo and gaussIntegral.
• bprim nlo aux.cxx, bprim nlo aux.h: implementation of the modified-

DGLAP evolution scheme B’, the NLO case, the auxiliary algorithm
(for tests only!); this class is derived from the classes MarkovianGen,

kernels nlo and gausIntegral.
• cprim lo.cxx, cprim lo.h: implementation of the modified-DGLAP

evolution scheme C’, the LO case; this class is derived from the classes
MarkovianGen, kernels and gaussIntegral.
• cprim nlo.cxx, cprim nlo.h: implementation of the modified-DGLAP

evolution scheme C’, the NLO case, the basic algorithm; this class is de-
rived from the classes MarkovianGen, kernels nlo and GaussIntegral.
• cprim nlo aux.cxx, cprim nlo aux.h: implementation of the modified-

DGLAP evolution scheme C’, the NLO case, the auxiliary algorithm
(for tests only!); this class is derived from the classes MarkovianGen,

kernels nlo and gaussIntegral.

3.3 Inheritance pattern of classes of MarkovMC library.

As already indicated, all the classes that are used to solve the evolution equa-
tions for the parton momentum distributions by means of the Markovian MC
method are derived from a few base classes. Depending on the type of the QCD
evolution, the base classes are: MarkovianGen, kernels and its derived class
kernels nlo, and the auxiliary class gaussIntegral. The derived classes im-
plement details of the particular type of the QCD evolution equations (e.g.
dglap lo.cxx). In particular, these classes include member functions which
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generate randomly the evolution time, the parton flavor and the z-variable,
which are defined as virtual member functions in the base class MarkovianGen.
The base class MarkovianGen implements all essential parts of the Markovian
algorithm and a few auxiliary functions. The central member function of this
class is GenerateEvent. The class MarkovianGen does not know the details
of the evolution kernels – they are implemented in the class kernels and/or
kernels nlo.

The gaussIntegral class owns integration methods. These methods are nec-
essary to calculate the Sudakov form factors for more complicated types of
the QCD evolution.

Depending on the complexity of the equation, the structure of inheritance has
different forms. As an example we present in Fig. 1 the inheritance scheme for
the most complicated case of the modified-DGLAP NLO C’-type evolution.

Class cprim_nlo

GenerateEvent
GenerateZ
GenerateT
...
KernelWeight

Class MarkovianGen

<<EventGenerator>>

GenerateFlavor
LO Kernels

Class kernels

<<NLO kernels>>

NLO kernels
Probability matrices

Class kernels_nlo

Integrate
Class gaussIntegral

<<Integral>>

Fig. 1. The structure of the derivations in the case of the modified-DGLAP NLO
C’-type evolution.

3.4 General design of MarkovMC library

The classes of the MarkovMC library and the organization of the source code
have been designed in such a way that (a) an infrastructure is available for any
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kind of the Markovian MC implementing any kind of the QCD evolution, (b)
it is easy to include or exclude any group of classes implementing any type of
the QCD evolution. It is therefore not surprising that the classes which solve
different evolution types are completely independent from each other. One can
exclude a particular class from the code without loosing functionality of other
classes. Also, adding more evolution types would not modify the structure of
the library. In the practical application, if one needs, for instance, a solution of
the modified-DGLAP NLO scheme C’, then one should include only the header
file cprim nlo.h. A simple example will be shown in the Demo0 program in
the following sections.

3.5 Description of base class MarkovianGen

Virtual member functions.
The member functions from this group are implemented in the derived classes:

• void MarkovianGen::GenerateEvent(double &t, double &Vx, double &weight,

double tmax, int &Flavor, double epsTSolver = 0.0001) – generates
a single MC event according to the Markovian algorithm.
• void MarkovianGen::GenerateEvent() – generates a single MC event ac-

cording to the Markovian algorithm, a “wrapper” function, see Sect. 5.2 for
explanation.
• double GenerateT(double rndm, double t prev, double TStop, double

epsTSolver, double Vx) – generates the evolution time 2 .
• double GenerateZ(double rndm, double t, double T0, double epsTSolver,

double Vx) – generates the actual light-cone variable z.
• int GenerateFlavor(double rndm,int oldFlavor) – generates the parton-

flavor index.
• double KernelWeight(double t, double z, double Vx) – provides part

of the MC weight turning the simplified kernel into the exact kernel.
• double DeltaRealPart(double t new, double t old, double z) – part

of the MC weight from the Sudakov form factor evaluated analytically.
• double DeltaVirtualPart(double t new, double t old, double z) –

part of the MC weight due to the Sudakov form factor evaluated numerically.
• virtual void init() – initialization of an object.
• void AddParticle(double t, double x, double z, int f, double weight,

int index) – stores data of a single parton emission, a private function,
not to be used outside the MarkovianGen class.
• Other auxiliary member functions used to transmit the flavor type between

the class MarkovianGen and the class kernels:

2 The technical parameter epsTSolver sets a precision for the TSolver function
used for some evolution types.
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· void SetActualFlavor(int flavor) – transmits the actual parton fla-
vor to kernels.
· void SetOldFlavor(int flavor) – transmits the old flavor to kernels.
• “Getter” functions for the external users:
· bool GetParticle(double &t, double &x, double &z, int &f, double

&weight, int index) – provides the external user with the information
about partons generated in the last MC event; index runs from 0 to
EventMultiplicity, the variables t, x, z, f and weight describe the emis-
sion of the number index, weight is the cumulative weight; index = 0
returns information on the initial parameters of GenerateEvent and in
this case z = 1.
· int GetEventMultiplicity() – returns a number of particles generated

in the last MC event.

