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Free energies of ferroeletri rystals from a mirosopi approah
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The free energy of barium titanate is omputed around the Curie temperature as a funtion

of polarization

~P from the �rst-priniples derived e�etive hamiltonian of Zhong, Vanderbilt and

Rabe [Phys. Rev. Lett. 73, 1861 (1994)℄, through Moleular Dynamis simulations oupled to

the method of the Thermodynami Integration. The algorithms used to �x the temperature (Nosé-

Hoover) and/or the pressure/stress (Parrinello-Rahman), ombined with �xed-polarization mole-

ular dynamis, allow to ompute a Helmholtz free energy (�xed volume/strain) or a Gibbs free

energy (�xed pressure/stress). The main feature of this approah is to alulate the gradient of

the free energy in the 3-D spae (Px,Py ,Pz) from the thermal averages of the fores ating on the

loal modes, that are obtained by Moleular Dynamis under the onstraint of �xed

~P . This work
extends the method presented in [Phys. Rev. B 79 (2009), 064101℄ to the alulation of the Gibbs

free energy and presents new features about the omputation of the free energy of ferroeletri

rystals from a mirosopi approah. A areful analysis of the states of onstrained polarization

is performed at T=280 K (≈ 15-17 K below Tc) espeially at low order parameter. These states

are found reasonably homogeneous for small superell size (L=12 and L=16), until inhomogeneous

states are observed at low order parameter for large superells (L=20). The e�et of this evolution

towards multidomain on�gurations on the mean fore and free energy urves is shown. However, for

reasonable superell sizes (L=12), the free energy urves obtained are in very good agreement with

phenomenologial Landau potentials of the litterature and the states of onstrained polarization

are homogeneous. Moreover, the free energy obtained is quite insensitive to the superell size from

L=12 to L=16 at T=280 K, suggesting that interfaial ontributions, if any, are negligible at these

sizes around Tc. The method allows a numerial estimation of the free energy barrier separating the

paraeletri from the ferroeletri phase at Tc (∆G ≈ 0.012-0.015 meV/5-atom ell). However, our

tests evidene phase separation at low temperature and low order parameter, in agreement with the

results of Tröster et al [Phys. Rev. B 72 (2005), 094103℄. Finally, the natural deomposition of the

fores into onsite, short-range, dipole-dipole and elasti-loal mode interation allows to make the

same deomposition of the free energy. Some parts of this deomposition an be diretly alulated

from the oe�ients of the E�etive Hamiltonian.

Keywords: Moleular Dynamis, E�etive Hamiltonian, Thermodynami integration, Ferroeletris

I. INTRODUCTION

Two main theoretial approahes are urrently used in the desription of ferroeletriity in perovskite oxides. The

�rst one, that we will all the mirosopi approah, is based on �rst-priniples alulations and e�etive hamiltoni-

ans. These e�etive hamiltonians are simpli�ations of the energy landsape of ferroeletri solids in terms of relevant

degrees of freedom (loal modes, displaement modes, homogeneous strain and, for more omplex perovskites, anti-

ferrodistortive modes

1

). They have even been reently extended to desribe multiferrois by aounting for magneti

moments as degrees of freedom

2

. Their mathematial form ontains adjustable parameters that are usually derived

from density-funtional alulations. The e�etive hamiltonians, one onstruted, an be solved either within Monte

Carlo (MC) or Moleular Dynamis (MD) simulations. The physial quantities (polarization, strain...) are obtained

as thermal averages over the equilibrium trajetories onstruted from these two methods, that should provide equiv-

alent sampling of phase spae (MD) or on�guration spae (MC). These e�etive hamiltonians ontain most of the

thermodynamis of ferroeletri rystals and, in most ases, desribe very well their evolution with temperature and

pressure/stress with or without external eletri �eld. They have been extended to treat low-dimensional systems

(thin �lms, nanowires

3

, dots

4,5

) under various mehanial and eletrial boundary onditions. The �rst ab initio-

derived e�etive hamiltonian has been onstruted by Zhong, Vanderbilt and Rabe

6,7

and suessfully applied to

barium titanate.

The seond approah, that we will all the marosopi approah, or phenomenologial approah, is based on the

Landau theory of phase transitions. This theory uses as entral onept an inomplete thermodynami potential

(that an be a Helmholtz potential F or a Gibbs potential G, or the thermodynami potential of any other ensemble),

http://arxiv.org/abs/0904.0264v2
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ommonly alled Landau free energy, whih is a funtion of the polarization

~P (order parameter) and an be de�ned

from the restrition of the true thermodynami potential to the mirosopi states having a given polarization

~P 8

.

In the anoni ensemble, it writes:

F̃ (N, V, T ; ~P ) = −kBT lnZ̃(N, V, T ; ~P ),

with

Z̃(N, V, T ; ~P ) =
∑

i/~P

e−ǫi/kBT ,

in whih the inomplete anonial partition funtion de�nes a Helmholtz free energy F̃ . The sum in this expression

is over all the mirostates i having a polarization ~P . Within this de�nition, the inomplete free energy F̃ (~P ) appears

as diretly related to the density of probability of the order parameter Π(~P ) by15:

Π(~P ) = Π(~0)e−[F̃ (~P )−F̃ (~0)]/kBT
(1)

The same de�nitions in the isothermal-isobari ensemble allow to de�ne an inomplete Gibbs free energy:

G̃(N,P, T ; ~P ) = −kBT ln∆̃(N,P, T ; ~P ),

with

∆̃(N,P, T ; ~P ) =
∑

i/~P

e−(ǫi+PVi)/kBT ,

the (inomplete) isothermal-isobari partition funtion.

The Landau approah desribes quite well the thermodynamis of many ferroeletris. It was applied in a pioneering

work by Devonshire on bulk barium titanate a long time ago

9,10,11

and has been applied sine then on many other

ferroeletri materials and in many other forms than bulk

12

. In Landau theory, the thermodynami potential is

expanded in power series of the polarization

~P (the order parameter in ferroeletri rystals), usually up to 6

th
or 8

th

order. The quadrati oe�ient is assumed to vary linearly with temperature while the higher-order oe�ients are

usually assumed as onstants (more omplex potentials with temperature-dependent high-order oe�ients have been

reently proposed

13,26

). These free energies are used to model the thermodynamis of the system onsidered around

the ritial temperature and even further, even though the Landau approah is supposed to break down near the

ritial temperature. Sine suh polynomial developments are by nature approximate, it appears legitim to try to use

the mirosopi models introdued hereabove to get insight into the Landau potentials by using standard numerial

simulation tools.

