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Abstract

Bridging algorithms are global Monte Carlo moves which allow for an efficient sam-
pling of single polymer chains. In this manuscript we discuss the adaptation of three
bridging algorithms from lattice to continuum models, and give details on the correc-
tions to the acceptance rules which are required to fulfill detailed balance. For the first
time we are able to compare the efficiency of the moves by analyzing the occurrence
of knots in globular states. For a flexible homopolymer chainof length N = 1000,
independent configurations can be generated up to two ordersof magnitude faster than
with slithering snake moves.
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1. Introduction

The estimation of thermodynamic quantities for globular phases of single chain
polymers remains a challenging task [1, 2, 3] because an effective sampling is hindered
by self–entanglements, knots [4, 5, 6, 7, 8] and high density. Globular polymers display
an interesting phase behavior [9, 10] and may serve as model systems to study aspects
of biological macromolecules [11, 12, 13, 14]. Typically, approaches like the slithering
snake algorithm [15, 16, 17, 18] or various types of chain growth algorithms like PERM
[19] are applied to sample such configurations.

A new class of Monte Carlo moves which takes advantage of destroying and re-
connecting bonds was first suggested independently by Mansfield [20] and Olaj and
Lantschbauer [21] in 1982. Even though both papers focus on sampling (polydisperse)
lattice melts, Ref. [20] also includes the so called backbite move which preserves
monodispersity and can be applied to single chains as well. Two additional bridg-
ing moves for single polymer chains on the lattice were subsequently introduced by
Deutsch in 1997 [22] and have since been combined with schemes to sample free en-
ergy landscapes [13, 9] like Wang-Landau sampling [23]. Nowadays, a rather evolved
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set of bridging methods exists for off-lattice atomistic polymer melts [24, 25, 26, 27,
28, 29], and one particular move was also ported to single chain simulations [30]. Apart
from the obvious application of sampling static melt quantities, these moves are also
applied to generate well-equilibrated starting configurations for subsequent Molecular
Dynamics runs [31, 32].

Our paper focuses on the efficient generation of globular off-lattice polymers. To
this extent we adapt the three single chain bridging moves ofMansfield and Deutsch
[22] to continuum models. Technical aspects of our implementation which further im-
prove efficiency are also discussed. In the second part we test the performance of the
moves and compare it to a standard implementation of the slithering snake algorithm.
Distinguishing independent configurations in globular states is a formidable task on its
own as commonly used observables are typically unable to yield information about the
topology of the chain. To this end, we determine whether or not a globular state is knot-
ted and compare the times which are required to generate “topologically independent”
configurations.

2. Description of the bridging moves and detailed balance

2.1. Backbite move

On a lattice, the number of neighbors of a particular monomeris always well-
defined. In the continuum, we call two monomers neighbors if the distanced between
them is within a certain rangedmin < d < dmax. The basic idea of the backbite move is
illustrated in figure 1.

First, we select an end monomer with equal probability. Neighbors of this monomer
are identified and counted (nold end), and one of these neighbors is chosen at random.
(Fig. 1b). A new bond is created between the neighbor and the old end monomer.
At the same time, the bond between the chosen neighbor and itssuccessor (along the
direction from the old end to the neighbor) is severed, turning the neighbor into the
new terminus (Fig. 1c). Note that the selection probabilityfor the reverse Monte Carlo
moveayx (from y to x) may be different fromaxy. Therefore, we also need to count the
number of neighbors of the new endnnewend (Fig. 1 d):

axy =
1
2
· 1

nold end
andayx =

1
2
· 1

nnewend
, (1)

Moves are accepted with a modified Metropolis criterion:

r < min

[

1,
nold end

nnewend
exp(−β∆V)

]

, (2)

wherer ∈ (0, 1) is a random number between 0 and 1. The prefactornold end
nnew end

ensures that
the asymmetric proposal probability is corrected.∆V denotes the energy difference
between the new statey and the old statex.