All parameters of the virtual functions belong to the following list:

• double rndm – the random number,
• double t – the evolution time,
• double T0 – the start of the evolution time,
• double TStop – the end of the evolution time,
• double z – z = xnew/xold,
• double Vx – as input: the light-cone xold variable before the emission; as

output: the xnew variable after the emission,
• double t new – tnew the generated current evolution time,
• double t old – told the evolution time of the previous emission,
• double knew – fnew the generated current flavor,
• double kold – fold the flavor of the previous emission,
• double flavor – the flavor (depends on the function – explanation above),
• double weight – as input: the initial weight to be assigned to the event

(for example from the generation of the initial condition); as output: the
cumulative weight of the event,
• epsTSolver – the precision for the TSolver function.

3.6 Small parameters in classes of MarkovMC library

Constructors and other methods of the classes in the MarkovMC library have as
formal parameters several small parameters, which we call epsilon-parameters.
They may be of technical or physical character. Let us explain them with
explicit examples.

(1) The constructor

dglap_nlo(double T0, double lambda, double NumberOfFlavor,

rndm *rnGen, double epsilon_IRC = 0.0001,
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double epsilon_Zmin = 0.0001)

contains two physical epsilon-parameters:

• epsilon IRC is the dummy infrared cut-off at z = 1 for the DGLAP evo-
lution. Solutions of the evolution equations do not depend on its value as
long as it is kept small enough (10−4 by default).
• epsilon Zmin is the minimal value of the final x-variable. In practice it is

used as a cut-off for the z-variable in the kernels which exhibit a logarithmic
divergency in the small z limit. Note that the MC program will generate
the distribution for x < εZmin but it will be incorrect, see Sect. 5.1 for more
comments.

(2) In more advanced classes, such as cprim nlo, there is another technical
epsilon-parameter: epsTSolver. It is used in the method GenerateEvent of
the base class to set the precision of the important TSolver member function
which inverts numerically an arbitrary one-dimensional function.

(3) The last two technical epsilon-parameters are defined in the auxiliary class
gaussIntegral, see for instance one of its member functions

double dqags(double a, double b, double epsabs, double epsrel,

double &abserr, int &neval, int &ier),

where epsabs and epsrel are used to set the technical absolute and relative
precision of the numerical integration.

3.7 Initial parton momentum distributions

The MarkovMC library does not generate the initial parton momentum distri-
butions – the user is supposed to provide the initial values of x- and flavor-
variables for the GenerateEvent method. The actual generation of the initial
parton momentum distributions is therefore done by an external MC appli-
cation. We provide two examples of such an external environment. The first
one, in the folder Demo0 (see Section 5.1), simply uses fixed values of starting
Xstart and Flavor. The second, a more advanced example in the folder Demo1
(see Section 5.2), uses the adaptive MC generator TFoam (part of the ROOT sys-
tem) to generate the initial densities. In Demo1 we use the gluon (G) and quark
singlet (Q) PDFs with three massless quarks in the following notation:

DQ =
∑
i

(
Dqi +Dq̄i

)
(15)
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and

D0
u(x) = D0

uval
(x) +

1

6
D0
sea(x),

D0
d(x) = D0

dval
(x) +

1

6
D0
sea(x),

D0
s(x) = D0

ū(x) = D0
d̄(x) = D0

s̄(x) =
1

6
D0
sea(x),

D0
Q(x) = D0

sea(x) +D0
uval

(x) +D0
dval

(x).

(16)

More details on the actual implementation of the TFoam-based generation can
be found at the end of Section 5.2.

4 Installation instructions

This section instructs the user of EvolFMC v.2 how to install the program on
two system platforms: Linux and Mac OS X. The syntax of Linux commands
is given for the bash shell. The first few steps concern installation of the ROOT

package. As explained earlier, the library MarkovMC as such does not need
ROOT. However, in the distributed version the ROOT package is required as a
source of the random number generator for the library MarkovMC.

The more advanced demonstration program Demo1 exploits ROOT as a his-
togramming package and uses its persistency mechnism.

A step-by-step installation procedure of EvolFMC looks as follows:

(1) Check if ROOT is installed in the system and find its location. In the case
there are several versions of ROOT in the system, choose the preferred one.

(2) Check if the environmental variable ROOTSYS is defined correctly: echo
$ROOTSYS. If several versions of ROOT are in the system, define the ROOTSYS
variable as a path to the correct/preferred version:
export ROOTSYS=path to your root

Check if the shell variable LD LIBRARY PATH (or DYLD LIBRARY PATH in
Mac OS X) contains a correct path to the ROOT’s library. If not, then
execute:
under Linux:
export LD LIBRARY PATH=$LD LIBRARY PATH:$ROOTSYS/lib

under Mac OS X:

export DYLD LIBRARY PATH=$DYLD LIBRARY PATH:$ROOTSYS/lib

It is convenient to put this command into the bash-shell configuration
files: .bashrc or .bash profile. Finally, check if the $PATH variable
includes a correct path to the ROOT binaries.

(3) Add the path to the project to the variable LD LIBRARY PATH (DYLD LIBRARY PATH
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in Mac OS X). This is done under Linux by:
export LD LIBRARY PATH=$LD LIBRARY PATH:path to the project/lib

or under Mac OS X:

export DYLD LIBRARY PATH=$DYLD LIBRARY PATH:path to the project/lib

Note: For the demonstration programs Demo0 and Demo1 the user may
skip the above commands because this path is already set in the appro-
priate Makefiles.