However, the onnetion between the two approahes is not simple. Indeed, on the one hand, the MC or MD

methods are unable to give diretly aess to the thermodynami potential, that an not be omputed as the thermal

average of some mirosopi quantity. Indiret methods an nevertheless be employed: using the fat that the Landau

free energy is diretly related to the density of probability of the order parameter, it may be possible to ompute

the free energy from the probability distribution obtained from a long enough MC or MD run

14,15

. However, if suh

alulations are possible and e�ient in the simple ase of the φ4
model

15

, it is not the ase of ferroeletri rystals

desribed by the e�etive hamiltonians introdued above, for whih the high-free energy parts (for instane the part

of F̃ at low order parameter in the ferroeletri phase) are not sampled orretly (or even not at all), making the free

energy aessible only in the viinity of the equilibrium value of the order parameter

14

.

A lever alternative method was proposed by Iñiguez et al

8

to alulate from MC simulations the oe�ients of the

Landau free energy expansion, that onsisted in applying an external eletri �eld in order to displae the minimum of

the free energy in the (Px, Py, Pz) spae. Reently, we proposed to use the method of the thermodynami integration
20

,

oupled to MD simulations, to aess numerially to the free energy as a funtion of polarization (alulated as a

Helmholtz free energy, under onstant strain tensor). This method allows a orret sampling of the high-free energy

regions (where the "reation oordinate" has a low probability) sine it onsists of MD runs under the onstraint of

�xed reation oordinate. Thermodynami integration is a tehnique ommonly applied in omputational hemistry

to obtain free energy pro�les along a reation oordinate. In the present ase, the order parameter (polarization) is

taken as the reation oordinate. It has also already been applied in the framework of Landau theory to study the

ubi-tetragonal phase transition in ZrO2 by Fabris et al

21

. Other tehniques suh as the Wang-Landau method an

also be used

16

.



3

On the other hand, the omputation of Landau potentials is deliate for various theoretial reasons. Indeed, �xing

the order parameter to a given value (i.e. sampling the phase spae under the onstraint of �xed order parameter)

an raise unexpeted problems, espeially at low value, where the system might evolve to inhomogeneous states and

separate into "domains" below Tc. In the ase where this phase separation ours, hanging the order parameter from

zero to higher values simply results, at least at low order parameter, in some domain wall motion (or more omplex

interfae motions and reorganizations), and the omputed free energy does probably not orrespond to the free energy

expeted as the entral onept of Landau theory, in whih su�iently homogeneous states are assumed all along the

free energy urve. Tröster et al

16

have studied this phenomenon in details in the framewotk of the so-alled φ4
model

through Wang-Landau omputations of the free energy. Moreover, if surfae or interfaial ontributions enter the

omputation of the thermodynami potential, the alulated objet might not be a volume quantity and not have the

extensivity required by suh a thermodynami funtion.

Essentially, suh problems are related to the basi fat that de�ning properly the polarization as a ontinuous

physial quantity requires the hoie of a spatial averaging length

16

(as it is the ase, in fat, for all marosopi

quantities used in eletrodynamis). This averaging length sale L should be hosen below the orrelation length ξ so
that the loal order parameters (eletri dipoles in our ase) remain orrelated within the averaging volume and that

eah dipole only �utuates around the averaged value all over the averaging volume. Conversely, it should be also

hosen muh larger than the lattie parameter a (elementary distane between �rst neighbor loal order parameters)

so that the order parameter as a slowly varying marosopi quantity keeps a sense. For these reasons, it is admitted

that the Landau free energy should be de�ned with respet to a given averaging length L (oarse-graining length)

16

,

that should full�l the ondition a << L << ξ.
The orrelation length is expeted to derease with temperature above Tc and to inrease with it below Tc. However,

the notion of orrelation volume/length is quite omplex in ferroeletri systems

17,18

, due to the peuliar nature of

the dipole-dipole interation, that is long-ranged and leads to strongly anisotropi orrelations. As a onsequene, it

is the shape rather than the volume that de�nes a region within whih dipolar orrelations an produe ferroeletri

order

18

. Lines

17

pointed out more than thirty years ago the di�ulty to de�ne properly a orrelation length in a

ferroeletri. Anyway, we will assume in this paper that the notion of orrelation length/volume keeps a sense in

ferroeletri solids, that will help us to understand from a qualitative point of view the free energies omputed with

various superell sizes and for various temperatures.

From a numerial point of view, we use as averaging volume the superell used for simulating the bulk system within

periodi boundary onditions (L3
). Computing a relevant free energy as a funtion of order parameter would therefore

require the superell size to be lower than ξ. If suh a ondition is not full�lled, inhomogeneous on�gurations are

expexted to appear at low order parameter and low temperature. Sine ξ dereases rapidly when the temperature

dereases below Tc, and that, of ourse, a too small superell an not be used to prevent from too large �nite-size

e�ets, it suggests that omputing a relevant free energy within the present method is possible only above a ertain

temperature in the ferroeletri phase. However, the identi�ation of suh a free energy with the Landau free energy

is still a ontroversial issue

16

. In the same manner, at a given temperature, phase separation is expeted to our at

low order parameter for large enough superells of size L > ξ. We add that even when L < ξ (around the ritial

temperature for instane, where ξ an reah high values), the omputation su�ers from �nite-size e�ets, unavoidable

in that ase within periodi boundary onditions.

In the present work, we present some features that may help to get insight into Landau potentials of ferroeletri

materials from a mirosopi approah, at least around the Curie temperature. We extend the approah of Ref. 20

to MD simulations under onstant pressure, that allow to ompute a Gibbs free energy as a funtion of polarization.

One applied to BaTiO3, the free energy urves obtained are very similar to what is expeted from Landau theory of

�rst-order phase transitions and, after �tting these urves by 8

th
order polynomial funtions, an exellent agreement

is found with availables phenomenologial Landau potentials of the litterature.