The backbite move was first suggested by Mansfield for a lattice model [20]. Note
that for a lattice model, the number of neighbors need not be counted necessarily. One
can simply choose a potential site and reject the move if there is no monomer present.
Successful implementations in the continuum were reportedrecently in Refs. [10, 33].
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2.2. Internal long range move of type II

In Ref. [22] Deutsch proposes two additional moves for single chains in globular states,
which were originally used to search for ground-states in the HP-model [34]. Both
Monte Carlo moves cut and “rewire” the polymer internally, and have to our knowledge
not been ported to a continuum model so far. First, we recall Deutsch’s definition of
parallel and anti-parallel bonds: Two opposing strands along the chain made up of
monomersi, i+1 and j, k are named parallel ifk− j = +1 and anti-parallel ifk− j = −1
(see figs. 2, 3). In the continuum monomers which are about to be rewired need to be
located withindmin < d < dmax. In this notation new bonds are always created between
i and j and i + 1 andk, which need to be neighbors. When bonds are anti-parallel
(and not parallel as suggested in the original publication), we attempt a move of type I.
Likewise, if bonds are parallel we try a type II move. For pedagogical reasons we will
first discuss moves of type II (Fig. 2) because they are easierto implement.

First we select one bondb1 made up of monomers (i, i + 1) at random (with proba-
bility 1/(N−1)) and choose one ofnb1 neighboring parallel bondsb2. If no such bonds
exist, the move is rejected. Bondsb1 betweeni andi +1 and betweenb2 betweenj and
k are cut and reconnected tob3 betweeni and j andb4 betweeni + 1 andk. This leads
to following selection probabilities from statex to y:

axy =
1

N − 1

(

1
nb1

+
1

nb2

)

. (3)

Note that the same configuration could have been chosen by first selectingb2 instead
of b1, hence we get the additional summand. For the reverse move, we obtain

ayx =
1

N − 1

(

1
nb3

+
1

nb4

)

. (4)

A move is accepted if

r < min

[

1,
nb1nb2(nb3 + nb4)

nb3nb4(nb1 + nb2)
exp(−β∆V)

]

. (5)

As before,∆V denotes the energy difference between the new statey and the old state
x. Note that the selection probabilities are symmetric in theoriginal publication of
Deutsch [22]. One simply checks for neighboring bonds on thelattice and rejects the
move if no adequate bond is present.

2.3. Internal long range move of type I

Figure 3 provides details on the long range move of type I. First we select one bond
(i, i+1) at random (with probability 1/(N−1)) and choose one of the neighboring anti-
parallel bondsb2 (with probability 1/nb1). Bondsb1 betweeni andi + 1 and between
b2 betweenj andk are cut and reconnected tob3 betweeni and j andb4 betweeni + 1
andk such that the chain is split into a linear and a circular part.From the circular
part which consists ofnz bonds we choose a random bond (b5 in fig. 3 with probability
1/Nz) and check if neighboring bonds belong to the linear part. One of thesen′b5 bonds
is chosen at random (b6) and the chain is “rewired” to form the anti-parallel bondsb7
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andb8. Sometimes it is possible to reconnect bondsb5 andb6 in different ways (as
indicated by dotted lines in fig. 2). In this case each potential connection contributes
to n′b5

. If there is no such bondb6, the move is rejected. Note that in all steps, the
number of neighboring bonds need to be determined. This leads to following selection
probabilities from statex to y:

axy =
1

N − 1
· 1

nz
· 1

n′b5

(

1
nb2

+
1

nb1

)

(6)

Note that the same configuration could have been chosen by first selectingb2 instead
of b1, hence we obtain the additional summand. For the reverse move, we get

axy =
1

N − 1
· 1

nz
· 1

n′b4

(

1
nb8

+
1

nb7

)

(7)

This leads to the following Metropolis criterion:

r < min













1,
nb1nb2n

′
b5

(nb7 + nb8)

nb7nb8n
′
b4

(nb1 + nb2)
exp(−β∆V)













. (8)

As before,∆V denotes the energy difference between the new statey and the old state
x.