(4) Build the program from the commad line in the main project folder:
autoreconf -i --force

under Linux: ./configure

under MacOSX: ./configure --enable-platform=macos

make

(5) Test the correctness of the installation:
(cd Demo0; ./verify benchmarks).
For more details on the above test as well as on how to run two demon-
stration programs Demo0/Demo and Demo1/Demo1Pr see the next section.

The authors have also managed EvolFMC using two popular integrated software
development packages: Kdevelop and Eclipse. Let us hint on how to initialize
EvolFMC as a project within these development tools:

(1) Kdevelop

From the main folder of the project just type in the shell:
kdevelop&

then from the menu <project> choose <import> and set <project type>

to <Generic C++ Application (Automake-based)>. Next time you open
Kdevelop, the configuration files will be already in place.
(Do not forget in the menu <project>→<project options>→<configure options>:
in the window <Configuration> to choose default instead of debug 3 .)

(2) Eclipse

The configuration files are included, so it is enough to invoke Eclipse and
from the menu <File>→<Import>→<General> choose <Existing projects>.
The list of existing projects should appear, including the current EvolFMC.

4.1 Testing correctness of installation

Finally, let us explain how to test quickly the correctness of the installation.
This is done by means of executing a special “benchmark test” in form of
the bash script verify benchmarks included in the subfolder Demo0 of the
distribution folder. This test compiles and links the program Demo0/demo.cxx,
and then runs it in a sequence for all eight implemented types of the evolution.
Text outputs from these runs, containing a printout of the variable x, the flavor

3 Unless you really need debugging.
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type and the MC weight for 100 events, are produced and compared using the
diff utility against the benchmark outputs stored by the authors of the code
in the subfolder Demo0/bmarks outputs. If the installation procedure and all
the settings are correct, then there should be no differences between the stored
and the current output disk files. The stored outputs have been generated on
the system iMac Core 2 duo with gcc 4.2 under Ubuntu 8.
Summarizing:

(1) The benchmark test can be invoked as follows:
cd Demo0

with the help of the bash script
./verify benchmarks

(2) If needed, the user may create his/her own new set of benchmark output
files with the help of the bash-shell script in the Demo0 folder:
./create benchmarks

Alternatively, the above benchmark can be executed with the command make

bmark.

5 Two demonstration programs

In the following we describe in a more detail two demonstration programs in
the subfolders Demo0 and Demo1, which the user should run after installation
of EvolFMC. They are also meant as the templates for applications which use
EvolFMC in studies related to the perturbative QCD – most likely as a testing
tool for other MC programs implementing the QCD evolution of the parton
momentum distributions, or as part of some bigger MC application. These two
programs are already built during installation, see the previous section, and
can be executed as follows:

(1) A simple demonstration program:
cd Demo0

make start

(2) A more advanced demonstration program:
cd Demo1/work

make start

Four histograms are recorded in the disk file. To visualize them:
make plot

Let us describe these two demo programs in a more detail.
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5.1 Simple demonstration program demo.cxx

The simple demo.cxx program is included in the subfolder Demo0 in order to
demonstrate how to generate MC events for any of the eight evolution types
supported by EvolFMC. The listing of the whole program demo.cxx is given
in the Appendix. Let us present and explain the crucial instructions in the
demo.cxx source code, using the example of just one evolution type – LO
DGLAP:

[...]

#include "rndm.h" (1)

#include "dglap_lo.h"

[...]

int main()

{

[...]

rndm * RNgen = new rndm(); (2)

dglap_lo * dglap_ll = new dglap_lo(T0,Lambda,

numberOfFlavors,RNgen,epsIRC,epsZmin); (3)

for(int i=0;i<numberOfEvents;i++)

{

dglap_ll->GenerateEvent(Tc,Xstart,weight,TStop,Flavor); (4)

[...]

}

[...]

}

(1) The appropriate header files are included: one for the class of the random
number generator and another one for the class of the chosen evolution
type.

(2) The object of the RNgen class being the random number generator is
created.

(3) Next, the MC generator object dglap ll of the class dglap lo is created.
It is the central object of the above code and it is used to generate
a series of the MC events. The arguments of the dglap lo constructor
are: the initial (starting) value of the evolution time Tmin, the value
of ΛQCD Lambda, the number of active flavors numberOfFlavors and the
pointer to the object of the random number generator RNgen. In addition,
the parameter epsIRC is the technical cut-off used for regularizing the
distribution 1/(1 − x)+ at x = 1 in the kernel KR

ff ′ of eq. (3). The final
result will be independent of epsIRC, if it is kept small enough. The last
parameter, epsZmin, is the minimal requested value of the x variable
to be generated. A non-zero value of the cut-off εmin is necessary only
in the NLO cases, due to the presence of the (ln z)/z singularity in the
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NLO DGLAP kernels. 1/z in the kernels is cancelled for evolution of the
momentum distributions but ln z is still present, hence some form of a cut-
off is needed. Note that the solution for x > εmin given by the program
is always independent of this cut-off, see Sect. 3.6 for more details 4 .
Note that both epsIRC and epsZmin have default values assigned by
the constructor and their redefinition, as done in the above example, is
optional.

(4) Finally, the MC events are generated with the method GenerateEvent.
The meaning of the arguments of GenerateEvent is the following:
Tc is a parameter for technical tests, not to be used. The initial conditions
of the evolution are set by Xstart and Flavor, being the initial values of
the x-variable and the flavor type 5 . TStop is the maximal value of the
evolution time, weight is the initial weight assigned to the event, nor-
mally set to 1, epsSolver is a technical parameter defining the accuracy
of a procedure for inverting numerically certain functions – should not be
modified! The same parameters Xstart and Flavor return the generated
final value of the x-variable and the final flavor type, while weight is the
weight of the generated MC event. A detailed history of the evolution is
recorded inside the object dglap lo. In particular, the values of all gener-
ated x- and flavor-variables, including their initial values, are stored there
(in the m x:MarkovMC and m f:MarkovMC matrices). All these parameters
can be accessed easily with the help of the functions GetParticle and
GetEventMultiplicity.