We also ondut a very areful analysis of the states of onstrained order parameter for the lowest temperature

studied (≈ Tc - 15 K). They are found to be more and more inhomogeneous as the superell size inreases. For

the largest superell (L=20), phase separation starts to our at this temperature. Below this size (between L=12

and L=20), the mean fore and free energy urves obtained are independent on the superell size, showing that the

omputed free energy is free of interfaial ontribution and is atually a volume quantity. For a reasonable superell

size (L=12), the marosopi states of onstrained polarization are shown to be homogeneous (this is arefully tested

by inreasing the number of time steps). However, we show that below a given temperature (≈ 240-250 K) the use of

a 12 × 12 × 12 superell leads to inhomogeneous states at low order parameter, as expeted.

We also disuss the ontributions to the free energy of a ferroeletri rystal in terms of the four ontributions

(onsite, short-range, dipole-dipole and elasti-loal mode interation) that onstitute the e�etive hamiltonian. We

show that two of them are independent on the temperature when expressed as funtions of the mean loal mode ~u

(dipole) instead of polarization

~P .
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II. THEORETICAL AND COMPUTATIONAL DETAILS

A. Hamiltonian

We have used the E�etive Hamiltonian of Zhong, Vanderbilt and Rabe

6,7

, devoted to BaTiO3. This hamiltonian

uses as degrees of freedom the "loal modes" ~ui (loal order parameters), that roughly represent the loal dipoles that

do exist instantaneously in eah unit ell, the (mehanial) displaement modes ~vi, from whih the inhomogeneous

strain tensor

{

ηIl (i)
}

is onstruted for eah unit ell i, and the homogeneous strain tensor

{

ηHl
}

. The strain tensor

at ell i is thus given by ηl(i) = ηHl + ηIl (i).
This hamiltonian Heff ({~ui} , {ηl(i)}) onsists of several terms, among whih a long-range interation is inluded to

model the dipole-dipole interation (this term is absolutely neessary to provide a realisti simulation of a ferroeletri

system):

Heff ({~ui} , {ηl(i)}) = Eself ({~ui}) + Edpl({~ui}) + Eshort({~ui}) + Eelas({ηl(i)}) + Eint({~ui} , {ηl(i)}) (2)

The �rst term Eself =
∑

i E(~ui) is loal and onsists of a fourth-order polynomial funtion in the ~ui:

E(~ui) = κ2 ‖~ui‖
2
+ α ‖~ui‖

4
+ γ(u2

ixu
2
iy + u2

iyu
2
iz + u2

ixu
2
iz) (3)

The seond term Edpl
is ruial to the desription of ferroeletri systems: it is the (long-range) dipole-dipole

interation between the loal modes:

Edpl =
Z∗2

ǫ∞

∑

i<j

~ui.~uj − 3( ~̂Rij .~ui)( ~̂Rij .~uj)

R3
ij

, (4)

with

~̂Rij = ~Rij/Rij ,
~Rij being the lattie vetor joining ell i to ell j. Z∗

is the e�etive harge assoiated to the

loal modes and ǫ∞ the eletroni dieletri onstant. This long-range interation an be expressed as:

Edpl =
∑

i,j,α,β

Qij,αβuiαujβ , (5)

the Q matrix being alulated by using the well-known Ewald summation method.

The third term desribes short-range interations between neighboring loal modes (up to the third neighbor):

Eshort =
1

2

∑

i6=j

∑

α,β

Jij,αβuiαujβ (6)

The fourth term is the elasti energy assoiated to the strain. This term is alulated from the three elasti onstants

B11, B12 and B44 of the parent ubi phase.

Finally the �fth term desribes the oupling between the loal modes and the strain. In ferroeletri systems, this

oupling is at the origin of the so-alled eletrostritive e�ets and is of primary importane. It is supposed to be

loal and takes the following form:

Eint =
1

2

∑

i

∑

lα,β

Blαβηl(i)uiαujβ (7)

All the parameters of this hamiltonian are determined from �rst-priniples alulations of well-hosen

on�gurations

6,7

in the framework of the Loal Density Approximation (LDA) to Density Funtional Theory (DFT).

The reader is refered to Ref. 7 for their preise value. This e�etive hamiltonian desribes very well the thermodynam-

is of barium titanate, espeially its omplex sequene of phase transitions (rhombohedral - orthorhombi - tetragonal

- ubi), with a Curie temperature however a little too low (around 300 K).

B. Numerial method

We perform MD simulations based on this hamiltonian

19,20

. Aording to the algorithm used, we an perform

either �xed temperature simulations (Nosé-Hoover algorithm

22,23

), �xed stress tensor simulations (Parrinello-Rahman
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algorithm

24

) or both. The ombination of the two allows to reprodue with a very good auray the sequene of

phase transitions and temperature evolution of strain and polarization of barium titanate

19

, as found from MC

simulations

6,7

. The equations of motion in the Parrinello-Rahman sheme are realled hereafter:

mlm
d2~u′

i

dt2
= H(t)−1. ~f lm

i −mlmG(t)−1.
dG

dt
(t).

d~u′
i

dt

mdsp
d2~v′i
dt2

= H(t)−1. ~fdsp
i −mdspG(t)−1.

dG

dt
(t).

d~v′i
dt

,

respetively for the loal modes (~ui = H(t).~u′
i) and diplaement modes (~vi = H(t).~v′i). mlm and mdsp are respetively

the masses assoiated to the loal modes and to the displaements modes. H(t) (the 3 × 3 matrix formed by the

omponents of the three vetors ~a, ~b and ~c that de�ne the superell) evolves aording to:

W
d2H

dt2
(t) = (σ0 − σ).ω,

in whih W is a "mass" assoiated to the dynamis of the superell vetors ~a, ~b and ~c, whih has to be orretly

hosen. ωij = ∂Ω/∂Hij (Ω is the volume of the superell) and G(t) =t H(t).H(t). σ and σ0 are respetively the

instantaneous stress tensor and the desired stress tensor.