2.4. Implementation

In our program monomers of the chain are stored in sequence ina double-linked
list. This allows for an efficient detection of parallel and anti-parallel bonds for internal
moves of type II and I. Even more importantly, we set up neighbor tables in which the
neighbors of each monomer are stored. Unfortunately, this neighbor table needs to be
updated each time local moves, which are essential for the ergodicity of the algorithms,
are attempted. In order to minimize these efforts, we always perform several local
displacements for all particles before we return to a sequence of bridging moves.

As indicated in previous sections, the internal move of typeI is by far the most
complicated to implement because we need to take care of the chain separation in both
linear and circular parts. The easiest move is implement is the backbite move followed
by the internal bridging move of type II.

3. Model and performance analysis

In the following we compare the performance of the moveset with an implemen-
tation of the slithering-snake algorithm [17]: We choose with probability 0.5 one end
of the chain and attempt to attach the end monomer to a random position at the op-
posite terminus without changing the bond length. Our modelsystem consists of a
simple flexible Lennard-Jones+ FENE homopolymer [35, 4, 36] with cut and shifted
Lennard-Jones interactions between all monomers

VLJ =



















4ǫ
[

(

σ
r

)12
−

(

σ
r

)6
+

127
16384

]

, if r < 2 6
√

2

0 , otherwise
(9)
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and FENE interactions between adjacent beads:

VFENE = −33.75ǫ ln

[

1−
( r
1.5σ

)2
]

. (10)

Note that for a homopolymer as described in Eqs. 9 and 10, the energy difference in
the Metropolis criterion of the bridging moves only consists of changes in the bond
energy as the position of the particles are only altered by local moves. All simulations
took place atT = 1.66 ǫ/kB, which corresponds to 0.5TΘ (for a chain of infinite length
[37].) Therefore, forN = 200 toN = 1000 only globular states are observed.

In an attempt to gauge the efficiency of the three bridging moves, we determined
whether or not a particular globule is unknotted by calculating the Alexander poly-
nomial [38]. Note that mathematically knots are only well-defined in closed curves.
However, if we connect the ends of an open chain in a well-defined manner we can still
obtain corresponding information about the “knottedness”of the globule. Ref. [38]
provides details on this topic as well as on our implementation of the Alexander poly-
nomial. The particular closure used in this work is described in Ref. [14]. To quantify
the number of independent configurations generated by the bridging algorithms we
measured the correlation times between unknotted configurations [39]:

A(k) =
〈UiUi+k〉 − 〈Ui〉2

〈U2
i 〉 − 〈Ui〉2

(11)

where

Ui =















0, if the ith configuration contains a knot

1, if the ith configuration is unknotted.
(12)

An “independent configuration” is defined by the decrease of the auto-correlation func-
tion toe−1. Note that our approach is particularly well-suited for thetask of comparing
bridging moves as it focuses on changes in topology and self-entanglements. In our
current implementation neither bridging moves nor slithering snake moves are ergodic
because they do not alter bond lengths. Therefore, it becomes necessary to combine
the algorithms with local Monte Carlo moves: In our case, each simulation run spent
26 % of the time with local displacements.

Fig. 4 shows the percentage of unknotted configurations for chain lengths ranging
from N = 200 up toN = 1000: ForN = 200 roughly 90 % of all configurations
are unknotted, forN = 1000 only 20 % are unknotted [4]. Figure 5a shows the num-
ber of generated configurations per minute divided by our estimate for the geometric
correlation time as a function of chain length. All configurations were created on a
single core of a Core2Quad Q6700 processor running at 3.33 Ghz. Figure 5b shows
the same data normalized by the results for the slithering snake moves. Note that the
time-limiting step in this analysis is not the generation ofglobular states but the sub-
sequent knot analysis which took place on a supercomputer. For chains larger than
N = 400 all bridging moves become more efficient than slithering snake moves. The
internal bridging move of type II is the most efficient followed by the backbite move
and the internal move of type I. If we consider that the latteris by far the most difficult
to code among the three, we do not recommend its implementation. Interestingly, the
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time to generate an “independent configuration” appears to be almost independent of
chain length for type II and backbite moves, whereas it increases rapidly for slithering
snake moves as expected. Finally, it is worth noting that combinations of moves may
even yield better results. A combination of internal II and backbite moves is about two
orders of magnitude faster forN = 1000 than slithering snake moves.