All other evolution types follow exactly the same pattern, as can be seen in
the demo.cxx file.

The program demo.cxx prints in the output the final x and the final flavor of
the first 100 of the generated MC events. After completing the MC generation
it calculates and prints the average of the MC weight. This average is equal
to the sum over the final flavors integrated over the final x-variable. This,
in turn, is almost equivalent to the unitary normalization of the momentum
distribution functions according to momentum sum rule. It is almost equivalent
because in the MC program the lower limit εmin is imposed on the value of the
generated final x-variables, x > εmin, so there will be a tiny missing piece in
the sum rule comming from the integral from 0 to εmin. Note that this integral
contains only integrable singularities of the ln z-type, so by lowering εmin the
sum rule can be tested to an arbitrary precision.

4 On the contrary, the MC solution for x < εmin depends on this cut-off and there-
fore should not be trusted.
5 In general, Xstart and Flavor will be generated according to some initial parton
momentum distribution (see Demo1) – here they are just set in the code.
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5.2 More advanced demonstration program in folder Demo1

The library of the classes in the folder MarkovMC is a collection of pure MC
generators written in a clean and minimalistic way. As shown in the previous
simple demo, it is easy to use the MC generator objects of these classes. In the
real life, the pure MC generators are only a small part of a bigger code in which
they are embedded. Let us call this environmental code the MC application
(MCAp) and characterize briefly functionality and data structures of such a
MCAp. The functionality of MCAp typically includes: (a) running many times
for various input data a MC event generator and storing output data in a form
of one and more dimensional histograms and/or MC events, in the systems
with one processor; (b) the same in systems with many processors, many nodes
(PC farms); (c) visualization and quick analysis of the stored results after the
MC “production run” is finished, or even while the MC production is still run-
ning, in particular, (d) comparisons with the stored “benchmark” results from
the previous “consolidated” versions of the program, (e) comparisons with
the results of analytical and other non-Monte-Carlo numerical calculations,
(f) comparisons between the stored MC results from the runs with different
input data and more. The data structure of MCAp typically features: (A) A
collection (database) of the input parameters with clear distinction between
the parameters which are “hardwired” and changed only in very special tech-
nical tests, the default paremeters which are rarely changed, such that the
user may normally ignore them, and, finally, the important steering parame-
ters which are changed often or it is even obligatory to (re-)define them. (B)
A data base of the output results from the consolidated well-tested versions
of the program, important results from long CPU time MC runs, outputs
used in the published works. (C) Some degree of persistency mechanism for
writing/reading structured data in/from a disk file is absolutely necessary in
organizing MCAp. This persistency may be limited to data objects, such as
MC events and histograms, or include a possibility to write into a disk file the
objects of the random number generator, parts of the MC generator embed-
ding important member data, or even the complete MC event generator in the
“ready-to-go” state.

In the presented distribution package we do not include the full scale MCAp
environment for the MarkovMC library. However, the demonstration program
in the folder Demo1 represents an essential step towards such an infrastructure.
The demonstration program Demo1/MainPr.cxx features to a large extent the
points (a), (c), (d) and (C) of the above specification list and is meant as an
useful template for the further development. Let us first overview it briefly,
and more details will follow later on.

In this example the Markovian MC generator object m MMC, being the instance
of one of the eight classes of the MarkovMC library, is embedded as a member of
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the object m MCgen of the container class MMCevol. The object m MMC is created
there, filled in with the input data, and used to generate MC events using the
methods of the MMCevol and MarkovianGen classes. Every MC event generated
by m MCgen->m MMC is made available for histogramming. The object m MCgen

is embedded (not created) in the object of the class TRobolA. Methods of this
class perform several functions: book histograms, transfer input data and a
pointer of an external random number generator m RNG object into m MCgen,
generate a single MC event, fill-in histograms and write histograms into a disk
file. The object of the TRobolA class does not contain, however, the main loop
over the MC event generation, nor creates the m RNG and m MCgen objects.
The main loop over the MC events is located and managed in a rather special
way in the main program MainPr, while the objects of the external random
number generator m RNG and of the MC generator m MCgen are created in
a separate small script Demo1/work/Start.C. This scrips, run by ROOT in
the interpreter mode, defines also all input data of the MC run. Execution of
Start.C, building, running and stopping the main program (as well as plotting
the results) is managed by Demo1/Makefile.

The elements of the above five-level functionality and data structure (Makefile,
the main program, the TRobolA class, the MMCevol class, the MarkovianGen

class/library), sketched above, will be described in a more detail in the follow-
ing. At the first glance, this may look overcomplicated. However, one has to
remember that the fully functional MCAp, defined in points (a)–(f), (A)–(C)
above, will unavoidably be rather complicated, especially for running on the
multinode PC farm. The presented structure exploits years of experience of
the authors in developing many similar MC infrastructures for running and
testing MC event generators [34–39], and we hope that it may be useful for
others as a template to develop it further and/or customize to their own needs.