In the preliminary work of Ref. 20, we have performed MD simulations under �xed polarization

20

. These simulations

are ahieved by adding external fores in the time-evolution equations of motion of the loal modes (see Ref. 20 for a

preise explanation):

mlm
d2ui,α

dt2
= f lm

i,α − ζα,

with ζα = 1/N
∑

i f
lm
i,α. ui,α is the α-omponent of the ith loal mode (whih has the dimension of a displaement),

mlm is the mass assoiated to the loal modes, f lm
i,α the α-omponent of the fore ating on the ith loal mode and

N the number of 5-atom unit ells in the superell used for the simulation. The quantity

~ζ = (ζx, ζy, ζz), alulated
in Ref. 20 as a Lagrange multiplier, is formally equivalent to an external eletri �eld that would be applied to the

system and would maintain invariant the polarization. The total instantaneous external fore applied to the system

to maintain the polarization �xed is thus −
∑

i
~f lm
i . This Moleular Dynamis under onstraint is assumed to provide

a orret sampling of the subspae of phase spae orresponding to a �xed value of the order parameter, de�ned by

an average over the whole simulation box.

Based on suh simulations, we have applied the method of the thermodynami integration to ompute the di�erene

of free energy ∆F̃ (N, {η} , T ; ~u) = F̃ (N, {η} , T ; ~u)−F̃ (N, {η} , T ; ~u = ~0) between ~u = ~0 and ~u. We use for onveniene

in the following the average loal mode ~u = 1/N
∑

i ~ui as order parameter instead of the polarization
~P (

~P = NZ∗/Ω~u,
Z∗

being the e�etive harge assoiated with the loal modes and Ω is the volume of the superell).

This di�erene is obtained as the integral over a ontinuous path in the 3-D spae (ux,uy,uz) of minus the thermal

average of the total fores ating on the loal modes, this thermal average being omputed under �xed volume (more

preisely under �xed strain tensor), �xed temperature and �xed mean loal mode:

F̃ (N, {η} , T ; ~u)− F̃0(N, {η} , T ) = −

∮

∑

i

〈

~f lm
i

〉

N,{η},T ;~u′

.d~u′, (8)

The subsript 0 in this formula and in the following is used to denote the quantities at ~u = ~0, and the integral is

performed over a ontinuous path joining ~u = ~0 to ~u in the 3-D spae (ux, uy, uz). A omplete and rigorous proof

of this equation an be found in Ref. 20 in terms of partition funtions, but basially it an be reovered from the

priniples of thermodynamis: indeed under �xed volume V and �xed temperature T , the in�nitesimal variation of

the free energy dF̃ when the polar displaements evolve from ~u to ~u + d~u is equal to δW ′
, the work of the external

fores (other than pressure fores), i.e. in our ase the work of the external fore −N
〈

~ζ
〉

= −
∑

i

〈

~f lm
i

〉

:

dF̃ (~u) = δW ′ = −
∑

i

〈

~f lm
i

〉

N,{η},T ;~u
.d~u (9)
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whih writes in a loal form:

∑

i

〈

~f lm
i

〉

N,{η},T ;~u
= −~∇~uF̃ (N, {η} , T ; ~u) (10)

and provides by integration Eq. 8. The free energy is thus omputed as a potential of mean fore (PMF). Its

di�erential dF̃ when the system evolves reversibly from ~u to ~u+ d~u is the in�nitesimal work that has to be provided

to the system (or reeived from it) to allow suh a reversible transformation. This work is that of the external fores

added in the equations of motion of the loal modes

19

.

The extension to the Gibbs free energy is straightforward

29

:

∆G̃(N, {σ} , T ; ~u) = G̃(N, {σ} , T ; ~u)− G̃0(N,P, T ) = −

∮

∑

i

〈

~f lm
i

〉

N,{σ},T ;~u′

.d~u′, (11)

in whih the thermal averages are omputed under �xed temperature, stress tensor and polarization. This yields:

G̃(N, {σ} , T ; ~P )− G̃0(N, {σ} , T ) = −

∮

Ω(~P ′)

NZ∗

∑

i

〈

~f lm
i

〉

N,{σ},T ;~P ′

.d ~P ′
(12)

In this last expression, the relaxation of strain induing a volume variation (Ω(P, T, ~u)) along the path is taken into

aount.

C. Computational details

In this work, we have omputed ∆G̃(N, {σ} , T ; ~u) = G̃(N, {σ} , T ; ~u)− G̃0(N, {σ} , T ) for BaTiO3, for 6 tempera-

tures around the Curie temperature along the [100℄ diretion. This is ahieved through the following proedure. The

alulation is performed every ∆u = 0.001 a0, starting from ~u = ~0, whih is found to be a �ne enough grid to make

the integration. Exept in Se. III in whih the e�et of the superell size is systematially tested, we use a 12 × 12

× 12 superell with periodi boundary onditions.

First we perform for eah point 10

5
steps of MD by ombining �xed pressure (Parrinello-Rahman algorithm), �xed

temperature (Nosé-Hoover algorithm) and �xed polarization

20

. The (hydrostati) pressure is �xed to -4.8 GPa, whih

is the value used by Zhong et al to orret the underestimation of the lattie onstant of BTO within the Loal Density

Approximation

7

. The 50000 �rst steps are used to equilibrate the system. The last 50 000 are used to average the

strain. The evolution of

~P omputed at onstant pressure and for a given temperature is indeed aompanied by an

evolution of the strain, as an be seen on Fig. 2.

Then, for eah value of ~u of the grid, the alulation is restarted (for 10

5
steps) under �xed strain tensor (the one

averaged over the previous simulation), polarization and temperature. The �nal 50 000 steps of this seond run are

used to alulate the thermal average of the fores ating on the loal modes. We hek at the end of this seond run

that the stress tensor (obtained from the average over the 50 000 last steps) orresponds to the hydrostati pressure

of -4.8 GPa (it works with an auray of ≈ 0.01 GPa). This proedure in two times is applied to ensure that the

ombination of the three algorithms (Nosé-Hoover, Parrinello-Rahman, �xed polarization) does not indue artefats

that would bias the statistial averages. In fat, the free energy pro�les obtained from the fores averaged over the 50

000 last steps of the �rst run are almost idential to those obtained from the seond one. We point out that at least

50 000 steps are neessary to ompute properly the mean fore (fores are mirosopi quantities having very large

�utuations). The mean fore in numerially integrated as in Refs. 20,25.

III. STATES OF CONSTRAINED POLARIZATION AT T=280 K (≈ Tc - 15-17 K)

In the method employed here, the free energy is omputed from MD simulations under �xed polarization, as

explained above. The result is a sampling of phase spae under the onstraint of �xed order parameter, de�ned from

an average over the whole superell. However, at low order parameter, the system might separate into domains or at

least beome inhomogeneous

16

inside the superell.