4. Conclusion

The aim of this paper is threefold. First, we have implemented three efficient lattice
bridging moves for single flexible globular homopolymer chains in a continuum model,
and discussed difficulties arising from the implementation. In an attempt to measure
performance we determined correlation times between unknotted globular states. To
our knowledge this is the first time in which topology is considered to gauge the effi-
ciency of global Monte Carlo moves. From this analysis, we conclude that all bridg-
ing moves become more efficient than slithering snake moves for chains larger than
N = 400 monomers. Among the three moves, the internal bridging move of type II
is the most successful. The most complicated move (internalI) performs worst and
we do not recommend its implementation. ForN = 1000 a combination of backbit-
ing and internal bridging moves of type II is two orders of magnitude faster than our
implementation of the slithering snake move.

The exact speed–up factors should, however, be taken with a grain of salt and rather
serve as a guideline. Long-range correlations, which are only relaxed by local moves,
were e.g. not considered, and results also depend a lot on themodel under consid-
eration. If chain stiffness is included [40], efficiency will drop, and results will also
deteriorate if the implementation does not include look-uptables. Nonetheless, we be-
lieve to have demonstrated that bridging algorithms are indeed the method of choice
for the simulation of long globular polymers in the continuum.
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NIC Jülich and on the linux cluster at the ZDV Mainz are gratefully acknowledged,
too.

References

[1] van Rensburg, E. J. J., J. Phys. A: Math. Theor.42 (2009) 323001 (97pp).

[2] Binder, K. and Paul, W., Macromolecules41 (2008) 4537.

[3] Sokal, A. D., Nucl. Phys. B Proc.Suppl.47 (1996) 172 .

6



[4] Virnau, P., Kantor, Y., and Kardar, M., J. Am. Chem. Soc.127 (2005) 15102.

[5] Grosberg, A. and Nechaev, S., Adv. Polym. Sci.106 (1993) 1.

[6] Mansfield, M., Macromolecules27 (1994) 5924.

[7] Grosberg, A., Poly. Sci. Ser. A51 (2009) 70.

[8] Orlandini, E., Stella, A. L., and Vanderzande, C., Phys.Biol. 6 (2009).

[9] Rampf, F., Paul, W., and Binder, K., Europhys. Lett.70 (2005) 628.

[10] Taylor, M. P., Paul, W., and Binder, K., Phys. Rev. E79 (2009) 050801.

[11] Grosberg, A., Nechaev, S., and Shakhnovich, E., J. Phys. France49 (1988) 2095.

[12] Lua, R. and Grosberg, A., PLoS Comput. Biol.2 (2006) e45.
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Figure 1: Off-lattice version of the backbite move [20].
a) An end monomer is chosen with equal probability.
b) Neighbors (within distancedmin < d < dmax) of this monomer are identified and counted. One of these
neighbors is selected at random.
c) A new bond is created between the neighbor and the old end monomer. The bond between the chosen
neighbor and its successor (along the direction from the oldend to the neighbor) is cut.
d) The number of neighbors of the new end needs to be counted tofulfill detailed balance.
e) The chosen neighbor becomes the new end and the new configuration is accepted with a modified Metropo-
lis criterion.
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Figure 2: Internal long range move of type II (parallel bonds: k-j=+1) For details see main text.

Figure 3: Internal long range move of type I (anti-parallel bonds: k-j=-1): The chain is split into a linear and
a circular part and reconnected. For details see main text.
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Figure 4: Percentage of unknotted configurations for singlebead-spring polymer chains of size N=200 to
N=1000 in the globular phase (T = 1.66 ǫ/kB)
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Figure 5: Performance analysis for single bead-spring polymer chains of size N=200 to N=1000 in the
globular phase (T = 1.66 ǫ/kB)
a. Number of “independent configurations” per minute as defined in the main text.
b. Speed-up factor of bridging moves in comparison with slithering snake moves. For this particular model
all rebridging moves become more efficient than slithering snake moves for chains larger than 400monomers.
For clarity we have used logarithmic scale on both axis.
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