Let us now add more details on the Demo1 source code and its execution.
All the C++ source code files specific to this demo program are located in
the folder Demo1 while the input/output files can be found in its subfolder
Demo1/work. The main() program is located in the file MainPr.cxx. It con-
sists of three main parts corresponding to the initialization, the generation of
the MC event series and the final part of the MC program. The same three
parts are present as three stages in the execution of the program. In the first
stage, the work/Start.C script creates three objects: (1) an object of the
MMCevol class, that is the MC generator, (2) an object of an external random
number generator and (3) an auxiliary object of the class TSemaf. These ob-
jects are initialized with the default data residing in the class constructors,
and then they are modified with the run-specific input data contained explic-
itly in the code of the Start.C script (in particular, a random number seed
may optionally be redefined at this point). The object of TSemaf contains
data for administering the main MC loop in the main program. The above
three objects are written by Start.C into the disk files semaf.root (the object
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TSemaf) and mcgen.root (the objects MMCevol and random number generator).
In the above and in the following the persistency feature of the ROOT system
is exploited to facilitate writing and reading the entire objects into/from the
disk files.

The run-specific input data are all provided in work/Start.C, including all
steering parameters of the MC generator the user wishes to reset from their
default values. Examples of such settings together with comments, specific to
the Demo1 run, can be found inside work/Start.C.

After executing Start.C, the main program MainPr comes into action. It
reads all three stored objects from the disk files semaf.root and mcgen.root
and creates a new object of the TRobolA class containing all histograms and
the pointers to the MC generator m MCgen and the random number genera-
tor m RNG. The event generation loop is started. The number of MC events is
set by the variable NevTot which is read from the TSemaf class object. After
generating every NGroup events, the partial results of the MC generation are
stored in a disk (the NGroup variable is also taken from the TSemaf object).
Before going to the next group of the event generation, the status of the spe-
cial semaphore-type flag in the TSemaf object in the disk file semaf.root is
examined. If the status flag is equal to "CONTINUE", then the event generation
is continued, otherwise, if it is equal to "STOP", then main loop and the MC
generation is terminated. The latter status flag can be reset by the user in-
teractively by calling make stop from the subfolder work. At the start of the
program the status of this flag is always set to "START" and it is redefined to
"CONTINUE" immediately after generating the first group of the MC events.
The class called TSemaf is defined in the files (TSemaf.h, TSemaf.cxx). The
semaphore object contains also some auxiliary information on the generated
event sample, such as the number of events. Once the event generation loop
is terminated, the programs enters into the short finalization stage during
which all the necessary statistics on the MC event sample are calculated and
all histograms of the TRobolA class are stored in the output file histo.root.
Histograms are also recorded into histo.root after generating each group of
MC events.

The source code of class TRobolA is located in the files (TRobolA.h, TRobolA.cxx).
Its main task is to create and fill-in appropriate histograms. This is done in
three stages: booking, filling and storing of the histograms with the help of
the class-member functions: Hbook(), Production(double&), FileDump(),
respectively. More details can be found in the source code.

The demonstration program Demo1/Demo1Pr generates a sample of 105 weighted
events for the evolution of the parton momentum distributions from Qmin =
1 GeV to Qmax = 100 GeV. In the course of the MC event generation, the
program fills-in histograms of the gluon and quark-singlet parton momentum
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distributions and the corresponding MC weights with the help of ROOT. These
histograms are stored in the disk file histo.root written in the ROOT format.
After completing the generation of the series of the MC events, the stored his-
tograms are plotted using the ROOT graphics programs and compared graphi-
cally with the histograms pre-computed and stored in the distribution folder.
The appropriate commands for running this demo program and plotting the
results are make start and make plot, see the beginning of this section.

Another C++ program work/draw.cpp is included for analyzing/viewing the
produced histograms and comparing them with some pre-computed results.
If the instalation of the MC program is done correctly, the user-produced
results should agree with the pre-computed ones within statistical errors. This
program can be run in the interpreter mode of ROOT with the help of a single
command make plot.

Let us finally add a few details on embedding the object m MMC of the MarkovianGen
class inside the “wrapper” object of the class MMCevol. The object m MMC

is created by MMCevol::Initialize() using the constructor of one of the
eight classes implementing a specific evolution type. Which one to choose
is decided by the steering data member m EvolType of the MMCevol class.
Then, each MC event is generated by MMCevol::Generate(), which calls
m MMC->GenerateEvent(). Here, the method MarkovianGen::GenerateEvent()

does not have any parameters (contrary to the one used in Demo0). This is why
the getter MarkovianGen::SetTRange have to be used in MMCevol::Initialize

to define the range of the evolution time. Also, prior to m MMC->GenerateEvent(),
x and the flavor of the initial parton are generated using the TFoam util-
ity of ROOT and they are fed into the object m MMC using the dedicated set-
ter MarkovianGen::SetInitParton. The corresponding part of the code in
MMCevol::Generate() looks as follows:

// Generate primordial/initial parton

if( m_FoamI != NULL ){

m_FoamI->MakeEvent(); // generate x and parton type

m_wt = m_FoamI->GetMCwt(); // get weight

} else

m_wt =1.0;

/// Simulate QCD multiparton evolution

m_MMC->SetInitParton(m_flavIni,m_xIni); // Set initial parton

m_MMC->GenerateEvent(); // Generate MC event

m_MMC->GetFinParton(m_Flav,m_X); // get final x and parton type

m_wt *= m_MMC->GetWt(); // combine MC weight

The parton momentum distribution of the initial parton is provided to the ob-
ject m FoamI of the TFoam class by the dedicated function MMCevol::Density

located in Demo1/MMCevol.cxx file. The user can easily modify here the shape
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of the initial distributions. The above organization is quite flexible and allows
one to introduce into the game more MC generator objects 6 , more MC event
objects, etc.