Moreover, the existene of domains would yield a di�ulty to de�ne properly the free energy as a volume quantity,

by inorporating surfae or interfaial ontributions in the omputed free energy. In Se. III A we hek the reasonable
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homogeneity of the states of onstrained order parameter obtained in 12 × 12 × 12 superells through 50000 time steps

for the lowest temperature studied (280 K). In Se. III B, we test that this homogeneity is systematially improved by

inreasing the number of time steps of the simulation. The existene of interfaial ontributions an be systematially

tested by inreasing the superell size (Se. III C) or dereasing the temperature (Se. III D).

A. Homogeneity of the marosopi states of onstrained order parameter

We �rst perform a series of simulation tests in a 12 × 12 × 12 superell: we hek that all along the simulated

path, the system does not separate into domains, even for small values of the order parameter. We ompute the

time-averaged loal mode on eah site of the simulation superell:

~ui =
1

Nst

Nst
∑

k=1

~ui(k), (13)

in whih ~ui(k) is the loal mode at ell i at time step k (Nst is the number of time steps), and plot their distribution

(Fig. 1). Clearly, a multidomain state would result in two distint peaks at least for one omponent (x, y or z). In
all ases, we obtain single-peak distributions. On the graphs of Fig. 1, we have put arrows to indiate approximately

the values of the spontaneous polarization of tetragonal BTO at the temperature onsidered here (T=280 K). A

two-domain state would result in two peaks approximately loalized lose to those arrows. In all the ases, the width

of the loal mode distribution is well below this spontaneous polarization.

The absene of ferroeletri domains is also obvious from the evolution of the strain tensor omponents along the

simulated path, plotted on Fig. 2 for six temperatures around the Curie temperature: the evolution is smooth and

ontinuous, with η1 = η2 = η3 ≈ 0.012 for zero order parameter (ux = uy = uz = 0). If ferroeletri domains

were present, one omponent would jump to a high value orresponding roughly to the tetragonal strain at the

orresponding temperature. Note that this 0.012 strain obtained at low order parameter is preisely the value that

would be extrapolated from the paraeletri phase aross Tc, suggesting that our onstrained simulation for zero

order parameter allows to reah some onstrained paraeletri phase below the Curie temperature, whih provides a

physial piture fully ompatible with Landau theory.

Thus, the omputed free energy does probably not ontain signi�ant interfaial ontribution (we show hereafter in

Se. III C that the present free energy does not signi�antly vary when inreasing the superell size to 16 × 16 × 16).

Anyway, this has to be ontrolled severely in eah simulation. A quik guess on what is going on an be obtained by

examining the strain tensor omponents evolution (similarly, if one omputes a Helmholtz energy under �xed strain,

by examining the stress).

Moreover, as learly explained in Ref. 16, if a multidomain state ours at �xed low order parameter, the inrease

of the order parameter simply results in one domain growing at the expend of the other, or in a suession of more

or less omplex interfae motions. As a onsequene, as long as the domain walls move without interating with eah

other, the free energy remains "�at" and yields very harateristi urves

16

. Suh phase separation might our at

low temperature and low displaiveness

16

. Preisely, this does not our in the present simulations (Fig. 10), that are

performed around the Curie temperature.

Anyway suh ases our at "low" temperature, i.e. a few 10 K below the phase transition (probably when the

orrelation length falls below the superell size - see hereafter), or when the geometry enfores ferroeletriity (for

instane we �nd it in thin �lms or with strongly distorted ells, for whih a strong eletrostritive oupling favours a

ferroeletri state).

B. Simulation time

The simulations are systematially improved by inreasing the simulation time: Fig. 3 shows that the time-averaged

loal mode distribution beomes more and more peaked as the simulation time is inreased, showing that we are not

sampling some metastable state. To emphasize this point, we plot on Fig. 4 the mean fore per 5-atom ell

1
N

∑

i

〈

f lm
ix

〉

and the free energy urve (obtained by integrating the mean fore) omputed at T=280 K after averaging over 50

000 steps and 500 000 steps. A systemati improvement is found. Any phase separation would result in plateaus

in the mean fore urve, whih are not observed. Moreover, the average over 500 000 steps provides a very smooth

and regular urve. We observe also that the potentials of mean fore obtained in the two ases are almost idential,

beause the numerial errors on the fores tend to anel when the integration is performed. Thus very good quality

urves are obtained with an average over 50 000 steps.
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FIG. 1: Distribution of the time-averaged omponents of the loal modes (arb. units) (averaged over 50 000 steps), for 5

onstrained values of the order parameter, at T=280 K (panels a,b,,d and e). The purple (resp. blue and orange) lines refer to

the x (resp. y and z) omponent. The graphs show that the marosopi states of onstrained polarization remain homogeneous

along the simulation (no phase separation). The broadness of the peaks re�et �utuations and an be systematially redued

(see Fig. 3). It an be ompared to panel f, where the distribution of the loal modes in an unonstrained system at T=310K

(i.e. above Tc) is plotted after the same simulation time. The blak arrows loalize approximately the values of the spontaneous

polarization at T=280 K (where the peaks are expeted if phase separation ours). The superell is 12 × 12 × 12 and the

loal modes are in a0 (lattie onstants) units.

C. E�et of the superell size

The e�et of the superell size is tested by performing simulations at T=280 K in a 16 × 16 × 16 and in a 20 ×
20 × 20 superell. The total mean fore obtained as a funtion of mean loal mode, as well as the orresponding

potential of mean fore (free energy) are shown on Fig. 5.

In the ase of the 16 × 16 × 16 superell, the agreement is very good with respet to the 12 × 12 × 12 ell: the

mean fore and free energy urves are very lose to those presented above. Plotting the loal mode distribution as

well as the strain tensor omponent evolution indiates the absene of phase separation at low order parameter and

on�rms that interfaial ontributions to the free energy are negligible, if any.

