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Abstract

There exist two major problems in application of the conventional block
BiCGSTAB method to the O(a)-improved Wilson-Dirac equation with mul-
tiple right-hand-sides: One is the deviation between the true and the recur-
sive residuals. The other is the convergence failure observed at smaller quark
masses for enlarged number of the right-hand-sides. The block BiCGGR al-
gorithm which was recently proposed by the authors succeeds in solving the
former problem. In this article we show that a preconditioning technique
allows us to improve the convergence behavior for increasing number of the
right-hand-sides.
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1. Introduction

This paper is the third in a series of publications[1, 2] on a new block
Krylov subspace method called block BiCGGR. In Ref. [1] we proposed the
algorithm which successfully removes the deviation between the true and the
recursive residuals found in the block BiCGSTAB method. Reference [2] is
devoted to the application of the new algorithm to solving the O(a)-improved
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Wilson-Dirac equations in lattice QCD. Although the significant cost reduc-
tion is achieved by both the algorithmic efficiency and the cache-aware im-
plementation technique, there remains one concern that the increase of L,
which denotes the number of the right-hand sides, makes the convergence of
the algorithm at lighter quark masses difficult.

In this paper we investigate the effects of a preconditioning on the conver-
gence properties of the block BiCGGR method in solving the O(a)-improved
Wilson-Dirac equations in lattice QCD. For a comparative purpose we em-
ploy the same gauge configurations as in Ref. [2]. We focus on the lightest
quark mass used in Ref. [2], which was the most difficult case to attain the
convergence with the block BiCGGR method. As a preconditioner we incor-
porate the inner solver with the Jacobi method. The convergence behavior
is examined by varying the iteration number j of the Jacobi method. We
observe that the convergence properties are improved by the preconditioner
so that the block BiCGGR method retains its efficiency for wider range of
L. For j ≥ 12 the computational cost with L = 12 is reduced down to 10%
of that with L = 1 showing stabilized convergence behaviors.

This paper is organized as follows. In Sec. 2 we explain the algorithmic
details of the block BiCGGR with the inner solver of the Jacobi method.
We present the results of the numerical tests in Sec. 3. Conclusions and
discussions are summarized in Sec. 4.

2. Preconditioned block BiCGGR

We consider to solve the linear systems with the multiple right-hand sides
expressed as

AX = B, (1)

where A is an N × N complex sparse non-Hermitian matrix. X and B are
N × L complex rectangular matrices given by

X =
(

x
(1), . . . ,x(i), . . . ,x(L)

)

, (2)

B =
(

b
(1), . . . , b(i), . . . , b(L)

)

. (3)

In the case of the Wilson-Dirac equation the matrix dimension is given by
N = Lx × Ly × Lz × Lt × 3 × 4 with Lx × Ly × Lz × Lt the volume of
a hypercubic four-dimensional lattice. L is the number of the right-hand-
side vectors which is called the source vectors in lattice QCD. Throughout
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this paper the specific matrix structure of the O(a)-improved Wilson-Dirac
equation is not necessary. We refer the readers who may be interested in it
to Sec. 2 of Ref. [2].

The details of the block BiCGGR algorithm are presented in Refs. [1, 2].
The preconditioned block BiCGGR method with M an N ×N precondition-
ing matrix such that M ≈ A−1 is described as follows:

X0 ∈ CN×L is an initial guess,

Compute R0 = B −AX0,

Set P0 = R0,

Choose R̃0 ∈ CN×L,

Preconditioning part: F0 = MR0,

Set V0 = W0 = AF0,

For k = 0, 1, . . . , until max
i

(‖r
(i)
k ‖2/‖b

(i)‖2) ≤ ε do:

Solve (R̃H
0 Vk)αk = R̃H

0 Rk for αk,

ζk = Tr[WH
k Rk]/Tr[W

H
k Wk],

Sk = Pk − ζkVk,

Uk = Skαk,

Preconditioning part: Gk = MUk,

Yk = AGk,

Xk+1 = Xk + ζkFk +Gk,

Rk+1 = Rk − ζkWk − Yk,

Preconditioning part: Fk+1 = MRk+1,

Wk+1 = AFk+1,

Solve (R̃H
0 Rk)γk = R̃H

0 Rk+1/ζk for γk,

Pk+1 = Rk+1 + Ukγk,

Vk+1 = Wk+1 + Ykγk,

End for.