6 Technical tests

In this section we describe in some detail a variety of tests that we have
performed on the EvolFMC v.2 code in order to verify its correctness and
determine its overall technical precision. To be specific, we have performed
three different sets of the technical comparisons of the code EvolFMC v.2:
(1) with the semianalytical code QCDNum16 [8],
(2) with the semianalytical code APCheb40 [12, 13],
(3) with the previous version of the EvolFMC code: EvolFMC v.1, and
(4) between different algorithms within the EvolFMC v.2.
We will describe them in turn. The target relative precision of the tests is
5× 10−4 (half of a per mille).

At the end of this section we also present the weight distributions for all the
algorithms and we compare speed of the algorithms.

As the initial distributions at 1 GeV, for all of the tests we take

D0
G(x) = 1.908 · x−1.2(1− x)5.0,

D0
sea(x) = 0.6733 · x−1.2(1− x)7.0,

D0
uval

(x) = 2.187 · x−0.5(1− x)3.0,

D0
dval

(x) = 1.230 · x−0.5(1− x)4.0.

(17)

The QCD constant Λ0 = 0.2457 and Nf = 3. For each of the tests we use
statistics of the order of 1010 MC points.

6.1 Comparison with semianalytical code QCDNum16

The previous version of the code, EvolFMC v.1, has been tested against the
QCDNum16 code [8] for the standard DGLAP evolution. The demonstrated
agreement was 5 × 10−4 for the LO case and 1 × 10−3 for the NLO case,
see [1]. For consistency we have repeated these comparisons for EvolFMC v.2.
In Fig. 2 we show the DGLAP NLO evolution up to 10 GeV and 100 GeV
for both the gluon and quark singlet xDf (x) distributions as well as the ratio
of the QCDNum16 to EvolFMC results. The QCDNum16 results are based on the

6 Another possibility would be to inherit MMCevol from the MarkovianGen class,
but such a solution would probably be less flexible.
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Fig. 2. Left frames: the DGLAP evolutions in the NLO approximation from QCDNum16
and EvolFMC (the curves are indistinguishable). Upper curves (magenta and blue):
the gluon xDG(x) distr.; lower curves (black and red): the quark xDQ(x) distr.
Right frames: the ratio of QCDNum16 to EvolFMC for the gluon (magenta) and quark
(black) distributions. Top frames: the evolution up to 10 GeV. Bottom frames: the evo-
lution up to 100 GeV.

extended grid size of 2000×600. The agreement is of the order of 5÷8×10−4.
We will demonstrate in the next subsection that these residual discrepancies
are to be attributed to QCDNum16. One has to remember that the comparisons
with QCDNum16 are limited to the standard DGLAP evolution only.

6.2 Comparison with semianalytical code APCheb40

It is the most independent test of the EvolFMC code. The semianalytical
method of solving the evolution equations used by APCheb40 is entirely dif-
ferent from the MC method and also the library of the evolution kernels is
completely independent. At first, in Fig. 3, we show the comparisons for the
standard DGLAP NLO evolution (for this comparison we used the older ver-
sion, 33, of the APCheb code). We show the evolution up to 10 GeV and 100
GeV for both the gluon and quark singlet xDf (x) distributions as well as the
ratio of the APCheb33 to EvolFMC results. As we see the agreement is remark-
able, at the level of 1×10−4, limitted by the statistics. This result clarifies the
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Fig. 3. Left frames: the DGLAP evolutions in the NLO approximation from APCheb33
and EvolFMC (the curves are indistinguishable). Upper curves (magenta and blue):
the gluon xDG(x) distr.; lower curves (black and red): the quark xDQ(x) distr.
Right frames: the ratio of APCheb33 to EvolFMC for the gluon (magenta) and quark
(black) distributions. Top frames: the evolution up to 10 GeV. Bottom frames: the evo-
lution up to 100 GeV.

source of residual disagreement seen in the Fig. 2.

The advantage of APCheb40 over other semianalytical codes, such as QCDNum [8],
is that it has the option of the modified-DGLAP evolution built-in, although
only at the LO level, see [13] for details. For the sake of comparisons we have
modified the LO kernels in APCheb40 in such a way that the coupling con-
stant is implemented in the NLO approximation, whereas the z-dependent
parts remain in the LO approximation, i.e. the modified kernels are

xK
R(B′)APCheb
f ′f (t, x, w) =

αNLO(ln(1− z) + t)

2π
2zP

R(0)
f ′f (z)θ1−z>λe−t ,

xK
R(C′)APCheb
f ′f (t, x, w) =

αNLO(ln(w − x) + t)

2π
2zP

R(0)
f ′f (z)θw−x>λe−t .

(18)

In Fig. 4 we show the C’-type evolution up to 10 GeV and 100 GeV for both
the gluon and quark singlet xDf (x) distributions as well as the ratio of the
APCheb40 to EvolFMC results. The APCheb40 results are based on the interpo-
lation with 100 Chebyshev polynomials. The agreement is again excellent, in
most of the x-range below 1× 10−4.
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Fig. 4. Left frames: the C’-type evolutions in the modified LO approximation from
APCheb40 and EvolFMC (the curves are indistinguishable). Upper curves (magenta and
blue): the gluon xDG(x) distr.; lower curves (black and red): the quark xDQ(x) distr.
Right frames: the ratio of APCheb40 to EvolFMC for the gluon (magenta) and quark
(black) distributions. Top frames: the evolution up to 10 GeV. Bottom frames: the
evolution up to 100 GeV.

To summarise, the results of comparison with APCheb40 indicate that technical
precision of EvolFMC is much better than our conservative target of 5× 10−4.