However, in the 20 × 20 × 20 superell, phase separation starts to manifest at low order parameter, yielding a

harateristi trend on the mean fore and free energy urve: some "plateaus" do appear in the mean fore urve. This

an be observed on the loal mode distribution (Fig. 6) as well as on the strain tensor omponents. Consequently, the

mean fore and the free energy deviate slightly from the two urves obtained with smaller superells. More preisely,

three regions an be distinguished in that ase, separated on Fig. 5 by blak arrows: at low order parameter (lose to
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FIG. 2: Diagonal omponents of homogeneous strain tensor η1 (red diamonds), η2 (orange diamonds) and η3 (blue diamonds)

as a funtion of the order parameter, for six temperatures around Tc. P = -4.8 GPa, the Parrinello-Rahman algorithm is used

to �x the stress along the path.

zero), the mean fore and the free energy are �at, indiating pseudo-domains with roughly opposite polarizations in

the diretions perpendiular to x (x is the diretion of the �xed order parameter). Then at ux ≈ 0.005 a0, the mean

fore inreases but through a linear urve (instead of a onvex urve as in the smaller superells). From Fig. 6, this

situation orresponds to pseudo-domains with polarization oriented along x, very inhomogeneous (Fig. 6, panels (f)

and (g)), but the polarization in the perpendiular diretions is maintained to its �xed value. Then at ux ≈ 0.015 a0,

the distributions of the various omponents of the time-averaged loal modes reover single-peak features, and the

mean fore reovers similar values as in smaller superells.

The free energy, as a onsequene, even though the agreement with previous urves is still good (Fig. 7), tends to

di�er slightly. This trend is probably enstrengthed in larger superells.

Too large superells thus lead to low order parameter states in whih inhomogeneous on�gurations are dominating

the sampling, and the free energies obtained are onsequently not smooth in these regions. In the following, we use

the 12 × 12 × 12 superell to ompute the free energy around Tc.

From the previous tests, we may assume that at T=280 K, the superell sizes L=12 and L=16 are lower than

some harateristi length of the system that an be ompared to or interpreted as a orrelation length. L=20 lattie

onstants is probably lose to this orrelation length. We show in the following that the omputed free energies for

L=12 are fully omparable to the phenomenologial Landau free energies of the litterature. Superell sizes ranging

from L=12 to L=20 provide free energies (as a funtion of order parameter) that are quasi-similar at this temperature.

Note that when approahing Tc from below, the orrelation length inreases and the free energy urves omputed

around Tc with L=12 are thus probably more sensitive to �nite-size e�ets.
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FIG. 3: Distribution of the time-averaged omponents of the loal modes (arb. units), for 3 onstrained values of the order

parameter, at T=280 K. Panels a,b,: average over 50000 steps. Panels d,e,f: average over 1000000 steps. The purple (resp.

blue and orange) lines refer to the x (resp. y and z) omponent. The superell is 12 × 12 × 12 the loal modes are in a0

(lattie onstants) units.

D. States of onstrained polarization at lower temperature

When the temperature dereases below 280 K, the states of onstrained polarization at low order parameter beome

progressively more and more inhomogeneous, espeially for T ≤ 240 K. This is illustrated on Fig. 8, that represents

the distribution of the time-averaged loal modes in a L=12 superell between T=270 K and T=210 K.

At very low temperature and low order parameter, this distribution exhibits several peaks that re�et the appearane

of very inhomogeneous states (Fig. 9).

IV. RESULTS

A. Computation of the free energy around Tc using a 12 × 12 × 12 superell

The Gibbs free energy urves as a funtion of ux, omputed in a 12 × 12 × 12 superell for T=280, 290, 292.5,

295, 297.5 and 300 K are shown on Fig. 10. They orrespond very well to the pro�les expeted from Landau theory

for a �rst-order phase transition, with a free energy barrier separating the paraeletri phase from the ferroeletri

phase for a few K below and above Tc. From these urves, we an loalize the Curie temperature between 295 and
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FIG. 4: Mean fore as a funtion of mean loal mode (arb. units) and potential of mean fore (obtained by integration of minus

the mean fore). (a): averaging over 50 000 steps; (b): averaging over 500 000 steps. Note that the two free energy urves have

not exatly the same depth due to linear deviations as the integration is performed.

297.5 K (Iñiguez et al loalize it at 297 K with the same hamiltonian

8

). The free energy barrier separating the ubi

paraeletri phase and the tetragonal ferroeletri phase at Tc is ∆G ≈ 0.012-0.015 meV/5-atom ell. The order of

magnitude of this small barrier is in good agreement with that given by phenomenologial Landau Gibbs free energies

suh as that of Wang et al

26

for whih ∆G ≈ 0.01 meV/5-atom ell at Tc.

B. Comparison with phenomenologial potentials

We now ompare the results with lassial phenomenologial Landau potentials, that assume in partiular a linear

dependene of the quadrati oe�ient with temperature. In the litterature, these potentials an be found as Gibbs

free energies for the stress-free rystal, under the form of polynomial funtions up to 6

th
or 8

th
order in the Px, Py

and Pz . For example, the 8
th

order development writes:
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FIG. 5: Mean fore as a funtion of mean loal mode (arb. units) and potential of mean fore (obtained by integration of minus

the mean fore). (a): 16 × 16 × 16 superell, average over 50 000 steps (b): 20 × 20 × 20 superell, average over 50 000 steps.
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The free energy along the x axis (Px 6= 0, Py = Pz = 0) writes:

G(T ; ~P ) = α1P
2
x + α11P

4
x + α111P

6
x + α1111P

8
x (14)

A �t of our free energy urves by 6

th
-order or 8

th
-order polynomial funtions (without odd-order term) aP 2+bP 4+

cP 6(+dP 8) should diretly provide oe�ients omparable to the α1, α11, α111 and α1111 of the litterature. Thus

we �t these urves by suh polynomial funtions and extrat the oe�ients (the volume variation along the urve is

aounted for when performing the alulation).
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FIG. 6: Distribution of the time-averaged omponents of the loal modes (arb. units), for 4 onstrained values of the order

parameter, at T=280 K. Panels a,b,,d: 16 × 16 × 16 superell. Panels e,f,g,h: 20 × 20 × 20 superell. The purple (resp. blue

and orange) lines refer to the x (resp. y and z) omponent. The loal modes are in a0 (lattie onstants) units.