In this paper we employ the Jacobi method as a preconditioner of the block
BiCGGR method because of its practical parallelizability. In this case the
matrix Gk = MUk in the algorithm is calculated by the Jacobi method as
follows:
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Gk =















(I −A−1
D A)jGk,0 +

j−1
∑

i=0

(

I − A−1
D A

)i
A−1

D Uk, j ≥ 1,

Uk, j = 0,

where j, Gk,0, and AD denote the number of iterations of the Jacobi method,
the initial guess for the Jacobi method, and the diagonal part of the coeffi-
cient matrix A, respectively. The preconditioning part of the block BiCGGR
algorithm is computed by the matrix-vector multiplications.

The dominant part of the memory requirements, which is proportional
to N , is given by 16N(51 + 9L) Bytes without an additional contribution
from the preconditioner. In a practical sense it would be sufficient that the
effectiveness of the preconditioner is retained up to L ∼ 10, because the
memory requirements may become a constraint on the applicability of the
block BiCGGR method once L goes beyond 10.

3. Numerical tests

3.1. Choice of parameters

We employ the same quenched gauge configurations as in Ref. [2], which
are the statistically independent 10 samples generated with the Iwasaki gauge
action at β = 2.575 on a Lx × Ly × Lz × Lt = 16 × 16 × 16 × 32 lattice.
We choose one hopping parameter κ = 0.1359 for the Wilson-Dirac equation
with the improvement coefficient cSW = 1.345. The bare quark mass is
defined by mq = (1/κ − 1/κc)/2 with κc = 0.136116(8). Note that this
hopping parameter gives the lightest quark mass in Ref. [2] which was the
most problematic case to achieve the convergence with the block BiCGGR
method for the fixed L. According to the results in Ref. [3], the physical pion
mass is 221 MeV with mπ/mρ = 0.28 at κ = 0.1359. The lattice spacing is
a = 0.1130 fm determined by mρ.

3.2. Test environment

Numerical tests are performed on single node of a large-scale cluster sys-
tem called T2K-Tsukuba which was also employed in the previous study[2].
The machine consists of 648 compute nodes providing 95.4Tflops of comput-
ing capability. Each node consists of quad-socket, 2.3GHz Quad-Core AMD
Opteron Model 8356 processors whose on-chip cache sizes are 64KBytes/core,
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512KBytes/core, 2MB/chip for L1, L2, L3, respectively. Each processor has
a direct connect memory interface to an 8GBytes DDR2-667 memory and
three hypertransport links to connect other processors. All the nodes in
the system are connected through a full-bisectional fat-tree network consist-
ing of four interconnection links of 8GBytes/sec aggregate bandwidth with
Infiniband.

3.3. Results

In Table 1 we list the outer iteration number to solve the Wilson-Dirac
equation with the preconditioned block BiCGGR algorithm as a function of
L and the inner iteration number j. The initial guess for the block BiCGGR
method and the Jacobi method is set to the zero matrix. The matrix R̃0 for
the block BiCGGR method is chosen as R0. We employ rather stringent tol-
erance of maxi(‖r

(i)
k ‖2/‖b

(i)‖2) ≤ 10−14 with r
(i)
k the recursive residual in the

k-th outer iteration and b
(i) a unit vector whose i-th component is unity. The

results are averaged over 10 configuration samples. In some combinations of
L and j we find the convergence failure: The residual ceases decreasing and
starts to increase gradually without reaching the tolerance. In this case we
give the number of the configuration samples which show the convergence
failure in Table 1. Note that the total number of the matrix-vector multipli-
cation denoted by #MVM is given by the formula of 2[(j + 1)k + 1]L. This
should be a more appropriate quantity to be compared. We give #MVM/L
within the parentheses in each entry of Table 1. Most important point is
that we are allowed to achieve the convergence for enlarged L as the inner
iteration number increases. Secondly, #MVM/L can be reduced with an ap-
propriate choice of L and j. To illustrate the convergence behaviors we plot
maxi(‖r