6.3 Comparison with EvolFMC v.1

The old EvolFMC v.1 has been extensively tested both for the DGLAP (up to
NLO) and modified-DGLAP (LO only) cases with the overall relative precision
tag of about 10−3 [1, 13]. As an example of the backward compatibility tests
we show in Fig. 5 the comparison of EvolFMC v.1 with EvolFMC v.2 for the
DGLAP-type NLO evolution and in Fig. 6 for the modified-DGLAP C’-type
LO evolution, both up to 10 and 100 GeV. As we can see the results agree
within the statistical errors at the level of 5× 10−4, as desired.

As we have explained in Introduction, the version v.1 of EvolFMC has different
overall structure and organisation of the code as well as different implemen-
tation of most of the methods. Therefore this comparison can be regarded as
a comparison with an “almost” independent code (for the limited number of
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Fig. 5. Left frames: the evolutions from EvolFMC v.1 and EvolFMC v.2 (the curves
are indistinguishable) for the DGLAP-type NLO evolutions. Upper curves (magenta
and blue): the gluon xDG(x) distr.; lower curves (black and red): the quark xDQ(x)
distr. Right frames: the ratio of EvolFMC v.2 to EvolFMC v.1 for the gluon (ma-
genta) and quark (black) distributions. Top frames: the evolution up to Q = 10 GeV.
Bottom frames: the evolution up to Q = 100 GeV.

evolution types, of course).

6.4 Comparison of different algorithms

In this section we show the tests of the most advanced evolution: of the C’-type
in the NLO approximation. We have not found any other code that would solve
this type of evolution. For this reason we have implemented in the EvolFMC

code the second, auxiliary, MC algorithm that solves this particular type of
evolution. The key difference of the auxilliary algorithm with respect to the
main algorithm is that the entire NLO correction (including modifications in
the argument of the coupling constant) is introduced as a weight and the
algorithm itself is based on the LO algorithm described in [28], see [30] for
details.

As an example in Fig. 7 we show the comparisons of results of these two NLO
algorithms of the C’-type for two evolution time limits: 10 GeV and 100 GeV.
As one can see the agreement is well below the level of 5 × 10−4. This result
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Fig. 6. Left frames: the evolutions from EvolFMC v.1 and EvolFMC v.2 (the curves
are indistinguishable) for modified-DGLAP C’-type LO evolutions. Upper curves (ma-
genta and blue): the gluon xDG(x) distr.; lower curves (black and red): the quark
xDQ(x) distr. Right frames: the ratio of EvolFMC v.2 to EvolFMC v.1 for the gluon
(magenta) and quark (black) distributions. Top frames: the evolution up to Q = 10
GeV. Bottom frames: the evolution up to Q = 100 GeV.

we consider as the principal test of the NLO C’-type evolution in the code
EvolFMC v.2. Of course, the auxiliary algorithm shares with the previous ones
a lot of common parts of the code. These common parts however have been
extensively tested by all the comparisons described in previous subsections.

We conclude this series of tests with the conservative statement that the
EvolFMC v.2 code has the overall technical precision of 5× 10−4!

6.5 Weight distributions and speed of algorithms

In Fig. 8 we show the weight distributions for all three main algorithms in-
cluded in the program EvolFMC v.2. The evolutions are of the NLO type
up to 100 GeV. The weights are well behaved and fall down exponentially.
The distributions of modified evolutions have shorter tails as compared to
the DGLAP case. This is the consequence of the finite IR cut-off used in the
modified kernels, as compared to the infinitesimal one used in the DGLAP
case. The plots indicate that the conversion to the unweighted events should
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Fig. 7. Left frames: the modified-DGLAP C’-type evolutions in NLO approximation from
the two algorithms of EvolFMC v.2 (the curves are indistinguishable). Upper curves
(magenta and blue): the gluon xDG(x) distr.; lower curves (black and red): the quark
xDQ(x) distr. Right frames: the ratio of the two algorithms of EvolFMC v.2 for the
gluon (magenta) and quark (black) distributions. Top frames: the evolution up to 10
GeV. Bottom frames: the evolution up to 100 GeV.

be quite efficient, especially in the case of moderate target precision level.
One has to remember that in the current version of the program we did not
perform any additional weight optimization, as we restricted ourselves to the
weighted events only. Such an optimization could reduce the tails of the weight
distributions even further.

Finally, in Fig. 9 we compare speed of all five algorithms included in the
program EvolFMC v.2 both in LO and NLO cases. As we see, despite their
complexity and the presence of internal one-dimensional numerical integration,
the NLO algorithms are slower only by a factor of few as compared to the very
fast LO ones. The slowest one is the B’-type algorithm. Let us note that the
algorithms are only partly optimized with respect to speed.
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Fig. 8. Weight distributions for NLO evolution to 100 GeV (normalized to one).
Left frames: gluon. Right frames: quark. Top frames: DGLAP evolution. Central frames:
B’-type evolution. Bottom frames: C’-type evolution.

7 Summary

In this paper we have presented the program EvolFMC v.2. It is a Monte Carlo
generator that solves some of the QCD evolution equations for the parton mo-
mentum distributions in the weighted event mode. In the current version we
have implemented the DGLAP evolution in the LO and NLO approximations
and two modified-DGLAP type evolutions. These modifications include the
replacement of the argument of the coupling constant by a more complicated
functions of the x and t variables. In one case (C’) this function reconstructs
the transverse momentum of the emitted partons and in the other case (B’)
the approximate transverse momentum. Both of these modified-DGLAP evo-
lutions are implemented in the LO as well as the NLO approximation. The
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Fig. 9. Comparison of the speed of all five algorithms. Plotted times (in seconds) refer
to generation of 106 events and evolution to 100 GeV. First three blocks illustrate the
LO evolution (DGLAP, B’ and C’, respectively), following five blocks the NLO case
(DGLAP, B’-auxilary, B’-main, C’-auxiliary and C’-main, respectively).