First the omputed free energy urves �t very well by suh funtions. The quadrati term obtained by �tting is

plotted on Fig. 11 as a funtion of T for the two �ts (6

th
and 8

th
order). On the same �gure, we plot the quadrati

term of the phenomenologial potential of Wang et al

26 α1 = 3.61×105(T-T0) (V.m.C
−1
). In Landau theory for �rst

order phase transitions, T0 is, just below Tc, the temperature above whih the paraeletri state (

~P = ~0) beomes a
(loal) minimum of G. Wang et al set this value at 391 K, just below the real Curie temperature. In our ase, T0 has

to be readjusted below the Curie temperature of the E�etive Hamiltonian. The best agreement with the 8

th
order

polynomial �t is obtained for T0=275 K (green irles on Fig. 11), whih is indeed just below the Curie temperature

of the hamiltonian (≈ 297 K). For this value of T0, the agreement between the phenomenologial potential of Wang

et al

26

and our work is very good. The temperature dependene of the quadrati term �tted is linear on the small

range of temperature onsidered here (280-300 K). This would probably not be the ase if the study was extended to

lower temperatures

8

.

The temperature evolutions of the other oe�ients are shown on Figs. 12 (quarti and sixth order oe�ient) and

13 (eight-order oe�ient) in the ase of a �t by an 8

th
order polynomial funtion. We �nd an exellent agreement

lose to Tc with the two phenomenologial potentials of Wang et al

26

and Li et al

27

, for the three oe�ients α11,

α111 and α1111.
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FIG. 7: Free energies as a funtion of mean loal mode (meV/5-atom ell), as alulated for the three superell sizes. Yellow

diamonds: 12 × 12 × 12 (50 000 steps); Orange diamonds: 12 × 12 × 12 (500 000 steps); Red diamonds: 20 × 20 × 20 (50

000 steps); Blue diamonds: 16 × 16 × 16 (50 000 steps).

C. Natural deomposition of the free energy

Sine the e�etive hamiltonian deomposes into various ontributions

7

(in partiular onsite, short-range, dipole-

dipole, elasti-loal mode interation), the fore ating on the ith loal mode

~f lm
i also naturally deomposes into:

~f lm
i = −

∂Heff

∂~ui
= ~f self

i + ~f short
i + ~fdpl

i + ~f int
i ,

with obvious notations. This leads to a natural deomposition of the free energy ∆F̃ (N, {η} , T ; ~u) =

F̃ (N, {η} , T ; ~u)− F̃0(N, {η} , T ) as:

∆F̃ (N, {η} , T ; ~u) = ∆F̃ self (N, {η} , T ; ~u)+∆F̃ short(N, {η} , T ; ~u)+∆F̃ dpl(N, {η} , T ; ~u)+∆F̃ int(N, {η} , T ; ~u), (15)

whih extends easily to the Gibbs free energy:

∆G̃(N, {σ} , T ; ~P ) = ∆G̃self (N, {σ} , T ; ~P ) + ∆G̃short(N, {σ} , T ; ~P ) + ∆G̃dpl(N, {σ} , T ; ~P ) + ∆G̃int(N, {σ} , T ; ~P ),
(16)
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FIG. 8: Distribution of the time-averaged loal modes in a 12 × 12 × 12 superell after 100 000 steps for a onstrained value

of the order parameter (ux = 0, uy = 0, uz = 0). The unit is the same as in the previous �gures. The loal modes are in a0

(lattie onstants) units.

First, we notie that in the viinity of the phase transition, these ontributions are muh higher (at least two

orders of magnitude) than the free energy itself, on�rming the well-known trend, aording to whih the existene of

ferroeletriity is a very deliate balane between large destabilizing ontributions (here short-range and onsite) and

large stabilizing ones (dipole-dipole and elasti-loal mode interation), as illustrated on Fig. 14.

1. Short-range and eletrostati parts

Examining the various ontributions as a funtion of ~u (mean loal mode), we notie something a priori surprising:

among the four ontributions, two of them (the short-range and the dipole-dipole) are independent on the temperature.

This would not be the ase if these ontributions were expressed as a funtion of

~P instead of ~u (beause the volume

depends on ~u, see Fig. 2). In fat, this is simply due to the fat that the orresponding parts of the E�etive

Hamiltonian are quadrati in the loal modes:

Eshort =
1

2

∑

i,j,α,β

Jα,β
ij ui,αuj,β ⇒ f short

i,α = −
∂Eshort

∂ui,α
= −

∑

j,β

Jα,β
ij uj,β,

Thus the fores vary linearly with the loal modes, and their thermal average (in any ensemble) is
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FIG. 9: Distribution of the time-averaged loal modes in a 12 × 12 × 12 superell after 350 000 steps at T=200 K for a

onstrained value of the order parameter (ux = 0, uy = 0, uz = 0). The unit is the same as in the previous �gures. The loal

modes are in a0 (lattie onstants) units.

〈

f short
i,α

〉

= −
∑

j,β

Jα,β
ij 〈uj,β〉

Under �xed ~u, and under the hypothesis that the system is homogeneous (∀j, β, 〈uj,β〉 = uβ):

〈

f short
i,α

〉

= −
∑

j,β

Jα,β
ij uβ

Thus

∑

i

〈

f short
i,α

〉

= −
∑

i,j,β

Jα,β
ij uβ

∂G̃short

∂uα
= −

∑

i

〈

f short
i,α

〉

NPT
=

∑

β







∑

i,j

Jα,β
ij







uβ

Let us introdue the 3×3 matrix: Jα,β =
∑

i,j J
α,β
ij .

∂G̃short

∂uα
=

∑

β

Jα,βuβ (17)

The same arguments stand of ourse in the anonial ensemble:

∂F̃ short

∂uα
=

∑

β

Jα,βuβ (18)

It follows:
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FIG. 10: Gibbs free energy as a funtion of ux (with uy = uz = 0, i.e. along [100℄) for �ve temperatures around the

paraeletri-ferroeletri phase transition. ux is in units a0 (= 7.46 bohr). The superell is 12 × 12 × 12.

FIG. 11: Temperature evolution of the quadrati oe�ient (between 280 and 300 K), aording to a �t of the omputed

free energy on a 6

th
order (red diamonds) or 8

th
order (orange diamonds) polynomial. The irles refer to the Landau

phenomenologial potential of Ref. 26.

⇒ ∆G̃short = ∆F̃ short =
1

2

∑

α,β

Jα,βuαuβ (19)

The SR ontribution to the free energy is thus independent on the temperature and quadrati in the mean loal

mode.
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FIG. 12: Temperature evolution of the quarti (α11) and sixth order (α111) oe�ients, as obtained from this work (orange

diamonds) and as provided by Wang et al (green irles) and Li et al (blue irles).