(i)
k ‖2/‖b

(i)‖2) as a function of the outer iteration number k choosing
one configuration sample as a representative case. Figure 1 shows the L de-
pendence with j fixed at twelve. We observe a characteristic feature that the
convergence behaviors for different L are almost identical up to some itera-
tion number, beyond which the convergence speed for larger L is suddenly
accelerated. In Fig. 2 we plot the j dependence for the L = 12 case. For
j = 0 the iteration is terminated when the residual of maxi(‖r

(i)
k ‖2/‖b

(i)‖2)
reaches 102 without achieving the convergence. It may be surprising that
both figures show a quite similar feature under the exchange of j and L.

In Table 2 we present the execution time divided by L as a function of
L and j. A remarkable cost reduction is observed. The best case is the
combination of L = 12 and j = 12 where the cost is just 10% of that for the
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unimproved case with L = 1 and j = 0. In a practical use it is reasonable
to choose L = 12 with j ≥ 12 as default parameters: We observe that the
stabilized convergence properties with less execution time. If the convergence
is failed by some possibility, you just repeat the inversion with smaller L.

There are two key ingredients for this remarkable achievement. One is
the algorithmic improvements thanks to the block BiCGGR: For the given
value of j, #MVM/L monotonically decreases as a function of L. The other
is the efficiency of the cache-aware implementation technique for multiple L.
The situations are depicted in Fig. 3 with the choice of j = 12.

Table 1: Outer iteration number as a function of L and the inner iteration number j to
solve the Wilson-Dirac equation with the preconditioned block BiCGGR method. Results
are averaged over 10 configuration samples. Fail means how many configuration samples
out of ten show the convergence failure. #MVM/L is given in the parentheses.

κ = 0.1359
L j = 0 j = 6 j = 12 j = 18 j = 24 j = 30

1
2437.4 536.4 309.4 224.4 176.4 145.8

(4875.8) (7510.6) (8045.4) (8528.2) (8821.0) (9040.6)

2
1713.4 342.0 194.1 140.3 110.0 90.5

(3427.8) (4789.0) (5047.6) (5332.4) (5501.0) (5612.0)

4 Fail: 7/10 Fail: 1/10
132.3 92.7 73.5 61.2

(3440.8) (3523.6) (3676.0) (3795.4)

6 Fail: 10/10
184.5 107.1 75.9 59.6 49.3

(2584.0) (2785.6) (2885.2) (2981.0) (3057.6)

8 Fail: 10/10 Fail: 1/10
91.4 66.8 52.2 43.3

(2377.4) (2539.4) (2611.0) (2685.6)

10 Fail: 10/10 Fail: 1/10
83.3 60.5 48.5 40.1

(2166.8) (2300.0) (2426.0) (2487.2)

12 Fail: 10/10
144.2 78.3 57.5 46.4

Fail: 1/10
(2019.8) (2036.8) (2186.0) (2321.0)

4. Conclusions and discussions

In this paper we present an evidence that the convergence behavior of
the block BiCGGR can be improved by the preconditioning technique. Our
numerical tests show that the rank loss problem is remedied by the use of the
inner solver with the Jacobi method as a preconditioner. As an optimized
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Figure 1: L dependence of the convergence behaviors for the j = 12 case. All the mea-
surements are performed on the same configuration.

choice of L and the inner iteration j we can achieve 90% cost reduction in
terms of the execution time.

There remains a couple of future works. Firstly, it is worthwhile to search
a better preconditioner which assures the convergence for wider range of L
with less computational cost. Secondly, it is important to investigate why
the preconditioner allows us to avoid the rank loss problem. Thirdly, we
plan to apply the preconditioned block BiCGGR method to one of the state-
of-the-art gauge configurations generated by the PACS-CS Collaboration[4].
Fourthly, it is interesting to make a direct comparison of the algorithmic effi-
ciency between the preconditioned block BiCGGRmethod and other multiple
right-hand-side methods[5, 6, 7, 8].
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Figure 2: j dependence of the convergence behaviors for the L = 12 case. All the mea-
surements are performed on the same configuration.
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