code is written in the C++ language and has the modular structure, easy to
extend to additional evolution types. The main limitation of the code is the
fact that quarks are treated as massless. We have studied the technical pre-
cision of the program by means of extensive comparisons with the non-MC
numerical program APCheb40, with the previous version of the code, EvolFMC
v.1, and by comparing two independent algorithms for the same evolution
implemented in EvolFMC v.2. These tests have proved that the technical pre-
cision of the EvolFMC v.2 is at least 5× 10−4. To our knowledge it is the first
so-precise solution of the QCD evolution equations by means of the Monte
Carlo methods.
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9 Appendix

In this Appendix we list the source code of the simple demo.cxx program from
the Demo0 folder.
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#include<stdio.h>
#include<math.h>

#include "rndm.h"

#include "bprim_nlo.h"
#include "bprim_lo.h"
#include "bprim_nlo_aux.h"
#include "cprim_lo.h"
#include "cprim_nlo.h"
#include "cprim_nlo_aux.h"
#include "dglap_lo.h"
#include "dglap_nlo.h"

#define DGLAP_LO 0
#define DGLAP_NLO 1
#define CPRIM_LO 2
#define CPRIM_NLO 3
#define CPRIM_NLO_AUX 4
#define BPRIM_LO 5
#define BPRIM_NLO 6
#define BPRIM_NLO_AUX 7

double Lambda = 0.25;
double numberOfFlavor = 3;
double Qmin = 1;
double Qmax = 100;
int TypeOfGenerator = 0;

rndm * RNgen;
int numberOfEvents = 100;

int main(int argc, char *argv[])
{
if (argc>1)
TypeOfGenerator = (atoi(*(++argv))<8) ? atoi(*argv) : 0;

RNgen = new rndm();
double T0 = log(Qmin);
dglap_lo * dglap_ll

= new dglap_lo( T0,Lambda,numberOfFlavor,RNgen);
dglap_nlo * dglap_nll

= new dglap_nlo( T0,Lambda,numberOfFlavor,RNgen);
CPrim_lo * cprim_ll

= new CPrim_lo( T0,Lambda,numberOfFlavor,RNgen);
CPrim_nlo * cprim_nll
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= new CPrim_nlo( T0,Lambda,numberOfFlavor,RNgen);
CPrim_nlo_aux * cprim_nll_aux

= new CPrim_nlo_aux(T0,Lambda,numberOfFlavor,RNgen);
BPrim_nlo * bprim_nlo

= new BPrim_nlo( T0,Lambda,numberOfFlavor,RNgen);
BPrim_lo * bprim_lo

= new BPrim_lo( T0,Lambda,numberOfFlavor,RNgen);
BPrim_nlo_aux * bprim_nlo_aux

= new BPrim_nlo_aux(T0,Lambda,numberOfFlavor,RNgen);

dglap_ll->printLogo();

int init_Flavor = 0;
double init_Xstart = 1.0;

printf("*******************Starting parameters*****************\n");
printf("Qmin=%4.2f\n", Qmin);
printf("Qmax=%4.2f\n", Qmax);
printf("Type of Equation: %d\n", TypeOfGenerator);
printf("QCDLambda=%2.4f\n", Lambda);
printf("numberOfFlavors=%d\n", numberOfFlavor);
printf("Events to generate:%d\n", numberOfEvents);

printf("*******************Initial Conditions******************\n");
printf("Flavor: %d\n", init_Flavor);
printf("Xstart: %1.2f\n", init_Xstart);
printf("*************************Events************************\n");

double TStop = log(Qmax);
double Tc;

double sumwt = 0.0;
double sumwt2= 0.0;
int NoEvents =0;

for (int i=0; i<numberOfEvents; i++)
{
int Flavor = init_Flavor;
double Xstart = init_Xstart;

double weight = 1.0;

switch (TypeOfGenerator)
{
case CPRIM_NLO:

cprim_nll->GenerateEvent(Tc, Xstart, weight, TStop, Flavor);
break;
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case CPRIM_NLO_AUX:
cprim_nll_aux->GenerateEvent(Tc, Xstart, weight, TStop, Flavor);
break;

case CPRIM_LO:
cprim_ll->GenerateEvent(Tc, Xstart, weight, TStop, Flavor);
break;

case DGLAP_LO:
dglap_ll->GenerateEvent(Tc, Xstart, weight, TStop, Flavor);
break;

case DGLAP_NLO:
dglap_nll->GenerateEvent(Tc, Xstart, weight, TStop, Flavor);
break;

case BPRIM_LO:
bprim_lo->GenerateEvent(Tc, Xstart, weight, TStop, Flavor);
break;

case BPRIM_NLO:
bprim_nlo->GenerateEvent(Tc, Xstart, weight, TStop, Flavor);
break;

case BPRIM_NLO_AUX:
bprim_nlo_aux->GenerateEvent(Tc, Xstart, weight, TStop, Flavor);
break;

}
sumwt =sumwt + weight;
sumwt2=sumwt2 + weight*weight;
NoEvents = NoEvents+1;
if (NoEvents<100)
{
printf("X=%1.6f, weight=%1.6f, flavor=%d\n", Xstart, weight, Flavor);
}
}
double integral=sumwt/NoEvents;
double error = sqrt( (sumwt2/NoEvents

- (sumwt/NoEvents)*(sumwt/NoEvents)) /NoEvents);

printf("***********************Output**************************\n");
printf("\n [sum_f=flavor] [int_eps^1 dx] D_f(x,t)= %1.6f +- %1.6f\n\n"

,integral, error);
printf("*******************************************************\n");

return 0;
}
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