FIG. 13: Temperature evolution of the eight order oe�ient α1111 , as obtained from this work (orange diamonds) and as

provided by Wang et al (green irles) and Li et al (blue irles).
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FIG. 14: Deomposition of the free energy (red) into its 4 ontributions at T=290 K, as a funtion of Ux (with Uy = Uz = 0)

(i.e. along [100℄). Eah of the 4 ontributions is at least 2 orders of magnitude higher than the free energy itself, that appears

therefore ompletely �at (red diamonds).

For the dipole-dipole part, we have also:

∂G̃dpl

∂uα
=

∂F̃ dpl

∂uα
= 2

∑

β

Qα,βuβ (20)

It follows:

⇒ ∆G̃dpl = ∆F̃ dpl =
∑

α,β

Qα,βuαuβ (21)

with Qα,β =
∑

i,j Q
α,β
ij , the Q matrix de�ned in Ref. 7 to ompute the eletrostati energy.

The previous equations allow to ompute diretly the short-range and dipole-dipole part of the free energy from

the oe�ients of the e�etive hamiltonian without simulation. These parts are quadrati in ~u and independent on

the temperature.

However, we stress that these two parts are independent on the temperature when expressed as a funtion of the

mean loal mode ~u. If they are expressed as a funtion of the polarization

~P , a temperature dependene appears,

related to the variation of the ell volume (Ω/N) with temperature:

~P = NZ∗/Ω(P, T, ~u)~u.

2. Onsite part and elasti-loal mode interation part

The temperature dependene of the free energy, when expressed as a funtion of ~u, thus originates only in the

onsite and elasti-loal mode interation parts of the E�etive Hamiltonian. Let us examine the onsite energy: the

orresponding part of the E�etive Hamiltonian is loal and has an harmoni part and an anharmoni part:

Eself =
∑

i,α,β

Aα,βui,αui,β + Eself
anharm

From the arguments given above, only the anharmoni part is likely to generate a temperature dependene of the

orresponding part of the free energy:

∂G̃self

∂uα
= N

∑

β

Aα,βuβ +
∂G̃self

anharm

∂uα

We have also:
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∂F̃ self

∂uα
= N

∑

β

Aα,βuβ +
∂F̃ self

anharm

∂uα

Thus,

⇒ ∆G̃self = N
∑

α,β

Aα,βuαuβ +∆G̃self
anharm

and

⇒ ∆F̃ self = N
∑

α,β

Aα,βuαuβ +∆F̃ self
anharm

With the notations of Ref. 7, we have:

∆F̃ self = Nκ2 ‖~u‖
2 +∆F̃ self

anharm (22)

∆G̃self = Nκ2 ‖~u‖
2
+∆G̃self

anharm (23)

The ontributions from anharmoni terms might ontain also a priori an harmoni ontribution to the free energy.

Although this term in the E�etive Hamiltonian only has quarti ontributions, we have shown above that a �tting

of the free energy on polynomial funtions may ontain higher-order terms.

Finally, we fous on the elasti-loal mode interation energy:

Eint =
1

2

∑

l,i,α,β

Bl,α,βηl(i)ui,αui,β ,

with ηl(i) = ηHl + ηIl (i) (homogeneous strain + inhomogeneous strain). The same treatment an not be applied

here due to presene of the inhomogeneous strain. This ontribution is thus a priori dependent on the temperature

and this is observed in our simulations.

V. DISCUSSION AND CONCLUSION

In this work, we have omputed the free energy of barium titanate as a funtion of polarization diretly from

an e�etive hamiltonian. We have used Moleular Dynamis ombined with Thermodynami Integration. This is

equivalent to de�ne the free energy as the potential of the mean fore ating on the polarization. One obtains, for

a given temperature, the di�erene of free energy between

~P = ~0 and

~P . The simulations an be performed under

�xed volume/strain or �xed pressure/stress onditions, whih gives aess to Helmholtz free energies or to Gibbs

free energies. The gradient of the free energy is related to the thermal average of the total fores, omputed under

the onstraint of �xed polarization. From the deomposition of the fores into the di�erent ontributions oming

from the E�etive Hamiltonian, a natural deomposition of the free energy of a ferroeletri into four parts (onsite,

dipole-dipole, short-range and elasti-loal mode interation) has been suggested. In partiular we have shown that

the dipole-dipole and short-range ontributions to the free energy are, in the framework of the E�etive Hamiltonian

of Zhong et al

7

, independent on the temperature when expressed as a funtion of ~u instead of

~P and are quadrati in

~u.
The omputation has been performed for a set of temperatures around Tc and by using a 12 × 12 × 12 superell.

Although the omparison of suh a free energy with a Landau potential is still ontroversial

16

, a very good agreement

has been found with Landau phenomenologial potentials of the litterature

26,27

aroud Tc. We have heked that in

the range of temperature onsidered, phase separation at low order parameter does not our within this superell.

Moreover we have shown, by systematially inreasing the superell size and the number of time steps of the simulation,

that the omputed free energy does not ontain signi�ant interfaial ontributions and an be onsidered as a volume

(extensive) quantity. We think that these tehniques an be useful to approah the Landau free energy of a ferroeletri

near the Curie temperature and by using atomi-sale simulations.

As reminded in the introdution, the onept of Landau free energy requires the hoie of a spatial averaging length

L to de�ne the order parameter as a smooth and ontinuous physial quantity. If this averaging length is hosen
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above the orrelation length ξ, some loal modes might be unsu�iently orrelated within the averaging region and

mirosopi on�gurations with phase separation are likely to appear frequently in the sampling when a low value of

the (averaged) order parameter is �xed. These phenomena, already reported in the framework of the φ4
model, have

been also observed in the present ase at low temperature or when the superell size is very large. Suh onsiderations

lead to the onept of oarse-grained free energies

16

and elegant approahes have been proposed to irumvent the

orresponding di�ulties

28

.

However, as reminded also, the de�nition of the orrelation volume is rather omplex in ferroeletri systems due

to the very anisotropi nature of the orrelations. Further investigation of the notion of orrelation length/volume in

ferroeletris should be of primary interest to enlight the onept of Landau free energy in those materials.
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